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ABSTRACT 
We introduce a novel method to enable Gaussian process (GP) 
modeling of massive datasets, called globally approximate 
Gaussian process (GAGP). Unlike most largescale supervised 
learners such as neural networks and trees, GAGP is easy to fit 
and can interpret the model behavior, making it particularly 
useful in engineering design with big data. The key idea of GAGP 
is to build an ensemble of independent GPs that distribute the 
entire training dataset among themselves and use the same 
hyperparameters. This is based on the observation that the GP 
hyperparameter estimates negligibly change as the size of the 
training data exceeds a certain level that can be estimated in a 
systematic way. For inference, the predictions from all GPs in 
the ensemble are pooled which allows to efficiently exploit the 
entire training dataset for prediction. Through analytical 
examples, we demonstrate that GAGP achieves very high 
predictive power that matches (and in some cases exceeds) that 
of state-of-the-art machine learning methods. We illustrate the 
application of GAGP in engineering design with a problem on 
data-driven metamaterials design where it is used to link 
reduced-dimension geometrical descriptors of unit cells and 
their properties. Searching for new unit cell designs with desired 
properties is then achieved by employing GAGP in inverse 
optimization. 

Keywords: Gaussian processes, Supervised learning, Big 
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NOMENCLATURE 𝑛 Number of training samples 
GP Gaussian process 𝑑 Input dimensionality 𝒙 Vector of 𝑑 inputs 𝑞 Output dimensionality 𝒚 Vector of 𝑞 outputs 𝑹 Sample correlation matrix of size 𝑛 × 𝑛 𝝎 Roughness parameters of the correlation function 
MLE Maximum likelihood estimation 𝐿 Objective function in MLE 𝛿 Nugget or jitter parameter 𝑛0 Number of initial random samples 𝑛𝑠 Number of random samples added to 𝑛0 per iteration 𝑠 Number of times that 𝑛𝑠 samples are added to 𝑛0 𝝎̂∞ Estimate of 𝝎 via MLE with very large training data 

1 INTRODUCTION 
Fueled by recent advancements in high performance 

computing as well as data acquisition and storage capabilities 
(e.g., online repositories), data-driven methods are increasingly 
employed in engineering design [1-3] to efficiently explore the 
design space of complex systems by obviating the need for 
expensive experiments or simulations. For emerging material 
systems, in particular, large datasets have been successfully 
leveraged to design heterogeneous materials [4-8] and 
mechanical metamaterials [9-12].  
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Key to data-driven design is to develop supervised learners 
that can distill as much useful information from massive datasets 
as possible. However, most large-scale learners such as deep 
neural networks [13] (NNs) and gradient boosted trees [14] 
(GBT) are difficult to interpret and hence not suitable for 
engineering design. Gaussian process (GP) models (aka Kriging) 
have many attractive features that underpin their widespread use 
in engineering design. For example, GPs interpolate the data, 
have a natural and intuitive mechanism to address noise and 
smooth the data (i.e., to avoid interpolation) [15], and are very 
interpretable (i.e., they provide insight into input-output 
relations) [16, 17]. In addition, they quantify prediction 
uncertainty and have analytical conditional distributions that 
enable, e.g., tractable adaptive sampling or Bayesian analysis 
[18]. However, conventional GPs are not readily applicable to 
large datasets and have been mostly confined to engineering 
design with small data. The goal of our work is to bridge the gap 
between big data and GPs while achieving high predictive 
accuracy. 

The difficulty in fitting GPs to big data is rooted in the 
repetitive inversion of the sample correlation matrix, 𝑹, whose 
size equals the number of training samples, 𝑛 . Given the 
practical features and popularity of GPs, considerable effort has 
been devoted to resolving their scalability shortcoming. One 
avenue of research has explored partitioning the input space (and 
hence the training data) via, e.g., trees [19] or Voronoi cells [20], 
and fitting an independent GP to each partition. While 
particularly useful for small to relatively large datasets that 
exhibit nonstationary behavior, prediction via these methods 
results in discontinuity (at the partitions’ boundaries) and 
information loss (because the query point is associated with only 
one partition). Projected process approximation (PPA) [21] is 
another method where the information from 𝑛  samples is 
distilled into 𝑚 ≪ 𝑛  randomly (or sequentially) selected 
samples through conditional distributions. PPA is very sensitive 
to the 𝑚 selected samples and overestimates the variance [21]. 
In Bayesian committee machine (BCA) [22], the dataset is 
partitioned into 𝑝  mutually exclusive and collectively 
exhaustive parts with independent GP priors, and then the 
predictions from all the GPs are pooled together in a Bayesian 
setting. While theoretically very attractive, BCM does not scale 
well with the dataset size and is computationally very expensive. 

