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ABSTRACT
We introduce a novel method to enable Gaussian process (GP)
modeling of massive datasets, called globally approximate
Gaussian process (GAGP). Unlike most largescale supervised
learners such as neural networks and trees, GAGP is easy to fit
and can interpret the model behavior, making it particularly
useful in engineering design with big data. The key idea of GAGP
is to build an ensemble of independent GPs that distribute the
entire training dataset among themselves and use the same
hyperparameters. This is based on the observation that the GP
hyperparameter estimates negligibly change as the size of the
training data exceeds a certain level that can be estimated in a
systematic way. For inference, the predictions from all GPs in
the ensemble are pooled which allows fto efficiently exploit the
entire training dataset for prediction. Through analytical
examples, we demonstrate that GAGP achieves very high
predictive power that matches (and in some cases exceeds) that
of state-of-the-art machine learning methods. We illustrate the
application of GAGP in engineering design with a problem on
data-driven metamaterials design where it is used to link
reduced-dimension geometrical descriptors of unit cells and
their properties. Searching for new unit cell designs with desired
properties is then achieved by employing GAGP in inverse
optimization.
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NOMENCLATURE

n Number of training samples

GP Gaussian process

d Input dimensionality

X Vector of d inputs

q Output dimensionality

y Vector of g outputs

R Sample correlation matrix of size n X n
w Roughness parameters of the correlation function
MLE  Maximum likelihood estimation

L Objective function in MLE

6 Nugget or jitter parameter

ng Number of initial random samples

ng Number of random samples added to n, per iteration
s Number of times that ng samples are added to n,
@D, Estimate of @ via MLE with very large training data

1 INTRODUCTION

Fueled by recent advancements in high performance
computing as well as data acquisition and storage capabilities
(e.g., online repositories), data-driven methods are increasingly
employed in engineering design [1-3] to efficiently explore the
design space of complex systems by obviating the need for
expensive experiments or simulations. For emerging material
systems, in particular, large datasets have been successfully
leveraged to design heterogeneous materials [4-8] and
mechanical metamaterials [9-12].
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Key to data-driven design is to develop supervised learners
that can distill as much useful information from massive datasets
as possible. However, most large-scale learners such as deep
neural networks [13] (NNs) and gradient boosted trees [14]
(GBT) are difficult to interpret and hence not suitable for
engineering design. Gaussian process (GP) models (aka Kriging)
have many attractive features that underpin their widespread use
in engineering design. For example, GPs interpolate the data,
have a natural and intuitive mechanism to address noise and
smooth the data (i.e., to avoid interpolation) [15], and are very
interpretable (i.e., they provide insight into input-output
relations) [16, 17]. In addition, they quantify prediction
uncertainty and have analytical conditional distributions that
enable, e.g., tractable adaptive sampling or Bayesian analysis
[18]. However, conventional GPs are not readily applicable to
large datasets and have been mostly confined to engineering
design with small data. The goal of our work is to bridge the gap
between big data and GPs while achieving high predictive
accuracy.

The difficulty in fitting GPs to big data is rooted in the
repetitive inversion of the sample correlation matrix, R, whose
size equals the number of training samples, n. Given the
practical features and popularity of GPs, considerable effort has
been devoted to resolving their scalability shortcoming. One
avenue of research has explored partitioning the input space (and
hence the training data) via, e.g., trees [19] or Voronoi cells [20],
and fitting an independent GP to each partition. While
particularly useful for small to relatively large datasets that
exhibit nonstationary behavior, prediction via these methods
results in discontinuity (at the partitions’ boundaries) and
information loss (because the query point is associated with only
one partition). Projected process approximation (PPA) [21] is
another method where the information from n samples is
distilled into m « n randomly (or sequentially) selected
samples through conditional distributions. PPA is very sensitive
to the m selected samples and overestimates the variance [21].
In Bayesian committee machine (BCA) [22], the dataset is
partitioned into p mutually exclusive and collectively
exhaustive parts with independent GP priors, and then the
predictions from all the GPs are pooled together in a Bayesian
setting. While theoretically very attractive, BCM does not scale
well with the dataset size and is computationally very expensive.

Another avenue of research has pursued subset selection.
For example, a simple strategy is to only use m < n samples to
train a GP [23, 24] where the m samples are selected either
randomly or sequentially based on maximizing some criteria
such as information gain or differential entropy score. Reduced-
rank approximation of R with m < n samples is another
option for subset selection and has been used in the Nystrom [25]
and subset of regressors [26, 27] (SR) methods. The m samples
in these methods are chosen randomly or in a greedy fashion to
minimize some cost function. While the many variants of subset
selection may be useful in some applications, they waste
information and are not applicable to very large datasets due to
the computational and storage costs. Local methods also use
subsets of the data because they fit a stationary GP (for each

prediction) to a very small number of training data points that are
closest to the query point. Locally approximate Gaussian process
[28] (LAGP) is perhaps the most widely recognized local method
where the subsets are selected either based on their proximity to
the query point or to minimize the predictive variance. Despite
being useful for nonstationary and relatively large datasets, local
methods also waste some information and can be prohibitively
expensive for repetitive use since local samples have to be found
and a GP must be fitted for each prediction.

