
Two Round Information-Theoretic MPC
with Malicious Security

Prabhanjan Ananth1, Arka Rai Choudhuri2, Aarushi Goel2, and Abhishek
Jain2

1 Massachusetts Institute of Technology, Cambridge, USA,
prabhanjan@csail.mit.edu

2 Johns Hopkins University, Baltimore, USA,
{achoud,aarushig,abhishek}@cs.jhu.edu

Abstract. We provide the first constructions of two round information-
theoretic (IT) secure multiparty computation (MPC) protocols in the
plain model that tolerate any t < n/2 malicious corruptions. Our proto-
cols satisfy the strongest achievable standard notions of security in two
rounds in different communication models.
Previously, IT-MPC protocols in the plain model either required a larger
number of rounds, or a smaller minority of corruptions.

1 Introduction

The ability to securely compute on private datasets of individuals has wide
applications of tremendous benefits to society. The notion of secure multiparty
computation (MPC) [37,26,9,14] provides a solution to the problem of computing
on private data by allowing a group of mutually distrusting parties to jointly
evaluate any function over their private inputs in a manner that reveals nothing
beyond the output of the function.

Information-Theoretic MPC. Over the years, a large body of works have
investigated the design of MPC protocols against computationally bounded as
well as computationally unbounded adversaries. In this work, we focus on the
latter, namely, MPC with information-theoretic (IT) security.

The seminal works of [9,14] established the first feasibility results for IT-
MPC for general functionalities. These works also established that IT security
for non-trivial functions is only possible when at most t < n/2 of the n parties
are corrupted. In scenarios where honest majority is a viable assumption, IT-
MPC protocols are extremely appealing over their computational counterparts.
In particular, they are typically more efficient since they do not use any compu-
tational primitives. Furthermore, IT-MPC protocols achieve security in models
such as concurrent composition [11] without relying on external trust [12].

Round Complexity. In this work, we investigate the minimal conditions
necessary for IT-MPC in the plain model. We focus on round complexity – a
well studied complexity measure in distributed protocol design. We consider the

standard simultaneous-message model of communication for MPC where in any
round, each party can send messages to other parties, depending upon the com-
munication from the previous rounds. We consider security against malicious
adversaries who may corrupt any subset of t < n/2 parties and use arbitrary
strategy to decide their protocol messages.

It is well known that two rounds of communication are necessary for MPC
[28]. We ask whether two rounds are sufficient for achieving IT security:

Does there exist two round IT-MPC for any t < n/2 corruptions?

The above question has remained open for the last three decades. In par-
ticular, while constant round IT-MPC protocols are known for any t < n/2
corruptions (e.g., [6,31]), the only known two round IT-MPC protocols are due
to [31,34,29] who require two-thirds honest majority (as opposed to standard
honest majority). We refer the reader to Section 1.3 for a comprehensive survey
of prior work, and Section 1.1 for comparison with the recent works of [3,19,4].

1.1 Our Results

In this work, we resolve the above question in the affirmative.

I. Main Result. Our first result is a two-round IT-MPC protocol for NC1

functions that tolerates any t < n/2 corruptions. In the case of malicious adver-
saries, our protocol achieves statistical security with abort – the standard notion
of security (c.f. [25]) where an adversary may prevent the honest parties from
learning the output by aborting the computation. In the setting of two rounds,
this is known to be the strongest achievable standard notion of security [24].

In the case of semi-honest adversaries, our protocol achieves perfect security.

Theorem 1. There exists a two round MPC protocol for NC1 functions that
achieves:

– Statistical security with abort against t < n/2 malicious corruptions.
– Perfect security against t < n/2 semi-honest corruptions.

II. Protocols over P2P Channels. Our protocol in Theorem 1 necessarily
uses both broadcast and private point-to-point (P2P) channels for achieving
security against malicious adversaries.3 We next investigate whether it is possible
to construct two round IT-MPC against malicious adversaries by using only P2P
channels.4

Our second result is a two round IT-MPC protocol over P2P channels that
achieves statistical security with selective abort against any t < n/2 malicious
corruptions. This notion [27] is a weakening of the standard notion of security of

3 In the case of semi-honest adversaries, broadcasts can be trivially emulated over P2P
channels without any increase in round complexity.

4 Note that the complementary goal of IT-MPC over only broadcast channels is known
to be impossible.

2

(unanimous) abort in that it allows the adversary to separately decide for each
honest party whether it will receive the correct output or ⊥. Achieving security
with abort in two rounds over P2P channels is known to be impossible in general
[18,35]. This establishes security with selective abort as the strongest achievable
standard notion of security in two rounds.

Theorem 2. There exists a two round MPC protocol over P2P channels for
NC1 functions that achieves statistical security with selective abort against t <
n/2 malicious corruptions.

Put together, Theorems 1 and 2 fully resolve the round complexity of mali-
ciously secure IT-MPC (for NC1 functions).

Comparison with [3,19,4]. Recently, Applebaum et al. [3] constructed two round
perfectly secure MPC for NC1 against any t < n/2 semi-honest corruptions.
Garg et al. [19] achieve a similar result; however, the communication complexity
of their protocols grows super-polynomially with the number of parties. Neither
of these works consider security against malicious adversaries, which is the main
focus of our work. A recent independent and concurrent work of Applebaum et
al. [4] also considers the case of malicious adversaries. Similar to our work, they
also construct a two-round statistically secure protocol for NC1 functionalities
that achieves security with selective abort. However, they do not achieve our
main result, namely a two-round information-theoretic protocol for security with
(unanimous) abort.

1.2 Technical Overview

We first focus on achieving two-round IT-secure MPC in the presence of both
broadcast and point to point communication channels.

Recent works on two-round secure MPC [21,10,22] follow a common blueprint
of squishing an arbitrary round secure protocol, referred to as inner protocol,
into a two round secure protocol, referred to as outer protocol using garbled
circuits. Roughly speaking, every party in the outer protocol computes t garbled
circuits, one for every round of the inner protocol. The job of the jth garbled
circuit computed by the ith party is to emulate the computation of the next mes-
sage function of the ith party in the jth round. Every party sends the generated
t garbled circuits to the other parties.

The main challenge here is to ensure that the garbled circuits can talk to
each other the same way the parties in the inner protocol talk to each other.
The tools used to address this challenge differs from one work to another: [21]
use bilinear maps, [22] use two-round oblivious transfer, [10,20] use two-round
oblivious oblivious transfer and additionally garbled circuits and finally, [1,3,19]
use information-theoretic MPC protocols. Of particular interest to us is the work
of Ananth et al. [1] who show how to achieve maliciously secure two-round secure
MPC in the honest majority setting for polynomial-sized circuits assuming only
one-way functions.

3

Background on [1]. They propose the following template: The first step is to
construct helper protocols that enable communication between garbled circuits
in the outer protocol. The helper protocols they consider are delayed-function
two-round MPC protocols, handling malicious adversaries, for two functionalities
defined below. In a delayed-function two-round MPC protocol, the functionality
is only available to the parties after the first round.

– The first functionality, parameterized by a bit v, is defined as follows: it
takes as input r1 from the first party, r2 from the second party and outputs
r1 ⊕ r2 ⊕ v.

– The second functionality, parameterized by two bits (v1, v2), is defined as
follows: it takes as input a string K from the first party (interpreted as an
input wire label of a garbled circuit), three bits (r1, r2, r3) from the second
party and outputs Kr3⊕NAND(v1⊕r1,v2⊕v3).

Observe that both these functionalities can be represented by quadratic polyno-
mials over F2 and there exist two-round protocols for quadratic polynomials in
the literature (see [34]). While these protocols do not achieve full-fledged mali-
cious security, they achieve a weaker property termed as privacy with knowledge
of outputs and [1] show how this weaker property is sufficient for their goal.

The next step is to transform the inner interactive protocol into an outer two-
round protocol using the helper protocols. Since the helper protocols can only
compute restricted functionalities, they impose a restriction on the “structure”
of the inner protocol. In particular, every round of the inner interactive protocol
is forced to only perform a single NAND computation. The term conforming
protocols (originally coined by [22]) was used to described such interactive pro-
tocols.

Informally, a conforming protocol proceeds in a sequence of rounds. In every
round, a party, termed as “receiver”, obtains a global state from another party,
termed as “sender”, that encodes information about the current states of all the
parties. Every party possesses a decryption key that lets it decode only a certain
section of the global state. Once the party decodes the appropriate information,
it then performs some local computation and then re-encodes the result and
the resulting updated global state will be broadcasted to the rest of the parties,
termed “listeners”. Thus in every round, there is a sender, receiver and the rest
of the parties are listeners.

At first, it might seem unclear as to why conforming protocols should exist at
all. Luckily, an arbitrary round information-theoretically secure protocol can be
transformed into a conforming protocol. However, the transformation demon-
strated by [1] blows up the round complexity of the conforming protocol. In
particular, even if the original protocol had a constant number of rounds, the cor-
responding conforming protocol will now have round complexity proportional to
the size of the circuit being securely computed. Nevertheless, their transformation
from a conforming protocol into the two-round outer protocol for polynomial-
sized circuits is unaffected by the round complexity of the underlying conforming
protocol.

4

Limitations on extending [1] to IT setting. To construct maliciously secure
information-theoretically secure MPC protocols for NC1 circuits, a natural di-
rection to explore is to adapt the construction of [1] to the information-theoretic
setting. The only part in the construction where one-way functions are used is
in the generation of garbled circuits. If we restrict to NC1 circuits, we could
hope to use garbling schemes with perfect security [32]. These garbling schemes
have the property that the size of the wire labels for the input wires grows ex-
ponentially in the depth of the circuit being garbled and linearly in the size of
the garbled circuit.

This results in a fundamental issue in using information-theoretic garbling
schemes to replace the garbled circuits based on one-way functions in [1]: as
part of the outer protocol, every party sends a sequence of garbled circuits,
where every garbled circuit encodes wire labels for the next garbled circuit.
Recall that every garbled circuit emulates the next message function in a round
and it needs to encode the wire labels for the next garbled circuit to enable
transferring information from one round to the next. Once we use information-
theoretically secure garbling schemes, the communication complexity now blows
up exponentially in the length of the chain of garbled circuits. Since the length
of the chain is the round complexity of the underlying conforming protocol, this
results in exponential communication complexity even for NC1 functionalities.

