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Abstract. We provide the first constructions of two round information-
theoretic (IT) secure multiparty computation (MPC) protocols in the
plain model that tolerate any ¢ < n/2 malicious corruptions. Our proto-
cols satisfy the strongest achievable standard notions of security in two
rounds in different communication models.

Previously, IT-MPC protocols in the plain model either required a larger
number of rounds, or a smaller minority of corruptions.

1 Introduction

The ability to securely compute on private datasets of individuals has wide
applications of tremendous benefits to society. The notion of secure multiparty
computation (MPC) [37,26,9,14] provides a solution to the problem of computing
on private data by allowing a group of mutually distrusting parties to jointly
evaluate any function over their private inputs in a manner that reveals nothing
beyond the output of the function.

Information-Theoretic MPC. Over the years, a large body of works have
investigated the design of MPC protocols against computationally bounded as
well as computationally unbounded adversaries. In this work, we focus on the
latter, namely, MPC with information-theoretic (IT) security.

The seminal works of [9,14] established the first feasibility results for IT-
MPC for general functionalities. These works also established that IT security
for non-trivial functions is only possible when at most ¢ < n/2 of the n parties
are corrupted. In scenarios where honest majority is a viable assumption, I'T-
MPC protocols are extremely appealing over their computational counterparts.
In particular, they are typically more efficient since they do not use any compu-
tational primitives. Furthermore, IT-MPC protocols achieve security in models
such as concurrent composition [11] without relying on external trust [12].

Round Complexity. In this work, we investigate the minimal conditions
necessary for IT-MPC in the plain model. We focus on round complezity — a
well studied complexity measure in distributed protocol design. We consider the



standard simultaneous-message model of communication for MPC where in any
round, each party can send messages to other parties, depending upon the com-
munication from the previous rounds. We consider security against malicious
adversaries who may corrupt any subset of ¢ < n/2 parties and use arbitrary
strategy to decide their protocol messages.

It is well known that two rounds of communication are necessary for MPC
[28]. We ask whether two rounds are sufficient for achieving IT security:

Does there exist two round IT-MPC for any t < n/2 corruptions?

The above question has remained open for the last three decades. In par-
ticular, while constant round IT-MPC protocols are known for any ¢ < n/2
corruptions (e.g., [6,31]), the only known two round IT-MPC protocols are due
to [31,34,29] who require two-thirds honest majority (as opposed to standard
honest majority). We refer the reader to Section 1.3 for a comprehensive survey
of prior work, and Section 1.1 for comparison with the recent works of [3,19,4].

1.1 Owur Results

In this work, we resolve the above question in the affirmative.

I. Main Result. Our first result is a two-round IT-MPC protocol for NC!
functions that tolerates any ¢ < n/2 corruptions. In the case of malicious adver-
saries, our protocol achieves statistical security with abort — the standard notion
of security (c.f. [25]) where an adversary may prevent the honest parties from
learning the output by aborting the computation. In the setting of two rounds,
this is known to be the strongest achievable standard notion of security [24].

In the case of semi-honest adversaries, our protocol achieves perfect security.

Theorem 1. There exists a two round MPC protocol for NC' functions that
achieves:

— Statistical security with abort against t < n/2 malicious corruptions.
— Perfect security against t < n/2 semi-honest corruptions.

II. Protocols over P2P Channels. Our protocol in Theorem 1 necessarily
uses both broadcast and private point-to-point (P2P) channels for achieving
security against malicious adversaries.? We next investigate whether it is possible
to construct two round IT-MPC against malicious adversaries by using only P2P
channels.*

Our second result is a two round IT-MPC protocol over P2P channels that
achieves statistical security with selective abort against any ¢ < n/2 malicious
corruptions. This notion [27] is a weakening of the standard notion of security of

3 In the case of semi-honest adversaries, broadcasts can be trivially emulated over P2P
channels without any increase in round complexity.

4 Note that the complementary goal of IT-MPC over only broadcast channels is known
to be impossible.



(unanimous) abort in that it allows the adversary to separately decide for each
honest party whether it will receive the correct output or L. Achieving security
with abort in two rounds over P2P channels is known to be impossible in general
[18,35]. This establishes security with selective abort as the strongest achievable
standard notion of security in two rounds.

Theorem 2. There exists a two round MPC protocol over P2P channels for
NC" functions that achieves statistical security with selective abort against t <
n/2 malicious corruptions.

Put together, Theorems 1 and 2 fully resolve the round complexity of mali-
ciously secure IT-MPC (for NC! functions).

Comparison with [3,19,4]. Recently, Applebaum et al. [3] constructed two round
perfectly secure MPC for NC! against any ¢t < n/2 semi-honest corruptions.
Garg et al. [19] achieve a similar result; however, the communication complexity
of their protocols grows super-polynomially with the number of parties. Neither
of these works consider security against malicious adversaries, which is the main
focus of our work. A recent independent and concurrent work of Applebaum et
al. [4] also considers the case of malicious adversaries. Similar to our work, they
also construct a two-round statistically secure protocol for NC! functionalities
that achieves security with selective abort. However, they do not achieve our
main result, namely a two-round information-theoretic protocol for security with
(unanimous) abort.

1.2 Technical Overview

We first focus on achieving two-round IT-secure MPC in the presence of both
broadcast and point to point communication channels.

Recent works on two-round secure MPC [21,10,22] follow a common blueprint
of squishing an arbitrary round secure protocol, referred to as inner protocol,
into a two round secure protocol, referred to as outer protocol using garbled
circuits. Roughly speaking, every party in the outer protocol computes ¢t garbled
circuits, one for every round of the inner protocol. The job of the j** garbled
circuit computed by the i*" party is to emulate the computation of the next mes-
sage function of the i*" party in the j** round. Every party sends the generated
t garbled circuits to the other parties.

The main challenge here is to ensure that the garbled circuits can talk to
each other the same way the parties in the inner protocol talk to each other.
The tools used to address this challenge differs from one work to another: [21]
use bilinear maps, [22] use two-round oblivious transfer, [10,20] use two-round
oblivious oblivious transfer and additionally garbled circuits and finally, [1,3,19]
use information-theoretic MPC protocols. Of particular interest to us is the work
of Ananth et al. [1] who show how to achieve maliciously secure two-round secure
MPC in the honest majority setting for polynomial-sized circuits assuming only
one-way functions.



Background on [1]. They propose the following template: The first step is to
construct helper protocols that enable communication between garbled circuits
in the outer protocol. The helper protocols they consider are delayed-function
two-round MPC protocols, handling malicious adversaries, for two functionalities
defined below. In a delayed-function two-round MPC protocol, the functionality
is only available to the parties after the first round.

— The first functionality, parameterized by a bit v, is defined as follows: it
takes as input r; from the first party, ro from the second party and outputs
1 D re Do.

— The second functionality, parameterized by two bits (vy,v2), is defined as
follows: it takes as input a string K from the first party (interpreted as an
input wire label of a garbled circuit), three bits (r1,72,r3) from the second

party and outputs K,,oNAND (v @r,ve@uvs)-

Observe that both these functionalities can be represented by quadratic polyno-
mials over Fy and there exist two-round protocols for quadratic polynomials in
the literature (see [34]). While these protocols do not achieve full-fledged mali-
cious security, they achieve a weaker property termed as privacy with knowledge
of outputs and [1] show how this weaker property is sufficient for their goal.

The next step is to transform the inner interactive protocol into an outer two-
round protocol using the helper protocols. Since the helper protocols can only
compute restricted functionalities, they impose a restriction on the “structure”
of the inner protocol. In particular, every round of the inner interactive protocol
is forced to only perform a single NAND computation. The term conforming
protocols (originally coined by [22]) was used to described such interactive pro-
tocols.

Informally, a conforming protocol proceeds in a sequence of rounds. In every
round, a party, termed as “receiver”, obtains a global state from another party,
termed as “sender”, that encodes information about the current states of all the
parties. Every party possesses a decryption key that lets it decode only a certain
section of the global state. Once the party decodes the appropriate information,
it then performs some local computation and then re-encodes the result and
the resulting updated global state will be broadcasted to the rest of the parties,
termed “listeners”. Thus in every round, there is a sender, receiver and the rest
of the parties are listeners.

At first, it might seem unclear as to why conforming protocols should exist at
all. Luckily, an arbitrary round information-theoretically secure protocol can be
transformed into a conforming protocol. However, the transformation demon-
strated by [1] blows up the round complexity of the conforming protocol. In
particular, even if the original protocol had a constant number of rounds, the cor-
responding conforming protocol will now have round complexity proportional to
the size of the circuit being securely computed. Nevertheless, their transformation
from a conforming protocol into the two-round outer protocol for polynomial-
sized circuits is unaffected by the round complexity of the underlying conforming
protocol.



