q

Check for
updates

Non-interactive Secure Computation
from One-Way Functions

Saikrishna Badrinarayanan'®™) Abhishek Jain?, Rafail Ostrovsky?,
and Ivan Visconti®

! UCLA, Los Angeles, USA
{saikrishna,rafail}@cs.ucla.edu
? JHU, Baltimore, USA
abhishek@cs. jhu.edu
3 University of Salerno, Fisciano, Italy
visconti@unisa.it

Abstract. The notion of non-interactive secure computation (NISC)
first introduced in the work of Ishai et al. [EUROCRYPT 2011] studies
the following problem: Suppose a receiver R wishes to publish an encryp-
tion of her secret input y so that any sender S with input x can then
send a message m that reveals f(z,y) to R (for some function f). Here,
m can be viewed as an encryption of f(z,y) that can be decrypted by
R. NISC requires security against both malicious senders and receivers,
and also requires the receiver’s message to be reusable across multiple
computations (w.r.t. a fixed input of the receiver).

All previous solutions to this problem necessarily rely upon OT (or
specific number-theoretic assumptions) even in the common reference
string model or the random oracle model or to achieve weaker notions of
security such as super-polynomial-time simulation.

In this work, we construct a NISC protocol based on the minimal
assumption of one way functions, in the stateless hardware token model.
Our construction achieves UC security and requires a single token sent
by the receiver to the sender.

Keywords: Secure computation - Hardware tokens

A. Jain—This research was supported in part by a DARPA/ARL Safeware Grant

©
T.

W911NF-15-C-0213.

R. Ostrovsky—Research supported in part by NSF grant 1619348, DARPA Safe-
Ware subcontract to Galois Inc., DARPA SPAWAR contract N66001-15-1C-4065,
US-Israel BSF grant 2012366, OKAWA Foundation Research Award, IBM Fac-
ulty Research Award, Xerox Faculty Research Award, B. John Garrick Founda-
tion Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. The views expressed are those of the authors and do not reflect position of
the Department of Defense or the U.S. Government.

I. Visconti—Research supported in part by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 780477 (project
PRIVILEDGE) and in part by University of Salerno through a FARB grant.

International Association for Cryptologic Research 2018
Peyrin and S. Galbraith (Eds.): ASTACRYPT 2018, LNCS 11274, pp. 118-138, 2018.

https://doi.org/10.1007/978-3-030-03332-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_5&domain=pdf

Non-interactive Secure Computation from One-Way Functions 119

1 Introduction

A motivating scenario [1]. Suppose there is a public algorithm D that takes
as input the DNA data of two individuals and determines whether or not they
are related. Alice would like to use this algorithm to find family relatives, but
does not want to publish her DNA data in the clear. Instead, she would like to
publish an “encryption” of her DNA data b so that anyone else with DNA data
a can send back a single message to Alice that reveals D(a,b), i.e., whether or
not Alice is related to that person. This process must be such that it prevents
either party from influencing the output (beyond the choice of their respective
inputs), while also ensuring the privacy of their DNA data.

Non-interactive Secure Computation. The notion of non-interactive secure
computation (NISC), introduced by Ishai et al. [25], provides a solution to the
above problem. In its general form, NISC allows a receiver party R to publish
an encryption of her input y such that any sender party S with input = can then
send a message m that reveals f(z,y) to R (for some function f), where m can
be viewed as an encryption of f(x,y) that can be decrypted by R. NISC achieves
security against malicious senders and receivers, and also allows the receiver’s
message to be reusable across multiple computations (w.r.t. a fixed input of the
receiver).

Note that if malicious security was not required, then one could readily obtain
a solution via Yao’s secure computation protocol [33]. However, NISC guaran-
tees malicious security, and is therefore impossible in the plain model w.r.t.
polynomial-time simulation [20].

The work of Ishai et al. [25] gave the first solution for NISC in a hybrid
model where the parties have access to the oblivious transfer (OT) functionality.
Subsequently, efficient solutions for NISC based on cut-and-choose techniques
were investigated in the common reference string (CRS) model [1,29], the global
random oracle model [9], as well as the plain model with super-polynomial-time
simulation [2].

Our Goal. All of these works, however, necessarily rely upon OT [2,25] (or spe-
cific number-theoretic assumptions, as in [1,9,29]). In this work, we ask whether
it is possible to construct NISC protocols based on the minimal assumption of
one-way functions?

Since OT is necessary for secure computation (even in CRS and random
oracle model), we investigate the above question in the tamper-proof hardware
token model, namely, where parties can send hardware tokens to each other.

Starting from the work of Katz [26], there is a large body of research work
on constructing secure computation protocols in the hardware token model (see
Sect. 3 for a detailed discussion). However, all known solutions require two or
more rounds of interaction between the parties (after an initial token transfer
phase) regardless of the assumptions and the number of tokens used in the
protocol. Thus, so far, the problem of NISC in the hardware token model has
remained open.

120 S. Badrinarayanan et al.

Our Result. In this work, we construct a UC-secure NISC protocol based on
one-way functions that uses a single, stateless hardware token. Note that this is
optimal both in terms of complexity assumption as well as the number of tokens.

Concretely, our solution uses the following template: first, a receiver R sends
out a hardware token that has its input y hardwired. Upon communicating with
the token, a sender S sends out a single message to R, who can then evaluate
the output. Note that by using the transformation of [27] which involves adding
a single message from R to S, we can also support the case where we want both
parties to learn the output.

We remark that prior work on cryptography using hardware tokens has stud-
ied the use of both stateful and stateless hardware tokens. The latter is consid-
ered to be a more desirable model since it is more realistic, and places weaker
requirements on the token manufacturer. Our protocol, therefore, only relies on
a stateless hardware token. Moreover, following prior work, we do not make
any assumptions on the token if R is malicious; in particular, in this case, the
adversarial token may well be stateful.

2 Technical Overview

We now describe the techniques used in our non-interactive secure computation
(NISC) protocol using one stateless token and assuming one way functions.

Token Direction. Recall that in a NISC protocol, the receiver R first sends her
input y in some encrypted manner such that any sender S with input = computes
on this encrypted input and sends back a message m that the receiver can then
decrypt to recover the output f(x,y). For different choices of the function f and
input z, the sender can generate a fresh message m using the same encrypted
input of the receiver. Therefore, to follow this paradigm, in the setting of state-
less hardware tokens, we require that the receiver first sends a stateless token
T (containing her input) which can be followed by a communication message
from the sender. Another approach is to perhaps have the receiver first send a
communication message followed by a token sent by the sender. However, such
an approach has the drawback that to reuse the receiver’s first message, each
time, the sender has to generate and send a fresh token. Hence, we stick to the
setting of the receiver first sending a token.

