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Abstract—Initial access (IA) is a fundamental procedure in
cellular systems where user equipment (UE) detects base station
(BS) and acquires synchronization. Due to the necessity of using
antenna arrays for IA in millimeter-wave (mmW) systems, BS
simultaneously performs beam training to acquire angular channel
state information. The state-of-the-art directional IA (DIA) uses a
set of narrow sounding beams in IA, where different beam pairs
are sequentially measured, and the best candidate is determined.
However, the directional beam training accuracy depends on scan-
ning beam angular resolution, and consequently its improvement
requires additional dedicated radio resources, access latency, and
overhead. To remedy the problem of access latency and overhead
in DIA, this paper proposes to use quasi-omni pseudorandom
sounding beams for IA, and develops an algorithm for joint initial
access and fine resolution initial beam training without requiring
additional radio resources. It comprehensively models realistic
timing and frequency synchronization errors encountered in IA.
We provide the analysis of the proposed algorithm’s miss detection
rate under timing synchronization errors, and we further derive
Cramér–Rao lower bound of angular estimation under frequency
offset, considering the 5G-NR compliant IA procedure. To ac-
commodate the ever increasing bandwidth for beam training in
standard evolution beyond 5G, we design the beam squint robust
algorithm. For realistic performance evaluation under mmW chan-
nels, we use QuaDRiGa simulator with mmMAGIC model at
28 GHz to show that the proposed approach is advantageous to
DIA. The proposed algorithm offers orders of magnitude access
latency saving compared to DIA, when the same discovery, post
training SNR, and overhead performance are targeted. This con-
clusion holds true in various propagation environments and three-
dimensional locations of a mmW pico-cell with up to 140 m radius.
Furthermore, our results demonstrate that the proposed beam
squint robust algorithm is able to retain unaffected performance
with increased beam training bandwidth.

Index Terms—Millimeter wave radio, 5G, cell discovery, initial
access, beam management, synchronization, beamforming, com-
pressive sensing.

I. INTRODUCTION

THE millimeter-wave (mmW) communication is a promis-
ing technology for the future cellular network including
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5G New Radio (5G-NR) [2]. Due to abundant spectrum, it is
expected that the mmW network will support ultra-fast data rate.
As shown in both theory and prototypes, mmW system requires
beamforming (BF) with large antenna arrays at both base station
(BS) and user equipment (UE) to combat severe propagation loss
[3]. Significant differences in propagation characteristics and
hardware architectures for mmW band compared to microwave
band require novel signal processing techniques [4] and physical
layer procedures [5].

Initial access (IA) is the fundamental physical layer procedure
that allows UE to discover and synchronize with nearby BS
before further communication. However, IA for mmW networks
brings new challenges and opportunities as compared to IA for
sub-6 GHz band networks. In mmW system, conventional omni-
directional IA with single antenna can not be reliable, and as a
result IA needs to leverage transmitter and receiver antenna array
to exploit BF gain [6], [7]. A key design challenge in mmW IA is
the design of sounding beams for reliable discovery. In addition,
beam training is required to achieve high BF gain enabled by
large arrays and establish communication link. However, beam
training now introduces additional access latency and signaling
overhead due to repeated channel probing.

A. Related Works

A number of works investigated various sounding beam de-
signs and signal processing algorithms for mmW IA and beam
training. Directional beams for IA and beam training are the most
popular and extensively investigated in recent literature [6]–[15].
Directional IA (DIA) is first studied in [6] where a Generalized
Likelihood Ratio Test (GLRT) is proposed to solve the cell dis-
covery problem under unknown multiple-input multiple-output
(MIMO) channel and synchronization parameters. The authors
concluded that the directional IA signal improves discovery
range as compared to omni-directional IA. The DIA is further
investigated in [8] where overhead and access latency are ana-
lyzed. Works [9] and [10] study DIA and its access latency in
large networks using stochastic geometry. Impact of beam-width
of sounding beams in DIA is researched in [11]. The comparison
between omni-directional and DIA is also discussed in [12].
IA using out-of-band information, e.g., location, sub-6GHz
measurement, are discussed in [7], [13]. The aforementioned
works mostly focused on the overhead and latency for the cell
discovery, while beam training is either not discussed or assumed
to have coarse resolution [8]. It is common that DIA is paired
with directional beam training [14], [15] where hierarchical
sounding beams are used in multiple stages to achieve fine
angular resolution for each user individually. However, such
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user-specific hierarchical sounding beams introduce prohibitive
latency when a BS is connected to large number of UEs.

The alternative approaches for beam training are based on
parametric channel estimation [16]–[24]. Exploiting the mmW
sparse scattering nature, compressive sensing (CS) approaches
have been considered to effectively estimate channel parameters
based on channel observations obtained via various sounding
beams. Works [16], [17] proposed a CS-based narrowband
BF training with pseudorandom sounding beamformers in the
downlink, and [18], [19] extended this approach for a wideband
channel. Other related works include channel covariance estima-
tion [20]–[22] which requires periodic channel observations, and
UE centric uplink training [23], [24]. It is worth nothing that all
recent works focus on channel estimation alone while assuming
perfect cell discovery and synchronization. The 5G-NR frame
structure that supports IA is rarely considered, and further the
feasibility of joint initial access and CS-based beam training has
not been investigated.