Limitations on extending [1] to IT setting. To construct maliciously secure
information-theoretically secure MPC protocols for NC! circuits, a natural di-
rection to explore is to adapt the construction of [1] to the information-theoretic
setting. The only part in the construction where one-way functions are used is
in the generation of garbled circuits. If we restrict to NC! circuits, we could
hope to use garbling schemes with perfect security [32]. These garbling schemes
have the property that the size of the wire labels for the input wires grows ex-
ponentially in the depth of the circuit being garbled and linearly in the size of
the garbled circuit.

This results in a fundamental issue in using information-theoretic garbling
schemes to replace the garbled circuits based on one-way functions in [1]: as
part of the outer protocol, every party sends a sequence of garbled circuits,
where every garbled circuit encodes wire labels for the next garbled circuit.
Recall that every garbled circuit emulates the next message function in a round
and it needs to encode the wire labels for the next garbled circuit to enable
transferring information from one round to the next. Once we use information-
theoretically secure garbling schemes, the communication complexity now blows
up exponentially in the length of the chain of garbled circuits. Since the length
of the chain is the round complexity of the underlying conforming protocol, this
results in exponential communication complexity even for NC' functionalities.

Our Approach. As a first step towards achieving our goal, we consider con-
forming protocols that do not restrict every round in the outer protocol to be
just a single NAND computation. More generally, we allow the next message in
every round of the conforming protocol to be a polynomial-size NC* circuit. We
term this class of protocols to be generalized conforming protocols. On the one
hand, the advantage of considering generalized conforming protocols is that we
can construct this in constant number of rounds for NC*! which makes it suitable
to use it towards constructing a two-round protocol in the information-theoretic
setting. On the other hand, the helper protocols designed in [1] are no longer
compatible with our notion of generalized conforming protocols; recall that since
the helper protocols in [1] were associated with quadratic polynomials, they im-
posed the requirement that every round in the conforming protocol is a single
NAND computation.

To address this issue, we design new helper protocols that are “compatible”
with generalized conforming protocols. Specifically, we require that the helper
protocols are associated with functionalities computable in NC'. By carefully
examining the interiors of [1], it can be observed that it suffices to construct
helper protocols for three-input functionalities computable in NC?'; these are
the functionalities where only three parties have inputs. Informally, the three
parties correspond to a sender party that sends a message in a round, a receiver
party that receives a message in a round and finally, a listener party that listens
to the communication from the sender to the receiver. Even though there are
multiple listeners in every round in the conforming protocol, it suffices to design
helper protocols for every listener separately. In the helper protocol, the inputs of



the sender and the receiver are their private states® and the listener’s input would
be the wire labels for its garbled circuits. Note, however, that the functionality
associated with the helper protocol is as complex as the next message function of
the conforming protocol.

As such, it is unclear how to construct helper protocols even for three-input
functionalities; in fact, if we had a two-round secure protocol for the three-
input functionality that outputs the product of its inputs, then it could be
bootstrapped to achieve two-round secure protocols for arbitrary functionali-
ties via randomized encodings [31]. In light of this, the problem of constructing
two-round secure protocols for three-input functionalities seems as hard as con-
structing two-round secure protocols for all functionalities computable in NC™.

We resolve this dilemma in two main steps:

— We first focus on a weaker goal: constructing two-round information theo-
retically secure protocols for two-input (as opposed to three-input) function-
alities.

— We then go back to our definition of generalized conforming protocols and
impose additional structure on generalized conforming protocols — without
blowing up their round complexity — to make them compatible with helper
protocols for two-input functionalities.

We start by defining and constructing helper protocols for two-input function-
alities.

Helper Protocols for Two-Input Functionalities. A two-input multiparty
functionality, as the name suggests, is a functionality where only the first two par-
ties get inputs while the rest of the parties are input-less. We consider two-input
functionalities of the following form: these functionalities & are parameterized
by two NC! functions f,G such that U(xy, 20, L, -+, 1) = G(x1, f(z2)). At
first sight, this representation may seem unnecessary since one can rewrite U as
another NC! function G’ such that U(z1, 29, L,--+, L) = G'(x1,22). However,
the functions G and f we use to express U makes a difference when we state
the security guarantees. Moreover, we require that the resulting helper proto-
col satisfies delayed-function property, meaning that the functionalities is only
available to the parties after the first round.
Informally, we require the following asymmetric security guarantees:

— If the first party is honest then no information about its input x; should be
leaked beyond G(z1,y*). Ideally, we would require y* to be the output of f
on some input x5. Here, we relax the security requirement to allow y* to not
even belong in the range of f.

— If the second party is honest then no information about its input zs should
be leaked beyond f(z2). In particular, we allow the adversary to learn the

5 Since the listener listens to the conversation, the receiver and the sender would share
a secret string in order to emulate communication over private channels (which are
necessary for information-theoretic security). This is the reason why the receiver
should also input its private state.



value f(x2) during the execution of the protocol. In addition, we only require
that the simulator extracts the implicit input (interpreted as f(z3)) and not
o itself.

Both the security requirements are non-standard and indeed, its should not be
clear in what context these two security properties would be useful. To answer
this, lets recall the structure of the conforming protocol: in every round, every
party receives a global state, decodes a portion of the global state, computes on
it and re-encodes the result. Looking ahead, when the conforming protocol is
used alongside the helper protocols, the function f would have the global state
hardwired inside its code; it takes as input private state of the party, represented
by x5, performs computation and then re-encodes the result. So the output f(z2)
denotes the resulting global state.

Let us revisit the security requirements stated above. Allowing for y* to not
be in the range of f reduces to allowing for the second party to be malicious in the
conforming protocol. We handle this by designing conforming protocols already
secure against malicious parties. Regarding the second security requirement,
revealing the value f(z3) reduces to the party revealing the updated global state.
Since a party anyways has to broadcast the entire global state in the conforming
protocol, its perfectly safe to reveal f(z2).

We now give a glimpse of our construction of two-round protocol for two-
input functionalities. Our construction is heavily inspired by the techniques in-
troduced in the work of Benhamouda and Lin [10].

— In the first round, the second party holding the input zs, sends a garbling
GC; of a universal circuit with zs hardwired inside it. The first party, holding
the input x7, receives GCy and computes another garbling GC; of a circuit,
with z; hardwired inside it, that is defined as follows: it takes as input, wire
labels of GCy with respect to input f, evaluates GCy using these input wire
labels to obtain f(x2) and finally outputs G(z1, f(z2)).

— Simultaneously, all the parties execute a secure MPC protocol for quadratic
polynomials, that takes as input wire labels of GCy from the second party,
input wire labels of GC; from the first party and finally, computes GC; input
wire labels associated with the input which is in turn defined to be the GCy
input wire labels associated with f.

At the end of the second round, every party evaluates GCq to obtain G(z1, f(z2)).

We briefly describe the simulation strategy for arguing security of the above
construction. If the second party is corrupted then the simulator extracts all the
wire labels of GCy and then evaluates GCy using the wire labels of f to obtain the
value y*. The simulator then sends y* to the ideal functionality, which responds
back with G(x1,y*). The simulator cannot verify that the second party indeed
sent a valid garbling of the universal circuit. However, this still satisfies our
security definition since the simulator is not required to extract xo but only the
value y*.

The case when the first party is corrupted can similarly be argued by design-
ing a simulator that first extracts all the wire labels of GC; and then simulates
GCy using the value f(z2).



CLC property of Generalized Conforming Protocols. As explained ear-
lier, helper protocols for two-input functionalities is as such incompatible with
our current definition of generalized conforming protocols. Recall that the rea-
son for incompatibility was that in every round of the generalized conforming
protocol there were three parties participating. To remedy this situation, we in-
troduce a new structural property for generalized conforming protocols, that we
refer to as copy-local-copy (CLC) property. Specifically, we require that a party
in every round, behaves as follows:

— Copy operation: first, every party copies the information transferred on the
communication channels onto its own private state.

— Local computation: then it performs computation on its own local state.

— Copy operation: finally, it copies the result obtained onto the communication
channel.

The CLC property effectively “breaks down” each three-input computation re-
quired in the earlier notion of generalized conforming protocol into three different
operations. Now, given a generalized conforming protocol that satisfies the CLC
property, it suffices to devise helper protocols for the above three operations.

