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We introduce a novel method for Gaussian process (GP) modeling of massive datasets
called globally approximate Gaussian process (GAGP). Unlike most large-scale supervised
learners such as neural networks and trees, GAGP is easy to fit and can interpret the model
behavior, making it particularly useful in engineering design with big data. The key idea of
GAGP is to build a collection of independent GPs that use the same hyperparameters but
randomly distribute the entire training dataset among themselves. This is based on our
observation that the GP hyperparameter approximations change negligibly as the size of
the training data exceeds a certain level, which can be estimated systematically. For infer-
ence, the predictions from all GPs in the collection are pooled, allowing the entire training
dataset to be efficiently exploited for prediction. Through analytical examples, we demon-
strate that GAGP achieves very high predictive power matching (and in some cases exceed-
ing) that of state-of-the-art supervised learning methods. We illustrate the application of
GAGP in engineering design with a problem on data-driven metamaterials, using it to
link reduced-dimension geometrical descriptors of unit cells and their properties. Searching

for new unit cell designs with desired properties is then achieved by employing GAGP in

inverse optimization. [DOI: 10.1115/1.4044257]
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1 Introduction

Fueled by recent advancements in high-performance computing
as well as data acquisition and storage capabilities (e.g., online
repositories), data-driven methods are increasingly employed in
engineering design [1-3] to efficiently explore the design space of
complex systems by obviating the need for expensive experiments
or simulations. For emerging material systems, in particular, large
datasets have been successfully leveraged to design heterogeneous
materials [4—8] and mechanical metamaterials [9—12].

Key to data-driven design is to develop supervised learners that
can distill as much useful information from massive datasets as pos-
sible. However, most large-scale learners such as deep neural net-
works (NNs) [13] and gradient boosted trees (GBT) [14] are
difficult to interpret and hence less suitable for engineering design.
Gaussian process (GP) models (also known as Kriging) have many
attractive features that underpin their widespread use in engineering
design. For example, GPs interpolate the data, have a natural and
intuitive mechanism to smooth the data to address noise (i.e., to
avoid interpolation) [15], and are very interpretable (i.e., provide
insight into input—output relations) [16,17]. In addition, they quan-
tify prediction uncertainty and have analytical conditional distribu-
tions that enable, e.g., tractable adaptive sampling or Bayesian
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analysis [18]. However, conventional GPs are not readily applicable
to large datasets and have been mostly confined to engineering
design with small data. The goal of our work is to bridge the gap
between big data and GPs while achieving high predictive accuracy.

The difficulty in fitting GPs to big data is rooted in the repetitive
inversion of the sample correlation matrix, R, whose size equals
the number of training samples, n. Given the practical features and
popularity of GPs, considerable effort has been devoted to resolving
their scalability shortcoming. One avenue of research has explored
partitioning the input space (and hence the training data) via, e.g.,
trees [19] or Voronoi cells [20], and fitting an independent GP to
each partition. While particularly useful for small to relatively
large datasets that exhibit the nonstationary behavior, prediction
using these methods results in discontinuity (at the partitions’ bound-
aries) and information loss (because the query point is associated
with only one partition). Projected process approximation (PPA)
[21] is another method where the information from n samples is dis-
tilled into m<n randomly (or sequentially) selected samples
through conditional distributions. PPA is very sensitive to the m
selected samples, however, and overestimates the variance [21]. In
Bayesian committee machine (BCM) [22], the dataset is partitioned
into p mutually exclusive and collectively exhaustive parts with inde-
pendent GP priors, and then, the predictions from all the GPs are
pooled together in a Bayesian setting. While theoretically very attrac-
tive, BCM does not scale well with the dataset size and is computa-
tionally very expensive.

Another avenue of research has pursued subset selection. For
example, a simple strategy is to only use m < n samples to train a
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GP [23,24], where the m samples are selected either randomly or
sequentially based on maximizing some criteria such as information
gain or differential entropy score. Reduced-rank approximation of R
with m << n samples is another option for subset selection and has
been used in the Nystrom [25] and subset of regressors [26,27]
methods. The m samples in these methods are chosen randomly or
in a greedy fashion to minimize some cost function. While the
many variants of subset selection may be useful in some applications,
they waste information and are not applicable to very large datasets
due to the computational and storage costs. Local methods also
use subsets of the data because they fit a stationary GP (for
each prediction) to a very small number of training data points
that are closest to the query point. Locally approximate Gaussian
process (LAGP) [28] is perhaps the most widely recognized local
method where the subsets are selected either based on their prox-
imity to the query point or to minimize the predictive variance.
Despite being useful for nonstationary and relatively large data-
sets, local methods also waste some information and can be pro-
hibitively expensive for repetitive use since local samples have
to be found and a GP must be fitted for each prediction.
Although the recent works have made significant progress in
bridging the gap between GPs and big data, GPs still struggle to
achieve the accuracy of the state-of-the-art large-scale supervised
learners such as NNs and trees. Motivated by this limitation, we
develop a computationally stable and inexpensive approach for GP
modeling of massive datasets. The main idea of our approach is to
build a collection of independent GPs that utilize a converged rough-
ness parameter as their hyperparameters. This is based on an empir-
ical observation that the estimates of the GP hyperparameters change
negligibly as the size of the training data exceeds a certain level.
While having some common aspects with a few of the abovemen-
tioned works, our method is more massively scalable, can leverage
multicore or graphical processing unit computations [29,30], and
is applicable to very high-dimensional data with or without noise.
As mentioned earlier, big data have enticed new design methods
for complex systems such as metamaterials [9-12], which possess
superior properties through their hierarchical structure that consists
of repeated unit cells. While traditional methods like topology opti-
mization (TO) provide a systematic computational platform to find
metamaterials with unprecedented properties, they have many chal-
lenges that are primarily due to the high-dimensional design space
(i.e., the geometry of unit cells), computational costs, local optimal-
ity, and spatial discontinuities across unit cell boundaries (when
multiple unit cells are simultaneously designed). Techniques for
TO such as varying the volume fraction or size of one unit cell to
maintain continuous boundaries [31,32], adding connectivity con-
straints [33], and substructuring [34] have recently been proposed
but cannot fully address all of the above challenges. Instead, we
take a data-driven approach by first building a large training data-
base of many unit cells and their corresponding properties. Unlike
previous data-driven works that represent unit cells as signed dis-
tance fields [9] or voxels [11], we drastically reduce the input
dimension in our dataset by characterizing the unit cells via spectral