Our Approach. As a first step towards achieving our goal, we consider con-
forming protocols that do not restrict every round in the outer protocol to be
just a single NAND computation. More generally, we allow the next message in
every round of the conforming protocol to be a polynomial-size NC1 circuit. We
term this class of protocols to be generalized conforming protocols. On the one
hand, the advantage of considering generalized conforming protocols is that we
can construct this in constant number of rounds for NC1 which makes it suitable
to use it towards constructing a two-round protocol in the information-theoretic
setting. On the other hand, the helper protocols designed in [1] are no longer
compatible with our notion of generalized conforming protocols; recall that since
the helper protocols in [1] were associated with quadratic polynomials, they im-
posed the requirement that every round in the conforming protocol is a single
NAND computation.

To address this issue, we design new helper protocols that are “compatible”
with generalized conforming protocols. Specifically, we require that the helper
protocols are associated with functionalities computable in NC1. By carefully
examining the interiors of [1], it can be observed that it suffices to construct
helper protocols for three-input functionalities computable in NC1; these are
the functionalities where only three parties have inputs. Informally, the three
parties correspond to a sender party that sends a message in a round, a receiver
party that receives a message in a round and finally, a listener party that listens
to the communication from the sender to the receiver. Even though there are
multiple listeners in every round in the conforming protocol, it suffices to design
helper protocols for every listener separately. In the helper protocol, the inputs of

5

the sender and the receiver are their private states5 and the listener’s input would
be the wire labels for its garbled circuits. Note, however, that the functionality
associated with the helper protocol is as complex as the next message function of
the conforming protocol.

As such, it is unclear how to construct helper protocols even for three-input
functionalities; in fact, if we had a two-round secure protocol for the three-
input functionality that outputs the product of its inputs, then it could be
bootstrapped to achieve two-round secure protocols for arbitrary functionali-
ties via randomized encodings [31]. In light of this, the problem of constructing
two-round secure protocols for three-input functionalities seems as hard as con-
structing two-round secure protocols for all functionalities computable in NC1.

We resolve this dilemma in two main steps:

– We first focus on a weaker goal: constructing two-round information theo-
retically secure protocols for two-input (as opposed to three-input) function-
alities.

– We then go back to our definition of generalized conforming protocols and
impose additional structure on generalized conforming protocols – without
blowing up their round complexity – to make them compatible with helper
protocols for two-input functionalities.

We start by defining and constructing helper protocols for two-input function-
alities.

Helper Protocols for Two-Input Functionalities. A two-input multiparty
functionality, as the name suggests, is a functionality where only the first two par-
ties get inputs while the rest of the parties are input-less. We consider two-input
functionalities of the following form: these functionalities U are parameterized
by two NC1 functions f,G such that U(x1, x2,⊥, · · · ,⊥) = G(x1, f(x2)). At
first sight, this representation may seem unnecessary since one can rewrite U as
another NC1 function G′ such that U(x1, x2,⊥, · · · ,⊥) = G′(x1, x2). However,
the functions G and f we use to express U makes a difference when we state
the security guarantees. Moreover, we require that the resulting helper proto-
col satisfies delayed-function property, meaning that the functionalities is only
available to the parties after the first round.

Informally, we require the following asymmetric security guarantees:

– If the first party is honest then no information about its input x1 should be
leaked beyond G(x1, y

∗). Ideally, we would require y∗ to be the output of f
on some input x∗2. Here, we relax the security requirement to allow y∗ to not
even belong in the range of f .

– If the second party is honest then no information about its input x2 should
be leaked beyond f(x2). In particular, we allow the adversary to learn the

5 Since the listener listens to the conversation, the receiver and the sender would share
a secret string in order to emulate communication over private channels (which are
necessary for information-theoretic security). This is the reason why the receiver
should also input its private state.

6

value f(x2) during the execution of the protocol. In addition, we only require
that the simulator extracts the implicit input (interpreted as f(x2)) and not
x2 itself.

Both the security requirements are non-standard and indeed, its should not be
clear in what context these two security properties would be useful. To answer
this, lets recall the structure of the conforming protocol: in every round, every
party receives a global state, decodes a portion of the global state, computes on
it and re-encodes the result. Looking ahead, when the conforming protocol is
used alongside the helper protocols, the function f would have the global state
hardwired inside its code; it takes as input private state of the party, represented
by x2, performs computation and then re-encodes the result. So the output f(x2)
denotes the resulting global state.

Let us revisit the security requirements stated above. Allowing for y∗ to not
be in the range of f reduces to allowing for the second party to be malicious in the
conforming protocol. We handle this by designing conforming protocols already
secure against malicious parties. Regarding the second security requirement,
revealing the value f(x2) reduces to the party revealing the updated global state.
Since a party anyways has to broadcast the entire global state in the conforming
protocol, its perfectly safe to reveal f(x2).

We now give a glimpse of our construction of two-round protocol for two-
input functionalities. Our construction is heavily inspired by the techniques in-
troduced in the work of Benhamouda and Lin [10].

– In the first round, the second party holding the input x2, sends a garbling
GC2 of a universal circuit with x2 hardwired inside it. The first party, holding
the input x1, receives GC2 and computes another garbling GC1 of a circuit,
with x1 hardwired inside it, that is defined as follows: it takes as input, wire
labels of GC2 with respect to input f , evaluates GC2 using these input wire
labels to obtain f(x2) and finally outputs G(x1, f(x2)).

– Simultaneously, all the parties execute a secure MPC protocol for quadratic
polynomials, that takes as input wire labels of GC2 from the second party,
input wire labels of GC1 from the first party and finally, computes GC1 input
wire labels associated with the input which is in turn defined to be the GC2

input wire labels associated with f .

At the end of the second round, every party evaluates GC1 to obtain G(x1, f(x2)).
We briefly describe the simulation strategy for arguing security of the above

construction. If the second party is corrupted then the simulator extracts all the
wire labels of GC2 and then evaluates GC2 using the wire labels of f to obtain the
value y∗. The simulator then sends y∗ to the ideal functionality, which responds
back with G(x1, y

∗). The simulator cannot verify that the second party indeed
sent a valid garbling of the universal circuit. However, this still satisfies our
security definition since the simulator is not required to extract x2 but only the
value y∗.

The case when the first party is corrupted can similarly be argued by design-
ing a simulator that first extracts all the wire labels of GC1 and then simulates
GC2 using the value f(x2).

7

CLC property of Generalized Conforming Protocols. As explained ear-
lier, helper protocols for two-input functionalities is as such incompatible with
our current definition of generalized conforming protocols. Recall that the rea-
son for incompatibility was that in every round of the generalized conforming
protocol there were three parties participating. To remedy this situation, we in-
troduce a new structural property for generalized conforming protocols, that we
refer to as copy-local-copy (CLC) property. Specifically, we require that a party
in every round, behaves as follows:

– Copy operation: first, every party copies the information transferred on the
communication channels onto its own private state.

– Local computation: then it performs computation on its own local state.
– Copy operation: finally, it copies the result obtained onto the communication

channel.

The CLC property effectively “breaks down” each three-input computation re-
quired in the earlier notion of generalized conforming protocol into three different
operations. Now, given a generalized conforming protocol that satisfies the CLC
property, it suffices to devise helper protocols for the above three operations.

The helper protocols for the first copy operation, and also the third copy
operation, are associated with three parties: speaker, receiver and the listener.
However, since the copy operation is a simple function, we observe that it suffices
to use helper protocols for quadratic polynomials to implement this. The helper
protocol for the local computation, however, is only associated with two parties:
the party performing the local computation and the listener. Now, we use the
delayed-function secure protocol for two-input functionalities constructed earlier
to realize helper protocols associated with the local computation operation.

Since we divide every round of the protocol into three parts, a party sends
three garbled circuits for every round of the conforming protocol, instead of just
one.

Summary. We now summarize the main steps in the construction of ma-
liciously secure information-theoretically secure multiparty protocols for NC1

functionalities.

– First, we consider delayed-function two round secure MPC protocols for
quadratic polynomials in Section 3.1.

– Then we define the notion of delayed-function two round secure MPC proto-
cols for two-input NC1 functionalities in Section 3.2. We define the security
requirements in Section 3.2. This is followed by a construction of this notion
in Section 3.2.

– In Section 4, we define the notion of generalized conforming protocols. We
state the CLC property in Definition 7.

– Finally, we present the main construction in Section 5.

Protocol over P2P Channels. Next, we focus on designing a two-round
protocol over P2P channels that achieves security with selective abort against

8

malicious adversaries. Recall that in security with selective abort, the adversary
can selectively decide which of the honest parties can receive the output while
the rest of them abort. However, the adversary cannot force an “invalid” output
on any of the honest parties.

To achieve our goal, we start with a two-round protocol Πin over broadcast
and P2P channels satisfying security with (unanimous) abort. A naive attempt
would be as follows: start with Πin and whenever a party has to send a broadcast
message, he instead sends this message over P2P channels to all the other parties.
Note that the resulting protocol is over P2P channels. However, this doesn’t
work: there is no mechanism in place to ensure that a malicious party indeed
sends the same message, originally a broadcast message in Πin, to all the other
parties over P2P channels. The protocol Πin might not be resilient to such attacks
which would result in our resulting protocol to be insecure.

We introduce mechanisms to prevent this attack. Towards this, our idea is
to require each party to send a garbled circuit of (a slightly modified version of)
their second round next message function in Πin in the second round of the P2P
channel protocol. This (modified) next message function has the party’s input
and randomness, and the private channel messages that the party received in the
first round of Πin hard-wired inside its description. It additionally takes the first
round broadcast channel messages of Πin as input. To enable other parties to
evaluate this garbled circuit, we require each party to send additive secret shares
of all the labels for its garbled circuit over private channels (in particular, each
party only receives one of the shares for each label) in the first round itself. In the
second round, each party simply reveals the appropriate shares for each garbled
circuit based on the messages received in the first round. If the adversary does
not send the same set of broadcast messages to all parties, each party will end
up revealing shares corresponding to a different label. In this case, we rely on
the security of garbled circuits to ensure that nobody (including the adversary)
is able to evaluate any of the honest party garbled circuits.