The helper protocols for the first copy operation, and also the third copy
operation, are associated with three parties: speaker, receiver and the listener.
However, since the copy operation is a simple function, we observe that it suffices
to use helper protocols for quadratic polynomials to implement this. The helper
protocol for the local computation, however, is only associated with two parties:
the party performing the local computation and the listener. Now, we use the
delayed-function secure protocol for two-input functionalities constructed earlier
to realize helper protocols associated with the local computation operation.

Since we divide every round of the protocol into three parts, a party sends
three garbled circuits for every round of the conforming protocol, instead of just
one.

Summary. We now summarize the main steps in the construction of ma-
liciously secure information-theoretically secure multiparty protocols for NC'*
functionalities.

— First, we consider delayed-function two round secure MPC protocols for
quadratic polynomials in Section 3.1.

— Then we define the notion of delayed-function two round secure MPC proto-
cols for two-input NC! functionalities in Section 3.2. We define the security
requirements in Section 3.2. This is followed by a construction of this notion
in Section 3.2.

— In Section 4, we define the notion of generalized conforming protocols. We
state the CLC property in Definition 7.

— Finally, we present the main construction in Section 5.

Protocol over P2P Channels. Next, we focus on designing a two-round
protocol over P2P channels that achieves security with selective abort against



malicious adversaries. Recall that in security with selective abort, the adversary
can selectively decide which of the honest parties can receive the output while
the rest of them abort. However, the adversary cannot force an “invalid” output
on any of the honest parties.

To achieve our goal, we start with a two-round protocol II;, over broadcast
and P2P channels satisfying security with (unanimous) abort. A naive attempt
would be as follows: start with IT;, and whenever a party has to send a broadcast
message, he instead sends this message over P2P channels to all the other parties.
Note that the resulting protocol is over P2P channels. However, this doesn’t
work: there is no mechanism in place to ensure that a malicious party indeed
sends the same message, originally a broadcast message in Il;,, to all the other
parties over P2P channels. The protocol IT;, might not be resilient to such attacks
which would result in our resulting protocol to be insecure.

We introduce mechanisms to prevent this attack. Towards this, our idea is
to require each party to send a garbled circuit of (a slightly modified version of)
their second round next message function in I7;, in the second round of the P2P
channel protocol. This (modified) next message function has the party’s input
and randomness, and the private channel messages that the party received in the
first round of IT;, hard-wired inside its description. It additionally takes the first
round broadcast channel messages of IT;, as input. To enable other parties to
evaluate this garbled circuit, we require each party to send additive secret shares
of all the labels for its garbled circuit over private channels (in particular, each
party only receives one of the shares for each label) in the first round itself. In the
second round, each party simply reveals the appropriate shares for each garbled
circuit based on the messages received in the first round. If the adversary does
not send the same set of broadcast messages to all parties, each party will end
up revealing shares corresponding to a different label. In this case, we rely on
the security of garbled circuits to ensure that nobody (including the adversary)
is able to evaluate any of the honest party garbled circuits.

However, there are some subtle issues that crop when implementing this
approach:

— Since we want the resulting protocol to satisfy information-theoretic security,
we require the next-message function of IT;, to be computable in NC*.

— The transformation sketched above does not handle the case when IT;, sends
messages over private channels in the second round.

Fortunately, the information-theoretically secure MPC protocol over broad-
cast and P2P channels that we constructed earlier satisfies both the above prop-
erties and thus can be used to instantiate IT;, in the above approach. This gives
us a P2P channel two-round MPC protocol that achieves security with selective
abort against malicious adversaries. We present the construction of this protocol
in section 6.



1.3 Related Work

Since the initial feasibility results [37,26,9,14], a long sequence of works have
investigated the round complexity of MPC. Here, we focus on protocols in the
honest majority setting, and refer the reader to [5] for a survey of related works
in the dishonest majority setting.

Information-Theoretic MPC. The seminal works of [9,14] provided the first
constructions of polynomial-round IT-MPC protocols for general functionalities.
These results were further improved upon in [7,36,13] w.r.t. malicious corruption
threshold.

Bar-Tlan and Beaver [6] initiated the study of constant-round I'T-MPC proto-
cols. Subsequently, further improvements were obtained by [17,30,15]. The work
of [31] provided the first constructions of two and three round IT-MPC proto-
cols against t < n/3 and ¢ < n/2, respectively, semi-honest corruptions. In the
three round setting, their work was extended to handle a constant fraction of
malicious adversaries by [23]. [32] constructed constant round perfectly secure
protocols, improving upon the work of [6]. More recently, two round IT-MPC
protocols that achieve security with selective abort against ¢ < n/3 malicious
corruptions were constructed by [34] and [29]. In fact, [34] and [29], put together,
also achieve the stronger notion of security with guaranteed output delivery for
the specific case of n > 4 parties and ¢ = 1 corruptions which is not covered
by the impossibility results of [18,35]. All of these positive results are for NC!
functions; [33] established the difficulty of constructing constant-round IT-MPC
protocols for general functionalities.

We also highlight the work of [27] who provided a general compiler to trans-
form protocols over broadcast channels that achieve security with abort into
protocols over P2P channels that achieve security with selective abort. Their
transformation is unconditional, and increases the round-complexity by a mul-
tiplicative factor of three.

Computationally secure MPC. The study of constant-round computation-
ally secure MPC protocols in the honest majority setting was initiated by Beaver
et al. [8] who constructed such protocols for general functionalities based on one-
way functions. Damgard and Ishai [16] provided improved constructions based
on only black-box use of one-way functions.

Two round protocols for general functionalities against ¢ < n/3 malicious
corruptions were constructed by [34] and [29] based on one-way functions. Very
recently, Ananth et al. [1] constructed two round protocols for general function-
alities that achieve security with abort against any ¢ < n/2 malicious corruptions
based on black-box use of one-way functions. Applebaum et al. [3] and Garg et
al. [19] also achieve similar results, albeit only against semi-honest adversaries.

2 Preliminaries

We denote the statistical security parameter by k. We use the standard notion of
security with abort for multi-party computation against malicious adversaries.
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For our second result over P2P channels, we consider a weaker notion of security,
call security with selective abort. In security with selective abort, the adversary
can selective cause some honest parties to output L. Note that this is slightly
different from the standard notion of security with abort, where the adversary
can only either allow all honest parties to learn the output or cause all the honest
parties to output L.

We also consider an even weaker notion of security called privacy with knowl-
edge of outputs where the privacy of honest parties’ inputs is ensured but the
correctness of output for the honest parties is not guaranteed. We also use sta-
tistically secure garbled circuits [37] in our protocols.

3 Helper Two-round Secure Protocols

We consider two types of helper protocols towards achieving our main goal:

— First, we consider a two-round secure multiparty computation protocol for
NC! two-input functionalities; that is, only two of the parties have inputs.
We consider this notion in the delayed-function setting.

— Next, we consider a two-round secure multiparty computation protocol for
quadratic polynomials, also in the delayed function setting.

3.1 Delayed-Function Two-Round Secure MPC for Quadratic
Polynomials

A delayed-function two-round secure MPC protocol is a special case of mali-
ciously secure two-round secure MPC where the functionality is available to the
parties only after the first round. One of the helper tools we use is a two-round
secure MPC protocol for quadratic polynomials in the delayed function setting.
Such a result was already shown by Ishai et al. [34]. Formally, they prove the
following lemma.

Lemma 1 ([34]). Let n > 0 and {oyr > 0. Consider a n-party functionality
G :{0,1} x .-+ x {0,1} — Yout where Y = {(0,...,0),(1,...,1)}, and every
output bit of G is computable by an n-variate quadratic polynomial over Fy. There
s a delayed-function two-round MPC protocol for G satisfying perfect privacy
with knowledge of outputs property in the honest majority setting. Moreover, the
next message of this protocol can be represented by a O(log(n))-depth (Lous - 1)~
sized circuit, for some constant c.

Remark. The protocol of [34] only guarantees a weaker variant of privacy with
knowledge of outputs where the adversary can force different honest parties to
output different values. However if we use a broadcast channel in the second
round, their protocol achieves a stronger variant of privacy with knowledge of
outputs, where all honest parties learn the same output.
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3.2 Delayed-Function Two-round Secure MPC

The other helper tool we require is a delayed-function secure MPC protocol for
arbitrary functionalities, but where only two parties have inputs. In particular,
we are interested in the class of functionalities {F f}: each functionality Fg ¢
is parameterized by two functions G, f; it takes as input (1,22, L,...,1) and
outputs Fg r(x1,x2,L,..., L) = G(z1, f(z2)). That is, party P; gets as input
z1 and party P, gets as input x,. If the functionality Fiz ¢ were to be available
to the parties before the protocol begins then securely computing Fg, ; would
reduce to securely computing G since P5 can pre-compute f(z2) and then run
the secure protocol for G. However, we consider delayed-function setting and so
this would not work.
In terms of security, we require the following informal guarantees.