Although the recent works have made significant progress
in bridging the gap between GPs and big data, GPs still cannot
achieve the accuracy of the state-of-the-art large-scale
supervised learners such as NNs and trees. Motivated by this
limitation, we develop a computationally stable and inexpensive
approach to enable GP modeling of massive datasets. The main
idea of our approach is to build an ensemble of independent GPs
that utilize a converged roughness parameter as their
hypermeters. This is based on an empirical observation that the
estimates of the GP hyperparameters don't change much as the
size of the training data exceeds certain level. While having some
common aspects with a few of the abovementioned works, our
method is more massively scalable, can leverage multicore or
GPU (graphical processing unit) computations [29, 30], and is
applicable to very high-dimensional data with or without noise.

As mentioned earlier, big data has enticed new design
methods for complex systems such as metamaterials [9-12],
which possess superior properties through their hierarchical
structure that consists of repeated unit cells. While traditional
methods like topology optimization (TO) provide a systematic
computational platform to discover metamaterials with
unprecedented properties, they have many challenges that are
primarily due to the high dimensional design space (i.c., the
geometry of unit cells), computational costs, local optimality,
and spatial discontinuities across unit cell boundaries (in case
multiple unit cells are simultaneously designed). We take a data-
driven approach to address these challenges by first building a
large training database of many wunit cells and their
corresponding properties. Unlike previous data-driven works
that represent unit cells as signed distance fields [9] or voxels
[11], we drastically reduce the input dimension in our dataset by
characterizing the unit cells via spectral shape descriptors based
on the Laplace-Beltrami (LB) operator. Then, we employ our GP
modeling approach to link the geometrical descriptors of unit
cells and their properties and, in turn, efficiently discover new
unit cells with desired properties.

The rest of the paper is organized as follows. We first review
some preliminaries on GP modeling in Sec. 2 and then introduce
our novel idea in Sec. 3. In Sec. 4, we validate the accuracy of
our approach by comparing its performance against three
popular and largescale supervised learning methods on four
analytical problems. We demonstrate an application of the GP
approach to our data-driven design method for metamaterials in
Sec. 5, and conclude the paper in Sec. 6.
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2 REVIEW ON GAUSSIAN PROCESS MODELING
Below, we describe how GP emulators (aka surrogates,
metamodels, or models) can replace a computer simulator. The
procedure is identical if the data is obtained from physical
experiments. Let us denote the output and inputs of a computer
simulator by, respectively, y and the d dimensional vector

T .
X = [x(l),x(z), ...,x(d)] where x € RY. Assume the input-
output relation is a realization of the random process 1 (x):

n(x) = Xita B fi(x) + §(x), ey

where f;(x)’s are some pre-determined set of basis functions,

T . .

p = [B(l),....,ﬂ(h)] are unknown weights, and &(x) is a
zero-mean GP characterized with its parametric covariance
function, c(:,):

cov(E(x),E(x)) = c(x,x") = o?r(x,x'), (2)

where 7(-) is the correlation function having the property
r(x,x) =1 and o2 is the process variance. Various correlation
functions have been developed in the literature with the Gaussian
correlation function being the most widely used one:

r(x,x) = exp{—(x—x)TQ(x — x")}, 3)

where Q =diag(10®) and w= [a)(l),w(z), ...,a)(d)]T,
—0 < w; < oo are the roughness or scale parameters. The
collection of o2 and w are called the hyperparameters.

With the formulation in Eq. (1) and given the n training
pairs of (x;,y;), GP modeling requires finding a point estimate
for B, w, and o2 via either maximum likelihood estimation
(MLE) or cross-validation (CV). Alternatively, Bayes’ rule can
be employed to find the posterior distributions if there is prior
knowledge on these parameters. Herein, we use a constant
process mean (i.e., Y.i—; B;ifi(x) = B) and employ MLE. These
choices are widely practiced because a high predictive power is
provided while minimizing the computational costs [28, 31-35].