However, there are some subtle issues that crop when implementing this
approach:

– Since we want the resulting protocol to satisfy information-theoretic security,
we require the next-message function of Πin to be computable in NC1.

– The transformation sketched above does not handle the case when Πin sends
messages over private channels in the second round.

Fortunately, the information-theoretically secure MPC protocol over broad-
cast and P2P channels that we constructed earlier satisfies both the above prop-
erties and thus can be used to instantiate Πin in the above approach. This gives
us a P2P channel two-round MPC protocol that achieves security with selective
abort against malicious adversaries. We present the construction of this protocol
in section 6.

9

1.3 Related Work

Since the initial feasibility results [37,26,9,14], a long sequence of works have
investigated the round complexity of MPC. Here, we focus on protocols in the
honest majority setting, and refer the reader to [5] for a survey of related works
in the dishonest majority setting.

Information-Theoretic MPC. The seminal works of [9,14] provided the first
constructions of polynomial-round IT-MPC protocols for general functionalities.
These results were further improved upon in [7,36,13] w.r.t. malicious corruption
threshold.

Bar-Ilan and Beaver [6] initiated the study of constant-round IT-MPC proto-
cols. Subsequently, further improvements were obtained by [17,30,15]. The work
of [31] provided the first constructions of two and three round IT-MPC proto-
cols against t < n/3 and t < n/2, respectively, semi-honest corruptions. In the
three round setting, their work was extended to handle a constant fraction of
malicious adversaries by [23]. [32] constructed constant round perfectly secure
protocols, improving upon the work of [6]. More recently, two round IT-MPC
protocols that achieve security with selective abort against t < n/3 malicious
corruptions were constructed by [34] and [29]. In fact, [34] and [29], put together,
also achieve the stronger notion of security with guaranteed output delivery for
the specific case of n > 4 parties and t = 1 corruptions which is not covered
by the impossibility results of [18,35]. All of these positive results are for NC1

functions; [33] established the difficulty of constructing constant-round IT-MPC
protocols for general functionalities.

We also highlight the work of [27] who provided a general compiler to trans-
form protocols over broadcast channels that achieve security with abort into
protocols over P2P channels that achieve security with selective abort. Their
transformation is unconditional, and increases the round-complexity by a mul-
tiplicative factor of three.

Computationally secure MPC. The study of constant-round computation-
ally secure MPC protocols in the honest majority setting was initiated by Beaver
et al. [8] who constructed such protocols for general functionalities based on one-
way functions. Damg̊ard and Ishai [16] provided improved constructions based
on only black-box use of one-way functions.

Two round protocols for general functionalities against t < n/3 malicious
corruptions were constructed by [34] and [29] based on one-way functions. Very
recently, Ananth et al. [1] constructed two round protocols for general function-
alities that achieve security with abort against any t < n/2 malicious corruptions
based on black-box use of one-way functions. Applebaum et al. [3] and Garg et
al. [19] also achieve similar results, albeit only against semi-honest adversaries.

2 Preliminaries

We denote the statistical security parameter by k. We use the standard notion of
security with abort for multi-party computation against malicious adversaries.

10

For our second result over P2P channels, we consider a weaker notion of security,
call security with selective abort. In security with selective abort, the adversary
can selective cause some honest parties to output ⊥. Note that this is slightly
different from the standard notion of security with abort, where the adversary
can only either allow all honest parties to learn the output or cause all the honest
parties to output ⊥.

We also consider an even weaker notion of security called privacy with knowl-
edge of outputs where the privacy of honest parties’ inputs is ensured but the
correctness of output for the honest parties is not guaranteed. We also use sta-
tistically secure garbled circuits [37] in our protocols.

3 Helper Two-round Secure Protocols

We consider two types of helper protocols towards achieving our main goal:

– First, we consider a two-round secure multiparty computation protocol for
NC1 two-input functionalities; that is, only two of the parties have inputs.
We consider this notion in the delayed-function setting.

– Next, we consider a two-round secure multiparty computation protocol for
quadratic polynomials, also in the delayed function setting.

3.1 Delayed-Function Two-Round Secure MPC for Quadratic
Polynomials

A delayed-function two-round secure MPC protocol is a special case of mali-
ciously secure two-round secure MPC where the functionality is available to the
parties only after the first round. One of the helper tools we use is a two-round
secure MPC protocol for quadratic polynomials in the delayed function setting.
Such a result was already shown by Ishai et al. [34]. Formally, they prove the
following lemma.

Lemma 1 ([34]). Let n > 0 and `out > 0. Consider a n-party functionality
G : {0, 1} × · · · × {0, 1} → Y`out , where Y = {(0, . . . , 0), (1, . . . , 1)}, and every
output bit of G is computable by an n-variate quadratic polynomial over F2. There
is a delayed-function two-round MPC protocol for G satisfying perfect privacy
with knowledge of outputs property in the honest majority setting. Moreover, the
next message of this protocol can be represented by a O(log(n))-depth (`out ·n)c-
sized circuit, for some constant c.

Remark. The protocol of [34] only guarantees a weaker variant of privacy with
knowledge of outputs where the adversary can force different honest parties to
output different values. However if we use a broadcast channel in the second
round, their protocol achieves a stronger variant of privacy with knowledge of
outputs, where all honest parties learn the same output.

11

3.2 Delayed-Function Two-round Secure MPC

The other helper tool we require is a delayed-function secure MPC protocol for
arbitrary functionalities, but where only two parties have inputs. In particular,
we are interested in the class of functionalities {FG,f}: each functionality FG,f

is parameterized by two functions G, f ; it takes as input (x1, x2,⊥, . . . ,⊥) and
outputs FG,f (x1, x2,⊥, . . . ,⊥) = G(x1, f(x2)). That is, party P1 gets as input
x1 and party P2 gets as input x2. If the functionality FG,f were to be available
to the parties before the protocol begins then securely computing FG,f would
reduce to securely computing G since P2 can pre-compute f(x2) and then run
the secure protocol for G. However, we consider delayed-function setting and so
this would not work.

In terms of security, we require the following informal guarantees.

– Security against P2: unlike the standard simulation-based paradigm, in the
ideal world, the honest parties and the simulator only have oracle access to
G. In particular, the simulator only has to extract the value y (termed as
true input of P2), interpreted as the output of f on some input x2 (also
called implicit input of P2), from the adversary.

– Security against P1: we require that the implicit input x2 of P2 is hidden
from P1. However, we don’t enforce that the output f(x2) is hidden from P1.
Moreover, we require the input privacy of P2 to hold even if P1’s behaviour
deviates from the protocol.

In particular, we require different security guarantees depending on which party
the adversary corrupts.

Two-Input Multiparty Functionalities We consider delayed-function two-
round secure MPC protocols, where the parties determine the functionality (to
be computed on their private inputs) only after the first round. This notion is
referred as delayed-function secure MPC protocols in the literature. We describe
the class of functionalities that we are interested in. Later, we define the security
properties associated with delayed-function secure MPC protocols for this class
of functionalities.

Two-Input n-Party Functionalities. A two-input n-party functionality is
an n-party functionality where only two parties receive inputs from the environ-
ment.

Definition 1 (Two-Input n-Party Functionality). Let n, `1, `2, `
′ > 0. We

define an n-party functionality G to be a two-input functionality if its of the
following form: it takes as input from the domain {0, 1}`1×{0, 1}`2×⊥×· · ·×⊥
and outputs a value in {(y, . . . , y)}y∈{0,1}`′ .

We are interested in a sub-class of two-input functionalities that we refer to
as specialized two-input n-party functionalities. Every functionality in this class,
on input (x1, x2,⊥, . . . ,⊥), first performs pre-processing on one of the inputs,

12

say x2, and then performs computation on the preprocessed result and x1. The
reason why we differentiate between pre-processing and post-processing becomes
clear later on, when we define security against adversarial P2.

Definition 2 (Specialized Two-Input n-Party Functionality).
Let n, `1, `2, `

′ > 0. We define an n-party functionality mapping {0, 1}`1 ×
{0, 1}`2 ×⊥ · · · ×⊥ to {(y, . . . , y)}y∈{0,1}`′ (parameterized by a functions G and

f) to be a specialized two-input functionality if its of the following form: it takes
as input (x1, x2,⊥, . . . ,⊥) and outputs G(x1, f(x2)).

Security Let P1, . . . , Pn be the parties participating in the delayed-function se-
cure MPC protocol. We consider three cases and define separate security prop-
erties for each of these three cases: (i) P1 is in the corrupted set while P2 is
not, (ii) P2 is in the corrupted set while P1 is not and, (iii) neither P1 nor P2

is in the corrupted set. Note that we don’t consider the case when P1 and P2

are both in the corrupted set because P1 and P2 are the only parties receiving
inputs in the protocol. We note that in all the three cases we are required to
handle adversaries that deviate from the behavior of the protocol.

We define the following set systems.

– S1 =
{
T ⊆ {P1, . . . , Pn} : |T | < bn2 c, P1 ∈ T, P2 /∈ T

}
– S2 =

{
T ⊆ {P1, . . . , Pn} : |T | < bn2 c, P1 /∈ T, P2 ∈ T

}
– S3 =

{
T ⊆ {P1, . . . , Pn} : |T | < bn2 c, P1 /∈ T, P2 /∈ T

}
We now handle the three cases below. Denote S to be the corrupted set of parties.
Let x1 and x2 be the inputs of P1 and P2 respectively.

Case 1. S ∈ S1. To define the security property for this case, we consider two
experiments Expt0 and Expt1. In Expt0, the honest parties and the adversary ex-
ecute the protocol (real world). The output of Expt0 is the view of the adversary
and the outputs of the honest parties.

In Expt1, the corrupted set of parties execute the protocol with the rest of
the parties, simulated by a PPT algorithm Sim. In the first round, the simulator
does not get any input and after the first round, the simulator gets as input
f(x2), where FG,f is the n-party functionality associated with the protocol. The
output of Expt1 is the view of the adversary and the output of the simulator.