— Security against P,: unlike the standard simulation-based paradigm, in the
ideal world, the honest parties and the simulator only have oracle access to
G. In particular, the simulator only has to extract the value y (termed as
true input of Ps), interpreted as the output of f on some input xzs (also
called implicit input of Py), from the adversary.

— Security against P;: we require that the implicit input xo of P» is hidden
from P;. However, we don’t enforce that the output f(x2) is hidden from P;.
Moreover, we require the input privacy of P, to hold even if P;’s behaviour
deviates from the protocol.

In particular, we require different security guarantees depending on which party
the adversary corrupts.

Two-Input Multiparty Functionalities We consider delayed-function two-
round secure MPC protocols, where the parties determine the functionality (to
be computed on their private inputs) only after the first round. This notion is
referred as delayed-function secure MPC protocols in the literature. We describe
the class of functionalities that we are interested in. Later, we define the security
properties associated with delayed-function secure MPC protocols for this class
of functionalities.

Two-Input n-Party Functionalities. A two-input n-party functionality is
an n-party functionality where only two parties receive inputs from the environ-
ment.

Definition 1 (Two-Input n-Party Functionality). Let n, (1, 05,0 > 0. We
define an n-party functionality G to be a two-input functionality if its of the
following form: it takes as input from the domain {0,1}°* x {0,1}%2 x L x---x L
and outputs a value in {(y,...,y)},eq01e -

We are interested in a sub-class of two-input functionalities that we refer to
as specialized two-input n-party functionalities. Every functionality in this class,
on input (z1,22,Ll,...,1), first performs pre-processing on one of the inputs,
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say x2, and then performs computation on the preprocessed result and x;. The
reason why we differentiate between pre-processing and post-processing becomes
clear later on, when we define security against adversarial Ps.

Definition 2 (Specialized Two-Input n-Party Functionality).

Let n, 1,05, 0 > 0. We define an n-party functionality mapping {0,1}** x
{0,1}2 x L---x L to {(y,... Y)}tyeqoye (parameterized by a functions G and
f) to be a specialized two-input functionality if its of the following form: it takes
as input (1,2, L,..., L) and outputs G(x1, f(x2)).

Security Let Py, ..., P, be the parties participating in the delayed-function se-
cure MPC protocol. We consider three cases and define separate security prop-
erties for each of these three cases: (i) P; is in the corrupted set while P; is
not, (ii) P, is in the corrupted set while P; is not and, (iii) neither P; nor Py
is in the corrupted set. Note that we don’t consider the case when P; and P»
are both in the corrupted set because P; and P, are the only parties receiving
inputs in the protocol. We note that in all the three cases we are required to
handle adversaries that deviate from the behavior of the protocol.
We define the following set systems.

~ & ={TC{P,....,P}:|T| < |2],PL €T, P, ¢ T}
~ & ={TC{P,....,P.}:|T| < |2|,P ¢ T,P, €T}
— Sy ={TC{P,... P} |T| < |2 P ¢ T P ¢ T}

We now handle the three cases below. Denote S to be the corrupted set of parties.
Let 1 and x5 be the inputs of P; and P, respectively.

Case 1. S € §;. To define the security property for this case, we consider two
experiments Expt, and Expt;. In Expt,, the honest parties and the adversary ex-
ecute the protocol (real world). The output of Expt, is the view of the adversary
and the outputs of the honest parties.

In Expt,, the corrupted set of parties execute the protocol with the rest of
the parties, simulated by a PPT algorithm Sim. In the first round, the simulator
does not get any input and after the first round, the simulator gets as input
f(x2), where Fg s is the n-party functionality associated with the protocol. The
output of Expt; is the view of the adversary and the output of the simulator.

We require that the output distributions of the experiments Expt, and Expt,;
are identically distributed.

Definition 3 (Security Against S;). Consider a delayed-function n-party
protocol II for a class of specialized two-input n-party functionalities {Fg s}
mapping {0,130 x {0,1}2 x L--- x L to {(y,... 7y)}ye{0,l}f" We say that I1
is secure against Sy if for every adversary corrupting a set of parties S € Sy,
there exists a PPT simulator Sim such that the output distributions of Expty and
Expt, are identically distributed.
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Case 2. S € §;. We handle this case using the real world-ideal world paradigm.
In the real world, the corrupted parties and the honest parties execute the proto-
col. The output of the real world is the view of the adversary and the outputs of
the honest parties. In the ideal world, the honest parties and the simulator have
oracle access to the n-party functionality G ®. The output of the ideal world are
the outputs of the honest parties and the output of the simulator.

More formally, we can define the real world process Real™™ and the ideal
world process Ideal®™ % in particular, as in the definition of privacy with knowl-
edge of outputs property, the simulator directs the trusted party to deliver out-
puts, of its choice, to the honest parties.

We define security of delayed-function secure MPC protocols against Ss.

Definition 4 (Security Against S;). Consider a delayed-function n-party
protocol II for a class of specialized two-input n-party functionalities {F¢ ¢}
mapping {0,1}* x {0,1}%2 x L--- x L to {9} yeo1ye - We say that
1T is secure against So if for every adversary A corrupting a set of parties
S € 8, there exists a PPT simulator Sim such that the output distributions
of ReaIA’F(xl, ceoy ) and IdeaISim’G(:cl, ...,y are identically distributed.

Remark 1. Since the simulator only has access to the ideal functionality of G
(and not F') in the ideal world, this means that the simulator is required to
only extract the implicit input (and not the true input) of the adversary. In
particular, if f is the identity function, then this security notion implies the
standard simulation-based security.

Case 3. S € §3. In this case, we require the protocol to satisfy privacy with
knowledge of outputs property. Formally, we can analogously define the real
world process Real*" and ideal world process Ideal®™ ¥ We define the security
property below.

Definition 5 (Security Against S3). Consider a delayed-function n-party
protocol II for a class of specialized two-input n-party functionalities {F¢ ¢}
mapping {0,1}* x {0,1}%2 x L--- x L to {9} yeo1ye - We say that
1T is secure against Ss if for every adversary A corrupting a set of parties
S € 83, there exists a PPT simulator Sim such that the output distributions
of ReaIA’F(xl, ey y) and IdeaISim’F(xl, ..., &y) are identically distributed.

We are now ready to formally define a delayed-function secure MPC protocol
for specialized two-input functionalities.

Definition 6. Consider a delayed-function n-party protocol II for a specialized
two-input n-party functionality. We say that IT is secure if II is secure against
81 (Definition 3), secure against So (Definition 4) and secure against Sz (Defi-
nition 5).

5 We emphasize that the parties have oracle access to G and not F.
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Construction We prove the following lemma.

Lemma 2. Let n,{y,02,¢ > 0. Consider a two-input n-party functionality G :
{0,1} x {0,1}2 x L x---x L — {(y,... Y)byeqo1ye computable by a depth-d
circuit of size s. There is a delayed-input two-round MPC protocol for a spe-
cialized two-input functionality G (Definition 2) satisfying perfect privacy with
knowledge of outputs property in the honest majority setting. Moreover, the next
message function of the every party in the protocol can be represented by a circuit
of depth O(d 4 log(s)) and size s°2¢(@+198(5)) - for some constant c.

Proof. The main tools used in the construction are a perfectly secure garbling
scheme and a secure MPC protocol for quadratic polynomials in the honest ma-
jority setting satisfying privacy with knowledge of outputs property (Lemma 1).
We denote the garbling scheme by (Gen, Garb, Eval). We denote the secure MPC
protocol for quadratic polynomials by Ilquad-

We construct a delayed-function secure MPC protocol for a class of spe-
cialized two-input functionalities {F s}, each functionality implementable by a
circuit of size s and depth d. Our construction is heavily inspired by the tech-
niques introduced in the work of Benhamouda and Lin [10]. Suppose P; has
input x1, P has input x5 and the rest of the parties don’t receive any input.
The protocol proceeds as follows: set the statistical security parameter, k = 1.

Round 1.