MLE requires maximizing the multivariate Gaussian
likelihood function, or equivalently:

PN argmin (n 1
[,6% @] = B.0%w <Elog(02) +§log(|R|)

1 Tp-1
+53(/—10)R (y—lﬁ)>.(4)

where log(-) is the natural logarithm and R is the n X n
correlation matrix with (i,j))" element R;; =r(xi,xj) for
i,j =1,..,n. Setting the partial derivatives with respect to f§
and o2 to zero yields:

B =[1"R1]7"1"R ™y, (5)
62 =2(y-1B)' R (y - 1B). (6)

Plugging these values into Eq. (4) and eliminating the constants:

nlog(62) + log(|R|) = 28MIM | (7)

argmin
w w

O =

By numerically minimizing L in Eq. (7) one can find &@. Many
global optimization methods such as genetic algorithms [36],
pattern searches [37, 38], and particle swarm optimization [39]
have been employed to solve for @ in Eq. (7). However,
gradient-based optimization techniques are commonly preferred
due to their ease of implementation and superior computational
efficiency [15, 16, 31]. To guarantee global optimality in this
case, the optimization is done numerous times with different
initial guesses.

Upon completion of MLE, the following closed-form
formula can be used to predict the response at any x*:

P =p+g"x)IV iy - 1p), (8)
where g(x*) is an nx1 vector with i*® element
c(x;,x*) = 6%r(x;,x*), V is the covariance matrix with
L, )N™ element &%r(x,%) , ¥=I[yy,..,y,]7 are the
responses in the training dataset, and 1 is an n X 1 vector of
ones. The posterior covariance between the responses at the two
inputs x* and x' reads:

cov(y’,y') =
c(x*,x)—gT(x)HVig(x)+ hTATVv-11)th, (9)

where h = (1 -1TV"1g(x")).

If the training dataset has multiple outputs, one may fit either
a single-response GP emulator to each response or a multi-
response GP (hereafter denoted by MRGP) to all the responses.
We follow [40] and extend the above formulations to simulators
with dy responses by placing a constant mean for each

response (i.e., f = [,8(1), ....,,B(q)]T) and employing the
separable covariance function:

cov((x),E(x)) = c(x,x) = Z Q@ r(x,x"), (10)

where @ denotes the Kronecker product and X is the g X g
process covariance matrix with its off-diagonal elements
representing the covariance between the corresponding
responses at any fixed x. The MLE approach described above
can also be applied to multi-response datasets in which case o
will be replaced with X (see [41-44] for the details).

Finally, we note that GPs can address noise and smooth the
data (i.e., avoid interpolation) via the so-called nugget or jitter
parameter, &, in which case R is replaced with Rs = R +
61,,,. If 6 isused, the estimated (stationary) noise variance in
the data would be &82. We have recently developed an
automatic method to robustly detect and estimate noise [31].
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3 GLOBALLY APPROXIMATE GAUSSIAN PROCESS

Regardless of the optimization method used to solve for @,
each evaluation of L in Eq. (7) requires inverting the n X n
matrix R. For very large n, there are two main challenges
associated with this inversion: computational cost of
approximately O(an3®) and singularity of R (since the
samples get closer as n increases). To address these issues and
enable GP modeling of big data, our essential idea is to build an
ensemble of independent GPs that use the same @ and share the
training data among themselves. To illustrate, we take the
following function over —2 < x < 3:

y =x*—x3—7x%+ 3x + 5sin(5x) . (11)

The associated likelihood profile (i.e., L) is visualized in Figure
1 as a function of w for various values of n. Two interesting
phenomena are observed in this figure: (i) With large n, the
profile of L does not alter as the training samples change. To
observe this, for each n, we generated five independent training
samples via Sobol sequence [45, 46] and plotted the
corresponding L. As illustrated, the five curves with the same n
are indistinguishable (i.e., 20 curves are plotted in Figure 1).
(ii) As n increases, L is minimized at similar w’s.

O S —
- niSOO
L 10f] = nm oo
—_— n= 5000
Tl_20.
-30

502 1 4

Figure 1 The profile of % as a function of w for various values of n.
For each n, five curves are plotted, which are indistinguishable.

While we visualize the above two points with a simple 1D
function, our studies indicate that they hold in general (i.e.,
irrespective of problem dimensionality and the absence or
presence of noise) as long as the number of training samples is
large. Therefore, we propose the following approach for GP
modeling of large datasets.

Assuming a very large training dataset of size n is
available, we first randomly select a relatively small subset of
size n, (e.g., nog =500) and estimate @, with a gradient-
based optimization technique. Then, we add n, random
samples (e.g., ng =250 or ny=500) to this subset and
estimate @; while employing @, as the initial guess in the
optimization. This process is stopped after s steps when @
does not change noticeably (i.e., @y = @;_4) as more training
data are used. At this point, the latest solution, denoted by @,
is employed to build m GP models each with n;, = ny + s X
n; randomly chosen samples (from the entire training data)
where n = Y7L, n;. Here, we have assumed that the collection

of these GPs (who have @, as their hyperparameters)
approximate a GP that is fitted to the entire training dataset and,
correspondingly, call it globally approximate Gaussian process
(GAGP). The algorithm of GAGP is summarized in Figure 2.