There are also recent works that consider some practical
aspects of IA. For example, frequency offset robust algorithms in
narrowband mmW beam training are reported in [1], [25]–[27].
There are several hardware prototypes that consider a practical
approach of using received signal strength (RSS) in CS-based
beam training. Channel estimation problem without phase mea-
surement is a challenging problem, which was solved via novel
signal processing algorithms based on RSS matching pursuit
[28], Hash table [29], and sparse phase retrieval [30]. Note
that phase free measurements were associated with a particular
testbed, and this constraint does not necessarily apply to mmW
systems in general.

Last but not the least, the evolution of future mmW systems
will certainly use wider bandwidths and larger array aperture.
Therefore, the spatial wideband effect, a.k.a., beam squint, will
play a vital role in the system design [31], [32]. Recent works
reveal that a beam squint unaware array processing results in
a compromised channel estimation performance in both sub-
6GHz and mmW systems [33]–[36]. However, the mmW beam
training that involves both transmitter and receiver array has not
been considered. Further, the impact of estimation error due to
beam squint in data communication phase under frequency flat
beam steering is not fully investigated. Overall, while IA and
beam training algorithms have been extensively studied in the
literature, there is a lack of understanding about the theoretical
limits and performance of signal processing algorithms that
jointly achieve cell discovery and beam training using asyn-
chronous IA signal in mmW frequency selective channel.

B. Contributions

In this work, we propose to use quasi-omni pseudorandom
sounding beams and novel signal processing algorithm to jointly
achieve initial cell discovery, synchronization, and fine resolu-
tion beam training. More specifically, we provide answers to the
following questions.

How to use pseudorandom sounding beams for IA? We pro-
pose an energy detection algorithm for initial discovery tailored
for pseudorandom sounding beams. We derive the optimal de-
tection threshold, analyze the miss detection probability and the

impact of synchronization errors, i.e., carrier frequency offset
(CFO) and timing offset (TO).

How to reuse received IA signal for beam training? We pro-
pose a novel CS-based beam training algorithm that re-processes
the frequency asynchronous IA signals to provide well aligned
beam pair. We derive the Cramér-Rao lower bound (CRLB) of
asynchronous training in line-of-sight (LOS) channel. We show
that proposed algorithm reaches CRLB in LOS and remains
effective in non-LOS (NLOS).

What are the benefits of compressive IA? We compare the pro-
posed approach with DIA followed by hierarchical directional
beam training. Key performance indicators for both approaches
are numerically compared, including discovery rate, post beam
training SNR, overhead and access latency. The simulation study
based on 5G-NR frame structure and measurement-endorsed
3D 28GHz channel shows that the proposed approach is ad-
vantageous to DIA for UEs across wide range of locations in a
pico-cell.

How to design squint robust beam training with increased
IA bandwidth for beyond 5G systems? We propose a dictionary
adaptation based approach that facilitates the proposed compres-
sive beam training to be robust to the spatial wideband effect.
In particular, the non-identical array responses for different
subcarriers are incorporated in both on-grid search and off-grid
refinement. The enhanced beam training method estimates prop-
agation angle more accurately and provides higher post-training
array gain across a wideband frequency range compared to
existing compressive sensing based approach under high beam
squint regime.

C. Organizations and Notations

The rest of the paper is organized as follows. We start with
a brief introduction of 5G-NR frame structure, IA and beam
training in Section II. In Section III, we present the system
model and problem statement. Section IV includes the proposed
algorithm for cell discovery and timing acquisition followed
by associated performance analysis. In Section V we present
the algorithm and analysis for initial beam training under CFO.
The squint robust beam training is presented in Section VI. The
access latency, overhead, and complexity analysis is included in
Section VII. The numerical results are presented in Section VIII.
Open research issues are summarized in Section IX. Finally,
Section X concludes the paper.

Notations: Scalars, vectors, and matrices are denoted by non-
bold, bold lower-case, and bold upper-case letters, respectively.
The (i, j)-th element of A is denoted by [A]i,j . Conjugate,
transpose, Hermitian transpose, and pseudoinverse are denoted
by (.)∗, (.)T, (.)H, and (.)† respectively. The inner product is
〈a,b〉 � aHb. The l2-norm of h is denoted by ||h||. diag(a)
aligns vector a into a diagonal matrix. Kronecker and Hadamard
product are denoted as ⊗ and ◦, respectively. �(x) and �(x) are
the real and imaginary parts of x, respectively. Set S = [a, b]
contains all integers between a and b.

II. PRELIMINARIES: INITIAL ACCESS AND BEAM TRAINING

In this section, we introduce the mmW physical layer initial
access procedure in 5G-NR cellular network. We briefly review
the frame structure, synchronization sequences, and directional
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Fig. 1. The 5G-NR mmW frame structure with emphasis in beam management
function and the illustration for directional initial access.