A natural first approach then is to start with the large body of secure compu-
tation protocols based on stateless tokens [11,18,23,24] and try to squish one of
them into a protocol that comprises of just one token from the receiver and one
communication message from the sender. However, in all these works, it is the
sender who first sends a token to the receiver (as opposed to our setting where
the direction of token transfer is reversed) and this is followed by at least two
rounds of interaction between the two parties. As such, it is completely unclear
how this could be done even if we were to rely on assumptions stronger than
one-way functions.

Non-interactive Secure Computation from One-Way Functions 121

Therefore, we significantly depart from the template followed in all prior
works, and start from scratch for constructing NISC in the stateless hardware
token model.

Input authentication. In the stateless hardware token model, an important
desideratum is to prevent an adversary from gaining undue advantage by reset-
ting the stateless token that it receives from the honest party. In all prior works,
to prevent the adversary from resetting the token and changing its input in each
interaction with the token and observing the output (which may potentially allow
it learn more information), the token recipient’s input encoding is first authen-
ticated by the token creator before interaction with the token. However, such
an approach necessarily requires at least two rounds of communication between
S and R after the exchange of tokens which is not feasible in our setting. To
overcome this issue, we in fact do allow S to potentially reset the token and
interact with the token using different inputs! While this might seem strange
at first, the key observation is that S performs only “encrypted” computation
in its interaction with the token. Therefore, even if S resets and interacts with
the token using different inputs, he learns no information whatsoever about R’s
input from his interaction with the token. Thus, resetting attacks are nullified
even without authentication. We now describe how to perform such “encrypted”
computation.

Protocol structure. At a very high level, our construction follows the garbled
circuit based approach to secure computation [33]. That is, the sender S with
input « sends a garbled version of a circuit C, that computes f(x,z) for any
input z. Since we are in the setting of malicious adversaries, an immediate ques-
tion is how does S prove correctness of the garbled circuit? Clearly, a proof of
correctness to the receiver will require more than one message of interaction.
Instead, we make S prove to the token 7' that the garbled circuit GC was cor-
rectly generated. At the end of the proof, T' outputs a signature on GC which is
sent by the sender S to the receiver R (along with GC) as authentication that
this garbled circuit was indeed correctly generated.

To make this approach work, one question that naturally arises is how does
R receive the labels corresponding to her input in order to evaluate the garbled
circuit? Recall that we wish to rely on only one way functions and hence can’t
assume stronger primitives like oblivious transfer (OT). Also, previous stateless
token based OT protocols rely on multiple rounds of interaction and in some
cases, multiple tokens and stronger assumptions. We instead do the following:
S sends the garbled circuit GC to T and additionally discloses the randomness
rand used to generate the garbled circuit. The token can use this randomness to
compute on its own the labels corresponding to R’s input y. It then responds
with a ciphertext CT of these labels, and further proves that this ciphertext was
indeed correctly generated using the receiver’s input y and the randomness rand.
Then, if the proof verifies, S sends CT along with the garbled circuit GC and its
signature to R. The receiver R decrypts the ciphertext CT to recover the labels
and then evaluates the garbled circuit. To prevent S from tampering with the
ciphertext in its message to R, we will additionally require that the token T signs

122 S. Badrinarayanan et al.

the ciphertext as well. In fact, we require that the signature queries on GC and
CT are performed jointly as a single query to prevent an adversarial sender from
resetting the token and getting signatures from the token on a garbled circuit
GC computed using randomness rand, and an encryption CT of the wire labels
corresponding to R’s input computed using different randomness rand’ # rand.
Indeed, such an attack may allow the sender to force an incorrect output on R.

Selective Abort. One issue with the above protocol is that if R is malicious,
the token could launch an aborting attack as follows: on being queried with
the garbled circuit GC and randomness rand used for garbling, reconstruct the
circuit Cy,, thereby learning the sender’s input = and output L if x begins with
0 (for example). Now, if R received a valid message from S, she knows that S’s
input begins with 1. The observation is that it is crucial for the token 7" to not
learn both the garbled circuit GC and the randomness rand used for garbling.
Since it is necessary for T' to know rand to generate the encrypted labels, we
tweak the protocol to have S query the token only with a commitment to the
garbled circuit (along with the randomness used for garbling) and prove that
this commitment is correctly computed. T" then produces a signature on this
commitment. In his message to R, S now sends the commitment, the signature
on it and the decommitment to help R recover the garbled circuit.

Subliminal Channel. Another attack that a malicious receiver could launch is
by embedding information about the randomness rand in the ciphertext and sig-
natures it generates. Note that even though the token proves that the signature
and the ciphertext were correctly generated, a malicious token could still choose
the randomness for generating the ciphertext/signature as a function of rand.
Now, even though the proof verifies successfully, the receiver, using the knowl-
edge of the encryption key/signing key, might be able to recover the randomness
used for encrypting/signing and learn information about rand thus breaking the
security of the garbled circuit GC (which, in turn, can reveal S’s input). To
prevent such an attack, it is necessary to enforce that the randomness used by
the token to generate the ciphertext and signature is independent of rand, but
unknown to the sender. We do this by making the token fix this randomness
ahead of time (using a commitment) and proving that the randomness used to
encrypt and sign was the one committed to before knowing rand. Additionally,
we ensure (using pseudorandom functions) that a malicious sender, via resetting
attacks, can not learn this randomness used for encrypting and signing.

Finally, note that to deal with resetting attacks in the proofs, we use a
resettably sound zero-knowledge argument for the proof given by the sender to
the token and a resettable zero-knowledge argument of knowledge for the proof
from the token to the sender. Both these arguments are known assuming just
one way functions [12-15]. Here, we need the argument of knowledge property in
order to extract the receiver’s input in the security proof. To extract the sender’s
input in the ideal world, the simulator uses knowledge of the garbled circuit (sent
to the receiver) and the randomness for garbling (sent to the simulated token).
We refer the reader to the main body for more details about our construction
and other issues that we tackle.

