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Abstract
We pursue a classification of low-rank super-modular categories parallel to that of modu-
lar categories. We classify all super-modular categories up to rank = 6, and spin modular
categories up to rank = 11. In particular, we show that, up to fusion rules, there is exactly
one non-split super-modular category of rank 2, 4 and 6, namely PSU(2)4k+2 for k = 0, 1
and 2. This classification is facilitated by adapting and extending well-known constraints
frommodular categories to super-modular categories, such as Verlinde and Frobenius-Schur
indicator formulae.

Keywords Super-modular categories · Spin modular categories · Classification by rank ·
Fermionic quotient

1 Introduction

Elementary particles such as electrons and photons are either fermions or bosons. But
elementary excitations of topological phases of matter behave like exotic particles called
anyons. When the underlying particles of a topological phase of matter are bosons, the
emergent anyon system is well modelled by a unitary modular category [21]. But most real
topological phases of matter such as the fractional quantum Hall liquids are materials of
electrons. While a substantial part of the theory of anyons can be developed using unitary
modular categories by bosonization, to fully capture topological properties of anyons in
fermion systems require super-modular categories [7].
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Super-modular categories are unitary premodular categories with Müger center equiv-
alent to the unitary symmetric fusion category sVec of super-vector spaces. Both mathe-
matically and physically, it is interesting to pursue a theory of super-modular categories
parallel to modular categories and study problems such as rank-finiteness and classification.
Moreover, the general structure of unitary premodular categories is reduced to that of mod-
ular or super-modular categories via de-equivariantization [7, 8], which provides another
motivation to study super-modular categories.

Unitary modular categories sit inside (split) super-modular categories as C ⊂ C � sV ec.
However, the degeneracy of the S-matrix for super-modular categories complicates their
classification: many standard results for modular categories either fail or require sig-
nificant modification. Consequently fundamental problems such as rank-finiteness for
super-modular categories are still open.

In this paper we pursue a classification of low-rank super-modular categories parallel to
[21]. We classify all super-modular categories up to rank = 6, and spin modular categories
up to rank = 11. In particular, we show that for non-split super-modular categories of ranks
2,4 and 6 there is exactly one fusion rule for each rank, namely those of PSU(2)4k+2 for
k = 0, 1 and 2. We also show that rank-finiteness for unitary premodular categories would
be a consequence of the minimal modular extension conjecture for super-modular categories
[7, Conjecture 3.14].

2 Super-Modular Categories and Fermionic Quotients

Recall [1] that a premodular category B is a braided fusion category with a chosen
spherical pivotal structure. The isomorphism classes of simple objects will be labeled by
� := �B = {0, . . . , r} where 1 ∼= X0 is the monoidal unit object and Xi will be a chosen
representative of the class i. The unnormalized S-matrix will be denoted S̃ to distinguish it

from the normalized version: S = S̃
D

where D2 = dim(B) with D > 0. Notice that the cat-
egorical dimensions of the simple objects Xi are di := S̃0,i , which are strictly positive for
unitary categories, and

∑
i∈� d2

i = D2. The twists of the simple objects are θi .
The Müger centralizer of a subcategory D ⊂ B of a premodular category B is the

subcategory CB(D) generated by the simple objects W ∈ B such that S̃W,X = dW dX for all
X ∈ D (see [17, Corollary 2.14]), and the Müger center of B is CB(B) = B′. A modular
category C has trivial Müger center, i.e. C ′ ∼= Vec whereas a symmetric category S has
S ′ = S . Clearly B′ is itself a symmetric fusion category for any premodular category.
The category of super-vector spaces is the fusion category of Z2-graded finite-dimensional
vector spaces equipped with the braiding given by cVi ,Vj

= (−1)ij τ , for any homogeneous
vector spaces Vi, Vj of parity i, j ∈ {0, 1} respectively, where τ is the usual flip map of
vector spaces. The symmetric fusion category of super-vector spaces has a unique spherical
structure so that the dimensions are strictly positive, and we denote this premodular category

sVec and its unnormalized S-matrix is S̃sVec =
(
1 1
1 1

)

. A non-trivial simple object in sVec is

called a fermion and we typically denote a representative by f . It is easy to see that we must
have θf = −1 for this unitary spherical structure. A unitary premodular category B with
B′ ∼= sVec is called super-modular [7]. A super modular category B is called split if there
is a modular category C so that B ∼= C � sVec, and otherwise it is non-split. For example,
sVec itself is split since we may take C ∼= Vec the trivial modular category of vector spaces.
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Remark 2.1 (i) More generally one defines the Müger center B′ of a braided tensor cat-
egory B as the full subcategory generated by simple objects X such that cY,XcX,Y =
IdX⊗Y for all objects Y . Then a braided fusion category B with B′ equivalent to
the symmetric category of super-vector spaces is called slightly degenerate in [10].
As we restrict our attention to unitary premodular categories this is equivalent to
super-modular.