- P, generates Gen(1%, 1% 1%) to obtain (gk,, K}), where L’ and d’ are defined
below. It also generates the first round messages of IIqQuad. In I1qQuad, its input
is K} It sends the first round messages of Ilquaq to other parties.

- P, generates Gen(1¥,1%",14") to obtain (gk,, K?), where L” and d” (defined
in first of Round 2). It also generates the first round messages of ITquaq- It
also generates a random string R (we define its length below). In IIqyad, its
input is (K2 o R). It generates Garb(gks, U,,) to obtain GCq, where U,, is a
universal circuit with xo hardwired in it, it takes as input a circuit of size
s, depth d and outputs a single bit. Set |R| = |GCz|. Note that U,, can be
implemented by a circuit of size L” = O(s) and depth d” = O(d). It sends
GCq @ R along with the first round messages of Ilqua4 to other parties.

- P;, for i # 1,i # 2, generates the first round messages of I1q,aq4. It sends the
first round messages to other parties.

Round 2. At the end of round 1, the parties receive the function f as input.

- P; generates the second round messages of IlqQuad. The protocol IIquag is as-
sociated with a function that takes as input (K}, K%, L,..., 1) and outputs
K! [K% [f] o R] 7. We note that this function can be implemented by a system

" Recall that the notation K} [K% [f] o R] refers to the input wire labels for GC; cor-
responding to the input (K?%[f] o R). Moreover, K?[f] refers to the input wire labels
for GCz corresponding to the input f.
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of quadratic polynomials over Fo. It generates Garb(gk,,G) to obtain GCy,
where G (with GC2 @ R hardwired) is defined as follows: it takes as input
(K2[f], R), computes y < Eval(GCqz, K%[f]) and finally it outputs G(z1,y).
G can be implemented by a circuit of size L' = O(s) and depth d’ = O(d).
P sends the second round messages of ITqu.q along with GCjy.

- P, generates the second round messages of I1q .4 and sends them to other
parties.

- P, for i # 1 and i # 2, computes the second round messages of Ilq,aq4 and
sends them to other parties.

Reconstruction. All the parties compute the output of Ilquad to learn the
output K![K?[f]]. They then evaluate GC; to obtain G(z1, f(x2))

If any point in time, if one of the parties abort, the rest of the parties abort
as well. This completes the description of the protocol.

We now argue security. However, we refer the reader to the full version of
our paper [2] for more details on the security, correctness and efficiency of this
construction.

Security. We consider the following cases. Let .S be the set of parties corrupted
by the adversary.

P, € S and P ¢ S. The simulator is defined as follows:

— Round 1.
e Simulating on behalf of P»: Execute the simulator of I1qu.4 to obtain the

first round messages of I1quaq. Generate R ﬁ {0, 1}‘GC2|. Send the first
round messages of IIq,.q along with R, intended for the parties in S, to
the adversary.

e Simulating on behalf of parties in S\{P»}: Execute the simulator of
I1quad to obtain the first round messages of IIquad. Send the first round
messages, intended for the parties in .S, to the adversary.

Also, extract the input K} of Py in IlqQuad from the first round messages of
HQuad~

— Round 2. At the end of Round 1, the simulator receives (f,¥y) from the
environment.

e Simulating on behalf of Py: Execute the simulator Simge of the garbling
scheme (Gen, Garb, Eval); generate (G/iC\g,KQ) + Simge (1%, 0(U,,), 7)),
where ¢(U,,) is the topology of U,. Execute the simulator of ITqu.d®,
with the output of Ilqua4 set to be K} [K% oR® €\C2:|, to generate the

second round messages of IIqu.q- Send the second round messages of
IIQuad, intended for the parties in S, to the adversary.

8 By the privacy with knowledge of outputs property, the simulator of ITqu.q directs
the ideal functionality to deliver outputs (of its choice) to honest parties. However,
the outer simulator (i.e., the simulator of ITprunc), which is running the simulator of
Ilquad as a subroutine, discards these outputs.
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e Simulating on behalf of parties in ?\{Pg}: Similar to simulation on behalf
of Py, Execute the simulator of IIqua4, with the output of Ilqu.4 set to

be K} [K% oR® G/\CQ , to generate the second round messages of IIqQuad-

Send the second round messages of IIquad, intended for the parties in S,
to the adversary.

— Reconstruction. Receive the second round messages of Ilquag from the
corrupted parties in S. Also receive GC1 from Pj. Reconstruct the output
K1 from the second round messages of ITquag. Evaluate Eval (GCl, ) to

obtain b. Output b.
If at any point in time, the adversary aborts, the simulator aborts as well.

P, € S and P; ¢ S. The simulator is defined as follows:

— Round 1.
e Simulating on behalf of P;: Execute the simulator of I1g.4 to obtain the
first round messages. Send the messages intended for the parties in S to
the adversary. B
e Simulating on behalf of parties in S\ P;: This is identical to the simula-
tion on behalf of Pj.
Receive the first round messages of I1q,.q from the adversary. Add1t1ona11y
receive R (masked garbled circuit) from P,. Extract the input (K2 o R) of
P» from the first round messages of IIqu.d generated by Ps.
— Round 2. At the end of first round, the simulator receives f from the

environment. Compute Eval (G/\Cg7 I/(\%[f]) to obtain 7, where GC, =R R.

Send ¥ to the ideal functionality to receive b.
e Simulating on behalf of P;: Execute the simulator Simge of the garbling
scheme (Gen, Garb, Eval); generate (GCl, K! ) — Simgo (1%, (@), b). Ex-

ecute the simulator of ITquad, with the output of ITquad set to be Ki,
to generate the second round messages of I1qua4. Send the second round
messages of I1quaq along with the simulated garbled circuit G/\Cl7 intended
for the parties in .S, to the adversary.

e Simulating on behalf of parties in E\Plz Execute the simulator of I1qyad,

with the output of Ilqu.4 set to be K}, to generate the second round
messages of I1quad- Send the second round messages of IIq,aq intended
for the parties in S to the adversary.

— Reconstruction. Receive the second round messages of IIquad from the
corrupted parties in .S. Reconstruct the output I/{\} from the second round
messages of I1q,a4. Evaluate Eval (C—TC\l,I/(\}> to obtain &'. Direct the ideal
functionality to deliver the output Y to the honest parties. Output of the

simulator is the view of the adversary.
If any point in time, the adversary aborts, the simulator aborts as well.
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P, ¢ S and P» ¢ S. The simulator is defined as follows:

— Round 1.
e Simulating on behalf of P;: Execute the simulator of IIqu.4 to generate
the first round messages; send the messages intended for the parties in
S to the adversary.
e Simulating on behalf of P»: Execute the simulator of IIq,.4 to generate
the first round messages; send the messages intended for the parties in

S to the adversary. Also, send a string R & {0, 1}/6Czl,
e Simulating on behalf of parties in S\{P;, P,}: This is identical to the
simulation on behalf of P;. R
— Round 2. The simulator receives the value b from the ideal functionality.
e Simulating on behalf of P;: Execute the simulator Simgc of

(Gen, Garb, Eval); compute (C-TC\l,I/(\l) + Simgc <1k,gp(@),3). Execute

the simulator of I1gua4, with the output of I1q,.q set to be I/(\l, to generate
the second round messages; send the messages intended for the parties
in S to the adversary.

e Simulating on behalf of P»: Execute the simulator of Ilqu.d, with the

output of ITquag set to be K1, to generate the second round messages;
send the messages intended for the parties in S to the adversary.
e Simulating on behalf of parties in S\{P;, P,}: This is identical to the
simulation on behalf of P.
— Reconstruction. Receive the second round messages of IIquad from the

corrupted parties in S. Reconstruct the output K} from the second round
messages of I1quaq. Evaluate Eval (C—TC\l,K}) to obtain &'. Direct the ideal

functionality to deliver the output Y to the honest parties. Output of the
simulator is the view of the adversary.
If any point in time, the adversary aborts, the simulator aborts as well.

4 Generalized Conforming Protocols

The notion of conforming protocols was first defined in [22] as an intermediate
tool to construct two-round secure MPC from two-round oblivious transfer. Their
notion as-is is insufficient to achieve our goal of constructing an information-
theoretic multiparty computation protocol secure against malicious adversaries.
To get around this, we define the notion of generalized conforming protocols.