Non-interactive Secure Computation from One-Way Functions 123

3 Related Work

We briefly review prior work on cryptography using hardware tokens. The sem-
inal work of Katz [26] initiated the study of secure computation protocols
using tamper-proof hardware tokens and established the first feasibility results
using stateful hardware tokens. Subsequently, this stateful token model has been
extensively explored in several directions with the purpose of improving upon
the complexity assumptions, round-complexity of protocols and the number of
required tokens [16,17,21,28,30].

The study of secure computation protocols in the stateless hardware token
model was initiated by Chandran et al. [10]. They constructed a polynomial
round two-party computation protocol for general functions where each party
exchanges one token with the other party, based on enhanced trapdoor permu-
tations. Subsequent to their work, Goyal et al. [23] constructed constant-round
protocols assuming collision-resistant hash functions (CRHFs). However, these
improvements were achieved at the cost of requiring a polynomial number of
tokens. Choi et al. [11] subsequently improved upon their result by decreasing
the number of required tokens to only one, while still using only constant rounds
and CRHF's. Recently, two independent works [18,24] obtained the first protocols
for secure two party computation based on the minimal assumption of one-way
functions. Specifically, Déttling et al. [18] construct a secure constant round
protocol using only one token. Hazay et al. [24] construct two-round two-party
computation in this model using a polynomial number of tokens.

All the above works, including ours, focus on achieving Universally Compos-
able (UC) [6] security!.

4 Preliminaries

UC-Secure Two Party Computation. We follow the standard real-ideal
paradigm for defining secure two party computation. We include the formal
definitions in Appendix A.

Non-interactive Secure Computation (NISC). A secure two party compu-
tation protocol in the stateless hardware token model between a sender S and a
receiver R where only R learns the output is called a NISC protocol if it has the
following structure: first, R sends a token to S and then the sender S sends a
single message to R. We require security against both a malicious sender and a
malicious receiver (who can create the token to be stateful). Further, note that
we work in the stand-alone security model and don’t consider composability.

Token functionality. We model a tamper-proof hardware token as an ideal
functionality Fwrap, following Katz [26]. A formal definition of this functional-
ity can be found in Appendix A. Note that our ideal functionality models stateful

! Hazay et al. [24] study the stronger notion of Global UC security [7,9].

124 S. Badrinarayanan et al.

tokens. Although all our protocols use stateless tokens, an adversarially gener-
ated token may be stateful (Fig. 3).

Cryptographic primitives. In our constructions, we use the following cryp-
tographic primitives all of which can be constructed from one way functions:
pseudorandom functions, digital signatures, commitments, garbled circuits, pri-
vate key encryption [19,31-33].

Additionally, we also use the following advanced primitives that were recently
constructed based on one way functions: resettable zero knowledge argument of
knowledge and resettably sound zero knowledge arguments. [3-5,8,12-15].

Interactive proofs for a “stateless” player. We consider the notion of an
interactive proof system for a “stateless” prover/verifier. By “stateless”, we mean
that the verifier has no extra memory that can be used to remember the tran-
script of the proof so far. Consider a stateless verifier. To get around the issue
of not knowing the transcript, the verifier signs the transcript at each step and
sends it back to the prover. In the next round, the prover is required to send this
signed transcript back to the verifier and the verifier first checks the signature
and then uses the transcript to continue with the protocol execution. Without
loss of generality, we can also include the statement to be proved as part of
the transcript. It is easy to see that such a scenario arises in our setting if the
stateless token acts as the verifier in an interactive proof with another party.

5 Construction

In this section, we construct a non-interactive secure computation (NISC) pro-
tocol based on one-way functions using only one stateless hardware token. For-
mally, we prove the following theorem:

Theorem 1. Assuming one-way functions exist, there exists a non-interactive
secure computation (NISC) protocol that is UC-secure in the stateless hardware
token model using just one token.

Notation. We first list some notation and the primitives used.

— Let A denote the security parameter.

— Let’s say the sender S has private input x € {0, 1}* and receiver R has private
input y € {0,1}* and they wish to evaluate a function f on their joint inputs.

— Let PRF : {0,1}* x {0,1}** — {0,1}* be a pseudorandom function.

— Let Commit be a non-interactive? computationally hiding and statistically
binding commitment scheme that uses n bits of randomness to commit to
one bit.

2 To ease the exposition, we use non-interactive commitments that are based on injec-
tive one-way functions. We describe later how the protocol can be modified to use
a two-message commitment scheme that relies only on one-way functions without
increasing the message complexity of the protocol.

Non-interactive Secure Computation from One-Way Functions 125

Let(Gen, Sign, Verify) be a signature scheme.

Let (ske.setup, ske.enc, ske.dec) be a private key encryption scheme.

— Let RSZK = (RSZK.Prove, RSZK Verify) be a resettably-sound zero-knowledge
argument system for a “stateless verifier” and RZKAOK = (RZKAOK.Prove,
RZKAOK.Verify) be a resettable zero knowledge argument of knowledge sys-
tem for a “stateless prover” as defined in Sect. 4.

— Let (Garble, Garble.KeyGen, Eval) be a garbling scheme for poly sized circuits.

Note that all the primitives can be constructed assuming the existence of
one-way functions.

NP languages. We will use the following NP languages in our protocol.

1. NP language LT characterized by the following relation R”.
Statement : st = (cgc, ct, 7, Cy, Cek, Csks Ck, 0SS, VK, Feke.enc) F(cge ct))
Witness : w = (y, ry, ek, rek, sk, rsk, K, i, £y, rsign)

R¥(st,w) =1 if and only if :
- ¢y = Commit(y;ry) (AND)
— cek = Commit(ek; rex) (AND)
— ¢k = Commit(sk; rek) (AND)
— ¢k = Commit(k; ry) (AND)
— ¢, = Garble.KeyGen(y; toss) (AND)
— ct = ske.enc(ek, £y; PRF (K, rske.enc)) (AND)
— (vk,sk) = Gen(rsign) (AND)
— o = Sign(sk, (cgc, ct); PRE(K, r(cge ct)))-

2. NP language L characterized by the following relation R.

Statement : st = (toss, cge, f)
Witness : w = (x,GC, rge)
R(st,w) = 1 if and only if :

— GC = Garble(C; toss) (AND)
- () = f(x.-) (AND)
— cge = Commit(GC;rge)

5.1 Protocol

The NISC protocol 7 is described below:

Token Transfer:
R does the following:

Pick a random key k < {0,1}* for the function PRF.
Pick random strings ry, rek, sk, rk; Isign-

Compute (sk,vk) < Gen(A;rsign) and ek « ske.setup(\).
Create a token T containing the code in Fig. 1.