(ii) Let sVec− denote the other (non-unitary) spherical symmetric fusion category
obtained from the category of super-vector spaces. We do not know of any premodu-
lar categories B with B′ ∼= sVec− that does not split as C� sVec−. On the other hand,
it is easy to construct non-unitary premodular categories B with B′ ∼= sVec that do
not split (via Galois conjugation, for example).

(iii) As we do not use the Hermitian structure on our categories, all of our results hold
under the (possibly weaker) assumption that the objects have positive dimensions. We
will always assume the dimensions are positive unless otherwise noted.

Definition 2.2 A fusion rule of rank r + 1 is the collection of matrices N := {Ni : 0 ≤
i ≤ r} so that (Ni)k,j = Nk

i,j correspond to a unital based ring (with unit 0) in the sense
of [18, Definition 2.2]. In particular there is an involution ∗ on the labels 0 ≤ i ≤ r so that
Ni∗ = (Ni)

T . A fusion rule is commutative if NiNj = NjNi for any i, j , in which case
each Ni is a normal matrix. A mock S-matrix S = (Sij ) of a commutative fusion rule is a
unitary simultaneous diagonalizer ofN .

Two fusion categories D and C are called Grothendieck equivalent if their fusion rules
are isomorphic, i.e. if there is an isomorphism of Grothendieck semirings K0(D) ∼= K0(C).

2.1 Properties

Fusion rules have been studied in other contexts such as table algebras [3] and association
schemes [2]. Indeed, the following result can be proved by a careful application of results
in [2, Theorem 4.1]:

Theorem 2.3 LetN be any commutative fusion rule.

(i) Let S be a simultaneous diagonalizer of N . Then a complex square matrix S′ is a
simultaneous diagonalizer ofN if and only if S′ = SD′P for some permutation matrix
P and a nonsingular diagonal matrix D′.

(ii) If S is a symmetric mock S-matrix ofN , then it satisfies the Verlinde rule:

Nc
ab =

∑

j

Saj Sbj S̄cj

S0j
.

Proof (i) LetU be the unital based ring defined byN with basis {x0, . . . , xr }. Suppose S is a
diagonalizer ofN . Then S−1NiS = D(i) for all i, where D(i) is a diagonal matrix. Then the
map φj (xi) = D

(i)
jj , i = 0, . . . r , defines a character of U for each j , and {φj | j = 0, . . . , r}

is the set of all irreducible characters of U . If S′ is a simultaneous diagonalizer of N , then
there exists a permutation matrix P such that PS′−1

NiS
′P −1 = D(i) = S−1NiS for all i.

Therefore,

S−1S′P −1D(i) = S−1NiS
′P −1 = D(i)S−1S′P −1 . (2.1)
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Suppose k, l are distinct elements of {0, . . . , r}. There exist i such that φk(xi) 	= φj (xi).

Hence, D(i)
jj 	= D

(i)
kk . The Eq. 2.1 implies S−1S′P −1 = D′ is an invertible diagonal matrix.

The converse of the statement is an immediate and direct verification.
(ii) Let S be a symmetric mock S-matrix of N and S′ be a simultaneous diagonalizer

of N given in [2, Theorem 4.1]. Then there exist a permutation σ on {0, . . . , r} and a
nonsingular diagonal matrix D′ such that

S′Q = SD′ (2.2)

where Q is the permutation matrix associated with σ . By [2, Theorem 4.1],

S′−1
NiS

′ = λ(i)

for all i, where λ
(i)
jk = S′

ij

S′
0j

δjk . Suppose S−1NiS = β(i) for each i, where β(i) is a diagonal

matrix. Then,

β(i) = (D′)−1S−1NiSD′ = Q−1S′−1
NiS

′Q = Q−1λ(i)Q =
(

S′
iσ (j)

S′
0σ(j)

δjk

)

jk

=
(

Sij

S0j
δjk

)

jk

The last equality follows from (2.2). Thus, we find

Ni = Sβ(i)S−1 .

Since S is a symmetric unitary matrix, the equation implies the Verlinde rule is satisfied
by S.

In particular for modular categories the usual (normalized) S-matrix is a mock S-matrix.
This implies:

Corollary 2.4 Suppose two modular categories C and D are Grothendieck equivalent.
Then their S-matrices are equal via a permutation and rescaling of columns in the sense of
Theorem 2.3 (i).