IA scheme as well as beam training. The reader is referred to
work [7] for a more detailed survey.

Frame Structure: Fig. 1 shows the frame structure of 5G-
NR. We focus on two functional blocks, namely synchroniza-
tion signal (SS) burst and channel state information reference
signal (CSI-RS). 5G-NR uses orthogonal frequency division
multiplexing (OFDM), and the subcarrier spacing is either
120 or 240 KHz for mmW band. The SS signal is transmitted
by a BS with period TF, typically 20 ms. The SS consists of
up to M = 64 burst blocks. In each one of the burst blocks of
duration TB, a specific sounding beam pair is used by BS and
UE. The CSI-RS block with duration Tr is dedicated to specific
UE(s) for fine beam training and tracking. CSI-RS can use all
frequency resources, i.e., up toBtot, and it has periodicity of TR,
an implementation dependent value.

Synchronization Signal: Referring to Fig. 1, each SS burst has
4 OFDM symbols, i.e., primary synchronization signal (PSS),
physical broadcast channel (PBCH), and secondary synchro-
nization signal (SSS), followed by another PBCH. PSS is used
in cell detection and synchronization, and it is assigned to the
middleP = 128 subcarriers of the first OFDM symbol. The PSS
in 4G-LTE is based on Zadoff-Chu (ZC) sequences due to their
perfect cyclic-autocorrelation property and their Fourier duals
[37], while in 5G-NR PSS is replaced by Maximum Length
Sequences (M-sequences) [38]. There are NPPS = 3 and 336
unique sequences of PSS and SSS, respectively, and these 1008
combination define the cell identifier (ID) of BS. PBCH carries
control information.

Beamformed Initial Access: The BS periodically transmits IA
blocks and such signals are processed by UEs which desire to
establish the initial access, reconnect after beam misalignment,
and search for additional BSs for potential handover. The sound-
ing beams in SS bursts are intended to facilitate multi-antenna
processing in BS and UE when no a priori channel information
is available. Referring to Fig. 1, BS and UE in the DIA scheme
useMT andMR transmitter and receiver beams to cover angular
space at both ends. One T/Rx beam is used at a time, for all
M =MTMR SS bursts.

Beam Training: The purpose of beam training is to identify
and report the best beam pair between BS and UE. The sounding
beams in DIA typically have large beam-width and flat response
inside angular sectors [39]. Such design covers the angular space
of BS and UE withinM bursts, but achieves coarse propagation
directions estimation [8]. Thus DIA relies on directional beam
training to refine angular resolution where BS and UE steer

TABLE I
NOMENCLATURE

narrow sounding beams within the sectors of interest during
CSI-RS periods.

III. SYSTEM MODEL

This section introduces the system model that adopts the
5G-NR frame structure and problem formulation. All important
notations are summarized in Table I.

A. Asynchronous Received Signal Model in IA

Consider a single cell system with a BS equipped with NT

antennas. The BS transmits beamformed IA signal over mmW
sparse multipath channel to UEs. We focus on the IA and BF
training procedure for a single UE.1 The UE uses analog array
architecture, i.e., phased array, with NR antennas. We assume
that a single stream of IA signal is transmitted by the BS
regardless of its architecture.

We first consider the received signal model when a UE
searches for BS to initialize the connection. In this procedure,
UE follows a periodic SS burst structure and uses predefined
receiver beamformers to capture the signal according to [7]. As
illustrated in Fig. 2, when the signal is present, the received
samples, sampled at Ts, is denoted as

y[n] =

Nc−1∑

d=0

ej(εFn+ψ[n])wH[n]H[d]v[n− d− εT]s[n−d−εT]

+wH[n]z[n], n ∈ [0, NF − 1]. (1)

1Since this downlink procedure does not have UE-specific precoding, it is
straightforward to extend it to multiple UEs.
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Fig. 2. Illustration of the received signal model as time sequence.

In the above equation, εT is the unknown integer sample TO
within range2 0 ≤ εT ≤ εT,max ≤ NB, where εT,max is the largest
offset known to the system and NB is the number of samples
in one SS burst, i.e., NB = TB/Ts. The phase measurement
error ej(εFn+ψ[n]) comes from two sources. εF is the normalized
initial CFO, i.e., εF = 2πTsΔf where Δf is absolute CFO in
Hz between BS and UE. ψ[n] is the phase noise process in the
UE receiver. Nc is the maximum excessive multipath delay in
discrete time, based on which cyclic prefix (CP) Ncp > Nc for
OFDM symbols is designed. s[n] is the time domain signals of
SS bursts. Referring to Fig. 2, we focus on the PSS and treat
other symbols as zero [6], i.e.,