Send token T to S.

U o=

Communication Message:
The sender S does the following:

126 S. Badrinarayanan et al.

1. Query the token with input “Start” to receive (cy, Cek; Csk, Ck, VK).

2. Pick random strings (toss, rske.enc; f(cge,ct))- Compute GC = Garble(C,; toss)
where toss is the randomness for garbling and Cy is a circuit that on input a
string y, outputs f(x,y). Then, compute cge = Commit(GC;rge).

3. Using the prover algorithm (RSZK.Prove), engage in an execution of an
RSZK argument with T (who acts as the verifier) for the statement st =
(toss,cge, f) € L using witness w = (x,GC,rge). That is, as part of the
RSZK, if the next message of the prover is msg, query T with input (“RSZK?”,
toss, Cge, ske.encs Mcge,ct)s mSg)~3

4. At the end of the above argument, receive (ct, o(cye ct)) from T.

5. Then, using the verifier algorithm (RZKAOK.Verify), engage in an execution
of a RZKAOK with T (who acts as the prover) for the statement stT =
(cges €ty O(cge ct)» Cys Cek, Csks Cks 1OSS, VK, Feke.ency F(cge ct)) € LT. That is, as part
of the RZKAOK, if the next message of the verifier is msg, query T with
input (“RZKAOK?, t0ss, rske.enc) F(cge ct), Msg). Output L if the argument does
not verify successfully.

6. Send (cge,GC,rge,Ct, O(cge ct)) to the receiver R.

Output Computation Phase:
R does the following to compute the output:

Abort if Verify,, ((cge, ct), 0(cgect)) = 0.

Abort if cge # Commit(GC;rge).

Compute ¢ = ske.dec(ek, ct).

Evaluate the garbled circuit GC using the labels ¢ to compute the output.
That is, out = Eval(GC, ¢).

= W

Remark: In the above description, we were assuming non-interactive commit-
ments (which require injective one way functions) to ease the exposition. In order
to rely on just one way functions, we switch our commitment scheme to a two
message protocol where the receiver of the commitment sends the first message.
Now, we tweak our protocol as follows: after receiving the token, P; sends the
first message of the commitment which is then used by the token T to compute
¢y. Similarly, P, computes c; after receiving a first message receiver’s commit-
ment message from T. Note that this doesn’t affect the round complexity of the
NISC protocol.

5.2 Correctness

The correctness of the protocol follows from the correctness of all the underlying
primitives.

3 Looking ahead, note that a malicious sender can’t change the value of toss across
different rounds of the RSZK argument because the token checks the signed copy of
the transcript at each step.

Non-interactive Secure Computation from One-Way Functions 127

Constants: (k, vk, sk, ek, y, ry, rek, sk, Ik, rsign)
Case 1: If Input =“Start”:

— Compute ¢, = Commit(y;ry), cec = Commit(ek;re), csk = Commit(sk; r) and
ck = Commit(k; ry).
— Output (cy, Cek, Csk, Ck, VK).

Case 2: If Input =(“RSZK?”, toss, cgc, rske.enc, Mlege ct)s msg):

— Using a random tape defined by PRF(kr,c1) and the verifier algorithm
(RSZK.Verify), engage in an execution of a RSZK argument with the querying
party as the prover for the statement st = (toss, cge, f) € L.

— Output L if the argument does not verify successfully.

— Compute ¢, = Garble.KeyGen (y;toss), ct = ske.enc(ek, £y; PRF(k, ree.enc)) and
O(cge,ct) = Sign(sk, (Cgc, Ct); PRF(k, r(cgcyct))).

— Output (ct, o(cge,ct))-

Case 3: If Input =(“RZKAOK?”, t0ss, rske.enc, I(cge ct), MSE):

— Using a random tape defined by PRF(kR,lAz) and the prover al-
gorithm (RZKAOK.Prove), engage in an execution of a RZKAOK
with the querying party as the verifier for the statement stT =
(€ge, €ty O(ege ct)s Cys Cek, Csks Ck, £0SS, VK, Feke.encs Fegect)) € LT using witness

T
wo = (Yv Ty, ekv Fek, Sk7 Isk, k7 e, €y7 rSign)~

Fig. 1. Code of token T

6 Security Proof: Malicious Receiver

Let’s first consider the case where the receiver R* is malicious. Let the environ-
ment be denoted by Z. Initially, the environment chooses an input {x} € {0,1}*
and sends it to the honest sender S as his input.

6.1 Simulator Description

The strategy for the simulator Sim against a malicious receiver R* is described
below:

Token Exchange Phase:
Receive token T from R*.

Token Interaction:

1. Query the token with input “Start” to receive (cy, Cek; Csk, Ck, VK).

2. Pick random strings (toss, rske.encs M(cge,ct))- Compute cge = Commit(0*; rge).

3. Using the simulator Simgszk, engage in an execution of an RSZK argument
with T (who acts as the verifier) for the statement st = (toss,cge, f) € L.
That is, as part of the RSZK, if the next message of Simgszk is msg, query T
with input (“RSZK?”, toss, cge, rske.encs M(cge,ct), Msg). Note that Sim forwards
the code M of the token T that it received from Fwrap to Simrszk.

128 S. Badrinarayanan et al.

At the end of the above argument, receive (ct, o, go,ct)) from T.

Then, using the verifier algorithm (RZKAOK.Verify), engage in an execution
of a RZKAOK with T (who acts as the prover) for the statement stT =
(CQC, ct, O (cge,ct)r Cys Ceks Csks Ck toss, Vk7 I'ske.enc) r(Cgc7Ct)) € LT. That is, as part
of the RZKAOK, if the next message of the verifier is msg, query T with
input (“RZKAOK?, toss, reke.enc) M(cge ct)» Msg). Output L if the argument does
not verify successfully.

Query to Ideal Functionality:

1.

Run Extrzkaok on the transcript of the above argument to extract a witness
(y, ry, ek, re, sk, rsk, K, r, &y, rsign). Note that Sim forwards the code M of the
token T that it received from Fwrap to Extrzkaok-

Query the ideal functionality with input y to receive as output out. The honest
sender does not receive any output from the ideal functionality.