2.2 Super Modular Categories and Fermionic Modular Quotients

LetB be a super-modular category, with fermion f and set of isomorphism classes of simple
objects �. Since the action of f on � is fixed-point-free, we may partition � into two sets
�0

⊔
f �0. We may arrange this (non-canonical) partition so that 0 ∈ �0 where X0 = 1

and ifX ∈ �0 then so isX∗. Indeed, ifX ∈ �0, f ⊗X 	∼= X∗ since their twists have opposite
signs. We label the simple classes as follows: 0, 1, . . . , r ∈ �0, f, f · 1, . . . , f · r ∈ f �0
where Xf ·i := f ⊗Xi and f ·0 = f . We will often denote f ⊗X by juxtaposition f X. For
each object Xi the maximal eigenvalue of the corresponding fusion matrix Ni is denoted
FPdim(Xi) and FPdim(B) := ∑

i∈� FPdim(Xi)
2. When FPdim(B) = dim(B) we say that

B is pseudo-unitary.

Lemma 2.5 LetB be a (not necessarily pseudo-unitary) premodular category andD ⊂ B a
modular subcategory. If FPdim(D) = FPdim(B)

FPdim(B′) then B ∼= D�B′ as premodular categories.
If B is unitary, by restrictionD and B′ are also unitary and the equivalence B ∼= D�B′ is
of unitary premodular categories.

Proof By [17, Theorem 4.1] we see that D � CB(D) is equivalent as a premodular cate-
gory to a fusion subcategory of B. Since FPdim(CB(D)) ≥ FPdim(B′) and FPdim(D) =
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FPdim(B)
FPdim(B′) , we have that FPdim(B) = FPdim(D � B′). Hence, CB(D) ∼= B′ and B is
equivalent to D � B′. Since unitarity passes to subcategories, the proof is complete.

Theorem 2.6 Let B = B0 ⊕ B1 be a Z2-graded super-modular category. If f ∈ B1 then
B ∼= B0 � sVec as unitary premodular categories with B0 modular.

Proof Let Y ∈ B0 and W ∈ CB0(B0) be simple objects. Using [17, Lemma 2.4], we have

Sf ⊗Y,W = 1

dW

Sf,WSY,W

= df dW dY dW

dW

= df ⊗Y dW .

Hence CB0(B0) ⊂ B′. Since f /∈ B0, CB0(B0) = Vec, that is, B0 is modular. Applying
Lemma 2.5 yields the result.

For each i, j, k ∈ �0 we define

N̂k
i,j = dimHom(Xi ⊗ Xj ,Xk) + dimHom(Xi ⊗ Xj , f ⊗ Xk) = Nk

i,j + N
f ·k
i,j .

These N̂k
i,j are called the naive fusion rules for the fermionic quotient, and they define a

unital based ring ÛB of rank r+1 by Proposition 2.7. By [7, Theorem 3.9], the unnormalized

S-matrix of B has the form: S̃ =
(

Ŝ Ŝ

Ŝ Ŝ

)

where Ŝ is symmetric and invertible. We will see

that Ŝ is projectively unitary: ŜŜ = D2

2 I and will be called the S-matrix of the fermionic
quotient. This designation is justified by the following:

Proposition 2.7 Let �0, Ŝ and N̂ = {N̂i : 0 ≤ i ≤ r} be as above for a given super-
modular category B. Then:

(a) Ŝ is symmetric and Ŝ−1 = 2
D2 Ŝ.

(b) N̂ is a commutative fusion rule.
(c) Let {xi | i ∈ �0} denote the basis of ÛB. Then the functions ϕi(xj ) := Ŝij /Ŝ0i for

0 ≤ i ≤ r form a set of orthogonal characters of the fusion algebra ÛB, and so Ŝ

simultaneously diagonalizes the matrices N̂i .

(d) N̂k
ij =

∑

m∈�0

2
D2 ŜimŜjmŜkm

Ŝ0m
.

Note that one interpretation of (c) is that
√
2

D
Ŝ is a mock S-matrix for the fusion algebra

ÛB associated with the fusion rule N̂ of the fermionic quotient of B.

Proof It is immediate that Ŝ is symmetric since S̃ is symmetric. According to [17, Lemma
2.15], for simple objects Y,Z we have

∑

X∈�

SX,Y SX,Z = N1
Y,Z + N

f
Y,Z
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since the simple objects in B′ are 1 and f . By choosing j, k ∈ �0 and setting X = Xj , Y =
Xk we then have:

∑

i∈�

Si,j Si,k = 2

D2

∑

i∈�0

Ŝj,i Ŝi,k = N0
j,k + N

f
j,k = N̂0

j,k .

Now since we have chosen �0 to be closed under ∗ we see that N̂0
j,k = δj,k∗ and so Ŝ2 =

D2

2 C where C is the charge conjugation matrix: Ci,j = δi,j∗ . Thus we have proved (a).
Notice that we have Sij = Sij∗ for premodular categories since we may embed them in their
(modular) Drinfeld center. Statement (b) can be verified directly, but is also a consequence
of (c).