Another avenue of research has pursued subset selection. 
For example, a simple strategy is to only use 𝑚 ≪ 𝑛 samples to 
train a GP [23, 24] where the 𝑚  samples are selected either 
randomly or sequentially based on maximizing some criteria 
such as information gain or differential entropy score. Reduced-
rank approximation of 𝑹  with 𝑚 ≪ 𝑛  samples is another 
option for subset selection and has been used in the Nystrom [25] 
and subset of regressors [26, 27] (SR) methods. The 𝑚 samples 
in these methods are chosen randomly or in a greedy fashion to 
minimize some cost function. While the many variants of subset 
selection may be useful in some applications, they waste 
information and are not applicable to very large datasets due to 
the computational and storage costs. Local methods also use 
subsets of the data because they fit a stationary GP (for each 

prediction) to a very small number of training data points that are 
closest to the query point. Locally approximate Gaussian process 
[28] (LAGP) is perhaps the most widely recognized local method 
where the subsets are selected either based on their proximity to 
the query point or to minimize the predictive variance. Despite 
being useful for nonstationary and relatively large datasets, local 
methods also waste some information and can be prohibitively 
expensive for repetitive use since local samples have to be found 
and a GP must be fitted for each prediction. 

Although the recent works have made significant progress 
in bridging the gap between GPs and big data, GPs still cannot 
achieve the accuracy of the state-of-the-art large-scale 
supervised learners such as NNs and trees. Motivated by this 
limitation, we develop a computationally stable and inexpensive 
approach to enable GP modeling of massive datasets. The main 
idea of our approach is to build an ensemble of independent GPs 
that utilize a converged roughness parameter as their 
hypermeters. This is based on an empirical observation that the 
estimates of the GP hyperparameters don't change much as the 
size of the training data exceeds certain level. While having some 
common aspects with a few of the abovementioned works, our 
method is more massively scalable, can leverage multicore or 
GPU (graphical processing unit) computations [29, 30], and is 
applicable to very high-dimensional data with or without noise. 

As mentioned earlier, big data has enticed new design 
methods for complex systems such as metamaterials [9-12], 
which possess superior properties through their hierarchical 
structure that consists of repeated unit cells. While traditional 
methods like topology optimization (TO) provide a systematic 
computational platform to discover metamaterials with 
unprecedented properties, they have many challenges that are 
primarily due to the high dimensional design space (i.e., the 
geometry of unit cells), computational costs, local optimality, 
and spatial discontinuities across unit cell boundaries (in case 
multiple unit cells are simultaneously designed). We take a data-
driven approach to address these challenges by first building a 
large training database of many unit cells and their 
corresponding properties. Unlike previous data-driven works 
that represent unit cells as signed distance fields [9] or voxels 
[11], we drastically reduce the input dimension in our dataset by 
characterizing the unit cells via spectral shape descriptors based 
on the Laplace-Beltrami (LB) operator. Then, we employ our GP 
modeling approach to link the geometrical descriptors of unit 
cells and their properties and, in turn, efficiently discover new 
unit cells with desired properties. 