PO argmin
5,65 al= =,
p.o% @

where log(-) is the natural logarithm, 1 is an n x 1 vector of ones,
and R is the nxn correlation matrix with (i, j)th element R;=r
(x;, x;) for i, j=1, ..., n. Setting the partial derivatives with
respect to f and ¢ to zero yields:

B=[1"R'11'17R Yy o)
. 1 AT -
F=—(-1p) R'o-1p (6)
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shape descriptors based on the Laplace—Beltrami (LB) operator.
Then, we employ our globally approximate Gaussian process
(GAGP) modeling approach to link the LB descriptors of unit
cells to their properties and, in turn, efficiently discover new unit
cells with desired properties.

The rest of the paper is organized as follows. We first review
some preliminaries on GP modeling in Sec. 2 and then introduce
our novel idea in Sec. 3. In Sec. 4, we validate the accuracy of
our approach by comparing its performance against three popular
and large-scale supervised learning methods on five analytical prob-
lems. We demonstrate an application of GAGP to our data-driven
design method for metamaterials in Sec. 5 and conclude the paper
in Sec. 6.

2 Review on Gaussian Process Modeling

Below, we describe how GP emulators (also known as surro-
gates, metamodels, or models) can replace a computer simulator.
The procedure is identical if the data are obtained from physical
experiments. Let us denote the output and inputs of a computer
simulator by, respectively, y and the d dimensional vector x =
[X(1)> X(2)s -+ Xa))'» Where x € R“. Assume the input-output relation
is a realization of the random process #(x):

h
n(x) = ;ﬁ@fi(x) +4() ()]

where fi(x)’s are some predetermined set of basis functions, f=
Bay ---o ﬁ(h)]T are unknown weights, and &(x) is a zero-mean GP
characterized with its parametric covariance function, ¢(-,-):

cov(E(x), &) = c(x, x)=a"r(x, x) (@3

where r( -) is the correlation function having the property r(x,x) =1
and o7 is the process variance. Various correlation functions have
been developed in the literature, with the most widely used one
being the Gaussian correlation function:

rex, x') = exp {-(x —x) Q(x —x)} 3)

where Q = diag(10?) and @ = [@(1), @2, ---» D)), — 00 <w;< 00
are the roughness or scale parameters. The collection of ¢* and @
are called the hyperparameters.

With the formulation in Eq. (1) and given the #n training pairs of
(x;, y;), GP modeling requires finding a point estimate for f, @, and
o~ via either maximum likelihood estimation (MLE) or cross-
validation (CV). Alternatively, Bayes’ rule can be employed to
find the posterior distributions if there is prior knowledge on
these parameters. Herein, we use a constant process mean (i.e.,
Zf;l Pifix) = ) and employ MLE. These choices are widely prac-
ticed because a high predictive power is provided while computa-
tional costs are minimized [28,35-39].

MLE requires maximizing the multivariate Gaussian likelihood
function, or equivalently:

oz (R + 550~ 1HR™ G - lﬂ)) @

Plugging these values into Eq. (4) and eliminating the constants:
argmin argmin

nlog (8%) + log (|R|) = °

o= L @)

By numerically minimizing L in Eq. (7), one can find &. Many
global optimization methods such as genetic algorithm (GA) [40],
pattern searches [41,42], and particle swarm optimization [43]
have been employed to solve for @ in Eq. (7). However, gradient-
based optimization techniques are commonly preferred due to
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their ease of implementation and superior computational efficiency
[15,16,35]. To guarantee global optimality in this case, the optimi-
zation is done numerous times with different initial guesses. It is
noted that, in practice, the search space of w; is generally limited
to [— 20, 5] rather than ( — o0, o0) since the correlation exponentially
changes as a function of w; (see also Fig. 3).

On completion of MLE, the following closed-form formula can
be used to predict the response at any x :

S =p+g" WV -1p) ®)
where g(x") is an nx1 vector with ith element
c(x;, x°)=6%r(x;, x), V is the covariance matrix with (i, j)th
element 62r(x;, x;), and y=[yy, ..., y,,]T are the responses in the

training dataset. The posterior covariance between the responses
atx* and x’ reads:

cov(y", Y) = c(x", x) — g ()W ge) + KTV 'R (9)

where h=(1-1 TV_lg(x/)).

If the training dataset has multiple outputs, one may fit either a
single-response GP emulator to each response or a multiresponse
GP to all the responses. We follow Ref. [44] and extend the
above formulations to simulators with g responses by placing a
constant mean for each response (ie., f=I[fu), ..., ﬂ(q)]T) and
employing the separable covariance function:

cov(¢(), &) =c(x, ¥)=Z @ r(x, x") (10)

where ® denotes the Kronecker product and X is the g x g process
covariance matrix with its off-diagonal elements representing the
covariance between the corresponding responses at any fixed x.
The MLE approach described above can also be applied to multire-
sponse datasets in which case o> will be replaced with X (see
Refs. [45-48] for details).

Finally, we note that GPs can address noise and smooth the data
(i.e., avoid interpolation) via the so-called nugget or jitter parame-
ter, 6, in which case R is replaced with Rs =R + 0l,x,. If 6 is
used, the estimated (stationary) noise variance in the data would
be 66°. We have recently developed an automatic method to
robustly detect and estimate noise [35].