We require that the output distributions of the experiments Expt0 and Expt1
are identically distributed.

Definition 3 (Security Against S1). Consider a delayed-function n-party
protocol Π for a class of specialized two-input n-party functionalities {FG,f}
mapping {0, 1}`1 × {0, 1}`2 × ⊥ · · · × ⊥ to {(y, . . . , y)}y∈{0,1}`′ . We say that Π
is secure against S1 if for every adversary corrupting a set of parties S ∈ S1,
there exists a PPT simulator Sim such that the output distributions of Expt0 and
Expt1 are identically distributed.

13

Case 2. S ∈ S2. We handle this case using the real world-ideal world paradigm.
In the real world, the corrupted parties and the honest parties execute the proto-
col. The output of the real world is the view of the adversary and the outputs of
the honest parties. In the ideal world, the honest parties and the simulator have
oracle access to the n-party functionality G 6. The output of the ideal world are
the outputs of the honest parties and the output of the simulator.

More formally, we can define the real world process RealA,F and the ideal
world process IdealSim,G– in particular, as in the definition of privacy with knowl-
edge of outputs property, the simulator directs the trusted party to deliver out-
puts, of its choice, to the honest parties.

We define security of delayed-function secure MPC protocols against S2.

Definition 4 (Security Against S2). Consider a delayed-function n-party
protocol Π for a class of specialized two-input n-party functionalities {FG,f}
mapping {0, 1}`1 × {0, 1}`2 × ⊥ · · · × ⊥ to {(y, . . . , y)}y∈{0,1}`′ . We say that
Π is secure against S2 if for every adversary A corrupting a set of parties
S ∈ S2, there exists a PPT simulator Sim such that the output distributions
of RealA,F (x1, . . . , xn) and IdealSim,G(x1, . . . , xn) are identically distributed.

Remark 1. Since the simulator only has access to the ideal functionality of G
(and not F) in the ideal world, this means that the simulator is required to
only extract the implicit input (and not the true input) of the adversary. In
particular, if f is the identity function, then this security notion implies the
standard simulation-based security.

Case 3. S ∈ S3. In this case, we require the protocol to satisfy privacy with
knowledge of outputs property. Formally, we can analogously define the real
world process RealA,F and ideal world process IdealSim,F . We define the security
property below.

Definition 5 (Security Against S3). Consider a delayed-function n-party
protocol Π for a class of specialized two-input n-party functionalities {FG,f}
mapping {0, 1}`1 × {0, 1}`2 × ⊥ · · · × ⊥ to {(y, . . . , y)}y∈{0,1}`′ . We say that
Π is secure against S3 if for every adversary A corrupting a set of parties
S ∈ S3, there exists a PPT simulator Sim such that the output distributions
of RealA,F (x1, . . . , xn) and IdealSim,F (x1, . . . , xn) are identically distributed.

We are now ready to formally define a delayed-function secure MPC protocol
for specialized two-input functionalities.

Definition 6. Consider a delayed-function n-party protocol Π for a specialized
two-input n-party functionality. We say that Π is secure if Π is secure against
S1 (Definition 3), secure against S2 (Definition 4) and secure against S3 (Defi-
nition 5).

6 We emphasize that the parties have oracle access to G and not F .

14

Construction We prove the following lemma.

Lemma 2. Let n, `1, `2, `
′ > 0. Consider a two-input n-party functionality G :

{0, 1}`1 ×{0, 1}`2 ×⊥× · · · ×⊥ → {(y, . . . , y)}y∈{0,1}`′ computable by a depth-d
circuit of size s. There is a delayed-input two-round MPC protocol for a spe-
cialized two-input functionality G (Definition 2) satisfying perfect privacy with
knowledge of outputs property in the honest majority setting. Moreover, the next
message function of the every party in the protocol can be represented by a circuit
of depth O(d+ log(s)) and size sc2c·(d+log(s)), for some constant c.

Proof. The main tools used in the construction are a perfectly secure garbling
scheme and a secure MPC protocol for quadratic polynomials in the honest ma-
jority setting satisfying privacy with knowledge of outputs property (Lemma 1).
We denote the garbling scheme by (Gen,Garb,Eval). We denote the secure MPC
protocol for quadratic polynomials by ΠQuad.

We construct a delayed-function secure MPC protocol for a class of spe-
cialized two-input functionalities {FG,f}, each functionality implementable by a
circuit of size s and depth d. Our construction is heavily inspired by the tech-
niques introduced in the work of Benhamouda and Lin [10]. Suppose P1 has
input x1, P2 has input x2 and the rest of the parties don’t receive any input.
The protocol proceeds as follows: set the statistical security parameter, k = 1.

Round 1.

- P1 generates Gen(1k, 1L
′
, 1d
′
) to obtain (gk1,K

1
I), where L′ and d′ are defined

below. It also generates the first round messages of ΠQuad. In ΠQuad, its input
is K1

I . It sends the first round messages of ΠQuad to other parties.

- P2 generates Gen(1k, 1L
′′
, 1d
′′
) to obtain (gk2,K

2
I), where L′′ and d′′ (defined

in first of Round 2). It also generates the first round messages of ΠQuad. It
also generates a random string R (we define its length below). In ΠQuad, its
input is (K2

I ◦R). It generates Garb(gk2, Ux2
) to obtain GC2, where Ux2

is a
universal circuit with x2 hardwired in it, it takes as input a circuit of size
s, depth d and outputs a single bit. Set |R| = |GC2|. Note that Ux2

can be
implemented by a circuit of size L′′ = O(s) and depth d′′ = O(d). It sends
GC2 ⊕R along with the first round messages of ΠQuad to other parties.

- Pi, for i 6= 1, i 6= 2, generates the first round messages of ΠQuad. It sends the
first round messages to other parties.

Round 2. At the end of round 1, the parties receive the function f as input.

- P1 generates the second round messages of ΠQuad. The protocol ΠQuad is as-
sociated with a function that takes as input (K1

I ,K
2
I ,⊥, . . . ,⊥) and outputs

K1
I

[
K2

I [f] ◦R
]
7. We note that this function can be implemented by a system

7 Recall that the notation K1
I

[
K2

I [f] ◦R
]

refers to the input wire labels for GC1 cor-
responding to the input (K2

I [f] ◦R). Moreover, K2
I [f] refers to the input wire labels

for GC2 corresponding to the input f .

15

of quadratic polynomials over F2. It generates Garb(gk1, Ĝ) to obtain GC1,

where Ĝ (with GC2 ⊕ R hardwired) is defined as follows: it takes as input
(K2

I [f], R), computes y ← Eval(GC2,K
2
I [f]) and finally it outputs G(x1, y).

Ĝ can be implemented by a circuit of size L′ = O(s) and depth d′ = O(d).
P1 sends the second round messages of ΠQuad along with GC1.

- P2 generates the second round messages of ΠQuad and sends them to other
parties.

- Pi, for i 6= 1 and i 6= 2, computes the second round messages of ΠQuad and
sends them to other parties.

Reconstruction. All the parties compute the output of ΠQuad to learn the
output K1[K2[f]]. They then evaluate GC1 to obtain G(x1, f(x2))

If any point in time, if one of the parties abort, the rest of the parties abort
as well. This completes the description of the protocol.

We now argue security. However, we refer the reader to the full version of
our paper [2] for more details on the security, correctness and efficiency of this
construction.

Security. We consider the following cases. Let S be the set of parties corrupted
by the adversary.

P1 ∈ S and P2 /∈ S. The simulator is defined as follows:

– Round 1.
• Simulating on behalf of P2: Execute the simulator of ΠQuad to obtain the

first round messages of ΠQuad. Generate R
$←− {0, 1}|GC2|. Send the first

round messages of ΠQuad along with R, intended for the parties in S, to
the adversary.
• Simulating on behalf of parties in S\{P2}: Execute the simulator of
ΠQuad to obtain the first round messages of ΠQuad. Send the first round
messages, intended for the parties in S, to the adversary.

Also, extract the input K1
I of P1 in ΠQuad from the first round messages of

ΠQuad.
– Round 2. At the end of Round 1, the simulator receives (f, ŷ) from the

environment.
• Simulating on behalf of P2: Execute the simulator SimGC of the garbling

scheme (Gen,Garb,Eval); generate
(
ĜC2, K̂2

)
← SimGC(1k, ϕ(Ux2), ŷ),

where ϕ(Ux2) is the topology of Ux. Execute the simulator of ΠQuad
8,

with the output of ΠQuad set to be K1
I

[
K̂2

I ◦R⊕ ĜC2

]
, to generate the

second round messages of ΠQuad. Send the second round messages of
ΠQuad, intended for the parties in S, to the adversary.

8 By the privacy with knowledge of outputs property, the simulator of ΠQuad directs
the ideal functionality to deliver outputs (of its choice) to honest parties. However,
the outer simulator (i.e., the simulator of ΠDFunc), which is running the simulator of
ΠQuad as a subroutine, discards these outputs.

16

• Simulating on behalf of parties in S\{P2}: Similar to simulation on behalf
of P2, Execute the simulator of ΠQuad, with the output of ΠQuad set to

be K1
I

[
K̂2

I ◦R⊕ ĜC2

]
, to generate the second round messages of ΠQuad.

Send the second round messages of ΠQuad, intended for the parties in S,
to the adversary.

– Reconstruction. Receive the second round messages of ΠQuad from the

corrupted parties in S. Also receive ĜC1 from P1. Reconstruct the output

K̂1
I from the second round messages of ΠQuad. Evaluate Eval

(
ĜC1, K̂1

I

)
to

obtain b̂. Output b̂.
If at any point in time, the adversary aborts, the simulator aborts as well.

P2 ∈ S and P1 /∈ S. The simulator is defined as follows:

– Round 1.

• Simulating on behalf of P1: Execute the simulator of ΠQuad to obtain the
first round messages. Send the messages intended for the parties in S to
the adversary.
• Simulating on behalf of parties in S\P1: This is identical to the simula-

tion on behalf of P1.