Statement (c) is a consequence of the fact that the (normalized) columns of the S-matrix
S̃ of any premodular category are characters of its Grothendieck ring. Indeed, fixing i, j, k ∈
�0 we have ([17, Lemma 2.4(iii)]):

S̃i,j S̃i,k

S̃2
0,i

=
∑

m∈�

Nm
j,k

S̃i,m

S̃0,i
.

Splitting the right-hand-side into m ∈ �0 and f m ∈ f �0 and observing that S̃i,m = S̃i,f ·m
we obtain:

Ŝi,j Ŝi,k

Ŝ2
0,i

=
∑

m∈�0

N̂m
j,k

Ŝi,m

Ŝ0,i
. (2.3)

The equation means that {ϕi | i ∈ �0} is a set of irreducible characters of ÛB. In fact, this
is the set of all irreducible characters of ÛB since (Ŝij /Ŝ0i )ij is also invertible. Equation 2.3

also implies that the column vector (Ŝi,m)m∈�0 is an eigenvector for N̂j with eigenvalue
Ŝi,j

Ŝ0,i

for all i, j ∈ �0. Thus, we have the matrix equation

N̂i Ŝ = Ŝλ(i)

for all i ∈ �0, where λ
(i)
jk = Ŝi,j

Ŝ0,i
δjk . Now (d) follows from this equation and (a).

Lemma 2.8 For Xj a simple self-dual object in a super-modular category B, we have

±1 = ν2(Xj ) = 2

dimB
∑

a,b∈�0

N̂
j
a,bdadb

(
θa

θb

)2

,

where N̂k
i,j are the naive fusion rules for the fermionic quotient.

Proof The first equality follows directly from [15]. Recall from [6] that the formula of the
second Frobenius-Schur indicator of a self-dual simple object in a premodular category is
the following

ν2(Xj ) = 1

dimB
∑

a,b∈�

N
j
a,bdadb

(
θa

θb

)2

− θj

∑

k∈Irr(B′)\{1}
dkTr

(
R

jj
k

)
.
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The unique non-trivial transparent object in B is the fermion f since B is super-modular,
so that

ν2(Xj ) = 1

dimB
∑

a,b∈�

N
j
a,bdadb

(
θa

θb

)2

− θjTr
(
R

jj
f

)

Since a transparent fermion does not fix simple objects and Xj is self-dual, f is not a

subobject of Xj ⊗ Xj . In particular the term θjTr(R
jj
f ) vanishes and so

ν2(Xj ) = 1

dimB
∑

a,b∈�0

(
N

j
a,b + N

j
a,f ·b + N

j
f ·a,b + N

j
f ·a,f ·b

)
dadb

(
θa

θb

)2

= 1

dimB
∑

a,b∈�0

(
N

j
a,b + N

f ·j
a,b + N

f ·j
a,b + N

j
a,b

)
dadb

(
θa

θb

)2

.

Since the naive fusion rules are given by N̂k
i,j = Nk

i,j + N
f ·k
i,j , the statement of the lemma

now follows.

3 Low Rank Super-Modular Categories

The first examples of non-split super-modular categories are the rank 2(k + 1) adjoint
subcategories PSU(2)4k+2 ⊂ SU(2)4k+2 (see [7]). The modular categories SU(2)4k+2
are constructed as subquotient categories of representations of quantum groups Uqsl2 with

q = e
πi

4k+4 . Replacing q by qt with (t, 4k + 4) = 1 yields new categories with the same
fusion rules, which may or may not be unitary. In the notation of [20], this family of mod-
ular categories would be denoted C(sl2, q

t , 4k + 4). We will use similar notation for the
adjoint subcategories: C(psl2, q

t , 4k + 4). The two we will encounter here are for k = 1, 2.
For PSU(2)6 we label the simple objects 1, X1, f X1, f : this ordering conforms with the

natural ordering of objects by highest weights in su2. The fusion rules can be derived from:

f ⊗2 ∼= 1, X⊗2
1

∼= 1 ⊕ X1 ⊕ f X1

and one sees that d1 = 1 + √
2.

For PSU(2)10 we have simple objects 1, X1, X2, f X2, f X1, f (again, this ordering
conforms with the standard ordering by highest weights in su2) with all fusion rules
consequences of the following:

• f ⊗2 ∼= 1,
• X⊗2

1
∼= 1 ⊕ X1 ⊕ X2,

• X1 ⊗ X2 ∼= X1 ⊕ X2 ⊕ f X2,
• X⊗2

2
∼= 1 ⊕ X1 ⊕ X2 ⊕ f X1 ⊕ f X2.

From this one computes that d1 = 1 + √
3 and d2 = 2 + √

3.
The goal of this subsection is to classify all non-split super-modular categories of rank≤

6, namely:
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Theorem 3.1 Any non-split super-modular category of rank 4 or 6 is Grothendieck equiv-
alent to PSU(2)6 or PSU(2)10, respectively. Moreover, any such category is of the form
C(psl2, q

t , 8) or C(psl2, q
t , 12) with (t, 4k + 4) = 1.