3 Globally Approximate Gaussian Process

Regardless of the optimization method used to solve for @, each
evaluation of L in Eq. (7) requires inverting the n x n matrix R. For
very large n, there are two main challenges associated with this
inversion: computational cost of approximately O(an®) and singu-
larity of R (since the samples get closer as n increases). To
address these issues and enable GP modeling of big data, our essen-
tial idea is to build a collection of independent GPs that use the same
@ and share the training data among themselves.

To illustrate, we consider the function y=x*—x>—7x*+3x+
5sin(5x) over —2 <x < 3. The associated likelihood profile (i.e., L)

is visualized in Fig. 1 as a function of @ for various values of n.
Two interesting phenomena are observed in this figure: (i) With large
n, the profile of L does not alter as the training samples change. To
observe this, for each n, we generate five independent training
samples via Sobol sequence [49,50] and plot the corresponding L.
As illustrated in Fig. 1, even though a total of 20 curves are plotted,
only four are visible since the five curves with the same » are indis-
tinguishable. (ii) As n increases, L is minimized at similar ’s.

While we visualize the above two points with a simple 1D func-
tion, our studies indicate that they hold in general (i.e., irrespective
of problem dimensionality and the absence or presence of noise; see
Sec. 4) as long as the number of training samples is large. Therefore,
we propose the following approach for GP modeling of large
datasets.

Assuming a very large training dataset of size n is available, we
first randomly select a relatively small subset of size ng (e.g., no=
500) and estimate @( with a gradient-based optimization technique.
Then, we add n, random samples (e.g., ny=250) to this subset and
estimate @; while employing @ as the initial guess in the optimi-
zation. This process is stopped after s steps when @ does not change
noticeably (i.e., @; = @,_;) as more training data are used. The
latest solution, denoted by @, is then employed to build m GP
models, each with n; >ny+ s x ng samples chosen randomly from
the entire training data such that n=> ;_, n.. Here, we have
assumed that the collection of these GPs (who have @, as their
hyperparameters) approximate a GP that is fitted to the entire train-
ing dataset and, correspondingly, call it GAGP. The algorithm of
GAGP is presented in Fig. 2.

We point out the following important features regarding GAGP.
First, we recommend using gradient-based optimizations through-
out the entire process because (i) if ng is large enough (e.g., no>
500), one would need to select only a few initial guesses to find
the global minimizer of Eq. (7), i.e., @ (we suggest the method
developed in Ref. [35] to estimate @g); and (i) we want to use
@ as the initial guess for the optimization in the ith step to
ensure fast convergence since the minimizer of L changes slightly
as the dataset size increases (see Fig. 1). Regarding the choice on
ng, note that it has to be small enough to avoid prohibitive compu-
tational time but large enough, so that (i) the global optimum
changes slightly if ny+ s data points are used instead of ny data
points, and (ii) most (if not all) of the local optima of L are smoothed
out. Second, for predicting the response, Eq. (8) is used for each of
the m GP models, and then, the results are averaged. In our experi-
ence, we observe very similar prediction results with different aver-
aging (e.g., weighted averaging where the weights are proportional
to inverse variance) or pooling (e.g., median) schemes. The best
scheme for a particular problem can be found via CV, but we
avoid this step to ensure ease of use and generality. The advantages
of employing a collection of models (in our case the m GPs) in pre-
diction are extensively demonstrated in the literature [14,22]. Third,
the predictive power is not sensitive to ng, s, and n, so long as large

Choose n, ng, s Predict 9(x') = ~ 57, 9;(x"),

0 — ' ' v
L -10 ¢ | to minimize Eq.(7)
E = = n=500

20 k| o= 1000 y

8= 1 =2000 Eoris =11,
n = 5000 N~
samplesto n,
-30 ' : : : « Find &;: Useng + i X ng
-5 -2 1 4 samples and initialize

Fig. 1 The profile of L as a function of w for various values of n.
For each n, five curves are plotted, but only four are visible since
the curves with the same n are indistinguishable.
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9i(x*) is obtained via Eq.(8)
‘ using the j** model

Find &,: Use n, samples f

Build m GPs all with the
‘ same @, = @;. (" GP uses
the samplesin part i.

* Addi X ng random f

Randomly divide the n
» samples to m parts of size
Ny =My +S XN, YpeqMp =N

optimization with @; 4

Fig.2 Flowchart of globally approximate Gaussian process. ltis
assumed that a very large training dataset of size n is available.
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r(x,x")

-2 [x — x'| 2

Fig. 3 Effect of » on the correlation between x and x’ in 1D. See
Eq. (3) for the functional form of r(x, x’).

enough values are used for them. For novice users, we recommend
starting with ny =500, s =6, and n,=250, and equally distributing
the samples among the m resulting GPs (we use these parameters in
Sec. 5 and for all the examples in Sec. 4). For more experienced
users, we provide a systematic way in Sec. 4 to choose these
values based on GP’s inherent ability to estimate noise using the
nugget variance. Finally, we point out that GAGP has a high predic-
tive power and is applicable to very large datasets while maintaining
a straightforward implementation because it only entails integrating
a GP modeling package such as GPM [35] with the algorithm pre-
sented in Fig. 2.