Syntax. An n-party generalized conforming protocol & for an n-party func-

ie[n]}je[t-'rl] 7P), Where n
is the number of parties in the system, N denotes the size of the global state
Z, &, ; is a set of actions and P is a set of (2 (}) + n) partitions of [N]. We
denote P = (S1,..., S0, {Ti,,is }ir ise[n] isis» U). One can think of S; as the set

tionality F' is specified by the parameters (m N, {2, ;}
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of locations reserved for private computation for party P, T3, ;, as the space al-
located to party F;, for communicating private messages to party P;, and U as
the space allocated for storing broadcast messages of each party. A generalized
conforming protocol proceeds as follows. Let x1, ..., x, be the respective inputs
of all parties.

— Pre-processing Phase. For each i € [n], party P; defines st; to be the list:
st i= (Rt Yk € S Ui T Uy T ) where Vk € 85U,y Th it sam-

ples each bit Rj uniformly at random. Compute an N-sized list Z»! as
follows: ) .
e For each k € [N, initialize Z;" = 0. Here Z}'" denotes the k" bit of Z"!
e Compute {(zx,k) : k € L;} + Pre(1¥,i,x;,st;) where L; is a subset of
Si Ui#i’ Ti,i/ .
e For every k € L;, set the k" location fo’l in Z»! to have the value z.
o For each i’ € [n]\ {4}, it sends (Ry : Yk € T; ;/) to party P, over private
channels.
o It broadcasts Z%! to all other parties.
We require that there does not exist k& € [N] such that for any i1 # i,
the set output by Pre(1% 4, z; ,st; ) contains (-, k) and the set output by
Pre(1%, iy, x;,,st;,) also contains (-, k). This means that there is no location
in the global state Z that gets overwritten twice.
At the end of the pre-processing phase, P; receives (Ry : Vk € Ty ;) from all
other parties Py (i’ € [n] \ 7). It includes this as a part of st;. It retains st;
as private information.
— Computation Phase For each i € [n], party P; sets Z' = @) | Z"' For
each j € [t + 1], it proceeds as follows:
e Parse the action @; ; as (L ;, C; j,LY)).
o If 5 7& 1, for {(k,zk)}w,#’ kGLiO, iy update kth location in Z*J with
value z,. Call the resulting state Z/.
o Take as input values in the locations of Z7 specified by the set Lil) ; along
with st;, compute C; ; and update the locations in 77 specified by the
set L%. Call the resulting state Z»7*1,
e Send all the updated values and locations {(k,zk)}keL?j to all other
parties. Y
As before, we require that there is no location in Z, where two parties si-
multaneously write to this location in any given round. At the end of all the
rounds, the output of the computation for party P; is in the last £} locations
of Sz
— Reconstruction. For every i € [n], party P; unmasks the last £ locations
of S; to learn the output.

In terms of correctness, we require that at the end of the above protocol, the last
£} locations of S; contains masked (y;), where F(z1,...,25) = (y1,...,Yn). Since
a generalized conforming protocol is a special instance of a secure multiparty
computation protocol, the security notions for generalized conforming protocols
can be defined analogously.
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Definition 7 (CLC Property). An n-party generalized conforming protocol,

specified by the parameters (n N, {®;;} P), for an m-party func-

i€[n],je[t+1]
tionality F' satisfies CLC property if the following holds: every ®; ; can be parsed

s (Lf LI_> U L“_7 C.j, LO = LO_’ U LO‘_). We require that C; j, for

everyi € [n], ] € [t+ 1\ {1} (that is, all rounds except the first), is defined as
follows: it takes as input values in the locations of Z specified by the locations
L{; =L{7 UL[% and state st;,

— Copy Operation: For every k € L!> j » there exists a unique kK e LZIT C Si,
copy zr © Ri ® Ry to (k’)th location in Z, where zi is the value in the
kM location of Z. Note that Ry, Ry are values in the list st; and hence,
L7 CUUiepp iy Toir Usrepap iy Tor i

— Local Computation: Take as input a set of values in Z, indexed by a
subset of S;, st;, and compute a polynomial-sized circuit on these values.
The output of this computation is written to a subset of locations, indexed
by S;, in Z.

— Copy Operation: For every k' € L,L-OJ-_> C S;, there exists a unique k €
LZO;_, copy 2y D Ry & Ry to k" location in Z, where zy, is the value in the
k" location of Z. As before, Ry, Ry are values in the list st; and hence,

o]
Ly € Ulicpp iy Lo

For the first round, we require C, 1 to be defined as follows: it takes as input Z?,
computes a circuit C; 1 on Z! to obtain {Uk}keLO and finally, it updates the kth
location in Z? with the value z, = v, & Ry, for every k € Ll’

Lemma 3. Let n,t1,0,,...,0,, 0, > 0. Consider an n-party functionality F :
{0,135 x - x {0, 1} — {0,1} x--- x {0,1}f» computable by a depth-d circuit
of size s. There is a maliciously secure t-round generalized conforming protcol
for F, for some constant t, satisfying CLC property with perfect security in the
honest majority setting. Moreover, the next message function of every party can
be implemented by a circuit of depth O(d + log(s)) and size s¢2¢(4+198()) - for
some constant c.

We defer the proof of this lemma to the full-version of our paper [2].

5 Two-round MPC over Broadcast and P2P: Security
with Abort

In this section, we show how to construct a two-round MPC in the honest ma-
jority setting and satisfying statistical malicious security.

Lemma 4. Let n,ty,0,,... 0,0, > 0. Consider an n-party functionality F :

{0,139 5 - x {0, 1} — {0,1} x---x {0, 1}%» computable by a depth-d circuit
of size s.
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Fix a statistical security parameter k > 0. There is a malicious two-round
MPC protocol for F with negl(k)-statistical security in the honest majority set-
ting, for some negligible function negl. Moreover, the computational complezity
of this protocol is polynomial in s and exponential in d.

Construction. Let F/ = (F,7) be an augmented single functionality that
computes F' along with a multi-key MAC 7 on the output of F'. At a high level,
a multi-key MAC corresponding to n keys allows each party to locally verify
the MAC using their own key. We give a full definition and construction of this
primitive in the full version of our paper. We list the ingredients for our two
round MPC construction:

— A t-round Generalized Conforming protocol for the augmented functionality
I’ guaranteed by Lemma 3. Denote this by ITgconf. Let IIgconf be parame-

terized by (n, NAP: 5} ey jer] ,P).

Delayed-function two-round secure n-party MPC for quadratic polynomials,

as guaranteed by Lemma 1.

— Delayed-function two-round secure n-party MPC for specialized two-input
functionalities, as guaranteed by Lemma 2.

Information-theoretic garbling scheme (Gen, Garb, Eval).
A multi-key MAC scheme (KeyGen, Sign, Verify).

We now describe a two-round secure MPC protocol for F.
Round 1.

— Generation of Initial Global State: For every i € [n], the it" party
samples a key K; for the mult-key MAC scheme. It sets it’s input to =} =
(24, K;). Tt then computes the pre-processing phase of ITgconf- In particular
it does the following: it defines st; := (Ry : Vk € S; Ui#, T; i U#i, Ty i),
where Vk € S; Ui#,, it samples the bit Ry uniformly at random. It computes
Pre(1X,i, 2}, st;) to obtain the set {(z1,k) : k € L;}. It computes a N-sized
list Z*' as follows: initialize Z*! to consist of only zeroes. It sets the k'
location in Z%! to have the value z;. Broadcast Z*! and sends (Ry : Vk €
T; ) to party Py for each i’ € [n] \ 7 over a private channel.

— Generation of Garbling Wire Labels: (gk; ;,K;1) < Gen(1*, 1% 1),
where L is the number of leaves and d is the depth of the formula in Figure 1a.

— For every j € [t + 1]\{1}, the i'" party computes the following:
- (gk; jlcopyl], K; j[copyl]) < Gen(1*,1%,1%), where L is the number of
leaves and d is the depth of the formula in Figure 1b.

- (gk; j[copy2], K; j[copy2]) < Gen(1%,1%,19), where L is the number of
leaves and d is the depth of the formula in Figure 2b.

— First Round Messages of Delayed-Function MPC for Quadratic
Polynomials: All the parties participate in O(n3t) executions of delayed-
function two-round secure n-party MPC for quadratic polynomials, as guar-
anteed by Lemma 1. Fach of these instantiations are denoted as follows:
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e For every i1, € [n] and iy # ia, the input of the i'" party in
IQuadli1, i2, 1, 1] is the following:

« If i = iy then the i** party inputs {vg}rero , {Rk}rro 19, where
i1, i1,

1
Vg o is the output of circuit Cj, 119 on Z!, as defined in the
keLy | 1,
i
definition 7.

x If i = iy then the i'" party inputs K, a[copyl] .