Receive the first round messages of ΠQuad from the adversary. Additionally

receive R̂ (masked garbled circuit) from P2. Extract the input (K̂2
I ◦ R) of

P2 from the first round messages of ΠQuad generated by P2.
– Round 2. At the end of first round, the simulator receives f from the

environment. Compute Eval
(
ĜC2, K̂2

I [f]
)

to obtain ŷ, where ĜC2 = R̂⊕R.

Send ŷ to the ideal functionality to receive b̂.

• Simulating on behalf of P1: Execute the simulator SimGC of the garbling

scheme (Gen,Garb,Eval); generate
(
ĜC1, K̂1

I

)
← SimGC(1k, ϕ(Ĝ), b̂). Ex-

ecute the simulator of ΠQuad, with the output of ΠQuad set to be K̂1
I ,

to generate the second round messages of ΠQuad. Send the second round

messages of ΠQuad along with the simulated garbled circuit ĜC1, intended
for the parties in S, to the adversary.
• Simulating on behalf of parties in S\P1: Execute the simulator of ΠQuad,

with the output of ΠQuad set to be K̂1
I , to generate the second round

messages of ΠQuad. Send the second round messages of ΠQuad intended
for the parties in S to the adversary.

– Reconstruction. Receive the second round messages of ΠQuad from the

corrupted parties in S. Reconstruct the output K̂1
I from the second round

messages of ΠQuad. Evaluate Eval
(
ĜC1, K̂1

I

)
to obtain b̂′. Direct the ideal

functionality to deliver the output b̂′ to the honest parties. Output of the
simulator is the view of the adversary.
If any point in time, the adversary aborts, the simulator aborts as well.

17

P1 /∈ S and P2 /∈ S. The simulator is defined as follows:

– Round 1.
• Simulating on behalf of P1: Execute the simulator of ΠQuad to generate

the first round messages; send the messages intended for the parties in
S to the adversary.
• Simulating on behalf of P2: Execute the simulator of ΠQuad to generate

the first round messages; send the messages intended for the parties in

S to the adversary. Also, send a string R
$←− {0, 1}|GC2|.

• Simulating on behalf of parties in S\{P1, P2}: This is identical to the
simulation on behalf of P1.

– Round 2. The simulator receives the value b̂ from the ideal functionality.
• Simulating on behalf of P1: Execute the simulator SimGC of

(Gen,Garb,Eval); compute
(
ĜC1, K̂1

)
← SimGC

(
1k, ϕ(Ĝ), b̂

)
. Execute

the simulator of ΠQuad, with the output of ΠQuad set to be K̂1, to generate
the second round messages; send the messages intended for the parties
in S to the adversary.
• Simulating on behalf of P2: Execute the simulator of ΠQuad, with the

output of ΠQuad set to be K̂1, to generate the second round messages;
send the messages intended for the parties in S to the adversary.

• Simulating on behalf of parties in S\{P1, P2}: This is identical to the
simulation on behalf of P2.

– Reconstruction. Receive the second round messages of ΠQuad from the

corrupted parties in S. Reconstruct the output K̂1
I from the second round

messages of ΠQuad. Evaluate Eval
(
ĜC1, K̂1

I

)
to obtain b̂′. Direct the ideal

functionality to deliver the output b̂′ to the honest parties. Output of the
simulator is the view of the adversary.
If any point in time, the adversary aborts, the simulator aborts as well.

4 Generalized Conforming Protocols

The notion of conforming protocols was first defined in [22] as an intermediate
tool to construct two-round secure MPC from two-round oblivious transfer. Their
notion as-is is insufficient to achieve our goal of constructing an information-
theoretic multiparty computation protocol secure against malicious adversaries.
To get around this, we define the notion of generalized conforming protocols.

Syntax. An n-party generalized conforming protocol Φ for an n-party func-

tionality F is specified by the parameters
(
n,N, {Φi,j}i∈[n],j∈[t+1] ,P

)
, where n

is the number of parties in the system, N denotes the size of the global state
Z, Φi,j is a set of actions and P is a set of (2 ·

(
n
2

)
+ n) partitions of [N]. We

denote P = (S1, . . . , Sn, {Ti1,i2}i1,i2∈[n],i1 6=i2 , U). One can think of Si as the set

18

of locations reserved for private computation for party Pi, Ti1,i2 as the space al-
located to party Pi1 for communicating private messages to party Pi2 and U as
the space allocated for storing broadcast messages of each party. A generalized
conforming protocol proceeds as follows. Let x1, . . . , xn be the respective inputs
of all parties.

– Pre-processing Phase. For each i ∈ [n], party Pi defines sti to be the list:

sti :=
(
Rk : ∀k ∈ Si

⋃
i6=i′ Ti,i′

⋃
i6=i′ Ti′,i

)
where ∀k ∈ Si

⋃
i6=i′ Ti,i′ it sam-

ples each bit Rk uniformly at random. Compute an N -sized list Zi,1 as
follows:
• For each k ∈ [N], initialize Zi,1

k = 0. Here Zi,1
k denotes the kth bit of Zi,1

• Compute {(zk, k) : k ∈ Li} ← Pre(1k, i, xi, sti) where Li is a subset of
Si

⋃
i6=i′ Ti,i′ .

• For every k ∈ Li, set the kth location Zi,1
k in Zi,1 to have the value zk.

• For each i′ ∈ [n] \ {i}, it sends (Rk : ∀k ∈ Ti,i′) to party Pi′ over private
channels.
• It broadcasts Zi,1 to all other parties.

We require that there does not exist k ∈ [N] such that for any i1 6= i2,
the set output by Pre(1k, i1, xi1 , sti1) contains (·, k) and the set output by
Pre(1k, i2, xi2 , sti2) also contains (·, k). This means that there is no location
in the global state Z that gets overwritten twice.
At the end of the pre-processing phase, Pi receives (Rk : ∀k ∈ Ti′,i) from all
other parties Pi′ (i′ ∈ [n] \ i). It includes this as a part of sti. It retains sti
as private information.

– Computation Phase For each i ∈ [n], party Pi sets Z1 =
⊕n

i−1 Zi,1 For
each j ∈ [t+ 1], it proceeds as follows:
• Parse the action Φi,j as (LI

i,j ,Ci,j ,L
O
i,j).

• If j 6= 1, for {(k, zk)}∀i′ 6=i, k∈LO
i′,j−1

, update kth location in Zi,j with

value zk. Call the resulting state Zj .
• Take as input values in the locations of Zj specified by the set LI

i,j along

with sti, compute Ci,j and update the locations in Zj specified by the
set LO

i,j . Call the resulting state Zi,j+1.
• Send all the updated values and locations {(k, zk)}k∈LO

i,j
to all other

parties.
As before, we require that there is no location in Z, where two parties si-
multaneously write to this location in any given round. At the end of all the
rounds, the output of the computation for party Pi is in the last `′i locations
of Si.

– Reconstruction. For every i ∈ [n], party Pi unmasks the last `′i locations
of Si to learn the output.

In terms of correctness, we require that at the end of the above protocol, the last
`′i locations of Si contains masked (yi), where F (x1, . . . , xn) = (y1, . . . , yn). Since
a generalized conforming protocol is a special instance of a secure multiparty
computation protocol, the security notions for generalized conforming protocols
can be defined analogously.

19

Definition 7 (CLC Property). An n-party generalized conforming protocol,

specified by the parameters
(
n,N, {Φi,j}i∈[n],j∈[t+1] ,P

)
, for an n-party func-

tionality F satisfies CLC property if the following holds: every Φi,j can be parsed
as (LI

i,j = LI→
i,j ∪ LI←

i,j , Ci,j , LO
i,j = LO→

i,j ∪ LO←
i,j). We require that Ci,j, for

every i ∈ [n], j ∈ [t + 1]\{1} (that is, all rounds except the first), is defined as
follows: it takes as input values in the locations of Z specified by the locations
LI
i,j = LI→

i,j ∪ LI←
i,j and state sti,

– Copy Operation: For every k ∈ LI→
i,j , there exists a unique k′ ∈ LI←

i,j ⊂ Si,

copy zk ⊕ Rk ⊕ Rk′ to (k′)th location in Z, where zk is the value in the
kth location of Z. Note that Rk, Rk′ are values in the list sti and hence,
LI→
i,j ⊂ U

⋃
i′∈[n]\{i} Ti,i′

⋃
i′∈[n]\{i} Ti′,i.

– Local Computation: Take as input a set of values in Z, indexed by a
subset of Si, sti, and compute a polynomial-sized circuit on these values.
The output of this computation is written to a subset of locations, indexed
by Si, in Z.

– Copy Operation: For every k′ ∈ LO→
i,j ⊂ Si, there exists a unique k ∈

LO←
i,j , copy zk′ ⊕Rk ⊕Rk′ to kth location in Z, where zk is the value in the

kth location of Z. As before, Rk, Rk′ are values in the list sti and hence,
LO←
i,j ⊂ U

⋃
i′∈[n]\{i} Ti,i′ .

For the first round, we require Ci,1 to be defined as follows: it takes as input Z1,

computes a circuit Ĉi,1 on Z1 to obtain {vk}k∈LO
i,1

and finally, it updates the kth

location in Zi,2 with the value zk = vk ⊕Rk for every k ∈ LO
i,1.

Lemma 3. Let n, `1, `
′
1, . . . , `n, `

′
n > 0. Consider an n-party functionality F :

{0, 1}`1×· · ·×{0, 1}`n → {0, 1}`′1×· · ·×{0, 1}`′n computable by a depth-d circuit
of size s. There is a maliciously secure t-round generalized conforming protcol
for F , for some constant t, satisfying CLC property with perfect security in the
honest majority setting. Moreover, the next message function of every party can
be implemented by a circuit of depth O(d + log(s)) and size sc2c·(d+log(s)), for
some constant c.

We defer the proof of this lemma to the full-version of our paper [2].

5 Two-round MPC over Broadcast and P2P: Security
with Abort

In this section, we show how to construct a two-round MPC in the honest ma-
jority setting and satisfying statistical malicious security.

Lemma 4. Let n, `1, `
′
1, . . . , `n, `

′
n > 0. Consider an n-party functionality F :

{0, 1}`1×· · ·×{0, 1}`n → {0, 1}`′1×· · ·×{0, 1}`′n computable by a depth-d circuit
of size s.