Communication Message:

1.

Using the output out, generate a simulated garbled circuit and simulated
labels. That is, compute (Sim.GC, Sim.4y) < Sim.GC(out).

Compute a commitment to the garbled circuit. That is, compute csim.gc =
Commit(Sim.GC; rsim.ge)-

Recompute the ciphertext and the signature using the same keys and ran-
domness as done by the token. That is, compute ct = ske.enc(ek, Sim.¢y; PRF
(K, rske.enc)) O (csim.ge ct) = Sign(sk, (csim.gc, ct); PRF (k, r(Cgc,Ct)))'

Send (csim.ge, SIM.GC, rsim.gc Ct, 0 (g, ge,ct)) tO the receiver R*.

6.2 Hybrids

We now show that the real and ideal worlds are computationally indistinguish-
able via a sequence of hybrid experiments where Hyb, corresponds to the real
world and Hyb, corresponds to the ideal world.

— Hyby - Real World: Consider a simulator Simpy, that performs exactly as

done by the honest sender S in the real world.

Hyb, - Extraction: In this hybrid, Simyy, runs the “Query to Ideal Func-
tionality” phase as in the ideal world. That is, run the algorithm Extrzxaox
to extract (y, ry, ek, rek, Sk, rsk, K, I, y, rsign), then query the ideal functionality
with the value y to receive output out.

Note that Simpyp, continues to use the honest circuit GC and its commitment
cgc in its interaction with T and the receiver.

Hyb, - Simulate RSZK: In this hybrid, in its interaction with the token
T, Simuyp computes the RSZK argument by running the simulator Simgszk
instead of running the honest prover algorithm RSZK.Prove. Note that Simpyp
forwards the code M of the token T that it received from Fwrap to Simgszk.

Non-interactive Secure Computation from One-Way Functions 129

— Hyb; - Simulate Garbled Circuit: In this hybrid, Simpy, computes the
message sent to the receiver as in the ideal world. That is, after interacting
with the token, Simpy, does the following:

e Using the output out, generate a simulated garbled circuit and simulated
labels. That is, compute (Sim.GC, Sim.£,) < Sim.GC(out).

e Compute a commitment to the garbled circuit. That is, compute csim.gc =
Commit(Sim.gC; rSim_gc).

e Recompute the ciphertext and the signature using the same keys
and randomness as done by the token. That is, compute ct =
ske.enc(ek, Sim.ly; PRF(K, rske.enc)), = Sign(sk, (csim.gcs
Ct); PRF(ka r(CgC,Ct)))'

e Send (Csim.gc, Sim.GC, rsim.gc, ct, O-(CSimAgCJ:t)) to the receiver R*.

O (csim.gcct)

— Hyb, - Switch Commitment: In this hybrid, Simpy, computes cge =
Commit(0*;rge) and uses this in its interaction with the token. This hybrid
corresponds to the ideal world.

We now prove that every pair of consecutive hybrids is computationally indis-
tinguishable and this completes the proof.

Claim. Assuming the argument of knowledge property of the RZKAOK system,
Hyb, is computationally indistinguishable from Hyb;.

Proof. The only difference between the two hybrids is that in Hyb,, Simpys, also
runs the extractor Extrzkaok to extract the adversary’s input y. Therefore, by
the argument of knowledge property of the RZKAOK system, we know that the
extractor Extrzkaok is successful except with negligible probability given the
transcript of the argument and the code of the prover (that is, the token’s code
M). Hence, the two hybrids are computationally indistinguishable.

Here, note that Simpyy, forwards the code M of the token T that it received
from Fwrap to the algorithm Extrzkaok-

Claim. Assuming the zero knowledge property of the RSZK system, Hyb, is
computationally indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is the way in which the
RSZK argument is computed. In Hyb;, Simpy, computes the RSZK by running
the honest prover algorithm RSZK.Prove, while in Hyb,, Simuy, computes the
RSZK by running the simulator Simgszk. Thus, it is easy to see that if there
exists an adversary that can distinguish between these two hybrids with non-
negligible probability, Sim can use that adversary to break the zero knowledge
property of the RSZK argument system with non-negligible probability which is
a contradiction.

Here, note that Simyy, forwards the code M of the token T that it received
from Fwrap to the external challenger which it uses to run the algorithm
Simgszk.

130 S. Badrinarayanan et al.

Claim. Assuming the security of the garbling scheme (Garble, Eval) and the argu-
ment of knowledge property of the RZKAOK system, Hyb, is computationally
indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is the way in which the
garbled circuit and the labels that are sent to the receiver are computed. We
show that if there exists an adversary A that can distinguish between the two
hybrids, then there exists an adversary Agc that can break the security of the
garbling scheme. The reduction is described below.

Agc interacts with the adversary 4 as done by Simpy, in Hyb, except for
the changes below. Agc first runs the token interaction phase and the query to
ideal functionality phase as done by Simpy, in Hyb,. In particular, it picks a
random string toss, computes cge as a commitment to an honest garbled circuit,
generates a simulated RSZK argument, extracts the adversary’s input y and
learns the output out.

Then, Agc interacts with the challenger Challgc of the garbling scheme and
sends the tuple (Cy,y,out). Here, C, is a circuit that on input any string z out-
puts f(z,z). Challgc sends back a tuple (C*,£;) which is a tuple of garbled
circuit and labels that are either honestly generated or simulated. Then, Agc
computes c* = Commit(C*;r*), ct* = ske.enc(ek, £7; PRF(k, rske.enc)), O(cx,ctr) =
Sign(sk, (c*, ct*); PRF(k, r(ce ct+)))- Finally, Agc sends (c*,C*,r*, ct™, o(c+ =) to
the adversary A as the message from the sender.

Observe that when Challgc computes the garbled circuit and keys honestly,
the interaction between Agc and A corresponds exactly to Hyb,. This is true
because even though in Hyb,, its the token that generates the ciphertext ct and
the signature o(c,. ct), from the argument of knowledge property of the scheme
RZKAOK, we know that except with negligible probability, they were generated
using the message and randomness exactly as computed by Agc. Then, when
Challgc simulates the garbled circuit and keys, the interaction between Agc and
A corresponds exactly to Hybs;. Now, note that the adversary A does not get
access to the randomness toss or the commitment cge sent to the token T* by
the reduction Agc. Also, crucially, the randomness used in either the ciphertext
generation or the signature generation is completely independent of the message
being encrypted or signed and hence they don’t leak any subliminal information
from the token T* to the adversary A. Finally, Agc does not require any of the
randomness used by Challgc to generate the garbled circuit and labels since Agc
simulates the RSZK argument in its interaction with T*. Thus, if the adversary
A can distinguish between these two hybrids with non-negligible probability,
Agc can use the same guess to break the security of the garbling scheme with
non-negligible probability which is a contradiction.