4 Comparative Studies on Analytical Examples

To validate the performance of GAGP in regression, we
compare its predictive power on five examples (Ex1-5) against
recognized big data learners: LAGP [28], GBT [14], and feed-
forward NNs [51]. As shown in Egs. (11)-(15), the examples
cover a wide range of dimensionality and input—output complex-
ity. Ex1 is a 1D function with many local fluctuations due to
the sin(5x) term. Ex2 is a 4D function that is primarily sensi-
tive to the first two inputs. Ex3 is a 7D function that models
the cycle time of a piston, which mainly depends on the first
and fourth inputs. Ex4 is a very complex 10D function relating
the stored potential in a material to the applied load and material
properties; the inputs interact nonlinearly and all affect the
response. Finally, Ex5 is a 20D function where the output is inde-
pendent of xg and xi.

e Exl:
y=x*—x* = 7% 4+ 3x + 5sin (5x)
(11)
-2<x<3
e Ex2 [52]:
1
(1 - exp(— §>)(X3x? + 1900x% +2092x; + 60)
2
y:

x4x3 4 50022 + 4x; + 20

min (x) = [0, 0, 2200, 85]

max (x) = [1, 1, 2400, 110]

(12)

e Ex3 [53]:

X1

=2z
Y 4)63)64)65)66

X4 +

2
<X5X2 +19.62x; — %> + 4x4x5 (xs))ﬁ
X2 X7

min (x) = [30, 0.005, 0.002, 1000, 9 x 10, 290, 340]
max (x) = [60, 0.02, 0.01, 5000, 11 x 10, 296, 360]

13)
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o Ex4 [54]:

9 14x7
2 X8X10 | €eq
Y=7=X9€, + —

2 14+x7 | x10
X1 X6 X5
e=\| x5 x2 x4 |,em==Tr(e),
X5 X4 X3 3

2
eq=€—enl, €y =,/§(ed:8d)

min(x)=[-0.1, 0.1, -0.1, -0.1, —0.1, —-0.1,0.02, 1,5,0.1]
max (x)=[0.1,0.1,0.1,0.1,0.1,0.1,0.1, 5,25, 1.5]

(14)
e Ex5 [53]:
5X12 2 3
=1 n + 5(x4 — X20)” + x5 4+ 40x79 — 5x1 + 0.05x5 + 0.08x3
X1

— 0.03x6 + 0.03x7 — 0.09x9 — 0.01x19 — 0.07x1; + 0.25x7,
—0.04x14 + 0.06x;5 — 0.01x17 — 0.03x5
-05<x<05 fori=1, ...20

(15)

For each example, two independent and unique datasets of size
30,000 are generated with Sobol sequence [50], where the first
one is used for training and the second for validation. In each
example, Gaussian noise is added to both the training and validation
outputs. We consider two noise levels to test the sensitivity of the
results where the noise standard deviation (SD) is determined
based on each example’s output range (e.g., the outputs in Ex1
and Ex4 fall in the [-20, 5] and [0, 1.8] ranges, respectively). As
we measure performance by root mean squared error (RMSE), the
noise SD should be recovered on the validation dataset (i.e., the
RMSE would ideally equal noise SD).

We use CV to ensure the best performance is achieved for
LAGP, GBT, and NN. For GAGP, we choose ng=500, s =6, and
ny=250 and equally distribute the samples among the
m= 30000/(500 + 6 x 250) =15 GPs (i.e., each GP has 2000
samples). The results are summarized in Table 1 (for small noise
SD) and Table 2 (for large noise SD) and indicate that (i) GAGP
consistently outperforms LAGP and GBT, (ii) both GAGP and
NN recover the true amount of added noise with high accuracy,
and (iii) GAGP achieves very similar results to NN. Given the
large number of data points, the effect of sample-to-sample random-
ness on the results is very small and hence not reported.

We highlight that the performance of GAGP in each case could
have been improved even further by tuning its parameters via
CV (which was done for LAGP, GBT, and NN). Potential parame-
ters include ng, s, n, and f(x). However, we intentionally avoid
this tuning to demonstrate GAGP’s flexibility, generality, and
ease of use.

In engineering design, it is highly desirable to employ inter-
pretable methods and tools that facilitate the knowledge
discovery and decision-making processes. Contrary to many
supervised learning techniques such as NNs and random forests
that are black boxes, the structure of GPs can provide qualitative
insights. To demonstrate, we rewrite Eq. (3) as
r(x, x') = exp[—zf?:l 10 (xgy —xg,.))z}. If 0,<0 (eg, =
—10), then variations along the ith dimension (i.e., x(;,) do not con-
tribute to the summation and, subsequently, to the correlation
between x and x’ (see Fig. 3 for a 1D illustration). This contribution
increases as the magnitude of w; increases. In a GP with a constant
mean of S, all the effect of inputs on the output is captured through r
(x, x'). Hence, as w; decreases, the effect of x; on the output
decreases as well. We illustrate this feature with a 2D example as
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Table 1 Root mean squared error with small noise

Noise SD LAGP GBT NN GAGP
Ex1 (1D) 0.2 1.271 0.209 0.200 0.200
Ex2 (4D) 0.1 1.386 0.121 0.100 0.103
Ex3 (7D) 0.1 0.129 0.118 0.100 0.100
Ex4 (10D) 0.01 0.210 0.048 0.012 0.011
Ex5 (20D) 0.1 1.450 0.351 0.101 0.103

Note: Smallest errors are in bold.

Table 2 Root mean squared error with large noise

Noise SD LAGP GBT NN GAGP
Ex1 (1D) 2 2.270 2.062 2.000 2.000
Ex2 (4D) 1 1.739 1.123 1.002 1.009
Ex3 (7D) 1 1.037 1.098 1.002 1.002
Ex4 (10D) 0.1 0.234 0.120 0.102 0.102
Ex4 (20D) 1 1.911 1.155 1.011 1.001

Note: Smallest errors are in bold.

Table 3 Effect of sample size and underlying function’s
nonlinearity on hyperparameter estimates

a=2 a=4 a=6

n=1000 o) 2.39 3.11 3.59
o3 —1.98 —-2.12 -2.11

n=2000 o 2.38 3.10 3.54
03 —-1.92 —-2.18 —-2.22

Total ST X1 1.00 1.00 1.00
Xo 0.18 0.05 0.03

Note: The Sobol’s total sensitivity indices (SIs) are also included.

follows. Assume y = f(x], xz; &) = sin (2x1x,) + acos (ax%), —n<
x1, x, <7 for a=2, 4, 6. Three points regarding f are highlighted:

(1) x; is more important than x, since both sin(2x;x,) and
o cos (ax?) depend on x; (note that a#0), while x, only
affects the first term.