s[n] =

⎧
⎪⎪⎨

⎪⎪⎩

szc[n− (m− 1)NB + P −NCP], n ∈ SCP,m

szc[n− (m− 1)NB −NCP], n ∈ SPSS,m

0, otherwise

,

where SCP,m � [(m−1)NB, (m−1)NB+NCP − 1], SPSS,m �
[(m− 1)NB +NCP, (m− 1)NB +N − 1] are the sets with
sample index corresponding to CP and PSS in the m-th burst,
respectively. |szc[n]| = 1, n ∈ [0, P − 1] is the Fourier dual of
a known PSS sequence, and N = P +Ncp is the number of
samples in PSS including CP. z[n] is the Additive White Gaus-
sian noise (AWGN) and z[n] ∼ CN (0, σ2

n INR). Vectors v[n]
and w[n] are beamformers used by BS and UE at instance
n, respectively, and they are from a predefined set of IA
beam codebook, i.e., w[n] ∈ W � {w1, . . . ,wM} and v[n] ∈
V � {v1, . . . ,vM}. BS and UE sequentially use respective
beamformers for an interval ofNB samples and switch to the next
one in W and V , i.e., w[n] = wm, if �n/NB = m and v[n] =
vm, if �n/NB = m. Beamformer switching is assumed not
to introduce latency or phase offset in the transmission and
reception. In this work, we focus on the system where each
element of vm and wm is randomly and independently chosen
from a set ST = {±1/

√
NT,±j

√
NT}, and SR = {±1

√
NR,±j

√
NR}.

Such sounding beams require only 4-level phase quantization
when steered by phased array and have randomized quasi-
omnidirectional beam pattern.

The discrete time MIMO channel at delay d (d <
Nc) is denoted as H[d] ∈ CNR×NT . Following the ex-
tended Saleh Valenzuela (S-V) model in [4], we ex-
press H[d] as H[d] = 1√

NTNR

∑L
l=1

∑R
r=1[gl,rpc(dTs − τl,r) ·

aR(φ
(az)
l,r , φ

(el)
l,r )a

H
T (θ

(az)
l,r , θ

(el)
l,r )], where L and R are the number

of multipath clusters (typically small,L ≤ 4 [40]) and sub-paths

2We assume coarse timing synchronization is available with 10 μs level
accuracy that corresponds to current LTE-A. Practically it is achievable via
GPS clock or non-standalone mmW network [7].

(rays), respectively. Scalar gl,r , τl,r, θ
(az)
l,r , θ

(el)
l,r andφ(az)

l,r , φ
(el)
l,r are

the complex gain, excessive delay, angle of departure (AoD) in
azimuth and elevation plane, and angle of arrival (AoA) in two
planes of the r-th sub-path within the l-th cluster, respectively.
Function pc(t) is the time domain response filter due to limited
temporal resolution Ts. With antenna spacing being half of
wavelength that corresponds to the carrier frequency fc, the
angular response vectors at the BS and UE are denoted as
aT(θ) ∈ CNT and aR(φ) ∈ CNR . In uniform planar array (UPA)
with N

(az)
R by N

(el)
R element (N (az)

R N
(el)
R = NR), the receiver

array response is defined as [aR(φ
(az), φ(el))]

(kv−1)N
(az)
R +kh

=

exp[jπ(kh − 1) sin(φ(az)) sin(φ(el)) + (kv − 1) cos(φ(el))]. The
transmitter array response is similarly defined.

Note that the above model aligns with measurement-endorsed
mmMAGIC channel model [41] and is used for the system
performance evaluation in Section VIII. However, for the sake of
tractable algorithm design and analysis, the following assump-
tions and definitions are made.

Assumption 1: Assuming BS and UE use ULA with omni-
directional element pattern in the 2D environment, i.e., array re-
sponse reduces to [aR

(
φ(az)

)
]k = exp[jπ(k − 1) sin(φ(az))] and

[aR
(
φ(az)

)
]k = exp[jπ(k − 1) sin(φ(az))]. We further remove

the superscript in angle θ and φ for clarity. Intra-cluster AoA,
AoD, and delay offsets are zero, i.e.,

∑R
r=1 gl,r � gl, φl,r = φl,

θl,r = θl, τl,r = τl, ∀r. Index r is omitted in the rest of paper for
clarity. The phase error process is solely from CFO i.e., phase
noise process is ψ[n] = 0, ∀n in (1). The complex path gain gl
is deterministic complex value, i.e.,

∑L
l=1 |gl|2 = σ2

g .
Definition 1: The pre-BF signal to noise ratio (SNR) is de-

fined as SNR � σ2
g/σ

2
n .

B. Problem Formulations

We intend to address the following three problems, and their
connection to the existing works are remarked.

Problem 1 (Initial Discovery and Timing Acquisition): The
UE needs to detect the SS burst from in-band received samples
(1). This problem is a binary hypothesis testing with unknown
channel H[d] and synchronization errors εT and εF.

H0 : y[n] = wH[n]z[n],

H1 : y[n] =

Nc−1∑

d=0

(
ejεFnwH[n]H[d]v[n− d− εT]

· s[n− d− εT]

)
+wH[n]z[n].