Claim. Assuming the hiding property of the commitment scheme Commit, Hyb,
is computationally indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is the way in which the
value cge is computed. In Hybg, it is computed as a commitment to the garbled
circuit GC while in Hyb,, it is computed as a commitment to 0*. Note that the

Non-interactive Secure Computation from One-Way Functions 131

value committed to or the randomness for commitment is not used anywhere else
since the RSZK argument is now simulated. Thus, it is easy to see that if there
exists an adversary that can distinguish between these two hybrids with non-
negligible probability, Sim can use that adversary to break the hiding property
of the commitment scheme Commit with non-negligible probability, which is a
contradiction.

7 Security Proof: Malicious Sender

Consider a malicious sender S*. Let the environment be denoted by Z. Initially,
the environment chooses an input {y} € {0,1}* and sends it to the honest
receiver R as his input.

7.1 Simulator Description

The strategy for the simulator Sim against a malicious sender S* is described
below:

Token Exchange Phase:
Sim does the following;:

Pick a random key k < {0,1}* for the function PRF.

Pick random strings ry, rek, sk, rk; Isign-

Compute (sk, vk) «— Gen(\; rsign) and ek «— ske.setup(A).

Create a token T's;,, almost exactly as in the honest protocol execution with
the only difference that instead of the honest receiver’s input y, the token uses
a random string y* as input. For completeness, we describe the functionality
of the simulated token’s code in Fig. 2.

5. Send token Tsiy to S*.

= W

Communication Message:
Receive (cge, GC,rge, ct, 0(cge cr)) from the sender S*.

Query to Ideal Functionality:

1. Abort if Verify,, ((cge, ct), U(cgc,ct)) =0.

2. Abort if cge # Commit(GC;rge).

3. Amongst the queries made to the token Ts;y, pick one containing the tuple
(cge, toss) for which the RSZK argument verified. Note that the queries to
the token are known to Sim by the observability property of the token.

4. Using this randomness toss from the above query and the garbled circuit GC
sent by S*, recover $*’s input x. Recall that GC = Garble(Cy; toss) where
Cul) = f(x,0).

5. Send x to the ideal functionality and instruct it to deliver output to the honest
receiver.

132 S. Badrinarayanan et al.

Constants: (k, vk, sk, ek, y", ry, rek, rsk, fk, sign)
Case 1: If Input =“Start”:

— Compute ¢, = Commit(y*;ry), cex = Commit(ek; re), csc = Commit(sk; rs) and
ck = Commit(k; ry).
— Output (cy, Cek, Csk, Ck, VK).

Case 2: If Input =(“RSZK?”, toss, cgc, rske.enc, Flege ct)s msg):

— Using a random tape defined by PRF(kr,c1) and the verifier algorithm
(RZKAOK.Prove), engage in an execution of a RSZK argument with the querying
party as the prover for the statement st = (toss, cge, f) € L.

Output L if the argument does not verify successfully.

Compute ¢, = Garble.KeyGen (y*;toss), ct = ske.enc(ek, £y; PRF(k, rse.enc)) and
O(cge,ct) = Sign(sk, (Cgc7 Ct); PRF(k, r(cgc’ct))).

Output (ct, o(cge,et))-

Case 3: If Input =(“RZKAOK?”, t0ss, rske.enc, I(cge ct), MSE):

— Using a random tape defined by PRF(kR,lkz) and the prover al-
gorithm (RZKAOK.Prove), engage in an execution of a RZKAOK
with the querying party as the verifier for the statement stT =
(ch,ct,a(cgc,ct),cy,cek,csk,ck,toss,vk,rske_enc,r(cgc’m) € LT using witness

T *
wo = (y 7rY7ek7 r5kvska rSkvkanﬂZyv rSign)~

Fig. 2. Code of simulated token Tsjm. The difference from the honest token code is
highlighted in red font. (Color figure online)

7.2 Hybrids

We now show that the real and ideal worlds are computationally indistinguish-
able via a sequence of hybrid experiments where Hyb, corresponds to the real
world and Hyby corresponds to the ideal world.

— Hyby - Real World: Consider a simulator Simpy, that performs exactly as
done by the honest receiver R in the real world.

— Hyb, - Extraction: In this hybrid, Simpys also runs the “Query to Ideal
Functionality” phase as in the ideal world. That is, Simnyp extracts the mali-
cious sender’s input, sends it to the ideal functionality and instructs it to
deliver output to the honest party.

— Hyby - Simulate RZKAOK: In this hybrid, in case 3 of the token’s
description, Simpy, computes the RZKAOK argument by using the simulator
Simgrzkaok instead of running the honest prover algorithm. Note that this
happens only internally in the proof and not in the final simulator’s descrip-
tion. Hence, the final simulator will not require the code of the environment
or need to rewind it.

— Hyb; - Switch Commitment: In this hybrid, in case 1 of the token’s descrip-
tion, Simpyp computes ¢, = Commit(y*;ry).

Non-interactive Secure Computation from One-Way Functions 133

— Hyb, - Switch Ciphertext: In this hybrid, in case 2 of the token’s descrip-
tion, Simpyp sets ¢, = Garble.KeyGen(y*; toss) and computes ct = ske.enc(ek, £,
i Fske.enc) as in the ideal world.

— Hyb; - Honest RZK AOK: In this hybrid, in case 3 of the token’s descrip-
tion, Simpyp computes the RZKAOK argument by running the honest prover
algorithm as in the ideal world. This hybrid corresponds to the ideal world.

We now prove that every pair of consecutive hybrids is computationally indis-
tinguishable and this completes the proof.

Claim. Assuming the unforgeability property of the signature scheme (Gen, Sign,
Verify), the binding property of the commitment scheme Commit, the soundness
of the RSZK argument system, Hyb, is computationally indistinguishable from
Hyb; .