(2) As aincreases, the relative importance of x; (compared with
X,) increases because the amplitude of a cos (ax%) increases.

(3) As a increases, y depends on x; with growing nonlinearity
because the frequency of acos (ax%) increases.

The first two points can be verified by calculating Sobol’s total
sensitivity indices (SIs) for x; and x, in f; see Table 3. These

indices range from O to 1, with higher values indicating more sen-
sitivity to the input. Here, the SI of x; is always 1, but the SI of x,
decreases as a increases, indicating that the relative importance of
X1 on y increases as « increases.

Note that calculating the Sobol’s SIs involves evaluating f for
hundreds of thousands of samples, while a GP can distill similar
sensitivities from a dataset. To show this, for each a, we fit two
GPs: one with n=1000 training data and the other with n=2000.
The hyperparameter estimates are summarized in Table 3 and indi-
cate that:

e For each a, @, is larger than @, implying x; is more important
than x,.

e As a increases, @, increases (x; becomes more important),
while @, changes negligibly (the underlying functional rela-
tion between x, and y does not depend on «).

e For a given a, the estimates change insignificantly when # is
increased.

The above feature is present in GAGP as well and depicted by the
convergence histories for Ex3 and Ex5 in Figs. 4 and 5, respec-
tively. Similar to Fig. 1, it is evident that the estimated roughness
parameters do not change noticeably as more samples are used in
training (only 6 of the 20 roughness parameters are plotted in
Fig. 5 for a clearer illustration). The values of these parameters
can determine which inputs (and to what extent) affect the output.
For instance, in Ex5, wg is very small so the output must be
almost insensitive to xg. In addition, since w4 = @, it is expected
that the corresponding inputs should affect y similarly. These obser-
vations agree with the analytical relation between x and y in Ex5,
where y is independent of xg and symmetric with respect to x,
and xp9. By using GAGP, such information can also be extracted
from a training dataset whose underlying functional relation is
unknown and subsequently used for sensitivity analysis or dimen-
sionality reduction (e.g., in ExS5, xg and x;6 can be excluded from
the training data).

In Figs. 4 and 5, the estimated variance, 562, varies closely
around the true noise variance. It provides a useful quantitative
measure for the expected predictive power (e.g., RMSE in future
uses of the model). In addition, like @, its convergence history
helps in determining whether sufficient samples have been used
in training. First, the number of training samples should be
increased until 66> does not fluctuate noticeably. Second, via
k-fold CV during training, the true noise variance should ideally
be recovered by calculating the RMSE associated with predicting
the samples in the ith fold (when fold i is not used in training). If
these two values differ significantly, s (or ny) should be increased.
For instance, if the fluctuations on the right panel in Fig. 5 had
been large or far from the noise variance, we would have increased
s (from 6 to, e.g., 10) or n, (from 250 to, e.g., 500).

We close this section with some theoretical discussions related
to the use of the same hyperparameters within a collection of

Ex3 (Noise SD = 1): Estimated Parameters vs. Number of Training Samples
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Fig. 4 Convergence history in Ex3 as the number of training samples is increased

from 500 to 2000
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Ex5 (Noise SD = 1): Estimated Parameters vs. Number of Training Samples
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Fig. 5 Convergence history in Ex5 as the

0.96
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number of training samples is increased

from 500 to 2000. For clearer demonstration, only 6 of the 20 roughness parameters

are plotted.

independent GPs. In Bayesian experimental design [55], multidi-
mensional integrals ubiquitously arise when maximizing the
expected information gain, i.e., E[/]. By quantifying I using
Kullback—Leibler divergence [56], it can be shown [57] that
E[ll =f(f log(%)pwlyi)dﬂ)p(yi)dyi, where @ are the hyper-
parameters (to be estimated), y; are the observables in the ith exper-
iment, and p(-) is the probability density function. The nested
integral renders maximizing E[/] prohibitively expensive. To
address this and facilitate integration, Laplace’s theorem is used
to approximate p(fly;) via a multivariate Gaussian likelihood or
log likelihood, such as in Eq. (4). Following the central limit
theorem, the accuracy of this approximation increases as the
number of data points increases since the likelihood would more
closely resemble a unimodal multivariate Gaussian curve [58].
With GAGP, we essentially make the same approximation, i.e.,
Eq. (4) approximates a unimodal multivariate Gaussian curve in
the log space whose minimizer insignificantly changes when the
training data are massive (note that the function value, L, does
change; see Fig. 1).

5 Data-Driven Design of Metamaterials

To demonstrate the application of GAGP in engineering design,
we employ it in a new data-driven method for the optimization of
metamaterial unit cells using big data. Although various methods,
e.g., TO and GA, have been applied to design metamaterials with
prescribed properties, these are computationally intensive and
suffer from sensitivity to the initial guess as well as disconnected
boundaries when using multiple unit cells. A promising solution
is to construct a large database of precomputed unit cells (also
known as microstructures or building blocks) for efficient selection
of well-connected unit cells from the database as well as inexpen-
sive optimization of new unit cells [9-12]. However, with the
exception of Ref. [12] where unit cells are parameterized via geo-
metric features like beam thickness, research in this area thus far
use high-dimensional geometric representations (e.g., signed dis-
tance functions [9] or voxels [11]) that increase the memory
demand and the complexity of constructing machine learning
models that link structures to properties. Therefore, reducing the
dimension of the unit cell is a crucial step.