Proof By Lemma 3.10 below, we have that any non-split super-modular category of rank 6
is Grothendieck equivalent to PSU(2)10 whereas the rank 4 case is contained in [6, Propo-
sition 4.10]. Now by [16, Corollary 8.8] (see also [11, Theorem 3.4]) any braided fusion
category Grothendieck equivalent to PSU(2)
 for 
 ≥ 5 is of the form C(psl2, q

t , 
) (The
notation used there is SO(3)q ). This completes the proof.

Remark 3.2 We caution the reader that it is not the case that any modular category
Grothendieck equivalent to SU(2)k is of the form C(sl2,Q, 2k + 4) for some primitive
(k +2)th root of unity Q. Indeed, [12] show that one may twist the associativity morphisms
to obtain categories not of this form. However, these twists have no effect on the subcate-
gories C(psl2, q

t , 
), which explains why the classification from [16] only depends on the
choice of a root of unity.

Split super-modular categories can easily be classified in these ranks, using the classifi-
cation of modular categories of rank≤ 3 [21]. We recall that, up to fusion rules, modular
categories of ranks 2 and 3 are [21, Section 5.3]:

(i) SU(2)1 (Semion)
(ii) PSU(2)3 (Grothendieck equivalent to Fibonacci)
(iii) SU(3)1 (Z3 theories)
(iv) SU(2)2 (Grothendieck equivalent to Ising)
(v) PSU(2)5

3.1 Rank=6 Super-modular Categories

In this subsection we will classify super-modular categories of rank 6, up to Grothendieck
equivalence. We will follow the notation used in Section 2.2. Let B be a super-modular
category of rank 6, with transparent fermion f . Recall our partition of the isomorphism
classes of simple objects � = �0

⊔
f �0. We have da = df ·a , N̂c

a,b = Nc
a,b + N

f ·c
a,b , and

θa = −θf ·a for all a, b, c ∈ �0. Notice that interchanging the labels k and f · k for k 	= 0
(simultaneously interchanging duals if necessary) in the partition does not affect the fusion
rules or the mock S-matrix but changes the signs of the corresponding T -matrix entries of
the fermionic quotient.

Remark 3.3 If B is a self-dual super-modular category of rank 6, then by fusion rule
symmetries and self-duality, the (naive) fusion matrices of the fermionic quotient are

N̂1 =
(
0 1 0
1 m k
0 k 


)
, N̂2 =

(
0 0 1
0 k 

1 
 n

)

for some non-negative integers k, 
, m, n.

Lemma 3.4 If B is self-dual super-modular category of rank 6, then its fermionic quotient
satisfies one of the following:

(i) The dimensions are d2 = 1 and d2
1 = 2 and the naive fusion rules N̂j are the fusion

rules of Ising;
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(ii) d1 is a real root of x3−2x2−x+1 and d2 = d1/(d1−1) is a root of x3−x2−2x+1,
and the naive fusion rules are given by

N̂1 =
(
0 1 0
1 0 1
0 1 1

)
, N̂2 =

(
0 0 1
0 1 1
1 1 1

)
;

or
(iii) there is α ∈ N such that the naive fusion rules (following the notation in Remark 3.3)

and the dimensions are given by

k = 2α, 
 = 1, m = 2α2, n = α

d1 = α2 + 1 + α
√

α2 + 2 = 1 + αd2

d2 = α +
√

α2 + 2.

Proof The proof from [21] follows mutandis mutatis in this case.
Some important facts that are needed for this proof but are still true in the fermionic

modular case are that the mock S-matrix has orthogonal columns and is symmetric, by
Proposition 2.7, and the Galois group of the field generated by Ŝ is abelian since the S-
matrix entries are obtained from a premodular category.

Remark 3.5 Notice that if α = 0 in Lemma 3.4(iii), then the fermionic quotient has the
fusion rules of Ising (it recovers case (i) in Lemma 3.4).

Lemma 3.6 In Lemma 3.4(iii), α ≤ 1.

Proof Since B is self-dual, ν2(Xj ) = ±1, for j = 0, 1, 2.

In case (iii) in Lemma 3.4, the naive fusion matrices are N̂1 =
(

0 1 0
1 2α2 2α
0 2α 1

)

, and N̂2 =
(
0 0 1
0 2α 1
1 1 α

)
. It follows from the formula for the 2nd Frobenius-Schur indicator in Lemma 2.8

that

ν2(X2) = 2

D2

(

d2(θ
2
2 + θ−2

2 ) + 2αd2
1 + d1d2

((
θ1

θ2

)2

+
(

θ1

θ2

)−2
)

+ αd2
2

)

.