Proof. The only difference between the two hybrids is that in Hyb;, Simpy
extracts the adversary’s input x as in the ideal world. We now argue that this
extraction is successful except with negligible probability and this completes the
proof that the two hybrids are computationally indistinguishable.

First, from the soundness of the argument system RSZK, we know that except
with negligible probability, in one of the arguments given by the malicious sender
to the token containing the tuple (cgc,toss), there exists (x,GC,rge) such that
C(-) = f(x,+), GC = Garble(C; toss) and cgec = Commit(GC;rgc). Then, from the
unforegability of the signature scheme, we know that except with negligible prob-
ability, the commitment cge sent by S* in the first message is indeed the same as
the one used in the above RSZK argument. Similarly, from the binding property
of the commitment scheme, we know that except with negligible probability, the
commitment cge sent by S* in the first message is indeed a commitment to the
same value GC that was used as witness in the above RSZK argument. Hence, the
value x extracted by Simpyp, is the adversary’s input except with negligible prob-
ability. There is no difference in the adversary’s view between the two hybrids.
Thus the joint distribution of the adversary’s view and honest party’s input is
indistinguishable between both the hybrids.

Claim. Assuming the resettable zero knowledge property of the RZKAOK sys-
tem, Hyb; is computationally indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is the way in which the
RZKAOK argument is computed. In Hyb;, Simpy, computes the RZKAOK by
running the honest prover algorithm RZKAOK.Prove, while in Hyb,, Simpy, com-
putes the RZKAOK by running the simulator Simgzkaok. Thus, it is easy to see
that if there exists an adversary that can distinguish between the joint distribu-
tion of the malicious sender’s view and the honest party’s output in these two
hybrids with non-negligible probability, Sim can use that adversary to break the
resettable zero knowledge property of the RZKAOK system with non-negligible
probability, which is a contradiction.

134 S. Badrinarayanan et al.

Note: This is a non-black box reduction - that is, in this reduction, Simpyp
needs the adversary’s code. However, this is only within this specific reduction.
In particular, we stress again that the final simulator will not require the code
of the environment or need to rewind it and hence the protocol achieves UC
security.

Claim. Assuming the hiding property of the commitment scheme Commit, Hyb,
is computationally indistinguishable from Hyb;.

Proof. The only difference between the two hybrids is the way in which the value
¢y is computed. In Hyb,, it is computed as a commitment to the string y while
in Hyb,, it is computed as a commitment to 0*. Note that the value committed
to or the randomness for commitment is not used as a witness in the RZKAOK
since the argument is now simulated. We only need the value y to generate the
ciphertext which is not a problem. Thus, it is easy to see that if there exists an
adversary that can distinguish between the joint distribution of the malicious
sender’s view and the honest party’s output in these two hybrids with non-
negligible probability, Sim can use that adversary to break the hiding property
of the commitment scheme Commit with non-negligible probability, which is a
contradiction.

Claim. Assuming the semantic security of the encryption scheme (ske.setup,
ske.enc, ske.dec), Hyb; is computationally indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is the way in which the
ciphertext ct is computed. In Hybs, it is computed as an encryption of the string
¢, = Garble.KeyGen(y;toss) while in Hyb,, it is computed as an encryption of
¢, = Garble.KeyGen(y*; toss). Note that the message encrypted, the randomness
for encryption or the secret key of the encryption scheme are not used as a
witness in the RZKAOK since the argument is now simulated. We only need
the value y* to generate the ciphertext which is not a problem. Thus, it is easy
to see that if there exists an adversary that can distinguish between the joint
distribution of the malicious sender’s view and the honest party’s output in these
two hybrids with non-negligible probability, Sim can use that adversary to break
the semantic security of the encryption scheme with non-negligible probability
which is a contradiction.

Claim. Assuming the resettable zero knowledge property of the RZKAOK sys-
tem, Hyb, is computationally indistinguishable from Hyb.

Proof. This is identical to the proof of Subsect. 7.2.
8 Extension

Output for Both parties:

By using the transformation of [27] which involves the receiver’s output also
containing a signed copy of the sender’s output that is then sent to the sender
using an extra message from the receiver, we can get a two message protocol
where both parties receive output. Formally:

Non-interactive Secure Computation from One-Way Functions 135

Corollary 2. Assuming one-way functions exist, there exists a two message
UC-secure two party computation protocol in the stateless hardware token model
using just one token, where both parties receive output.

A UC Framework and Ideal Functionalities

For simplicity, we define the two-party protocol syntax, and then informally
review the two-party UC-framework, which can be extended to the multi-party
case. For more details, see [6].

Protocol syntax. Following [22], a protocol is represented as a system of proba-
bilistic interactive Turing machines (ITMs), where each ITM represents the pro-
gram to be run within a different party. Specifically, the input and output tapes
model inputs and outputs that are received from and given to other programs
running on the same machine, and the communication tapes model messages
sent to and received from the network. Adversarial entities are also modeled as
ITMs.

The construction of a protocol in the UC-framework proceeds as follows: first,
an ideal functionality is defined, which is a “trusted party” that is guaranteed
to accurately capture the desired functionality. Then, the process of executing
a protocol in the presence of an adversary and in a given computational envi-
ronment is formalized. This is called the real-life model. Finally, an ideal process
is considered, where the parties only interact with the ideal functionality, and
not amongst themselves. Informally, a protocol realizes an ideal functionality
if running of the protocol amounts to “emulating” the ideal process for that
functionality.

Let II = (P, P») be a protocol, and F be the ideal-functionality. We describe
the ideal and real world executions.

The real-life process. The real-life process consists of the two parties P; and
P, the environment Z, and the adversary A. Adversary A can communicate
with environment Z and can corrupt any party. When A corrupts party P;, it
learns P;’s entire internal state, and takes complete control of P;’s input/output
behavior. The environment Z sets the parties’ initial inputs. Let REAL; 4 z be
the distribution ensemble that describes the environment’s output when p,rotocol
IT is run with adversary A.

We also consider a G-hybrid model, where the real-world parties are addi-
tionally given access to an ideal functionality G. During the execution of the
protocol, the parties can send inputs to, and receive outputs from, the function-
ality G. We will use REAL%) A,z to denote the distribution of the environment’s
output in this hybrid execution.