We point out the following important features regarding
GAGTP. First, we recommend using gradient-based optimizations
throughout the entire process because (i) if n, is large enough
(e.g., ng > 500), one would need to select only a few initial
guesses to find the global minimizer of Eq. (7), i.e., @,; and
(ii) we want to use @;_, as the initial guess for the
optimization in the i*® step. This latter choice ensures fast
convergence since the minimizer of L changes slightly as the
dataset size increases (see Figure 1). To estimate @,, we
recommend the method developed in [31]. Second, for
predicting the response, Eq. (8) is used for each of the m GP
models and then the results are averaged. In our experience, we
have observed very similar prediction results with different
averaging schemes (e.g., weighted averaging where the weights
are proportional to inverse variance). The advantages of
employing an ensemble of models (in our case the m GPs) in
prediction is extensively demonstrated in the literature [14, 22].
Third, the predictive power is not sensitive to ng, s, and ng so
long as large enough values are used for them. For novice users,
we recommend starting with ny = 500, s = 6, ng; = 250, and
equally distributing the samples among the m GPs (we use
these parameters in Sec. 5 and for all the examples in Sec. 4). For
more experienced users, we provide a systematic way in Sec. 4
to choose these values based on GP’s inherent ability to estimate
noise by the nugget variance. Lastly, it is pointed out that while
GAGP has a high predictive power and is applicable to very large
datasets, its implementation is very straightforward because it
only entails integrating a GP modeling package such as GPM
[31] with the algorithm in Figure 2.

Choose ngy,ng, s Predict $(x) = %Z}ll ¥;(x),
‘ Jj(x*) is obtained via Eq.(8)
using the j™* model

Find &@,: Use n, samples t
and minimize Eq.(7)
‘ Build m GPs all with the
same @, = @y

Fori = 1,..,s

* Augmentn, withi X ng t
random samples

« Find @;: Use ny + i X ng Divide the n samples to m
samples and minimize - parts of size n; =mng +s X
Eq.(7) Ng, Yimi Mg =1

Figure 2 Flowchart of globally approximate Gaussian process, GAGP.

4 COMPARATIVE
EXAMPLES
To validate the performance of GAGP in regression, we
compare its predictive power on four examples (Ex1-4) against
recognized big data learners: locally approximate Gaussian

STUDIES ON ANALYTICAL
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process (LAGP) [28], gradient boosted trees (XGB) [14], and
feed-forward neural networks (NNs) [47]. The examples cover a
wide range of dimensionality and input-output complexity. Their
analytical equations are as follows:

Exl: y = x* — x® — 7x% 4+ 3x + 5sin(5x)
—2<x<3,

(1—exp(—$))(x3x§+1900x§+2092x1+60)

Ex2 [48]: ¥ = X4x3+500x% +4x1+20
min(x) = [0, 0, 2200, 85]
max(x) = [1, 1, 2400, 110],

X1
4X3X3X5X6

Ex3[49]: y = 2rm

X4+ >
_Xax3 X6
(x5x2+19.62x1 o ) +4x4x5(x7)x7

min(x) = [30, 0.005, 0.002, 1000,9 x 10%,290, 340]
max(x) = [60, 0.02, 0.01, 5000, 11 x 10%, 296,360,

Ex4 [49]: =224 50x, —xp0)? + x5 + 40xfy — 5x; +
1
0.05x2 + 0.0SX3 - 0.03x6 + 0.03x7 - 0.09x9 - O.lelo -
0.07x,, + 0.25x% — 0.04x,, + 0.06x,5 — 0.01x,, — 0.03x,5
0.5<x;<0.5 for i =1,..20,

For each example, two independent and unique datasets of
size 30000 are generated with Sobol sequence [46], where the
first one is used for training while the second one for validation.
In each example, Gaussian noise is added to both the training and
validation outputs. We consider two noise levels to test the
sensitivity of the results where the noise standard deviation (SD)
is determined based on each example’s output range. As we
measure performance by root mean squared error (RMSE), the
noise SD should be recovered on the validation dataset (i.e., the
RMSE would ideally equal noise SD).

Table 1 Root mean squared error (RMSE) with small noise. Smallest
errors are in bold.

Né’lljse LAGP | XGB | NN | Ggacp
ExI(ID) | 02 | 1271 | 0209 | 0.200 | 0.200
Ex2 (D) | 0.1 | 1.386 | 0.121 | 0.100 | 0.103
Ex3(6D) | 0.1 | 0.129 | 0.118 | 0.100 | 0.100
Ex4 (20D) | 0.1 | 1450 | 0351 | 0.101 | 0.103

Table 2 Root mean squared error (RMSE) with large noise. Smallest
errors are in bold.