20

Fix a statistical security parameter k > 0. There is a malicious two-round
MPC protocol for F with negl(k)-statistical security in the honest majority set-
ting, for some negligible function negl. Moreover, the computational complexity
of this protocol is polynomial in s and exponential in d.

Construction. Let F ′ = (F, τ) be an augmented single functionality that
computes F along with a multi-key MAC τ on the output of F . At a high level,
a multi-key MAC corresponding to n keys allows each party to locally verify
the MAC using their own key. We give a full definition and construction of this
primitive in the full version of our paper. We list the ingredients for our two
round MPC construction:

– A t-round Generalized Conforming protocol for the augmented functionality
F ′, guaranteed by Lemma 3. Denote this by ΠGConf . Let ΠGConf be parame-

terized by
(
n,N, {Φi,j}i∈[n],j∈[t+1] ,P

)
.

– Delayed-function two-round secure n-party MPC for quadratic polynomials,
as guaranteed by Lemma 1.

– Delayed-function two-round secure n-party MPC for specialized two-input
functionalities, as guaranteed by Lemma 2.

– Information-theoretic garbling scheme (Gen,Garb,Eval).
– A multi-key MAC scheme (KeyGen, Sign,Verify).

We now describe a two-round secure MPC protocol for F .
Round 1.

– Generation of Initial Global State: For every i ∈ [n], the ith party
samples a key Ki for the mult-key MAC scheme. It sets it’s input to x′i =
(xi,Ki). It then computes the pre-processing phase of ΠGConf . In particular
it does the following: it defines sti := (Rk : ∀k ∈ Si

⋃
i6=i′ Ti,i′

⋃
i6=i′ Ti′,i),

where ∀k ∈ Si

⋃
i6=i′ , it samples the bit Rk uniformly at random. It computes

Pre(1k, i, x′i, sti) to obtain the set {(zk, k) : k ∈ Li}. It computes a N -sized
list Zi,1 as follows: initialize Zi,1 to consist of only zeroes. It sets the kth

location in Zi,1 to have the value zk. Broadcast Zi,1 and sends (Rk : ∀k ∈
Ti,i′) to party Pi′ for each i′ ∈ [n] \ i over a private channel.

– Generation of Garbling Wire Labels: (gki,1,Ki,1) ← Gen(1k, 1L, 1d),
where L is the number of leaves and d is the depth of the formula in Figure 1a.

– For every j ∈ [t+ 1]\{1}, the ith party computes the following:
- (gki,j [copy1],Ki,j [copy1]) ← Gen(1k, 1L, 1d), where L is the number of

leaves and d is the depth of the formula in Figure 1b.

- (gki,j [copy2],Ki,j [copy2]) ← Gen(1k, 1L, 1d), where L is the number of
leaves and d is the depth of the formula in Figure 2b.

– First Round Messages of Delayed-Function MPC for Quadratic
Polynomials: All the parties participate in O(n3t) executions of delayed-
function two-round secure n-party MPC for quadratic polynomials, as guar-
anteed by Lemma 1. Each of these instantiations are denoted as follows:

21

• For every i1, i2 ∈ [n] and i1 6= i2, the input of the ith party in
ΠQuad[i1, i2, 1, 1] is the following:

∗ If i = i1 then the ith party inputs {vk}k∈LO
i1,1

, {Rk}kLO
i1,1

9, where

{vk}k∈LO
i1,1

is the output of circuit Ĉi1,1
10 on Z1, as defined in the

definition 7.

∗ If i = i2 then the ith party inputs Ki2,2[copy1] .

∗ If i 6= i1, i 6= i2 then the ith party doesn’t have any input.

Denote ΠQuad[i1, i2, 1, 1].msg1,i4→i5 to be the first round message of

ΠQuad[i1, i2, 1j, 1] sent by the (i4)th party to the (i5)th party. We don’t
require that i4 or i5 be distinct from i1, i2. We define similar notation
for the other ΠQuad instantiations. Let the total randomness used by the
ith party in all these executions be Ri

Q.

• {ΠQuad[i1, i2, i3, j, 1]}i1,i3∈[n],i1 6=i3,i2∈[n+1] j∈[t+1]\{1}
For i1, i3 ∈ [n], i1 6= i3, i2 ∈ [n+ 1], j ∈ [t+ 1] \ {1}, the input of the ith

party in ΠQuad[i1, i2, i3, j, 1] is the following:

∗ If i = i1, then the ith party inputs {Rk}k∈Si1

∗ If i = i1 = i2, then the ith party additionally inputs
{{Rk′}k∈Ti1,i′}i′∈[n]\{1}.

∗ If i = i2 6= i1, then the ith party inputs {Rk′}k′∈Ti2,i1
.

If i2 = n + 1, then party Pi2 has no input. This corresponds to the
copy operations from locations in U to locations in Si1 .

∗ If i = i3 then the ith party inputs Ki3,j [local]

∗ If i 6= i1, i 6= i2, i 6= i3 then the ith party doesn’t have any input.

• {ΠQuad[i1, i2, j, 2]}i1,i2∈[n],i1 6=i2, j∈[t]\{1}
For i1, i2 ∈ [n], i1 6= i2, j ∈ [t] \ {1}, the input of the ith party in
ΠQuad[i1, i2, j, 1] is the following:

∗ If i = i1, then the ith party inputs {Rk′}k′∈Si1
,

{Rk}k∈U ⋃
i′∈[n]\{i1}

Ti1,i′

∗ If i = i2 then the ith party inputs Ki2,j+1[copy1]

∗ If i 6= i1, i 6= i2 then the ith party doesn’t have any input.

9 Recall that LO
i1,1 consists of a subset of locations in Si1 ,

⋃
i′∈[n]\{i1} Ti1,i′ and U and

the locations in U are not a part of sti1 . But since Rk is not a part of sti′ for any
k ∈ U and i′ ∈ [n]. Hence this is equivalent to every party setting Rk = 0 for all
k ∈ U .

10 Note that the only values from Z1 that Ĉi1,1 computes on are known to Pi1 in the
first round itself. Hence even if it does not know the entire value of Z1 in the first
round, values {vk}k∈LO

i1,1
can still be computed.

22

The functionalities associated with each of these protocols are determined
in the second round.

– First Round Messages of Delayed-Function MPC for Two-Input
Functionalities: All the parties participate in O(n2t) executions of delayed-
function two-round secure n-party MPC, as guaranteed by Lemma 2. De-
note these instantiations to be {ΠDFunc[i1, i2, j]}i1,i2∈[n],j∈[t+1]\{1}. For ev-

ery i1, i2 ∈ [n] and i1 6= i2, j ∈ [t + 1] \ {1}, the input of ith party in
ΠDFunc[i1, i2, j] is the following:
• If i = i1 then the ith party inputs Ki1,j [copy2].

• If i = i2 then the ith party inputs {Rk}k∈Si2
.

• If i 6= i1, i 6= i2 then the ith party doesn’t have any input.
Denote ΠDFunc[i1, i2, j].msg1,i→i′′ to be the first message of ΠDFunc[i

′, j] sent

by the ith party to (i′′)th party. Let the total randomness used by the ith

party in all the executions be Ri
DF .

Round 2.

– Compute Joint Global State: All the parties compute Z1 =
⊕n

i=1 Zi,1.

– Updates Private State: It updates sti to include (Rk : ∀k ∈ Ti′,i) received
from party Pi′(∀i′ ∈ [n] \ i) in the first round.

– Generate Input Wire Labels for First Garbled Circuit: The ith party
computes (GCi,1,Ki,1)← Garb(gki,1, Ci,1), where Ci,1 is defined in Figure 1a.

Let Ki,1

[
Z1
]

be the set of wire keys corresponding to the input Z1.

– Generate Garbled Circuits for every round of Generalized Con-
forming Protocol: For every j ∈ [t+ 1]\{1}, the ith party computes:
• (GCi,j [copy1],Ki,j [copy1])← Garb(gki,j [copy1], Ci,j [copy1]), where
Ci,j [copy1] is defined in Figure 1b.

• (GCi,j [local],Ki,j [local]) ← Garb(gki,j [local], Ci,j [local]), where Ci,j [local]
is defined in Figure 2a.

• (GCi,j [copy2],Ki,j [copy2])← Garb(gki,j [copy2], Ci,j [copy2]), where
Ci,j [copy2] is defined in Figure 2b.

– The ith party broadcasts the following message:(
GCi,1, Ki,1

[
Z1
]
, {GCi,j [copy1],GCi,j [local],GCi,j [copy2]}j∈[t+1]

)
Evaluation. To compute the output of the protocol, each party Pi does
the following:
• For each i′ ∈ [n], let Ki′,1[Z1] be the labels received from party Pi′ at

the end of round 2.

• Obtain For each i′ ∈ [n], compute Eval(GCi′,1,Ki′,1[Z1]) to obtain labels

in Ki′,2[copy1] corresponding to Zi′,2[copy1] and second round messages

23

{ΠQuad[i1, i2, 1, 1].msg2,i′→i′′}i1,i2,i′,i′′∈[n],i1 6=i2 . Use these second round
messages to reconstruct the remaining labels in Ki′,2[copy1] correspond-
ing to {(k, zk)}∀i′′ 6=i′, k∈LO

i,1
.

• For each j from 2 to (t+ 1) do the following:
∗ For each i′ ∈ [n], compute Eval(GCi′,j [copy1],Ki′,j [copy1][Zi′,j [copy1]||
{(k, zk)}∀i′′ 6=i′, k∈LO←

i′′,j−1
]) (if j = 2,LO←

i′′,j−1 = LO
i′′,j−1) to obtain

labels in Ki′,j [local] corresponding to Zi′,j [local] and second round
messages {ΠQuad[i1, i2, i3, j, 1].msg2,i′→i′′}i1,i3,i′,i′′∈[n],i1 6=i3,i2∈[n+1].

∗ Use these second round messages to reconstruct the remaining labels
in Ki′,j [local] corresponding to {(k, zk)}∀i′′ 6=i′, k∈LI←

i′′,j
.