The ideal process. The ideal process consists of two “dummy parties” Py and
152, the ideal functionality F, the environment Z, and the ideal world adversary
Sim, called the simulator. In the ideal world, the uncorrupted dummy parties
obtain their inputs from environment Z and simply hand them over to F. As
in the real world, adversary Sim can corrupt any party. Once it corrupts party

136 S. Badrinarayanan et al.

Isi, it learns P;’s input, and takes complete control of its input/output behavior.
Let IDEAL§m7 z be the distribution ensemble that describes the environment’s
output in the ideal process.

Definition 1 (UC-Realizing an Ideal Functionality). Let F be an ideal func-
tionality, and I be a protocol. We say that II UC-realizes F in the G-hybrid
model if for any hybrid-model PPT adversary A, there exists an ideal process
expected PPT adversary Sim such that for every PPT environment Z:

{lDEAL]-',Sim,Z(na Z)}neN,ze{O,l}* ~ {REALIQ'[,A,Z(TL’ 2)}neN,ze{0,1}* (1)

Note that the above equation, says that in the ideal world, the simulator Sim
has no access to the ideal functionality G. However, when G is a set-up assump-
tion, this is not necessarily true and the simulator may have access to G even
in the ideal world. Indeed, there exist different formulations of the UC frame-
work, capturing different requirements on the set-assumptions (e.g., [7]). In [7]
for example, the set-up assumption is global, which means that the environment
has direct access to the set-up functionality G. Hence, the simulator Sim needs
to have oracle access to G as well.

The Ideal Token Functionality. We now describe the ideal token function-
ality. Note that our ideal functionality models stateful tokens. Although all our
protocols use stateless tokens, an adversarially generated token may be stateful.

Functionality Fwrap
The functionality is parameterized by a polynomial p(-) and a security parameter n.

Create: Upon receiving an input (CREATE,sid, C, U, M) from a party C (i.e., the
token creator), where U is another party (i.e., the token user) and M is an interactive
Turing machine, do:

If there is no tuple of the form (C,U,-,-,) stored, store (C,U,M,0,). Send
(CREATE, (sid, C, U)) to the adversary.

Deliver: Upon receiving (READY, (sid,C,U)) from the adversary, send
(READY, (sid, C, U)) to U.

Execute: Upon receiving an input (RUN, (sid, C, U), msg) from U, find the unique
stored tuple (C, U, M, i, state). If no such tuple exists, do nothing. Otherwise, do:

If M has never been used yet, i.e, ¢ = 0, then choose uniform w € {0,1}*™ and
set state := w. Run (out,state’) := M(msg;state) for at most p(n) steps where out
is the response and state’ is the new state of M (set out := | and state’ := state if
M does not respond in the allotted time). Send (RESPONSE, (sid, C, U), out) to U.
Erase (C, U, M, i,state) and store (C, U, M, i + 1, state’).

Fig. 3. The ideal token functionality Fwrap for stateful tokens.

Non-interactive Secure Computation from One-Way Functions 137

References

10.

11.

12.

13.

14.

15.

16.

Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387-404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_22

Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017. LNCS, vol. 10626, pp.
275-303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_10
Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: FOCS (2001)

Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and
applications to resettable cryptography. In: STOC (2013)

Bitansky, N., Paneth, O.: On non-black-box simulation and the impossibility of
approximate obfuscation. SIAM J. Comput. 1383, 44-1325 (2015)

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61—
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4
Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC (2000)

Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, 3-7 November 2014, pp. 597-608
(2014)

Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545-562. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78967-3_31

Choi, S.G., Katz, J., Schroder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) uni-
versally composable oblivious transfer using a minimal number of stateless tokens.
In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638-662. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54242-8_27

Chung, K.-M., Ostrovsky, R., Pass, R., Venkitasubramaniam, M., Visconti, I.: 4-
round resettably-sound zero knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 192-216. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54242-8_9

Chung, K., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resettability from
one-way functions. In: FOCS (2013)

Chung, K., Pass, R., Seth, K.: Non-black-box simulation from one-way functions
and applications to resettable security. In: STOC (2013)

Chung, K., Pass, R., Seth, K.: Non-black-box simulation from one-way functions
and applications to resettable security. SIAM J. Comput. 45, 415-458 (2016)
Déttling, N., Kraschewski, D., Miiller-Quade, J.: Unconditional and composable
security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.)
TCC 2011. LNCS, vol. 6597, pp. 164-181. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19571-6_11

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-642-54242-8_27
https://doi.org/10.1007/978-3-642-54242-8_9
https://doi.org/10.1007/978-3-642-54242-8_9
https://doi.org/10.1007/978-3-642-19571-6_11
https://doi.org/10.1007/978-3-642-19571-6_11

138

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

S. Badrinarayanan et al.

Déttling, N., Kraschewski, D., Miiller-Quade, J.: Statistically Secure linear-rate
dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.)
ICITS 2012. LNCS, vol. 7412, pp. 111-128. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32284-6_7

Dottling, N., Kraschewski, D., Miiller-Quade, J., Nilges, T.: From stateful hardware
to resettable hardware using symmetric assumptions. In: Au, M.-H., Miyaji, A.
(eds.) ProvSec 2015. LNCS, vol. 9451, pp. 23-42. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-26059-4_2

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (1986)

Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1-32 (1994)

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39-56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5_3

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18, 186-208 (1989)

Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308-326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2_19

Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367-399. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53641-4_15

Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406-425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4_23

Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115-128.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_7

Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335-354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21

Kolesnikov, V.: Truly efficient string oblivious transfer using resettable tamper-
proof tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 327-342.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_20
Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the Offline/online and
batch settings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 425-455. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7_15

Moran, T., Segev, G.: David and goliath commitments: UC Computation for asym-
metric parties using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 527-544. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78967-3_30

Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4, 151-158 (1991)
Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pp. 387-394. ACM (1990)

Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-319-26059-4_2
https://doi.org/10.1007/978-3-319-26059-4_2
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-642-11799-2_20
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-540-78967-3_30
https://doi.org/10.1007/978-3-540-78967-3_30

	Non-interactive Secure Computation from One-Way Functions
	1 Introduction
	2 Technical Overview
	3 Related Work
	4 Preliminaries
	5 Construction
	5.1 Protocol
	5.2 Correctness

	6 Security Proof: Malicious Receiver
	6.1 Simulator Description
	6.2 Hybrids

	7 Security Proof: Malicious Sender
	7.1 Simulator Description
	7.2 Hybrids

	8 Extension
	A UC Framework and Ideal Functionalities
	References