In this work, we reduce the dimension of the unit cells in our
metamaterial database with spectral shape descriptors based on
the LB operator. We then employ GAGP to learn how the effective
stiffness tensor of unit cells changes as a function of their LB
descriptors. After the GAGP model is fitted, we use it to discover
unit cells with desired properties through inverse optimization. Fur-
thermore, to present the advantages of a large unit cell database and
GAGP, we compare the results with those obtained using an NN

111402-6 / Vol. 141, NOVEMBER 2019

model fitted to the same dataset and a conventional GP model
fitted to a smaller dataset.

5.1 Metamaterials Database Generation. We propose a
novel two-stage pipeline inspired by Ref. [11] to generate a large
training dataset of unit cells and their corresponding homogenized
properties. For demonstration, our primary properties of interest
are the components of the stiffness tensor, E,, E,, and E,,. As elab-
orated below, our method starts by building an initial dataset and
then proceeds to efficiently cover the input (geometry) and output
(property) spaces as widely as possible.

To construct the initial dataset in stage one, we select design
targets in the property space (the 3D space spanned by E,, E,, and
E,,). As the bounds of the property space are unknown a priori, we
sample 1000 points uniformly distributed in [0, 1]3 . Then, we use
the solid isotropic material with penalization TO method [59] to
find the orthotropic unit cells corresponding to each target. This
stage generates 358 valid structures. The remaining 642 points do
not result in feasible unit cells mainly because (i) the uniform sam-
pling places some design targets in theoretically infeasible regions
and (ii) the TO method may fail to meet targets due to sensitivity
to the initial shape, which is difficult to guess without prior knowl-
edge. The properties of these 358 structures are shown in Fig. 6,
where the Poisson’s ratio is used instead of E, for a better illustration
of the space.

In stage two, we expand the initial database via an iterative sto-
chastic shape perturbation algorithm that by-passes TO by generat-
ing distorted structures with slightly different properties from the
original ones. Specifically, the following radial distortion model
is used to perturb an existing shape:

Tnew

Xe+ (Xo1a — %) ifroq < Ro
Xnew = Yold (16)
Xold if ro1a > Ro

where x,,,, and x,,, are the coordinates of the new and original pixel
locations, x,. is the coordinate vector of the distortion center, 7,,,,,
and r,, are the new and original distances to the distortion
center, respectively, and R is the outer distortion radius. r,,,, can
be expressed as follows:

an

Tnew = %Ro(l _ cot(g) +/}) ify<0

Told otherwise
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Fig. 6 The property space of the initial database with 358
structures

where

Py —— —(1+c0t(l)_2’”’d>2 (18)
- sinz(%) 2 Ro

and y € (—%, %) is the angle that controls the amount of distortion.
Considering the orthotropic symmetry of the unit cells, only a
quarter of the original structure is distorted and then reassembled
to realize the full structure. We adopt the distortion model in
Eq. (16) for two reasons. First, its parameters (R, y, and x.) have
clear interpretations and hence can be easily tuned. In our case,
they are all set as random variables with standard uniform distribu-
tions to generate a wide range of structures. Second, it preserves the
topology of the original unit cell and introduces negligible artifacts
(e.g., disconnections and checkerboard patterns) upon perturbation.

To better cover the property space, the database is populated iter-
atively. In each iteration, we first calculate the following score for
all available unit cells:

1

Score = d+oy (19)
where d is the Euclidean (L2) distance between the stiffness tensor
components of each unit cell to the boundaries of the region enclos-
ing the current property space (see the shaded areas in Figs. 6 and 7),
p is the number of data points inside the neighborhood within a given
radius in the property space (in our experience, sampling is more
uniform when the radius equals 0.05), and ¢ << 1 is used to avoid sin-
gularity. Then, we select the N points with the highest scores for sto-
chastic perturbation. After each iteration, newly generated unit cells
are verified and discarded if they contain infeasible features such as
isolated parts. The properties of new feasible structures are then cal-
culated via numerical homogenization [60] and added to the dataset.
The perturbation is repeated until the boundary of property space
does not expand significantly (Ad<0.1), and the points inside the
boundaries are relatively dense (average p > 500). By using this strat-
egy, the database is expanded in our test case from 358 to 88,000 unit
cells that cover a wider range of properties (see Fig. 7). We note that
the machine learner (GAGP in our case) may also be used to detect
the infeasible structures; we do not consider this in the current
work but may include it in our future studies.

5.2 Unit Cell Dimension Reduction via Spectral Shape
Descriptors. In the previous section, each unit cell in the database
is represented by 50 x 50 pixels. For dimension reduction, we use
spectral shape descriptors as they retain geometric and physical
information. Specifically, we use the LB spectrum, also known as
Shape-DNA, which can be directly calculated for any unit cell
shape [61,62].

The LB spectrum is an effective descriptor for the metamaterials
database for several reasons: (i) It has a powerful discrimination
ability and has been successfully applied to shape matching and
classification in computer vision despite being one of the simplest
spectral descriptors. (ii) All of the complex structures in our

Journal of Mechanical Design

0.5
Ey

Fig.7 The property space of the expanded database with 88,000
structures. The shaded regions indicate the boundary of the
property space.

orthotropic metamaterials database can be uniquely characterized
with the first 1015 eigenvalues in the LB spectrum. (iii) The spec-
trum embodies some geometrical information, including perimeter,
area, and Euler number. This can be beneficial for the construction
of the machine learning model as less training data may be required
to obtain an accurate model compared with voxel- or point-based
representations. (iv) Similar shapes have close LB spectrum,
which may also help the supervised learning task.

The calculation of the LB spectrum for each unit cell is as
follows. For a real-valued function f defined on a Riemannian man-
ifold [61], the Helmholtz equation reads as follows:

Af = =i (20)
where the Laplace-Beltrami operator A is defined as follows:
A: = div(gradf) (21)

The eigenvalues of the Helmholtz equation are the LB spectrum
and denoted as follows:

0<M <h<-<oo (22)

Our unit cells reside in a 2D planar domain and can be considered
as a special case of Riemannian manifolds. Therefore, we focus on
the LB spectrum of a 2D shape under Dirichlet boundary condi-
tions, which reduce the Helmholtz equation to a Laplacian eigen-
value problem:

Pf & ,
@ + 67}12 = —/1f in Q (23)
f=0 on 7

where Q and 7 are the interior and boundaries of the domain of inter-
est, respectively.