(2)

In addition, the TO εT is estimated at this stage.
Problem 2 (Initial BF Training): The BF training is trig-

gered once UE has detected IA signals. In this stage, UE re-uses
the asynchronous signal samples (1) to estimate the AoD and
AoA of a path with significant power, say θ� and φ�, and
they are then used in designing beamformers, v� = aT(θ

�)
and w� = aR(φ

�), in data communications phase.
Remark 1: The above problems can be solved by DIA and

directional beam training with the help of CSI-RS, while our
solution relies on processing IA block only. In additional,
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although Problem 2 has overlap with parametric channel esti-
mation, approaches from this class are not directly comparable.
In fact, [19], [23] estimate the entire wideband channel, which
facilitates optimal MIMO processing, but the assumptions of
perfect synchronization and equal channel bandwidths in beam
training and data communication do not necessarily apply to the
5G-NR compliant model considered in our work. Our goal is to
provide well-aligned beam pair within IA block, i.e. without
requiring CSI-RS slots. Finally, the cell ID recognition and
PBCH decoding are important tasks but are not studied in this
work.

Problem 3 (Squint Robust Beam Training): The model in
Assumption 1 and Problem 2 are formulated for 5G-NR compli-
ant cellular system where the bandwidth and array size are not
large enough to exhibit significant beam squint phenomenon. We
extend our channel model and design beam training algorithm
that is robust to squint due to increased channel bandwidth.

IV. INITIAL DISCOVERY AND TIMING SYNCHRONIZATION

This section presents the proposed initial discovery and timing
synchronization followed by their performance analysis.

A. Initial Discovery and Timing Synchronization Algorithm

The UE processes the received signal using the correlation
filter with szc[n], and obtains the detection statistics:

ỹ[n] =
1

P

P−1∑

k=0

y[n+ k]s∗zc[k]. (3)

Intuitively, there are M correlation peaks across M SS bursts.
The magnitude of the m-th peaks depends on the array gain of
the m-th sounding beamformer, CFO, and TO. Our proposed
detector combines energy from all M SS bursts and compares
it with the threshold. In contrast to previous works [6], [9], [10]
where the detection threshold is a fixed constant, we propose to
use the optimal detection threshold based on Neyman-Pearson
criterion that meets target false alarm (FA) rate P �FA.

To understand the impact of timing synchronization error, we
first consider a Genie scenario where the UE has perfect timing
(PT) information, i.e., εT = 0. In this case, the proposed PSS
detection scheme is an energy detector over all M bursts. In
addition, a sample time window withNc is used to collect energy
from all multipaths. Specifically, the proposed hypothesis testing
scheme is expressed as

γPT � 1

M

M−1∑

m=0

Nc−1∑

k=0

|ỹ[k +mNb]|2
H1

≷
H0

ηPT, (4)

where the detection threshold ηPT is used to reach false alarm
rate constraint such that Pr(γPT > ηPT|H0) = P �FA.

In a practical scenario without initial timing information (NT),
i.e., εT �= 0, we propose to use the following detector

γNT � max
0≤n<εT,max

1

M

M−1∑

m=0

Nc−1∑

k=0

|ỹ[n+ k +mNb]|2
H1

≷
H0

ηNT (5)

that searches all possible instances within TO window εT ∈
[0, εT,max] and uses the highest energy collected for the hypoth-
esis test. The sample index corresponding to the highest energy

in (5) is the estimate of TO, namely

ε̂T = argmax
0≤n<εT,max

1

M

M−1∑

m=0

Nc−1∑

k=0

|ỹ[n+ k +mNb]|2 . (6)

B. Performance of Initial Discovery and Timing Acquisition

In this subsection, we analyze performance of the proposed
discovery algorithm in terms of miss detection rate, and the
impact of initial synchronization error εF and εT. The exact
expression is challenging and tedious, if not impossible, and
therefore we provide a tight closed-form approximation in the
following proposition. To be concise, the subscripts of γ and η
that indicate the timing information assumption are denoted as
binary variable E ∈ {NT,PT}.

Proposition 1: The optimal threshold of (5) that reaches
target FA rate Pr(γE ≥ η�E|H0) = P �FA is approximately3

η�E = σ2
n

[
Nc

P
+

√
Nc

MP 2
ξE (εT,max, P

�
FA)

]
, (7)

where ξE(εT,max, P
�
FA) is the threshold adjustment factor depen-

dent on synchronization computed as

ξE =

⎧
⎨

⎩

Q−1 (P �FA) , E = PT

Q−1
(

1
εT,max

)
− 0.78 ln(− ln(1−P�

FA))

Q−1
(

1
εT,max

) , E = NT
, (8)

where Q(.) and Q−1(.) are Q-function and inverse Q-function,
respectively. The associated miss detection (MD) rate PMD,E �
Pr (γE < η�E|H1) using the optimal threshold η�E is

PMD,E = Q

⎛

⎝
κ(εT, εF)SNR−

√
Nc
MP 2 ξE (εT,max, P

�
FA)√

2κ2(εT,εF)SNR2

M + Nc
P 2M

⎞

⎠ ,

(9)

where the SNR degradation factor κ(εT, εF) is defined as

κ(εT, εF) =
2−� (ejK(εT)εF

)−� (ej[P−K(εT)]εF
)

P 2 [1−� (ejεF)]
, (10)

where K(εT) is the number of samples during PSS reception
that UE switches beamformer due to TO.