Né’ll)se LAGP | XGB | NN | GAGP
Ex1 (1D) 2 2270 | 2.062 | 2.000 | 2.000
Ex2 (4D) 1 1.739 | 1.123 | 1.002 | 1.009
Ex3 (6D) 1 1.037 | 1.098 | 1.002 | 1.002
Ex4 (20D) 1 1911 | 1.155 | 1.011 | 1.001

We use CV to ensure the best performance is achieved for
LAGP, XGB, and NN. For GAGP, we use ny, = 500, s =6,
ny = 250, and equally distribute the samples among the m =

_3999% _ _ 15 GPs (i.c., each GP has 2000 samples). The
500+6x250

results are summarized in Table 1 (for small noise SD) and Table
2 (for large noise SD), and indicate that (i) GAGP consistently
outperforms LAGP and XGB, (ii) GAGP and NN both recover
the true amount of added noise in the data, and (iii) GAGP
achieves very similar results to NN. We highlight that the
performance of GAGP in each case could have been improved
even further by tuning its parameters via CV (which was done
for LAGP, XGB, and NN). Potential parameters include n,, s,
ng, and f;(x) (see Eq. (1)). However, we intentionally avoid
this tuning to demonstrate GAGP’s flexibility, generality, and
ease-of-use.

In engineering design, it is highly desirable to employ
interpretable methods and tools that facilitate the knowledge
discovery and decision-making process. Contrary to many
supervised learning techniques such as NNs and random forests
that are black-boxes, the structure of GPs can easily provide
quantitative insights into the problem. To demonstrate this
feature in GAGP, the convergence histories for Ex3 and Ex4 are
plotted in Figure 3 and Figure 4, respectively. Similar to Figure
1, it is evident that the estimated roughness parameters do not
change noticeably as more samples are used in training (only 6
out of the 20 roughness parameters are plotted in Figure 4 for a
clearer illustration). The values of these parameters can
determine which inputs (and to what extent) affect the output.
For instance, in Ex4, wg is very small so the output must be
almost insensitive to xg. Additionally, since w, = w,, itisalso
expected that the corresponding inputs should affect y
similarly. These observations completely agree with the
analytical relation between x and y in Ex4 where y is
independent of xg and is symmetric with respect to x, and

xzo.

Ex3 (Noise SD = 1): Estimated Parameters vs. Number of Training Samples

1.1

1
-6 T 105
w 562
-
-13 1
] 0.95
500 1000 1500 2000 500 1000 1500 2000

Figure 3 Convergence history in example 3 as the number of training
samples is increased from 500 to 2000.

The estimated variance, §62, in both examples fluctuates
very closely around the true noise variance. 6§62 provides a
useful quantitative measure for the expected predictive power
(e.g., RMSE in future uses of the model). Additionally, similar to
@ , its convergence history helps in determining whether
sufficient samples have been used in training. Firstly, the number
of training samples should be increased until 8§62 does not
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fluctuate noticeably. Secondly, via k-fold CV during training,
one should ideally recover the noise variance by calculating the
RMSE associated with predicting the samples in the it* fold
(when fold i is not used in training). If these two values differ
significantly, s (or ny) should be increased. For instance, if the
fluctuations on the right panel in Figure 4 were large, we should
have increased s (from 6 to, e.g., 10) or ng (from 250 to,
e.g., 500).

Ex4 (Noise SD = 1): Estimated Parameters vs. Number of Training Samples

0f ] [—v

L - =¥ g

1
—.-vl/‘“
-, [1.06
-7 A
w w,|8562
—— 0
-14
e T S Cppr— { 0.96
500 1000 1500 2000 500 1000 1500 2000

Figure 4 Convergence history in example 4 as the number of training
samples is increased from 500 to 2000. For clearer demonstration,
only six out of the twenty roughness parameters are plotted.

5 DATA-DRIVEN DESIGN OF METAMATERIALS

To demonstrate the application of GAGP in engineering
design, we employ it in a new data-driven method for the
optimization of metamaterial unit cells using big data. Although
various methods, e.g., TO and genetic algorithm (GA), have been
applied to design metamaterials with prescribed properties, these
are computationally intensive and suffer from sensitivity to the
initial guess as well as disconnected boundaries if multiple unit
cells exist. A promising solution is to construct a large database
of precomputed unit cells (aka microstructures or building
blocks), enabling efficient selection of well-connected unit cells
from the database and inexpensive optimization of new unit cells
[9-12]. However, with the exception of [12] where unit cells are
parameterized via geometric features like beam thickness,
research in this area thus far use high-dimensional geometric
representations (e.g., signed distance functions [9] or voxels
[11]) that increase the memory demand and the complexity of
constructing machine learning models that link structures to
properties. Reducing the dimension of the unit cell is therefore a
crucial step.