Finally, the finite element method is employed to obtain the LB
spectrum of unit cells [63]; see Fig. 8. Itis noted that our 88,000 struc-
tures can be uniquely determined with only the first 16 non-zero
eigenvalues, reducing the input dimension from 50x50=2500
pixels to 16 scalar descriptors. In general, the computation of the
LB spectrum takes only a few seconds per unit cell on a single
CPU (Intel(R) Xeon(R) Gold 6144 CPU at 3.50 GHz). Since these
computations are performed once and in parallel, the runtime is
acceptable.

5.3 Machine Learning: Linking LB Representation to
Property via GAGP. Once the dataset is built, we follow the algo-
rithm in Fig. 2 for machine learning, i.e., relating the LB represen-
tations of unit cells to their stiffness tensor. We use the same fitting
parameters as in Sec. 4 (ng =500, s =6, ny=250), equally distribute
the samples among the m = 88000/(500 + 6 x 250) = 44 GPs, and
use Eq. (10) to have a multiresponse model that leverages the cor-
relation between the responses to have a higher predictive power.
The convergence histories are provided in Fig. 9, where the
trends are consistent with those in Sec. 4. It is observed that the
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Fig. 8 Steps in the LB spectrum calculation: (a) original structure, (b) finite element mesh, and
(c) the eigenfunction corresponding to the first eigenvalue, 14

16 estimated roughness parameters do not change noticeably once
more than 1000 samples are used in training. In particular, 3 of
the 16 roughness estimates, which correspond to 44, 415, and A6
are very small, indicating that those LB descriptors do not affect
the responses. The next largest estimate belongs to wi3=-8,
which corresponds to A;3. The rest of the estimates are all
between 2.5 and 3, implying that the first 12 eigenvalues (shape
descriptors) affect the responses similarly and nonlinearly (since
large w; indicates rough response changes along dimension i).
These observations agree well with the fact that the higher order
eigenvalues generally explain less variability in the data. The esti-
mated noise variances (one per response) also converge, with E,,
having the largest estimated noise variance in the data, which is
potentially due to larger numerical errors in property estimation.

To illustrate the effect of expanding the training data from 385 to
88,000, we randomly select 28,000 samples for validation. Then,
we evaluate the mean squared error (MSE) of the following two
models on this test set: a conventional GP fitted to the initial 385
samples and a GAGP fitted to the rest of the data (i.e., to 60,000
samples, resulting in m = 60,000/(500 + 6 x 250) = 30 models).
To account for randomness, we repeat this process 20 times. The
results are summarized in Table 4 and demonstrate that (i) increas-
ing the dataset size (stage two in Sec. 5.1) creates a supervised
learner with a higher predictive power (compare the mean of
MSE:s for GP and GAGP). (ii)) GAGP is more robust to variations
than GP (compare the variance of MSEs for GP and GAGP). (iii)
With 60,000samples, the predictive power of GAGP is slightly
lower than the case where the entire dataset is used in training
(compare mean of MSEs for GAGP in Table 4 with the converged
noise estimates in Fig. 9).

To assess the robustness of GAGP to data size, we repeat the
above procedure but with 20,000 and 40,000 training samples
instead of 60,000. For fair comparisons, the same validation
sample size of 28,000 is used for each. The results are summarized

in Table 5 and, by comparing them with those of GAGP in Table 4,
indicate that increasing the sample size from 20,000 to 60,000
increases the predictive power and robustness. Note that, since
[ng, ns, s] are not changed when fitting GAGP, using more
samples increases m, the number of GPs.

5.4 Data-Driven Unit Cell Optimization. Finally, we illus-
trate the benefits of the GAGP model in an inverse optimization
scheme to realize unit cells with target stiffness tensor components
and compare the results with those designed using other techniques.
Establishing such an inverse link is highly desirable in structure
design as it allows to efficiently achieve target elastic properties
by avoiding expensive finite element simulations and tedious trial
and error in TO. In addition, although not demonstrated in this
work, such a link can provide multiple candidate unit cells with
the same properties that, in turn, enable tiling different unit cells
into a macrostructure while ensuring boundary compatibility.

Our data-driven optimization scheme has two steps: the search
for the optimal LB spectrum and the reconstruction of the unit
cell given the LB spectrum. By using the GAGP (or another)
model, we directly search for the LB spectrum of the unit cell
with the desired properties. The search problem is formulated as
follows:

min ||E" — EP||
i

s.it. Ao < A (24)
092 < 2 < 1.12?

where E* and E” are the vectorized forms of, respectively, the target
and predicted stiffness tensors. A=[1,, ..., A;6] and A° are the LB
spectra of, respectively, candidate unit cell for the target stiffness
tensor and the unit cell closest to the prescribed properties in the
property space (/; is the ith order eigenvalue). We choose GA for

Estimated Parameters vs. Number of Training Samples
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Fig.9 Convergence history as the number of training samples is increased from 500 to
2000. The 16 colored lines in the left panel indicate the estimation histories of the 16

hyperparameters.
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Table 4 MSE errors on 28,000 random samples for GP and
GAGP

Mean of MSE Variance of MSE (x 10%)
E, E, E, E, E, E,
GP 0.048 0.007 0.028 39 5.5 0.45

GAGP 0.008 0.001 0.011 0.12 0.0007 0.04

Note: The mean and variance of MSE are calculated over 20 random
repetitions.