∗ For each i′ ∈ [n], compute Eval(GCi′,j [local],Ki′,j [local][Z
i′,j [local]||

{(k, zk)}∀i′′ 6=i′, k∈LI←
i′′,j

]) to obtain labels in Ki′,j [copy2] correspond-

ing to Zi′,j [copy2] and second round messages
{ΠDFunc[i1, i2, j, 1].msg2,i′→i′′}i1,i2,i′,i′′∈[n],i1 6=i2 .

∗ Use these second round messages to reconstruct the remaining labels
in Ki,j [copy2] corresponding to {(k, zk)}∀i′′ 6=i′, k∈Si′′ .

∗ For each i′ ∈ [n], if (j 6= t+1), compute Eval(GCi′,j [copy2],Ki′,j [copy2]

[Zi′,j [copy2]|| {(k, zk)}∀i′′ 6=i′, k∈Si′′
]) to obtain labels in Ki′,j+1[copy1]

corresponding to Zi′,j+1[copy1] and second round messages
{ΠQuad[i1, i2j, 1].msg2,i′→i′′}i1,i2,i′,i′′∈[n],i1 6=i2 .

∗ Use these second round messages to reconstruct the remaining labels
in Ki′,j [local] corresponding to {(k, zk)}∀i′′ 6=i′, k∈LO←

i′′,j−1
.

∗ If j = t+ 1 compute Eval(GCi′,j [copy2],Ki′,j [copy2][Zi′,j [copy2]||
{(k, zk)}∀i′′ 6=i′, k∈Si′′

]) to obtain Zfin.

• Use sti to unmask the last `i locations of Si in Zfin to compute the
output (y, τ). Use key Ki and the verification algorithm of the multi-key
MAC scheme to verify if τ is a valid multi-key MAC on y. If it verifies,
output y, else output ⊥.

We defer the security of this protocol to the full-version of our paper [2].

6 Two-Round MPC over P2P: Security with Selective
Abort

In this section we describe a general compiler to obtain a two-round information-
theoretic MPC protocol satisfying malicious security with selective abort over
point-point channels from any two-round information-theoretic MPC satisfying
security with abort against malicious adversaries.

24

Input: Z1

Hardwired Values: action Φi,1 = (LI
i,1,Ci,1,L

O
i,1), state sti, wire labels Ki,2[copy1]

– Parse Φi,1 = (LI
i,1,Ci,1,L

O
i,1)

– Compute Ĉi,1, where Ĉi,1 is the circuit associated with Ci,1 (see Definition 7), on the
values in Z1 indexed by LI

i,1 along with sti. The output of the computation is written
to locations in Z1 indexed by LO

i,1. Call the resulting state Zi,2[copy1].

– The input to Ci,2[copy1] is of the form

(
Zi,2[copy1], {(k, zk)}∀i′ 6=i, k∈LO

i′,1

)
. Thus, the

wire labels Ki,2[copy1] can be divided into two parts: the first part corresponds to
Zi,2[copy1] and the second part corresponds to {(k, zk)}∀i′ 6=i, k∈LO

i′,1
.

– For every i1, i2 with i1 6= i2, compute the second round messages of ΠQuad[i1, i2, 1, 1].
The n-party functionality associated with ΠQuad[i1, i2, 1, 1] is Qi1,i2,1,1, defined below.

The (i1)th party has input {vk}k∈LO
i,1

, {Rk}k∈Si
⋃

i′∈[n]\{i1}
Ti1,i′

, the (i2)th

party has input Ki2,2[copy1], the rest of the parties don’t have any input and
the output of this function are the labels in Ki2,2[copy1] corresponding to
{(k,Rk ⊕ vk)}, for every location k ∈ LO

i1,1; recall that LO
i1,1 is the set of the

locations written to at the end of first round in the conforming protocol.
Output the second round messages of all these protocols. Also, output the labels in
Ki,2[copy1] with respect to updated state Zi,2[copy1].

(a) Description of Ci,1

Input:

(
Zi,j [copy1], {(k, zk)}∀i′ 6=i, k∈LO←

i′,j−1

)
(If j = 2, then LO←

i′,1 = LO
i′,1)

Hardwired Values: action Φi,j = (LI
i,j ,Ci,j ,L

O
i,j), state sti, wire labels Ki,j [local].

– For every i′ 6= i, every k ∈ LO
i′,j−1, update the kth location in Zi,j [copy1] with the value

zk. Call the resulting state Zj [copy1].
– Compute the first copy operation of Φi,j on the global state Zj [copy1]. Call the resulting

state Zi,j [local].

– The input to Ci,j [local] is of the form
(
Zi,j [local], {(k, zk)}∀i′ 6=i, k∈LI←

i′,j

)
Thus, the wire

labels Ki,j [local] can be divided into two parts: the first part corresponds to Zi,j [local]
and the second part corresponds to {(k, zk)}∀i′ 6=i, k∈LI←

i′,j
.

– For every i1, i3 ∈ [n] with i1 6= i3 and i2 ∈ [n+ 1], compute the second round messages
of ΠQuad[i1, i2, i3, j, 1]. The n-party functionality associated with ΠQuad[i1, i2, i3, j, 1] is
Qi1,i2,i3,j,1, defined below.

The (i1)th party has input {Rk′}k′∈Si1
, the (i2)th party has input {Rk}k∈Ti2,i1

(if i1 = i2,, the ith1 party additionally has input {{Rk}k∈Ti1,i′ }i′∈[n]\{i1} and if

i2 = n+1, the (i2)th party has no input), the (i3)th party has input Ki3,j [local],
the rest of the parties don’t have any input and the output of this function
are the labels in Ki3,j [local] corresponding to {(k′, Rk′ ⊕Rk ⊕ zk)}, for every
location k ∈ LI→

i1,j and k′ ∈ LI←
i1,j such that k′ is the unique location associated

with k as guaranteed by Definition 7.
Output the second round messages of all these protocols. Also, output the labels in
Ki,j [local] with respect to updated state Zi,j [local].

(b) Description of Ci,j [copy1], for j > 1.

Fig. 1: Descriptions of Ci,1 and Ci,j [copy1] for j > 1

25

Input:

(
Zi,j [local], {(k, zk)}∀i′ 6=i, k∈LI←

i′,j

)
Hardwired Values: action Φi,j = (LI

i,j ,Ci,j ,L
O
i,j), state sti, wire labels Ki,j [copy2].

– For every i′ 6= i, for every k ∈ LI←
i′,j , update the kth location in Zi′,j [local] with the

value zk. Call the resulting state Zj [local].
– Compute the local operation of Φi,j on the global state Zj [local]. Call the resulting

state Zi,j [copy2].

– The input to Ci,j [copy2] is of the form
(
Zi,j [copy2], {(k, zk)}∀i′ 6=i, k∈Si′

)
. Thus, the

wire labels Ki,j [copy2] can be divided into two parts: the first part corresponding to
Zi,j [copy2] and the second part corresponding to {(k, zk)}∀i′ 6=i, k∈Si′

.

– For every i1, i2 with i1 6= i2, compute the second round messages of ΠDFunc[i1, i2, j].
The n-party functionality associated with ΠDFunc[i1, i2, j] is DFi1,i2,j , defined below.

The ith1 party has the input Ki1,j [copy2], the ith2 party has the input {Rk}k∈Si2
,

the rest of the parties don’t have any input and the output of the function
is computed as follows: compute the local operation of Φi2,j on the global
state Zj [local] and the output of the function are the labels in Ki1,j [copy2]
corresponding to {(k, zk)}, for every location k ∈ Si2 .

Output the second round messages of all these protocols. Also, output the labels in
Ki,j [copy2] with respect to updated state Zi,j [copy2].

(a) Description of Ci,j [local]

Input:
(
Zi,j [copy2], {(k, zk)}∀i′ 6=i, k∈Si′

)
Hardwired Values: action Φi,j = (LI

i,j ,Ci,j ,L
O
i,j), state sti, wire labels Ki+1,j [copy1].

– For every i′ 6= i, for every k ∈ Si′ , update the kth location in Zi′,j [copy2] with the
value vk. If j 6= t + 1, call the resulting state Zj [copy2], otherwise call the resulting
state Zfin.

– If j = t+ 1, output Zfin, else continue to next step.
– Compute the second copy operation of Φi,j on the global state Zj [copy2]. Call the

resulting state Zi,j+1[copy1].

– The input to Ci,j+1[copy1] is of the form

(
Zi,j+1[copy1], {(k, zk)}∀i′ 6=i, k∈LO

i′,j←

)
.

Thus, the wire labels Ki,j+1[copy1] can be divided into two parts: the first part corre-
sponding to Zi,j+1[copy1] and the second part corresponding to {(k, zk)}∀i′ 6=i,LO

i′,j←
.

– For every i1, i2 with i1 6= i2, compute the second round messages of ΠQuad[i1, i2, j, 2].
The n-party functionality associated with ΠQuad[i1, i2, j, 2] is Qi1,i2,j,2, defined below.

The (i1)th party has input sti, the (i2)th party has input Ki2,j+1[copy1], the
rest of the parties don’t have any input and the output of this function are
the labels in Ki2,j+1[copy1] corresponding to {(k, Rk ⊕Rk′ ⊕ zk)}, for every
location k ∈ LO←

i1,j and k′ ∈ LO→
i1,j such that k′ is the unique location associated

with k as guaranteed by Definition 7.
Output the second round messages of all these protocols. Also, output the labels in
Ki,j+1[copy1] with respect to updated state Zi,j+1[copy1].

(b) Description of Ci,j [copy2].

Fig. 2: Descriptions of Ci,j [local] and Ci,j [copy2]

26

Theorem 3. There exists a general information theoretic compiler that trans-
forms any two round maliciously secure MPC protocol (whose second round mes-
sages are computable in NC1) over broadcast and private channels that achieves
security with abort into a two-round protocol over private channels that achieves
selective security with abort against malicious adversaries.

Building Blocks. We use the following ingredients in our construction. A
two-round MPC Π, in the honest majority setting satisfying perfect malicious
security. We additionally want the second round next-message function of each
party in this protocol to be implementable using an NC1 circuit from Section 5.
Information-theoretic garbling scheme (Gen,Garb,Eval).