In this work, we reduce the dimension of the unit cells in our
metamaterial database with spectral shape descriptors based on
the LB operator. We then employ GAGP to learn how the
effective Young’s moduli of unit cells change as a function of
their reduced-dimension descriptors. After the GAGP model is
fitted, we use it to discover unit cells with desired properties
through inverse optimization. Furthermore, to present the
advantages of a large unit cell database and GAGP, we compare
the results to those obtained using a conventional GP model
fitted on a smaller database.

5.1 Metamaterials Database Generation

For demonstration, we focus on cases where the Young’s
moduli are the primary properties of interest, i.e., E, ,E,, and
E,,. We propose a novel two-stage pipeline method inspired by
[11] to generate a large training dataset of unit cells and their
corresponding moduli. As explained below, our method starts by
building an initial dataset and then proceeds to better cover the
input (geometry) and output (property) spaces.

In stage one, to construct the initial dataset, we select some
design targets in the property space (the 3D space spanned by
E. ,E,, and E,,) and then use the SIMP (solid isotropic
material with penalization) method [50] to find the
corresponding orthotropic unit cells through TO. As the bounds
of the property space are unknown a priori, we uniformly choose
1000 points in [0,1]3. In this stage, 358 valid structures are
generated while the remaining 642 points did not result in
feasible unit cells. These initial structures are shown in Figure
5, where the Poisson’s ratio is used instead of Ey, for a better
illustration of the space.

2 1

2

08-

-

06

Ey

04-

Poisson's ratio Exy/Ex
& o
o G

0.2

bl
o

-1 [}
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Ex Ex

Figure 5 The property space of the initial database with 358 structures.

In stage two, we further populate the initial database via a
stochastic shape perturbation algorithm that generates distorted
structures with slightly different properties from the original
ones. Specifically, the following radial distortion model is used
to perturb an existing shape:

Told . 1] (15)
Xold if Toa>Ro

T .
Xe + — (xold - xc) lf Tolg < RO
Xnew

where Xx,., and x,4 are the coordinates of the new and
original pixel locations, x. is the coordinate vector of the
distortion center, 7., and 7,4 are the new and original
distances to the distortion center, and R, is the outer distortion
radius. 73, can be expressed as:

%Ro(l—cot(g)—ﬁ) if y>0

Thew = %Ro(l—cot(g)+ﬁ) if y<0
Told otherwise

(16)

where
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1+ cot (g) -

2
2To1a )
)

R, (17)

2
sin? (V/Z) - (

and y € (— g, g) is the angle that controls the amount of
distortion. Considering the orthorhombic symmetry of the unit
cells, only a quarter of the original structure is distorted and then
reassembled to realize the full structure. We adopt the distortion
model in Eq. (15) for two reasons. First, its parameters (i.e., Ry,
y, and x.) have clear interpretations and hence can be easily
tuned. In our case, they are all set as random variables with
standard uniform distributions to generate a wide range of
structures. Second, it preserves the topology of the original unit
cell and introduces negligible artifacts (e.g., disconnections and
checkerboard patterns) upon perturbation.

To better cover the property space, the database is populated
iteratively. In each iteration we first calculate the following score
for all the available unit cells:

1
Score = m, (18)

where d is the Euclidean (L2) distance between the moduli of
each unit cell to the boundaries of the region enclosing all the
moduli (see Figure 5 and Figure 6), p is the number of data
points inside the neighborhood within a given radius in the
property space (in our experience, sampling is more uniform
when p = 0.05), and € < 1 is used to avoid singularity. Then,
we select the N points with the highest scores for stochastic
perturbation. The properties of newly generated structures are
calculated via numerical homogenization [51] and added to the
current property space for the next iteration. With our two-stage
method, the database is expanded from 358 to 88,000 unit cells
that cover a wider range of properties (see Figure 6).
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Figure 6 The property space of the expanded database with 88,000
structures.

5.2 Unit Cell Dimension Reduction via Spectral
Shape Descriptors

In the previous section, each unit cell in the database is
represented by voxels (or pixels). For dimensionality reduction,
we use spectral shape descriptors as they retain geometric and
physical information. Specifically, we use the LB spectrum, also
known as ShapeDNA, which can be directly calculated for any
unit cell shape [52, 53].

The LB spectrum is an effective descriptor for the
metamaterials database for several reasons: (i) It has a
powerful discrimination ability and has been successfully
applied to shape matching and classification in computer vision,
despite being one of the simplest spectral descriptors. (ii) All
of the complex structures in our orthotropic metamaterials
database can be uniquely characterized with the first 10-15
eigenvalues in the LB spectrum. (iii) The spectrum embodies
some geometrical information, including perimeter, area, and
Euler number. This can be beneficial for the construction of the
machine learning model as less training data may be required to
obtain an accurate model compared to voxel- or point-based
representations. (iv) Similar shapes have close LB spectrum,
which may also help the supervised learning task.