Table 5 Effect of sample size on GAGP performance

Mean of MSE Variance of MSE (x 10%)
Sample
size E, E, E,, E, E, E,
20,000 0.0090 0.0024 0.017 0.30 0.004 0.08
40,000 0.0084 0.0016 0.013 0.16 0.001 0.05

Note: MSE errors (and their variances) are obtained via 28,000 random
samples in 20 repetitions.

optimization since the GAGP model is cheap to run and GA ensures
global optimality for multivariate and constrained problems. Note
that, to ensure fast convergence during GA, we limit the search
space for GA using the LB spectrum of the unit cell in the training
dataset whose properties are closest to E'.

After obtaining the optimal LB spectrum, we use a level set
method to reconstruct the corresponding unit cell [64] while
employing squared residuals of the LB spectrum as the objective
function. For faster convergence, the unit cell closest to the
optimal LB spectrum in the spectrum space is taken as the initial
guess in the reconstruction process.

In the following two examples, the goal is to design structures
with desired E,, E,, and E,, (see the target properties in Fig. 10).
For each example, three unit cells are designed using different
models: GAGP, NN, and GP (GAGP and NN use the entire
dataset while GP uses the initial one with 358 structures). The
results are visualized in Fig. 10 and demonstrate that the unit
cells identified from GAGP and NN are more geometrically
diverse than those obtained via GP. This is a direct result of popu-
lating the large dataset with perturbed structures and, in turn, pro-
viding the GA search process with a wider range of initial seeds.
While we utilized our entire database for GAGP and NN in an
attempt to provide more diversity for new designs, a smaller or
less diverse training dataset could potentially achieve similar
results; such a study is left for future work. We also note that the
unit cells designed with GP are similar in shape but different in
the size of the center hole, which leads to the significant change
in properties.

A Exl-Target [0.60,0.45,0.2]
B ExI-GP  [0.67,0.47.0.17]
0.17 @ ExI-GAGP [0.60,0.44,0.18]
' ¥ ExI-NN  [0.61,0.44,0.18]
Exy A Ex2-Target [0.50,0.35,0.10]
W EX2-GP  [0.58,0.42,0.10]
0.07 0 @ Ex2-GAGP [0.52,0.34,0.08]
045 ¥ EX2NN  [0.55,033,0.08]

0.45

0.65 035 E,

Fig. 10 Reconstructed unit cells in the three examples via
GAGP, GP, and NN. The results are visualized in the property
space and the triplets in the legend correspond to [E,, E,, E,,].
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From a quantitative point of view, our data-driven design method
with the large database can, compared with the small dataset case,
discover unit cells with properties that are closer to the target
values. For instance, in Ex1, the GAGP and NN results using the
large dataset achieve the target E,, whereas the GP result with the
small dataset differs from the target by around 12%. Ex2 shows a
similar pattern, with the GAGP, NN, and GP results differing
from the target E, by 4%, 10%, and 16%, respectively. When the
small dataset is used, the greater deviations from the target proper-
ties can be mainly attributed to insufficient training samples and the
relatively small search space. This reinforces the need for a large
database of unit cells in the data-driven design of metamaterials,
along with an expedient machine learning method for big data.
Moreover, unit cells designed with GAGP have smaller deviations
than those with NN.

6 Conclusion and Future Works

In this work, we proposed a novel approach, GAGP, to enable
GP modeling of massive datasets. Our method is centered on the
observation that the hyperparameter estimates of a GP converge
to some limit values, @, as more training samples are added.
We introduced an intuitive and straightforward method to find
@, and, subsequently, build a collection of independent GPs that
all use the converged @, as their hyperparameters. These GPs ran-
domly distribute the entire training dataset among themselves,
which allows inference based on the entire dataset by pooling the
predictions from the individual GPs. The training cost of GAGP
primarily depends on the initial optimization with n; data points
and the s optimizations thereafter. The former cost is the same as
fitting a conventional GP with n; samples. The latter is an additional
cost but is generally manageable since a single initial guess close to
the global optimum is available at each iteration. The cost of build-
ing m GPs is negligible compared with these optimization costs.
The prediction cost, although being m times larger than a conven-
tional GP, is small enough for practical applications.

With analytical examples, we demonstrated that GAGP achieves
very high predictive power that matches, and in some cases
exceeds, that of state-of-the-art machine learning methods such as
NNs and boosted trees. Unlike these latter methods, GAGP is
easy to fit and interpret, which makes it particularly useful in engi-
neering design with big data. Although the predictive power of
GAGP increases as the size of the training data increases, so does
the cost of fitting and training; it may be necessary to choose part
of the data if resources are limited. We also note that, throughout,
we assumed that the training samples are not ordered or highly cor-
related. If they are, randomization and appropriate transformations
are required. In addition, we assumed stationary noise with an
unknown variance. Considering nonstationary noise variance would
be an interesting and useful extension for GAGP. Thrifty sample
selection for model refinement (instead of randomly taking
subsets of training data) can also improve the predictive power of
GAGP and is planned for our future works.

As a case study, we applied GAGP to a data-driven metamaterials
unit cell design process that attains desired elastic properties by
transforming the complex material design problem into a parametric
one using spectral descriptors. After mapping reduced-dimensional
geometric descriptors (LB spectrum) to properties through GAGP,
unit cells with properties close to the target values are discovered by
finding the optimal LB spectrum with inverse optimization. This
framework provides a springboard for a salient new approach to
systematically and efficiently design metamaterials with optimized
boundary compatibility, spatially varying properties, and multiple
functionalities.
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Nomenclature

d = input dimensionality
n = number of training samples
q = output dimensionality
s = number of times that n; samples are added to ng
x = vector of d inputs
y = vector of g outputs
L = objective function in MLE
R = sample correlation matrix of size nxn
P = Gaussian process
MLE = maximum likelihood estimation
6 = Nugget or jitter parameter
no = number of initial random samples
ny = number of random samples added to nq per iteration
@ = roughness parameters of the correlation function
estimate of @ via MLE with very large training data
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