Assume α ≥ 2. Since d1 = 1 + αd2 > d2 > 2α and ν2(X2) = ±1, we have that

0 = 2αd2
1 + αd2

2 + 2d1d2Re

(
θ1

θ2

)2

+ 2d2Re
(
θ22

)
± D2

2

≥ (2α − 1)d2
1 + (α − 1)d2

2 − 2d1d2 − 2d2 − 1

≥ 3d2
1 + d2

2 − 2d1d2 − 2d2 − 1

> d2
1 + (2α − 2)d2 − 1 > 0,

which is a contradiction. Therefore, α ≤ 1 as stated.

Corollary 3.7 If B is a self-dual super-modular category of rank 6, then its fermionic
quotient satisfies one of the following:

(i) The S-matrix Ŝ of the fermionic quotient and naive fusion rules N̂ correspond to the
Ising category.
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(ii) The S-matrix Ŝ of the fermionic quotient and naive fusion rules N̂ correspond to
those of PSU(2)5.

(iii) The S-matrix of the fermionic quotient is of the form Ŝ =
(

1 2+√
3 1+√

3
2+√

3 1 −1−√
3

1+√
3 −1−√

3 1+√
3

)

, the

naive fusion rules are given by N̂1 =
(
0 1 0
1 2 2
0 2 1

)
and N̂2 =

(
0 0 1
0 2 1
1 1 1

)
, and the dimensions

are d1 = 2 + √
3 and d2 = 1 + √

3.

Lemma 3.8 If B is a self-dual rank 6 super-modular category whose fermionic quotient
has the same fusion rules as an Ising category I , then B ∼= I � sVec.

Proof By assumption the fermionic quotient of B has the same fusion rules as an Ising
category I and it has simple objects 1, σ, ψ . Then B has simple objects 1, σ, ψ, f, f σ, f ψ .

Since 1 = N̂
ψ
σ,σ = N

ψ
σ,σ + N

f ψ
σ,σ , the object σ 2 in B either contains ψ or f ψ . Then,

σ 2 = 1 ⊕ ψ and ψ ⊗ σ = σ or σ 2 = 1 ⊕ f ψ and f ψ ⊗ σ = σ . Notice that it is
always true that (f ψ)2 = 1 = ψ2 in B. Therefore, the subcategory of B generated by σ

is an Ising category, which is always modular by [9, Corollary B.12]. Then, it follows from
[17, Theorem 4.2] that B ∼= I � sVec.

Lemma 3.9 If B is a self-dual rank 6 super-modular category whose fermionic quotient has
the same fusion rules as PSU(2)5, then B ∼= D � sVec where D is a PSU(2)5 category.

Proof The simple objects of the quotient are denoted 1, X1 and X2, where X1 is the d-
dimensional object and X2 has dimension d2 − 1, where d = 2 cos( π

7 ) (see [21, 5.3.6] for
details on this category). We denote by 1, X1, X2, f, f X1, f X2 the simple objects in B.

Notice that when defining a fermionic quotient there is always a non-canonical labeling
choice between objects X and f X–indeed, we obviously have N̂X = N̂f X . In particular
when lifting naive fermionic fusion rules to a super-modular category we are free to inter-
change simple objects X ↔ f X due to this labeling ambiguity. For notational convenience
we use f ·i to label the matrix entry of f ⊗Xi in what follows. Since 1 = N̂2

2,2 = N2
2,2+N

f ·2
2,2

and N
f ·2
f ·2,f ·2 = N

f ·2
2,2 we may assume N2

2,2 = 1 and N
f ·2
2,2 = 0 by interchanging X2 and

f X2 if necessary. Similarly, we have 1 = N̂1
2,2 = N1

2,2 + N
f ·1
2,2 so that interchanging X1

and f X1 allows us to assume N1
2,2 = 1 and N

f ·1
2,2 = 0. After these two labeling choices, all

remaining fusion rules for B can be derived from the following by tensoring with f :

• f ⊗2 = 1
• X⊗2

1 = 1 ⊕ aX2 ⊕ b(f X2) where a + b = 1
• X1 ⊗ X2 = aX1 ⊕ X2 ⊕ b(f X1) and
• X⊗2

2 = 1 ⊕ X1 ⊕ X2.

Computing X1 ⊗ X⊗2
2 in two ways and comparing the multiplicities of X1 (which are

(1+a2+b2) and (1+a)) reveals that 2a2−3a +1 = 0, which has solution (a, b) = (1, 0).
Thus, the subcategory D of B generated by X1 and X2 has rank 3 and is Grothendieck
equivalent to PSU(2)5. Moreover, B is graded with B0 = D and B1 = fD. Therefore it
follows Theorem 2.6 that B ∼= D � sVec, and D is a PSU(2)5 modular category.
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Lemma 3.10 If B is a self-dual rank 6 category whose fermionic quotient is the one in
Lemma Corollary 3.7(iii), then B is Grothendieck equivalent to PSU(2)10.