The rest of the paper is organized as follows. We first review 
some preliminaries on GP modeling in Sec. 2 and then introduce 
our novel idea in Sec. 3. In Sec. 4, we validate the accuracy of 
our approach by comparing its performance against three 
popular and largescale supervised learning methods on four 
analytical problems. We demonstrate an application of the GP 
approach to our data-driven design method for metamaterials in 
Sec. 5, and conclude the paper in Sec. 6. 
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2 REVIEW ON GAUSSIAN PROCESS MODELING 
Below, we describe how GP emulators (aka surrogates, 

metamodels, or models) can replace a computer simulator. The 
procedure is identical if the data is obtained from physical 
experiments. Let us denote the output and inputs of a computer 
simulator by, respectively, 𝑦  and the 𝑑  dimensional vector 𝒙 = [𝑥(1), 𝑥(2), … , 𝑥(𝑑)]𝑇  where 𝒙 ∈ ℝ𝑑 . Assume the input-
output relation is a realization of the random process 𝜂(𝒙): 

 𝜂(𝒙) = ∑ 𝛽(𝑖)𝑓𝑖(𝒙)ℎ𝑖=1 + 𝜉(𝒙), (1)  
 
where 𝑓𝑖(𝒙)’s are some pre-determined set of basis functions, 𝜷 = [𝛽(1), … . , 𝛽(ℎ)]𝑇  are unknown weights, and 𝜉(𝒙)  is a 
zero-mean GP characterized with its parametric covariance 
function, 𝑐(∙,∙): 

 𝑐𝑜𝑣(𝜉(𝒙), 𝜉(𝒙′)) = 𝑐(𝒙, 𝒙′) = 𝜎2𝑟(𝒙, 𝒙′), (2)  
 
where  𝑟(⋅)  is the correlation function having the property 𝑟(𝒙, 𝒙) = 1 and 𝜎2 is the process variance. Various correlation 
functions have been developed in the literature with the Gaussian 
correlation function being the most widely used one: 
 𝑟(𝒙, 𝒙′) =  exp{−(𝒙 − 𝒙′)𝑇𝛀(𝒙 − 𝒙′)} , (3)  
 

where 𝛀 = 𝑑𝑖𝑎𝑔(𝟏𝟎𝝎)  and 𝝎 = [𝜔(1), 𝜔(2), … , 𝜔(𝑑)]𝑇 ,−∞ < 𝜔𝑖 < ∞  are the roughness or scale parameters. The 
collection of 𝜎2 and 𝝎 are called the hyperparameters.  

With the formulation in Eq. (1) and given the 𝑛  training 
pairs of (𝒙𝑖 , 𝑦𝑖), GP modeling requires finding a point estimate 
for 𝜷 , 𝝎 , and 𝜎2  via either maximum likelihood estimation 
(MLE) or cross-validation (CV). Alternatively, Bayes’ rule can 
be employed to find the posterior distributions if there is prior 
knowledge on these parameters. Herein, we use a constant 
process mean (i.e., ∑ 𝛽𝑖𝑓𝑖(𝒙)ℎ𝑖=1 = 𝛽) and employ MLE. These 
choices are widely practiced because a high predictive power is 
provided while minimizing the computational costs [28, 31-35]. 

MLE requires maximizing the multivariate Gaussian 
likelihood function, or equivalently: 
 [𝛽̂, 𝜎̂2, 𝝎̂] = argmin 𝛽, 𝜎2, 𝝎 (𝑛2 𝑙𝑜𝑔(𝜎2) + 12 log(|𝑹|)+ 12𝜎2 (𝒚 − 𝟏𝛽)𝑇𝑹−1(𝒚 − 𝟏𝛽)) , (4) 

 
where log(∙)  is the natural logarithm and 𝑹  is the 𝑛 × 𝑛 
correlation matrix with (𝑖, 𝑗)𝑡ℎ  element 𝑅𝑖𝑗 = 𝑟(𝒙𝑖 , 𝒙𝑗)  for 𝑖, 𝑗 = 1, … , 𝑛 . Setting the partial derivatives with respect to 𝛽 
and 𝜎2 to zero yields: 
 𝛽̂ = [𝟏𝑇𝑹−1𝟏]−1𝟏𝑇𝑹−1𝒚, (5)  𝜎̂2 = 1𝑛 (𝒚 − 𝟏𝜷̂)𝑇𝑹−1(𝒚 − 𝟏𝜷̂). (6)  

 
Plugging these values into Eq. (4) and eliminating the constants: 
 𝝎̂ = argmin 𝝎 𝑛𝑙𝑜𝑔(𝜎̂2) + log(|𝑹|) = argmin 𝝎 𝐿. (7)  

 
By numerically minimizing 𝐿 in Eq. (7) one can find 𝝎̂. Many 
global optimization methods such as genetic algorithms [36], 
pattern searches [37, 38], and particle swarm optimization [39] 
have been employed to solve for 𝝎̂  in Eq. (7). However, 
gradient-based optimization techniques are commonly preferred 
due to their ease of implementation and superior computational 
efficiency [15, 16, 31]. To guarantee global optimality in this 
case, the optimization is done numerous times with different 
initial guesses. 