The calculation of the LB spectrum for each unit cell is as
follows. For a real-valued function f defined on a Riemannian
manifold [52], the Helmholtz equation reads as:

Af = —Af, (19)
where the Laplace-Beltrami operator A is defined as:
A: = div(grad f). (20)

The eigenvalues of the Helmholtz equation are the LB
spectrum and denoted:

0<AH <A< <o, (21)

We focus on the LB spectrum of a 2D shape under Dirichlet
boundary conditions. In this case, the Helmholtz equation
reduces to a Laplacian eigenvalue problem with the Dirichlet
boundary condition:

L g
ox2  dy? f n , (22)
f=0 on 1

where ) and 7 are the interior and boundaries of the domain
of interest, respectively.

() () (©
Figure 7 LB spectrum calculation: (a) Original structure, (b) Finite
element mesh, and (c¢) The first eigenfunction.

Finally, the finite element method is employed to obtain the
LB spectrum of unit cells [54]; see Figure 7. It is noted that our
88,000 structures can be uniquely determined with only the first
16 orders of LB spectrum, reducing the input dimension from
50 x 50 = 2500 pixels to 16 scalar descriptors.
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5.3 Machine Learning - Linking LB Representation
to Property via GAGP

Once the dataset is built, we follow the algorithm in Figure

2 for machine learning, i.e., relating the LB representations of

unit cells to their moduli. We use the same fitting parameters as

in Sec. 4 (n, = 500, s = 6, ny = 250), equally distribute the

0% _ _ 44 GPs, and use Eq. (10)
500+6x250

to have a multi-response model that leverages the correlation
between the responses to have a higher predictive power. The
convergence histories are provided in Figure 8, where the trends
are consistent with those in Sec. 4. It is observed that the 16
estimated roughness parameters do not change noticeably once
more than 1000 samples are used in training. In particular, 3
out of the 16 roughness estimates (corresponding to A,, =
A5 = A1) are very small, indicating that the corresponding
shape descriptors do not affect the responses; see Eq. (3). The
next largest estimate belongs to w3 = —8 which corresponds
to Ay3. The rest of the estimates are all between 2.5 and 3,
indicating that the first twelve eigenvalues (shape descriptors)
affect the responses similarly and nonlinearly (since large w;
indicates rough response changes along dimension i). These
observations agree well with the fact that the higher order
eigenvalues generally explain less variability in the data. The
estimated noise variances (one per response) also converge, with
E,, having the largest estimated noise variance in the data,
which is potentially due to larger numerical errors in property
estimation.

samples among the m =

Estimated Parameters vs. Number of Training Samples

0 ? 0.012 .

w 562 | ~-.
-10 0.006

- X

0
500 1000 1500 2000 500 1000 1500 2000

Figure 8 Convergence history as the number of training samples is
increased from 500 to 2000. The 16 colored lines in the left panel
indicate the histories of the 16 hyperparameters.

To illustrate the effect of expanding the training data from
385 to 88000, we randomly select 28000 samples from the data
for validation. Then, we evaluate the mean squared error (MSE)
of the following two models on this test set: A conventional GP
fitted to the original 385 samples and a GAGP fitted to the rest

of the data (i.e., to 60000 samples, resulting in m =
60000

500+6X250
this process 20 times. The results are summarized in Table 3 and

demonstrate that: (i) Increasing the dataset size (stage two in
Sec. 5.1) creates a supervised learner with a higher predictive
power (compare the mean of MSEs for GP and GAGP); (ii)
GAGP is more robust to variations than GP (compare the
variance of MSEs for GP and GAGP); (iii) With 60000

= 30 models). To account for randomness, we repeat

samples, the predictive power of GAGP is slightly lower than the
case where the entire dataset is used in training (compare mean
of MSEs for GAGP in Table 3 with the converged noise
estimates in Figure 8).

Table 3 MSE errors on 28000 random samples. The mean and variance
of MSE are calculated over 20 random repetitions.

Mean of MSE Variance of MSE (x 10°)

E, E, Eyy E, E, Fezy

GP 0.048| 0.007| 0.028| 39 5.5 0.45
GAGP | 0.008| 0.001| 0.011| 0.12 | 0.0007 | 0.04

5.4 Data-Driven Unit Cell Optimization

In this section, we demonstrate how our GAGP model can
be employed in an inverse optimization scheme to realize unit
cells with target moduli. Establishing such an inverse link is
highly desirable in structure design as it allows to achieve desired
elastic properties efficiently, obviating the tedious and expensive
trial and error in TO. Additionally, though not demonstrated in
this work, such a link can provide multiple candidate unit cells
with the same properties that, in turn, enables tiling different unit
cells into a macrostructure while ensuring boundary
compatibility.