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol. Let
{x1, . . . , xn} be their respective inputs and r1, . . . , rn be their respective ran-
domness used in the underlying protocol Π. Let k be the statistical security
parameter.

Round 1. For each i ∈ [n], party Pi does the following in the first round.

– Compute the first round messages of Π.
(Π.msg1,i→B , {Π.msg1,i→j}j∈[n]) := Π1(1k, i, xi; ri) where Π1 is the first
round next message function of the protocol Π.
Π.msg1,i→B is the message that is broadcast by Pi in the first round of Π
and Π.msg1,i→j is the message that is sent to party Pj over a private channel.

– Computes (gki,Ki) ← Gen(1k, 1L, 1d) where L is the number of leaves and
d is the depth of the second round next message function of Π as defined in
the next round. We parse Ki as (K0

i,1,K
1
i,1, . . . ,K

0
i,L,K

1
i,L)

– Compute shares {{Kb,j
i,` }j∈[n]}`∈[L],b∈{0,1} such that for each ` ∈ [L] and

b ∈ {0, 1}, Kb
i,` :=

⊕
j∈[n]K

b,j
i,`

– For each j ∈ [n] \ {i}, it sends (Π.msg1,i→B , Π.msg1,i→j , {K
b,j
i,` }`∈[L],b∈{0,1})

to party Pj over a private channel.

Round 2. For each i ∈ [n], party Pi does the following.

– Computes a garbled circuit as follows:
GCi ← Garb(gki, Π2(1k, i, xi, {Π.msg1,j→i, Π.msg1,i→j}j∈[n], .; ri))
where Π2(1k, i, xi, {Π.msg1,j→i}j∈[n], .; ri) is the second round next message
function of party Pi in Π that takes the messages {Π.msg1,j→B}j∈[n] that
were broadcast in the first round as input.

– For each j ∈ [n] \ {i}, it sends (GCi, {{KX`,i
j,` }j∈[n]}`∈[L]) to party Pj over a

private channel. Here X = Π.msg1,1→B || . . . ||Π.msg1,n→B and X` denotes

the `th bit of X.

Reconstruction. Each party does the following.

– It reconstructs the input wire keys received in the previous round. For each
i ∈ [n] and ` ∈ [L], it computes the following. KX`

j,` :=
⊕

i∈[n]K
X`,i
j,` and for

each j ∈ [n], it sets Kj [Π.msg1,1→B || . . . ||Π.msg1,n→B] := (KX1
j,1 , . . . ,K

XL
j,1)

27

– For each j ∈ [n] it evaluates the garbled circuit received in the previous
round. Π.msg2,j→B := Eval(GCj ,Kj [Π.msg1,1→B || . . . ||Π.msg1,n→B])

– It runs the reconstruction algorithm of Π on {Π.msg2,j→B}j∈[n] to compute
the output.

We defer the security of this protocol to the full-version of our paper [2].

Acknowledgments. The last three authors were supported in part by a
DARPA/ARL Safeware Grant W911NF-15-C-0213, and a subaward from NSF
CNS-1414023.

References

1. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty
computation with honest majority. In: Shacham, H., Boldyreva, A. (eds.) Advances
in Cryptology – CRYPTO 2018, Part II. Lecture Notes in Computer Science,
vol. 10992, pp. 395–424. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 19–23, 2018)

2. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic
MPC with malicious security. IACR Cryptology ePrint Archive 2018, 1078 (2018),
https://eprint.iacr.org/2018/1078

3. Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in two
rounds. In: Theory of Cryptography - 16th International Conference, TCC 2018
(2018), https://eprint.iacr.org/2018/894

4. Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the round-
complexity of malicious mpc (2019), https://eprint.iacr.org/2019/200

5. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018, Part II. Lec-
ture Notes in Computer Science, vol. 10992, pp. 459–487. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 19–23, 2018)

6. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Rudnicki, P. (ed.) 8th ACM Symposium An-
nual on Principles of Distributed Computing. pp. 201–209. Association for Com-
puting Machinery, Edmonton, Alberta, Canada (Aug 14–16, 1989)

7. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G.
(ed.) Advances in Cryptology – CRYPTO’89. Lecture Notes in Computer Science,
vol. 435, pp. 560–572. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 20–24, 1990)

8. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd Annual ACM Symposium on Theory of Computing.
pp. 503–513. ACM Press, Baltimore, MD, USA (May 14–16, 1990)

9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
Annual ACM Symposium on Theory of Computing. pp. 1–10. ACM Press, Chicago,
IL, USA (May 2–4, 1988)

10. Benhamouda, F., Lin, H.: k-round mpc from k-round ot via garbled interactive
circuits. Tech. rep. (2018)

28

https://eprint.iacr.org/2018/1078
https://eprint.iacr.org/2018/894
https://eprint.iacr.org/2019/200

11. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science. pp.
136–145. IEEE Computer Society Press, Las Vegas, NV, USA (Oct 14–17, 2001)

12. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally compos-
able two-party computation without set-up assumptions. In: Biham, E. (ed.) Ad-
vances in Cryptology – EUROCRYPT 2003. Lecture Notes in Computer Science,
vol. 2656, pp. 68–86. Springer, Heidelberg, Germany, Warsaw, Poland (May 4–8,
2003)

13. Chaum, D.: The spymasters double-agent problem: Multiparty computations se-
cure unconditionally from minorities and cryptographically from majorities. In:
Brassard, G. (ed.) Advances in Cryptology – CRYPTO’89. Lecture Notes in Com-
puter Science, vol. 435, pp. 591–602. Springer, Heidelberg, Germany, Santa Bar-
bara, CA, USA (Aug 20–24, 1990)

14. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th Annual ACM Symposium on Theory of Computing.
pp. 11–19. ACM Press, Chicago, IL, USA (May 2–4, 1988)

15. Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number
of rounds. In: Kilian, J. (ed.) Advances in Cryptology – CRYPTO 2001. Lecture
Notes in Computer Science, vol. 2139, pp. 119–136. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 19–23, 2001)

16. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-
box pseudorandom generator. In: Shoup, V. (ed.) Advances in Cryptology –
CRYPTO 2005. Lecture Notes in Computer Science, vol. 3621, pp. 378–394.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2005)

17. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: 26th Annual ACM Symposium on Theory of Computing. pp. 554–
563. ACM Press, Montréal, Québec, Canada (May 23–25, 1994)

18. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183–186 (1982), https://doi.org/10.1016/

0020-0190(82)90033-3
19. Garg, S., Ishai, Y., Srinivasan, A.: Two-round mpc: Information-theoretic and

black-box. In: Theory of Cryptography - 16th International Conference, TCC 2018
(2018), https://eprint.iacr.org/2018/909

20. Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computation min-
imizing public key operations. In: Annual International Cryptology Conference.
pp. 273–301. Springer (2018)

21. Garg, S., Srinivasan, A.: Garbled protocols and two-round mpc from bilinear maps.
In: Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium
on. pp. 588–599. IEEE (2017)

22. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from mini-
mal assumptions. In: Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II. pp. 468–499
(2018), https://doi.org/10.1007/978-3-319-78375-8_16

23. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of ver-
ifiable secret sharing and secure multicast. In: 33rd Annual ACM Symposium on
Theory of Computing. pp. 580–589. ACM Press, Crete, Greece (Jul 6–8, 2001)

24. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) Advances in Cryptology – CRYPTO 2002. Lecture
Notes in Computer Science, vol. 2442, pp. 178–193. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 18–22, 2002)

29

https://doi.org/10.1016/0020-0190(82)90033-3
https://doi.org/10.1016/0020-0190(82)90033-3
https://eprint.iacr.org/2018/909
https://doi.org/10.1007/978-3-319-78375-8_16

25. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press (2004)

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
Annual ACM Symposium on Theory of Computing. pp. 218–229. ACM Press, New
York City, NY, USA (May 25–27, 1987)

27. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement.
Journal of Cryptology 18(3), 247–287 (Jul 2005)

28. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing
without simultaneous interaction. In: Rogaway, P. (ed.) Advances in Cryptology
– CRYPTO 2011. Lecture Notes in Computer Science, vol. 6841, pp. 132–150.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2011)

29. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M.J.B. (eds.)
Advances in Cryptology – CRYPTO 2015, Part II. Lecture Notes in Computer Sci-
ence, vol. 9216, pp. 359–378. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 16–20, 2015)

30. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: Fifth Israel Symposium on Theory of Computing and Systems, ISTCS
1997, Ramat-Gan, Israel, June 17-19, 1997, Proceedings. pp. 174–184 (1997),
https://doi.org/10.1109/ISTCS.1997.595170

31. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science. pp. 294–304. IEEE Computer Society Press,
Redondo Beach, CA, USA (Nov 12–14, 2000)

32. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Ruiz, F.T., Bueno, R.M., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002: 29th International Colloquium
on Automata, Languages and Programming. Lecture Notes in Computer Science,
vol. 2380, pp. 244–256. Springer, Heidelberg, Germany, Malaga, Spain (Jul 8–13,
2002)

33. Ishai, Y., Kushilevitz, E.: On the hardness of information-theoretic multiparty
computation. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology – EU-
ROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 439–455.
Springer, Heidelberg, Germany, Interlaken, Switzerland (May 2–6, 2004)

34. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) Advances in Cryptology – CRYPTO 2010. Lecture
Notes in Computer Science, vol. 6223, pp. 577–594. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 15–19, 2010)

35. Patra, A., Ravi, D.: On the exact round complexity of secure three-party com-
putation. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology –
CRYPTO 2018, Part II. Lecture Notes in Computer Science, vol. 10992, pp. 425–
458. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018)

36. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st Annual ACM Symposium on Theory
of Computing. pp. 73–85. ACM Press, Seattle, WA, USA (May 15–17, 1989)

37. Yao, A.C.C.: How to generate and exchange secrets. In: Foundations of Computer
Science, 1986., 27th Annual Symposium on. pp. 162–167. IEEE (1986)

30

https://doi.org/10.1109/ISTCS.1997.595170

	Two Round Information-Theoretic MPC with Malicious Security