Upon completion of MLE, the following closed-form 
formula can be used to predict the response at any 𝒙∗: 

 𝑦̂(𝒙∗) = 𝛽̂ + 𝒈𝑇(𝒙∗)𝑽−1(𝒚 − 𝟏𝛽̂), (8)  
 
where 𝒈(𝒙∗)  is an 𝑛 × 1  vector with 𝑖𝑡ℎ  element 𝑐(𝒙𝑖 , 𝒙∗) = 𝜎̂2𝑟(𝒙𝑖 , 𝒙∗) , 𝑽  is the covariance matrix with (𝑖, 𝑗)𝑡ℎ  element 𝜎̂2𝑟(𝒙𝑖 , 𝒙𝑗) , 𝒚 = [𝑦1, … , 𝑦𝑛]𝑇  are the 
responses in the training dataset, and 𝟏 is an 𝑛 × 1 vector of 
ones. The posterior covariance between the responses at the two 
inputs 𝒙∗ and 𝒙′ reads: 
 𝑐𝑜𝑣(𝑦∗, 𝑦′) =𝑐(𝒙∗, 𝒙′) − 𝒈𝑇(𝒙∗)𝑽−1𝒈(𝒙′) + 𝒉𝑇(𝟏𝑇𝑽−1𝟏)−1𝒉, (9)  

 

where 𝒉 = (𝟏 − 𝟏𝑻𝑽−1𝒈(𝒙′)).  
 
If the training dataset has multiple outputs, one may fit either 

a single-response GP emulator to each response or a multi-
response GP (hereafter denoted by MRGP) to all the responses. 
We follow [40] and extend the above formulations to simulators 
with 𝑑𝑦  responses by placing a constant mean for each 
response (i.e., 𝜷 = [𝛽(1), … . , 𝛽(𝑞)]𝑇 ) and employing the 
separable covariance function: 

 𝑐𝑜𝑣(𝜉(𝒙), 𝜉(𝒙′)) = 𝑐(𝒙, 𝒙′) = 𝚺 ⊗ 𝑟(𝒙, 𝒙′), (10)  
 
where ⊗  denotes the Kronecker product and 𝚺  is the 𝑞 × 𝑞 
process covariance matrix with its off-diagonal elements 
representing the covariance between the corresponding 
responses at any fixed 𝒙. The MLE approach described above 
can also be applied to multi-response datasets in which case 𝜎 
will be replaced with 𝚺 (see [41-44] for the details). 

Finally, we note that GPs can address noise and smooth the 
data (i.e., avoid interpolation) via the so-called nugget or jitter 
parameter, 𝛿 , in which case 𝑹  is replaced with 𝑹𝛿 = 𝑹 +𝛿𝑰𝑛×𝑛. If 𝛿 is used, the estimated (stationary) noise variance in 
the data would be 𝛿𝜎̂2 . We have recently developed an 
automatic method to robustly detect and estimate noise [31]. 



https://cran.r-project.org/package=GPM
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𝛽 = √ 2𝑠𝑖𝑛2(𝛾 2⁄ ) − (1 + 𝑐𝑜𝑡 (𝛾2) − 2𝑟𝑜𝑙𝑑 𝑅0 )2 , (17) 

 

and 𝛾 ∈ (− 𝜋2 , 𝜋2)  is the angle that controls the amount of 
distortion. Considering the orthorhombic symmetry of the unit 
cells, only a quarter of the original structure is distorted and then 
reassembled to realize the full structure. We adopt the distortion 
model in Eq. (15) for two reasons. First, its parameters (i.e., 𝑅0, 𝛾 , and 𝑥𝑐 ) have clear interpretations and hence can be easily 
tuned. In our case, they are all set as random variables with 
standard uniform distributions to generate a wide range of 
structures. Second, it preserves the topology of the original unit 
cell and introduces negligible artifacts (e.g., disconnections and 
checkerboard patterns) upon perturbation. 