K(εT) =

{
NB − εT, if NB − P ≤ εT < NB

0, otherwise
. (11)

Proof: See Appendix A. �
Remark 2: 1− PMD,NT is a close approximation of probabil-

ity that UE detects IA and correctly estimates εT.
We gain two main insights from MD expressions (9) cor-

responding to threshold adjustment factor ξE(εT,max, P
�
FA) and

SNR degradation factor κ(εF, εT). Firstly, the CFO affects MD
performance by effectively reducing SNR via term κ(εF, εT).
Under maximum CFO at UE of ±5ppm and typical frame pa-
rameters P,M,Nc specified in Section VIII, the SNR degrada-
tion is bounded by 4 dB, i.e., 10 log10[κ(εF, εT)] ≥ −4 dB, ∀εT.
Secondly, the TO has impact on both factors. As seen in (10),
the SNR in the detection problem degrades when severe TO
exists. In fact, K(εT) in κ(εF, εT) models phenomenon that
receiver sounding beam switches during the reception of PSS,

3Approximation is tight when TO search window size εT,max ≥ 100.
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i.e., K(εT) �= 0. In addition, the presence of TO forces system
to use peak detection scheme (5) where system searches peak
location over a sample window with length εT,max, i.e.,the worst
case in (5). Under H0, the algorithm picks strongest noise
realization over εT,max samples and thus system needs to use
higher threshold than in PT scenario, as seen in (7) and (8).
Note that such degradation does not depend on the value of εT,
and the degradation in (9) is not critical with practical maximum
TO uncertainty εT,max ≤ NB. In summary, synchronization offset
does not severely affect discovery performance of the proposed
scheme.

C. Benchmark Approach: Directional Initial Discovery

For completeness, we briefly introduce the benchmark ap-
proach using directional sounding beam in initial discovery
[6]. The system model of DIA is similar to Section III, except
that sounding beamformers W and V are codebooks that steer
directional sector beams, e.g., [14], [42]. Adapting the approach
in [6] for the wideband channel and known PSS in SS burst, the
cell discovery in DIA uses the following detector

γDIA � max
n

|ỹDIA[n]|2
H1

≷
H0

ηDIA (12)

where γDIA and ηDIA are the detection statistic and threshold
in DIA. Sequence ỹDIA[n] is the correlation output in (3) that
corresponds to directional sounding beams. Refer to Fig. 1, the
UE detects the burst with maximum power and denotes the index
as m�

DIA which is used in directional beam training.

V. COMPRESSIVE INITIAL BEAM TRAINING

This section presents the proposed initial access based BF
training. We start with signal rearrangement based on informa-
tion obtained from successful cell discovery and timing acquisi-
tion. Then, we introduce the CS problem formulation followed
by the proposed algorithm. Finally, we analyze the CRLB of
AoA/AoD estimation in LOS.

A. Signal Rearrangement After Timing Acquisition

The further processing requires correct detection and CP
removal, and therefore we make a following assumption.

Assumption 2: In beam training, the received IA signal (1)
is correctly detected and TO εT is correctly estimated.

The UE first removes CPs of P PSS samples from y[n]
corresponding to M bursts and rearranges them into vector

y = [yT
1 , . . . ,y

T
m, . . . ,y

T
M ]T,

{ym}p = y[ε̂T +NCP + (p− 1) + (m− 1)NB], p ≤ P.
(13)

For notation convenience, in the rest of subsection, we restate
the received time domain signal after CP-removal at the m-th
SS burst ym ∈ CP according to the model in Section III,

ym =

L∑

l=1

g̃m,lQ(εF)F
H [f(τl) ◦ s]

︸ ︷︷ ︸
xm(ξ)

+ zm,
(14)

In the above equation, deterministic vector xm(ξ) ∈
CP is observations model of unknown parameters

ξ � [εF, . . . , θl, φl, τl, αl, βl, . . .]
T, where αl = �(gl) and

βl = �(gl). zm ∈ CP is the vectorized random noise. We
also define x(ξ) = [xT

1(ξ), . . . ,x
T
M (ξ)]T. Specifically, in (14)

vector s ∈ CP contains PSS symbols assigned to P subcarriers.
Vector f(τl) ∈ CP is the frequency response corresponding to
the excessive delay τl of a multipath, i.e., the contribution of τl
on the p-th subcarrier is

[f(τl)]p = exp [(−j2π(p− 1)τl)/(PTs)] . (15)

Matrix F ∈ CP×P is discrete Fourier transform (DFT)
matrix.4 The effective channel gain is defined as g̃m,l =

ejεFNB(m−1)glw
H
maR(φl)a

H
T (θl)vm, and it includes the con-

tribution of phase rotation across SS bursts due to
CFO and IA beamformers vm and wm. Matrix Q(εF) =

diag
([

1, ejεF , . . . , ej(P−1)εF
]T)

contains phase rotations within

an OFDM symbol.