Proof After interchanging the labels 1 and 2 in Corollary 3.7(iii) we have the following
naive fusion rules

N̂1 =
(
0 1 0
1 1 1
0 1 2

)
and N̂2 =

(
0 0 1
0 1 2
1 2 2

)
.

Since 1 = N̂1
1,1 = N1

1,1 +N
f ·1
1,1 and N

f ·1
f ·1,f ·1 = N

f ·1
1,1 we may assume N1

1,1 = 1 and N
f ·1
1,1 =

0 by interchanging X1 and f X1 if necessary. Similarly, we have 1 = N̂2
1,1 = N2

1,1 + N
f ·2
1,1

so that interchanging X2 and f X2 allows us to assume N2
1,1 = 1 and N

f ·2
1,1 = 0. After these

two labeling choices, all remaining fusion rules for B can be derived from the following by
tensoring with f :

• f ⊗2 = 1
• X⊗2

1 = 1 ⊕ X1 ⊕ X2
• X1 ⊗ X2 = X1 ⊕ aX2 ⊕ b(f X2) where a + b = 2 and
• X⊗2

2 = 1 ⊕ aX1 ⊕ cX2 ⊕ d(f X2) ⊕ b(f X1) where c + d = 2.

Computing X⊗2
1 ⊗ X2 in two ways and comparing the multipicities of X2 (which are (a +

c + 1) and (1 + a2 + b2)) reveals that 2 b2 − 3 b + d = 0, which has solutions (b, d) ∈
{(0, 0), (1, 1)}. But if b = d = 0 then a = c = 2 and 1, X1 and X2 form a premodular
subcategory, contradicting [19, Theorem 3.5]. Thus a = b = c = d = 1, which yield the
fusion rules of PSU(2)10 described above.

Lemma 3.11 If B is a non-self dual super-modular a primitive 3rd root of unity ω such that

S̃ = Ŝ ⊗ (
1 1
1 1

)
, and Ŝ =

(
1 1 1
1 ω ω2

1 ω2 ω

)

.

Proof Since B is a non-self dual, rank 6 super-modular category, its fermionic quotient has
a non-self dual, rank 3 fusion rule.

The rest of the proof proceeds in the same way as the analysis in [21, Appendix A.1]. It is
important to remark that we use that the S-matrix of the fermionic quotient Ŝ is symmetric
and (projectively) unitary by Proposition 2.7.

Corollary 3.12 If B is a non-self dual rank 6 super-modular category then B ∼= P3 � sVec
where P3 is a cyclic rank 3 pointed modular category.

Proof Recall that at the beginning of this section, we arrange a (non-canonical) partition of
the simple objects � into two sets �0

⊔
f �0 so that 1 ∈ �0 and if X ∈ �0 then so is X∗.

Then, X∗
1 = X2. Since X2 is non-self dual and X∗

2 	= f ⊗ X1 then X⊗2
2 	= 1, f . Therefore

X⊗2
2 = X1 or f X1. In the latter case we may simultaneously interchange f X2 ↔ X2 and

f X1 ↔ X1 to reduce to X⊗2
2 = X1.

In this case the rank 3 subcategory B0 generated by X2, X1 and 1 is modular by
Lemma 3.11. Since its centralizer is sVec and f ∈ B1 the result now follows from
Theorem 2.6.
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4 Low Rank SpinModular Categories

A spin modular category is a modular category C containing a fermion [7]. The key
outstanding conjecture for super-modular categories is the following [7, Conjecture 3.14]:

Conjecture 4.1 Any super-modular category B is a ribbon subcategory of a (spin) modular
category C with dim(C) = 2 dim(B).

For a super-modular category B, a modular category C satisfying these conditions is
called aminimal modular extension of B, and the results of [14] imply that if one minimal
modular extension exists for a given super-modular category B then there are precisely 16
of them. One consequence of this conjecture would be rank-finiteness for super-modular,
and hence premodular categories. To see this, we first prove a lemma, the idea of which
came from Bonderson (see [4, 5]).

Let C be a spin modular category with fermion f . The Z2 grading afforded by 〈f 〉 ∼=
sVec will be denoted C0 ⊕ C1, where C0 is super-modular with minimal modular extension
C. Since f ∈ C0, a further refinement of C1 can be obtained by defining Cv ⊂ C1 to be
the abelian subcategory generated by simple objects X with f ⊗ X 	∼= X and Cσ ⊂ C1 the
abelian subcategory generated by simple objects X with f ⊗ X ∼= X. The following may
be derived from [5], but we provide a proof for completeness:

Lemma 4.2 Let (C, f ) be a spin modular category with C0, Cv and Cσ as above, and their
ranks denoted by |C0|, |Cv|, |Cσ | respectively. Then:
(a) |C0| = |Cv| + 2|Cσ |, in particular |C| = 2|C0| − |Cσ |.
(b) 3|C0|/2 ≤ |C| ≤ 2|C0|.
(c) |Cv| and |C0| are even.