To better cover the property space, the database is populated 
iteratively. In each iteration we first calculate the following score 
for all the available unit cells: 

 𝑆𝑐𝑜𝑟𝑒 = 1(𝑑 + 𝜀)2𝜌 , (18) 

 
where 𝑑 is the Euclidean (L2) distance between the moduli of 
each unit cell to the boundaries of the region enclosing all the 
moduli (see Figure 5 and Figure 6), 𝜌 is the number of data 
points inside the neighborhood within a given radius in the 
property space (in our experience, sampling is more uniform 
when 𝜌 = 0.05), and 𝜀 ≪ 1 is used to avoid singularity. Then, 
we select the 𝑁  points with the highest scores for stochastic 
perturbation. The properties of newly generated structures are 
calculated via numerical homogenization [51] and added to the 
current property space for the next iteration. With our two-stage 
method, the database is expanded from 358 to 88,000 unit cells 
that cover a wider range of properties (see Figure 6). 

 
Figure 6 The property space of the expanded database with 88,000 
structures. 

5.2 Unit Cell Dimension Reduction via Spectral 
Shape Descriptors 

In the previous section, each unit cell in the database is 
represented by voxels (or pixels). For dimensionality reduction, 
we use spectral shape descriptors as they retain geometric and 
physical information. Specifically, we use the LB spectrum, also 
known as ShapeDNA, which can be directly calculated for any 
unit cell shape [52, 53]. 

The LB spectrum is an effective descriptor for the 
metamaterials database for several reasons: (𝑖)  It has a 
powerful discrimination ability and has been successfully 
applied to shape matching and classification in computer vision, 
despite being one of the simplest spectral descriptors. (𝑖𝑖) All 
of the complex structures in our orthotropic metamaterials 
database can be uniquely characterized with the first 10-15 
eigenvalues in the LB spectrum. (𝑖𝑖𝑖) The spectrum embodies 
some geometrical information, including perimeter, area, and 
Euler number. This can be beneficial for the construction of the 
machine learning model as less training data may be required to 
obtain an accurate model compared to voxel- or point-based 
representations. (𝑖𝑣) Similar shapes have close LB spectrum, 
which may also help the supervised learning task.  

The calculation of the LB spectrum for each unit cell is as 
follows. For a real-valued function 𝑓 defined on a Riemannian 
manifold [52], the Helmholtz equation reads as: 
 ∆𝑓 = −𝜆𝑓, (19) 
 
where the Laplace-Beltrami operator ∆ is defined as: 
 ∆: = 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑 𝑓). (20) 
 

The eigenvalues of the Helmholtz equation are the LB 
spectrum and denoted: 
 0 ≤ 𝜆1 ≤ 𝜆2 ≤ ⋯ < ∞. (21) 
 

We focus on the LB spectrum of a 2D shape under Dirichlet 
boundary conditions. In this case, the Helmholtz equation 
reduces to a Laplacian eigenvalue problem with the Dirichlet 
boundary condition: 
 𝜕2𝑓𝜕𝑥2 + 𝜕2𝑓𝜕𝑦2 = −𝜆𝑓    𝑖𝑛 Ω𝑓 = 0     𝑜𝑛 𝜏, (22) 

 
where Ω and 𝜏 are the interior and boundaries of the domain 
of interest, respectively. 
 

 
Figure 7 LB spectrum calculation: (a) Original structure, (b) Finite 
element mesh, and (c) The first eigenfunction. 

Finally, the finite element method is employed to obtain the 
LB spectrum of unit cells [54]  see Figure 7. It is noted that our 
88,000 structures can be uniquely determined with only the first 
16 orders of LB spectrum, reducing the input dimension from 50 × 50 = 2500 pixels to 16 scalar descriptors. 





https://www.fastlane.nsf.gov/researchadmin/viewProposalStatusDetails.do?propId=1640840&performOrg=Rensselaer%20Polytech%20Inst
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