% If i # i1,1 # i then the i'" party doesn’t have any input.
Denote IlqQuad[i1, 2, 1,1].msgy ;, ;. to be the first round message of
IIQuadli1, iz, 15, 1] sent by the (i4)!" party to the (i5)*" party. We don’t
require that i4 or i5 be distinct from i,i2. We define similar notation
for the other Ilqua4 instantiations. Let the total randomness used by the
ith party in all these executions be Ré)'

o {Iquadli1,i2,%3, 7, 1] }iy igen] ii2is,iscint1] jE[t4+1\{1}
For i1,i3 € [n],i1 # i3,i2 € [n+ 1], € [t + 1]\ {1}, the input of the i’
party in I1quad[i1, i2, i3, j, 1] is the following:
s If i = iy, then the i*" party inputs {Rj}res,,

* If i = iy = ig, then the i*" party additionally inputs
HRe trer,, o Yiremn(1y-

% If i = iy # i1, then the i'" party inputs {Ri}rer, ., -
If 49 = n + 1, then party P;, has no input. This corresponds to the
copy operations from locations in U to locations in S;; .

x If i = i3 then the ' party inputs K, ;[local]

¥ If i # iq,4 # 42,4 # i3 then the i*" party doesn’t have any input.

o {IQuadli1, @2, J; 2] }iy sisenl in iz, jE[\{1}
For iy,ie € [n],iy # i2,5 € [t] \ {1}, the input of the ** party in
I Quadi1, 92, 7, 1] is the following:
* If i =iy, then the i*" party inputs {Ri brres;, s
{Rk}k}EU Ui’E[n]\{il} T;

1.4
x If i = iy then the i" party inputs K;, j11[copyl]

« If i # i1,4 # io then the i*" party doesn’t have any input.

9 Recall that LY ; consists of a subset of locations in S;, Ui e firy Lo and U and
the locations in U are not a part of st;,. But since Ry is not a part of st;s for any
k € U and i’ € [n]. Hence this is equivalent to every party setting R = 0 for all
keU.

10 Note that the only values from Z' that 6i1,1 computes on are known to P;, in the
first round itself. Hence even if it does not know the entire value of Z' in the first
round, values {Uk}keL?l | can still be computed.
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The functionalities associated with each of these protocols are determined
in the second round.

First Round Messages of Delayed-Function MPC for Two-Input
Functionalities: All the parties participate in O(n?t) executions of delayed-
function two-round secure n-party MPC, as guaranteed by Lemma 2. De-
note these instantiations to be {IIpruncli1, @2, j]}i, iseln],jeft+1)\{1}- For ev-
ery iy,ip € [n] and iy # 2,5 € [t + 1]\ {1}, the input of i*" party in
ITprunclin, i2, j] is the following:

e If i =i then the i'" party inputs K;, ;[copy2].

e If i = iy then the i*" party inputs {Rj}res,, -

o If i +# iy, # i then the i*" party doesn’t have any input.
Denote IIppunclit, iz, j].msgy ;_,;» to be the first message of IIprunc[i’, j] sent
by the i*" party to (i")!" party. Let the total randomness used by the i

party in all the executions be R, .

Round 2.

Compute Joint Global State: All the parties compute Z' = @B, VA

Updates Private State: It updates st; to include (Ry, : Vk € T}y ;) received
from party Py (Vi’ € [n]\ ¢) in the first round.

Generate Input Wire Labels for First Garbled Circuit: The i** party
computes (GC; 1, K; 1) < Garb(gk; 1, C; 1), where C; ; is defined in Figure 1a.
Let K; 1 [Z'] be the set of wire keys corresponding to the input Z*.

Generate Garbled Circuits for every round of Generalized Con-
forming Protocol: For every j € [t + 1]\{1}, the i*" party computes:
e (GG, j[copyl], K; j[copyl]) « Garb(gk, ;[copyl], C; jlcopyl]), where
C;,;[copyl] is defined in Figure 1b.

o (GC, j[local], K; j[local]) <— Garb(gk; ;[local], C; j[local]), where C; ;[local]
is defined in Figure 2a.

o (GC,; j[copy2], K; j[copy2]) « Garb(gk; ;[copy2], C; jlcopy2]), where
C;,;i[copy?2] is defined in Figure 2b.

The i*" party broadcasts the following message:
(GCM, K1 [2'],{GC; j[copyl], GC; ;[locall, GC, ; [Copy2]}je[t+1]>

Evaluation. To compute the output of the protocol, each party P; does
the following:
e For each i’ € [n], let K/ 1[Z'] be the labels received from party Py at
the end of round 2.

e Obtain For each i’ € [n], compute Eval(GC; 1, K, 1[Z']) to obtain labels
in K/ 2[copyl] corresponding to Zi/’z[copyl] and second round messages
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{1 Quad[i1,i2, 1, 1]-mSgs i1 yir Yiy g ir i €ln) in£is- Use these second round
messages to reconstruct the remaining labels in K,/ o[copyl] correspond-
ing to {(k, 2k) byir i, keLY, -

e For each j from 2 to (¢t 4+ 1) do the following:

*

For each i’ € [n], compute Eval(GCys ;[copyl], Ky j[copy1][Z*" 7 [copyl]||
{(k, 28) Yz, kGL?ﬁj,l]) (if j = 2,L9%_, = LY ;) to obtain
labels in K/ j{local] corresponding to Z*+/[local] and second round
messages {I1Quad|i1, 2,93, J, 1]-MSEa i1 i iy i it it €[n) ir is,is €[n+1]-
Use these second round messages to reconstruct the remaining labels
in K/ j[local] corresponding to {(k, 2&) }yir 2, kel -

For each i’ € [n], compute Eval(GCy j[local], K ;[local][Z* 7 [local] |

{(ks 2k) Yyinzir, perze |) to obtain labels in K/ ;[copy2] correspond-
bl ill,j

ing to Z"[copy2] and second round messages

{IIpruncli1, iz, J 1]-m5g2,i’—>i”}i1,i2,i’,i”€[n],i17éi2-

Use these second round messages to reconstruct the remaining labels

in K; j[copy2| corresponding to {(k, zx) }vir it kes,, -

For each i’ € [n], if (j # t+1), compute Eval(GC,: ;[copy2], K,/ ;[copy2]
[Z* 7 [copy2]|| {(k, 2k) by -z, kes,,]) to obtain labels in K/ ;11 [copyl]
corresponding to Zi/’j“'l[copyl] and second round messages
{IIQuadli1, i27, 1]-MSga s i Yiy in it i €[] in i

Use these second round messages to reconstruct the remaining labels

in K/ j[local] corresponding to {(k, zk) by 2y geros -
) i -1

If j =t+ 1 compute Eval(GCy ;[copy2], K,/ ;[copy2] [Zi’,j [copy?]||
{(k; Zk)}vi”géi’, ’Cesi//]) to Obtain Zfzn

e Use st; to unmask the last ¢; locations of S; in Zy;, to compute the
output (y, 7). Use key K; and the verification algorithm of the multi-key
MAC scheme to verify if 7 is a valid multi-key MAC on y. If it verifies,
output y, else output L.

We defer the security of this protocol to the full-version of our paper [2].

6 Two-Round MPC over P2P: Security with Selective
Abort

In this section we describe a general compiler to obtain a two-round information-
theoretic MPC protocol satisfying malicious security with selective abort over
point-point channels from any two-round information-theoretic MPC satisfying
security with abort against malicious adversaries.

24



Input: Z'
Hardwired Values: action &;,1 = (L, C;,1,LY,), state st;, wire labels K; »[copyl]

Parse @m = (Lz{h Cz,l, L?l)

Compute éi,l, where (A],L,l is the circuit associated with C; 1 (see Definition 7), on the
values in Z' indexed by Lfyl along with st;. The output of the computation is written
to locations in Z* indexed by L?I. Call the resulting state Z**[copy1].

The input to Cj 2[copyl] is of the form <Z’ 2[copyl], {(k, zx Vv, kero > Thus, the
il1

wire labels K; 2[copyl] can be divided into two parts: the first part corresponds to
Z"?[copyl] and the second part corresponds to {(k, 2i) byir 4, keLO
, 9

For every 41,42 with i1 # i2, compute the second round messages of ITquad[i1, 22,1, 1].
The n-party functionality associated with ITquad[i1, 2,1, 1] is Qi;,is,1,1, defined below.
The (i1)"" party has input {Uk}keLO s {ARR}eesi U gpupy iyy Toy o £hE (i)™
party has input K, 2[copyl], the rest of the parties don’t have any input and
the output of this function are the labels in K;, 2[copyl] corresponding to
{(k, Rr, ® vi)}, for every location k € Lﬁyl, recall that LO 1 is the set of the

locations written to at the end of first round in the conformlng protocol.
Output the second round messages of all these protocols. Also, output the labels in
K, »[copyl] with respect to updated state Z"?[copy1].