B. Baseline CS Formulation

Directly estimating ξ from (14) via maximum likelihood
(ML) requires multi-dimensional search with prohibitive com-
plexity. In the following subsections, we re-formulate Problem
2 to facilitate sequential parameter estimation. With straight-
forward extension of the derivation in [4, Sec. V], the vector
[g̃l]m = g̃m,l in (14) can be re-formulated as

g̃l = Q̃(εF)Ã
Hvec(H̃l), (16)

where Ã ∈ CGTGR×M is defined by the Hermitian conjugate of
its m-th column as ([Ã]m)H = (vT

m ⊗wH
m)(A∗

T ⊗AR). Note
that the above equation is different from [4, Sec. V] which
requiresM2 sounding beam pairs. The matrix Q̃(εF) ∈ CM×M
contains the phase rotation in each SS burst due to CFO.

Q̃(εF) = diag

([
1, ejNBεF , . . . , ejNB(M−1)εF

]T
)
. (17)

In fact, matrices AT ∈ CNT×GT and AR ∈ CNR×GR are the
dictionaries of angular responses with AoAs and AoDs from
grids with GT and GR uniform steps from −π/2 to π/2, re-
spectively. In order words, the k-th columns in AT and AR are
[AR]k = aR([r]k) and [AT]k = aT([t]k), respectively, where
[r]k and [t]k are the vectors that contain angle candidates.

[r]k = −π
2
+ (k − 1)Δφ, [t]k = −π

2
+ (k − 1)Δθ. (18)

Also note that the steps Δθ and Δφ depend on the desired reso-
lution. In this work,GT andGR are used as number of steps and
namelyΔθ = 2π/GT andΔφ = 2π/GR. Matrix H̃l ∈ CGR×GT

contains the complex path gain of the l-th path, i.e., it has 1
non-zero element whose location depends on the AoA and AoD
of the l-th cluster in the angular grids.

Remark 3: Assuming noisy observation of g̃l and zero CFO,
(16) reduces to the baseline problem in [4, Sec. V]. However,
(14) implies that the former assumption is non-trivial unless
s = 1, τl = 0, ∀l, e.g., [17]. Moreover, algorithm designed with
latter assumption is sensitive to CFO [1]. Finally, the AoA/AoD
estimators are commonly confined in r and t [17]. We address
these challenges in the following three subsections.

4With absence of CFO, multiple DFT matrixF inym gives frequency domain

symbols
∑L

l=1
g̃m,l(f(τl) ◦ s) + zm.
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C. Effective Gain Estimation

To address the challenge discussed in Remark 3, we propose
the following approach. We treatQ(εF) in (14) as identity matrix
and estimate delay of dominant path and gain, say τl and g̃m,l,
by ML approach. Actually, the proposed algorithm uses sparse
impulse support [d]q = qΔτ to construct a dictionary, where
Δτ = NcTs/GD is the step-size of delay candidates. Based on
the knowledge of the model (15) and PSS signal s, the delay
estimation is implemented as

q̂ = argmax
1≤q≤GD

〈pq, ȳ〉/‖pq‖2 and τ̂ = [d]q̂, (19)

where ȳ =
∑M
m=1 ym/M is the received PSS samples averaged

overM SS bursts. The vectorpq contains PSS samples when the
true delay of dominant path is [d]q , i.e., pq � FH [f ([d]q) ◦ s] ,
where f([d]q) is by plugging in [d]q into (15). The estimated
delay tap τ̂ enables estimating effective gain of a significant
path by

ĝ =
(
pH
q̂ ⊗ IM

)
y, (20)

where IM is the M ×M identity matrix.

D. On-Grid Joint AoA and AoD Estimation Robust to CFO

The second step uses a modified matching pursuit to solve CS
problem (16) from ĝ while incorporating the existence of CFO
in Q̃. In the conventional matching pursuit step, say the k-th, the
anticipated effective channel response corresponding to an AoA
and AoD pair, i.e., [Ã]k, is used to evaluate inner product with
g [16]. The proposed heuristic treats AoA and AoD as known
in the k-th step, and uses the ML estimator of CFO ε̂F,k which
is available in closed form. The modified matching pursuit is
expressed as

k̂ = argmax
1≤k≤GRGT

〈Q̃(ε̂F,k)ãk, ĝ〉/‖ãk‖2, (21)

where ãk � [Ã]k from (16). The matrix Q̃(ε̂F,k) has structure
as (17). The input ε̂F,k is the ML CFO estimator when treating
AoA/AoD as they correspond to ones in [Ã]k. Specifically, the
CFO estimator relies on the estimator in [43] by treating ȳk =
ã∗k ◦ ĝ as a tone with frequency εF.