Our data-driven optimization scheme has two stages: The
search for the optimal LB spectrum and the reconstruction of the
unit cell given the LB spectrum. Using our GAGP (or GP) model,
we directly search for the LB spectrum of the unit cell with the
desired properties. We employ GA in this search process, which
is formulated as:

mlinllEt — E?||o
s.t. Ai—l < ﬂ'i
0.929 < 2, < 1.129, (23)

where E' and EP are the vectors of, respectively, the target
and predicted moduli, and A = [A, ..., ;4] and A° are the LB
spectra of the current unit cell and the unit cell closest to the
prescribed properties in the property space respectively, with A;
being the i order eigenvalue. We choose GA for optimization
since the GAGP (or GP) model is cheap to run and GA ensures
global optimality for multivariate and constrained problems. The
search space for GA is defined by the LB spectrum of the unit
cell in the training dataset whose properties are closest E¢.

After obtaining the optimal LB spectrum, we use the level
set method to reconstruct the corresponding unit cell. The
reconstruction process is based on [55] but the optimization
objective is changed to the squared residuals of the LB spectrum.
For a faster convergence, the unit cell closest to the optimal LB
spectrum in the spectrum space is taken as the initial guess in the
reconstruction process.

In the following two examples, the objective is to design
structures with desired Ey, E,, and Ej, (see targets in Figure

8 Copyright © 2019 by ASME



9). In each example, two unit cells are designed: one with the GP
model (fitted to the initial set of 358) and one with the GAGP
model (fitted to all 88,000 structures). The results are visualized
in Figure 9 and demonstrate that the unit cells identified from
GAGP are more diverse than those obtained via GP. This
diversity is a direct result of populating the original dataset with
perturbed structures and, in turn, providing the GA search
process with a wider range of initial seeds. It is also noted that
the unit cells reconstructed with GP are similar in shape but
different in the size of the center hole, which leads to a significant
change in properties.

0.3 - [0.60,0.45,0.2] = Exl Target
"~ | 10-60,0.44,0.13] /‘ [0.67,0.47,0.17]|| = ExI1-GP
o o ExI1-GAGP
A Ex2-Target
A .
0.2 ° /ﬂ : EGP
E [0.50,0.35,0.10] . ° Ex2-GAGP
Xy N [0.58,0.42,0.10]
A
O.l 1 ° . \ m
0.52,0.34,0.08 B
0- t J 0.6
0.4 0.4

0.6
0.8 0.2 E
E, y

Figure 9 Reconstructed unit cells in the two examples. The results are
visualized in the property space, [Ex, £y, Exy].

From a quantitative point of view, it is observed that our
data-driven design method with the large database can, as
compared to the small dataset case, discover unit cells with
properties that are closer to the target values. For instance, in
Ex1, the GAGP result with large data set achieves the target E,,
whereas the GP result from the small dataset differs from the
target by around 12%. Ex2 shows a similar pattern, with the
GAGP and GP results differing from the target E, by 4% and
16%, respectively. When the small dataset is used, the greater
deviations from the target properties can be mainly attributed to
insufficient training samples and the relatively small search
space. This reinforces the need for a large database of unit cells
in the data-driven design of metamaterials, along with an
expedient machine learning method for big data.

6 CONCLUSION AND FUTURE WORKS

We propose a novel method to enable Gaussian process
modeling of massive datasets. The central idea of our method,
named globally approximate Gaussian process (GAGP), is based
on the observation that the hyperparameter estimates of a GP
converge to some limit values, @.,, as more training samples are
used. We introduce an intuitive and straightforward method to
find @, and, subsequently, build an ensemble of independent
GPs that all use the converged @,., as their hyperparameters.
These GPs randomly distribute the entire training dataset among

themselves, which allows to make inference based on the entire
dataset by pooling the predictions from the individual GPs.

With analytical examples, we demonstrated that GAGP
achieves very high predictive power that matches (and in some
cases exceeds) that of state-of-the-art machine learning methods
such as neural networks and boosted trees. Unlike these latter
methods, GAGP is easy to fit and interpret, which makes it
particularly useful in engineering design with big data. In our
approach, we assume that the noise is stationary with an
unknown variance. Considering nonstationary noise variance
would be an interesting and useful extension for GAGP. Thrifty
sample selection for model refinement (instead of randomly
taking subsets of training data) can also improve the predictive
power of GAGP and is planned for our future works.

As a case study, we applied GAGP to a data-driven
metamaterials unit cell design process that achieves desired
elastic properties by transforming the complex material design
problem into a parametric one. After mapping reduced-
dimensional geometric descriptors (LB spectrum) to properties
through GAGP, unit cells with properties close to the target
values are discovered by finding the optimal LB spectrum with
inverse optimization. This framework provides a springboard for
a salient new approach to systematically and efficiently design
metamaterials with optimized boundary compatibility, spatially
varying properties, and multiple functionalities.
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