(a) Description of Cj 1

Input: (Zi’j[copyl], {1k 20) bz, KeLO ) (If j =2, then LYT =LY ))

Hardwired Values: action &; ; = (L{ ;, C; ;, LY,), state st;, wire labels K; ;[local].

7,59

For every i’ # i, every k € LY j—1, update the E*™ location in Z*7[copy1] with the value
2g. Call the resulting state Z?[copyl]. v

Compute the first copy operation of ®;; on the global state Z7 [copyl]. Call the resulting
state Z*7[local].

The input to C; j[local] is of the form (Z” [locall, {(k, 2&) byir s, keLZIC) Thus, the wire

labels K; j[local] can be divided into two parts: the first part corresponds to Z*[local]
and the second part corresponds to {(k, z) by ;. KeLL

For every 41,43 € [n] with i1 # i3 and i2 € [n+ 1], computc the second round messages
of Ilquad[i1,%2,1%3, J, 1]. The n-party functionality associated with IIquad|i1, 2,13, 7, 1] is
Qi1,i2,i3,j,17 defined below.

The (i1)*" party has input {Rk/}krgs the (i2)"" party has input { Ry }rer;

19,11
Yirem iy and if
ia = n+1, the (i2)"" party has no input), the (i3)"" party has input K, ;[local],
the rest of the parties don’t have any input and the output of this function
are the labels in K;, j[local] corresponding to {(k’, Ry & Rk @ zk)}, for every
location k € L and k¥’ € L{; such that &’ is the unique location associated
with k as guaranteed by Definition 7.
Output the second round messages of all these protocols. Also, output the labels in
K ;[local] with respect to updated state Z"/[local].

(if 41 = i2,, the i{" party additionally hdb input {{Rk}kgn1 o
)th

(b) Description of Cj j[copyl], for j > 1.

Fig. 1: Descriptions of C; 1 and C; ;[copyl] for j > 1
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Input: (Zi*j[local], {8, 26) bir i, keL’ﬁ)
i3
!, Cij, ij), state st;, wire labels K; ;[copy2].

Hardwired Values: action &; ; = (L; j,

— For every i’ # i, for every k € Lffj, update the k" location in z' [local] with the
value 2. Call the resulting state Z[locall.

— Compute the local operation of ®;; on the global state Z’[local]. Call the resulting
state Z" [copy?2].

— The input to C; j[copy2| is of the form (Zi‘j [copy2], {(k, 2k) by s, kes“). Thus, the
wire labels K, ;j[copy2] can be divided into two parts: the first part corresponding to
Z"I[copy2] and the second part corresponding to {(k, zk)}vl,#y res,

— For every 41,42 with 41 # 42, compute the second round messages of ITprunc|i1,i2, j].
The n-party functionality associated with ITprunc[it, iz, j] is DFj; i,,;, defined below.

The {" party has the input K;, ;[copy2], the 4" party has the input {Rk}kgs,2 ,
the rest of the parties don’t have any input and the output of the function
is computed as follows: compute the local operation of ®;, ; on the global
state Z’[local] and the output of the function are the labels in K;, ;[copy2]
corresponding to {(k, zx)}, for every location k € S, .
Output the second round messages of all these protocols. Also, output the labels in
K j[copy2] with respect to updated state Z"’[copy2].

(a) Description of C; ;[local]

Input: (Zz’j [copy2], {(k, Zlc)}vz'/;gl" k:631,)
Hardwired Values: action &; ; = (L, C; ;, LY

e 4,5/

state st;, wire labels K1 j[copyl].

— For every i’ # i, for every k € S;/, update the k*" location in VAR [copy2] with the
value vg. If j # t + 1, call the resulting state Z7[copy2], otherwise call the resulting
state Zyin.

— If j =t +1, output Zyn, else continue to next step.

— Compute the second copy operation of ®;; on the global state Z’[copy2]. Call the
resulting state Z*7 ! [copyl].

— The input to Cjjyi1[copyl] is of the form (Zerl[copylL{(k,zk)}\ﬁ,#i_ keLO H).
» k€LY

Thus, the wire labels K ;+1[copyl] can be divided into two parts: the first part corre-
sponding to Z"7 1! [copyl] and the second part corresponding to {(k, zk)}w,#,Lq -

— For every 41,42 with i1 # i2, compute the second round messages of IIquad[i1, ig;j, 2].

The n-party functionality associated with ITquad[i1, %2, 7, 2] is Qi ,is,j,2, defined below.
The (i1)"" party has input st;, the (i2)'" party has input K, j+1[copyl], the
rest of the parties don’t have any input and the output of this function are
the labels in K, j41[copyl] corresponding to {(k, Rx @ Rk @ zx)}, for every
location k € LY} and k' € L{) 7 such that &’ is the unique location associated
with k as guaranteed by Definition 7.

Output the second round messages of all these protocols. Also, output the labels in

K, j+1[copyl] with respect to updated state Z*7*![copy1].

(b) Description of Cj j[copy2].

Fig. 2: Descriptions of C; j[local] and C; j[copy2]
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Theorem 3. There exists a general information theoretic compiler that trans-
forms any two round maliciously secure MPC protocol (whose second round mes-
sages are computable in NC') over broadcast and private channels that achieves
security with abort into a two-round protocol over private channels that achieves
selective security with abort against malicious adversaries.

Building Blocks. We use the following ingredients in our construction. A
two-round MPC II, in the honest majority setting satisfying perfect malicious
security. We additionally want the second round next-message function of each
party in this protocol to be implementable using an NC! circuit from Section 5.
Information-theoretic garbling scheme (Gen, Garb, Eval).

Protocol. Let P = {Py,...,P,} be the set of parties in the protocol. Let
{z1,...,2,} be their respective inputs and r1,...,7, be their respective ran-
domness used in the underlying protocol II. Let k be the statistical security
parameter.

Round 1. For each i € [n], party P; does the following in the first round.

— Compute the first round messages of I1.
(I.msg, ; g, {I1.msgy ; ,;}iem)) = I (1%, 24 r;) where I is the first
round next message function of the protocol II.
Il.msg, ;_, is the message that is broadcast by P; in the first round of /T
and II.msg; ;_, ; is the message that is sent to party P; over a private channel.

— Computes (gk;, K;) < Gen(1¥,17,19) where L is the number of leaves and
d is the depth of the second round next message function of I as defined in
the next round. We parse K; as (K{,, K} y,...,K), K} )

— Compute shares {{Kﬁg}je[n]}[€[L]7b€{0’1} such that for each ¢ € [L] and
be{0,1}, Kby =@ e K1Y |

— For each j € [n]\ {i}, it sends (/I.msg; ;_,p, [I.msgy ;_,;, {Ki’g}ee[L],be{O,l})
to party P; over a private channel.

Round 2. For each i € [n], party P; does the following.

— Computes a garbled circuit as follows:
GC; + Garb(gk;, II(1%, i, z;, {1I.msgy ;_;, [I.msgy ;i }jen)s 7))
where II5(1%,4, 25, {I1.msg, ; ,;}jc[n], - i) is the second round next message
function of party P; in IT that takes the messages {II.msg; ;_,p};je[n) that
were broadcast in the first round as input.

— For each j € [n] \ {4}, it sends (GC;, {{Kfj’z}je[n]}gem) to party P; over a
private channel. Here X = IT.msg; ; ,pl|...[[/I.msg; ,_,p and X, denotes
the (" bit of X.

Reconstruction. Each party does the following.

— It reconstructs the input wire keys received in the previous round. For each
i € [n] and ¢ € [L], it computes the following. Kﬁf =Dicpn K /" and for

) . X X
each j € [n], it sets K;[II.msgy ;_,g||...|[[I.msg, ,, . p] = (K 7,...,K;{)
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— For each j € [n] it evaluates the garbled circuit received in the previous

round. I1.msg, ;_, g := Eval(GC;, K;[II.msg; 1, gl|...|[II.msg; ,_,5])

— It runs the reconstruction algorithm of IT on {II.msg, ;_, p};e[n) to compute

the output.

We defer the security of this protocol to the full-version of our paper [2].
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