Proof We only prove (a); the other two statements follow directly.
We partition the basis � = �0

⊔
f �0

⊔
�v

⊔
f �v

⊔
�σ for the Grothendieck ring

of C so that C0 has basis = �0
⊔

f �0, Cv has basis �v

⊔
f �v and Cσ has basis �σ . With

respect to this ordered basis the S matrix of C has the block form:

S =

⎛

⎜
⎜
⎜
⎜
⎝

1
2 Ŝ

1
2 Ŝ A A X

1
2 Ŝ

1
2 Ŝ −A −A −X

AT −AT B −B 0
AT −AT −B B 0
XT −XT 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

From this form we see that S maps the subspace spanned by the linearly independent set
{Xi −f Xi : Xi ∈ �0} bijectively to the subspace spanned by {Yi +f Yi : Yi ∈ �v}∪ {Zi ∈
�σ }. The dimension of the first subspace is |C0|/2 whereas the latter two have dimensions
|Cv|/2 and |Cσ | respectively, proving (a).

Now Conjecture 4.1 implies:

Conjecture 4.3 There are finitely many premodular categories of rank r .

Indeed, it is enough to show there are finitely many super-modular categories by [8].
If Conjecture 4.1 holds then every super-modular category of rank r is a subcategory of a
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modular category of rank at most 2r , of which there are finitely many by the main result
of [8].

4.1 Classification of Spin Modular Categories of Rank≤ 11

From the classification of super-modular categories of rank≤ 6 we obtain a classification
of spin modular categories of rank at most 11. First we determine the ranks of components
C0, Cv and Cσ :

Lemma 4.4 Let (C, f ) be a spin modular category and C0 the corresponding super-
modular category.

(a) If |C| = 3, 4 or 5 then |C0| = 2. Moreover, C ∼= SO(N)1 in this case (and in particular
|C| 	= 5).

(b) If |C| = 6, 7 or 8, then |C0| = 4 and (|Cv|, |Cσ |) = (0, 2), (2, 1) and (4, 0) respectively.
(c) If |C| = 9, 10 or 11, then |C0| = 6, and (|Cv|, |Cσ |) = (0, 3), (2, 2) and (4, 1)

respectively.

Proof The upper and lower bounds from Lemma 4.2(b) provide the value of |C0| immedi-
ately. Kitaev’s [13] classification of spin modular categories of dimension 4 finishes (a). For
the remaining statements use Lemma 4.2(a).

In [7, Section III.G] all 16 minimal modular extensions of PSU(2)4k+2 are explicitly
constructed. Combining with the results above, we have:

Theorem 4.5 Let C be a spin modular category of rank |C| ≤ 11. Then either,

(a) C ∼= D � SO(N)1 for some positive integer N ≤ 16 and D a modular category with
|D| ≤ 3 or,

(b) |C| = 7, and C is Grothendieck equivalent to one of the 16 minimal modular extensions
of PSU(2)6 described in [7, Section III.G] or

(b) |C| = 10 or 11 and C is Grothendieck equivalent to one of the 16 minimal modular
extensions of PSU(2)10 described in [7, Section III.G].

Proof If K0(C0) 	∼= K0(PSU(2)4k+2) for k = 1, 2 then we have seen that C0 is split
super-modular, i.e. of the form C0 ∼= sVec � D for some modular category D. Since there
are exactly 16 (or 0) minimal modular extensions of any super-modular category and the
extensions D � SO(N)1 for 1 ≤ N ≤ 16 are minimal and distinct, we have proved (a).

If C0 is Galois conjugate to PSU(2)4k+2 for k = 1, 2 then we extend the Galois auto-
morphism σ to C which changes C0 to PSU(2)4k+2, apply the classification of [7, Section
III.G].

Notice that if |C| = 12 then |C0| = 6 or 8, and in these cases we have (|Cv|, |Cσ |) = (6, 0)
or (0, 4) respectively. Of course we may construct many such spin modular categories as
Deligne products of SO(N)1 with modular categories of rank 4 (for N odd) or rank 3 (for N

even), but presumably there are others. In fact, for |C0| = 6 and |C| = 12 our classification
implies that C0 must be split super-modular, hence C ∼= D�SO(N)1, as a minimal modular
extension of a split super-modular category. From the evidence we have seen so far (i.e. up
to rank 6) the following may be true:
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Conjecture 4.6 If B is super-modular with S-matrix Ŝ ⊗
(
1 1
1 1

)

with Ŝ the S-matrix of

some modular category, D, then B is split super-modular.
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