ε̂F,k =
1

NB
∠
(

1

M − 1

M−1∑

m=1

[ȳk]
∗
m [ȳk]m+1

)
. (22)

Operation ∠(x) = tan−1[�(x)/�(x)] evaluates angle based on
complex samples. To get estimates of the AoA, AoD, and
CFO, index k̂ is used to select candidates from grids (18) after
the following adjustment k̂R = �(k̂ − 1)/GT+ 1 and k̂T =

k̂ − (k̂R − 1)GT,

φ̂ = [r]k̂R
, θ̂ = [t]k̂T

, ε̂F = ε̂F,k̂. (23)

E. Off-Grid Refinement

The aformentioned heuristics provide estimates of delay,
AoA, and AoD that are restricted to the grid, i.e., elements of
d, r and t. Grid refinement is a technique to provide off-grid
estimation accuracy. There are several approaches considered
in the literature including multi-resolution refinement [44] and
the Newtonized gradient refinement [45]. In this work, we

Algorithm 1: Compressive Initial Access and BF Training.

Input: Received IA signal sequence y[n]
Output: Discovery decision; Beam pair v�,w�

% ——— Initial Discovery ———
1: PSS correlation (3).
2: Energy detection (5) and timing acquisition (6).
3: if PositiveDecision then
% —— Initial BF Training (Coarse) ——

4: Arrange sequence y[n] into vector y as (13).
5: Estimate excessive delay as (19).
6: Estimate effective channel gain as (20).
7: Matching pursuit (21) with CFO estimation (22).
8: Get AoA, AoD, and CFO estimators in (23).
% —— Initial BF Training (Fine) ——

9: while ‖e(k)‖ > ε0 in (24) do
10: Use refinement steps (25) and (26); k = k + 1.
11: end while
12: Report beam pair w� = aR(φ

(k)
l ), v� = aT(θ

(k)
l ).

13: end if

propose to use first order descent approach. As initialization
of refinement, the estimator from previous steps is saved into

ξ̂
(k)

for k = 1. In the k-th iteration, the error vector is evaluated

e(k) = y − x
(
ξ̂
(k)
)
, (24)

where y is the received signal after rearrangement as (13),

x(ξ̂
(k)

) is obtained by plugging in estimated parameters into
parametric model (14). In other words, e(k) is the error vector
between observed signal sequence and received signal model
using current estimates, which is then used to update parameters.
The complex gain in iteration k is computed as

ĝ(k+1) = (∇xg)
†y, (25)

where ∇xg = (∂x(ξ)/∂g)|
ξ=ξ̂

(k) is the partial derivative of

x(ξ) over parameter g in (14) evaluated at ξ̂
(k)

. The refinement
steps for delay, CFO, AoA, and AoD are moving towards the
gradient of their estimators in the previous iterations. For concise
notation, in the following equation and paragraph we use x to
denote the parameter to be refined, i.e., x = {τ, εF, θ, φ}. The
refinement steps are

x̂(k+1) = x̂(k) + μx�
[
(∇xx)

†e(k)
]
, x = {τ, εF, θ, φ}, (26)

where μx is the step-size, vector ∇xx = (∂x(ξ)/∂x)|
ξ=ξ̂

(k)

is the the partial derivative of x(ξ) in (14) over parameter
of interest. The above approach iteratively runs by appending

updated parameter into x(ξ̂
(k+1)

) for the next iteration until the
error ‖e(k)‖2 converges or falls below threshold ε0.

It is worth noting that the proposed approach can be extended
to support multi-path training which has been covered by a
variety of works in CS-based approaches [16], [19], [21]–[23],
[25], [26]. However, the main motivation of this work is to
showcase and analyze pseudorandom sounding beams in the
initial access and initial beam training. Thus the only metric
directly comparable to its counterparts [6]–[13], namely single
path training, is evaluated.

The algorithm is summarized in Algorithm 1.
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F. Performance Bound of Initial BF Training in LOS

In this subsection, we provide lower bound of AoA/AoD
estimation variance in pure LOS5 scenario, namely CRLB
in joint estimating ξ = [εF, θ1, φ1, τ1, α1, β1]

T. Based on (14),
the likelihood function isPr(y; ξ) = (2πσ2MP

n )−1exp(−(‖y −
x(ξ)‖2)/(σ2

n )). The log-likelihood function is L(y; ξ) �
ln[Pr(y; ξ)]. The lower bound of estimation variance is given in
the following proposition.

Proposition 2: The CRLB of AoA/AoD estimation in the
compressive initial BF training stage in LOS environment is

var(φ̂1) ≥ [J−1]2,2, var(θ̂1) ≥ [J−1]3,3 (27)

where J � ∂2L(y; ξ)/∂ξ2 is the Fisher Information Matrix
(FIM) whose expressions are listed in Appendix B.

Proof: See Appendix B. �

G. Benchmark BF Training 1: Hierarchical
Directional Search

The directional beams in SS burst allow BS and UE to coarsely
estimate the propagation directions [46]. Although approach in
[46] is not tailored for wideband channel with synchronization
offset, it relies on RSS measurement within burst and therefore
it is robust to the model mismatch. Using the SS burst index that
corresponds to the maximum received power, the system uses
the knowledge of directional sounding beams to infer channel
propagation angles. Specifically, as illustrated in Fig. 1, the
estimated θ� and φ� are the centers of the m̂T-th and m̂R-th
sounding beams in BS and UE [46], respectively. Note that the
estimated angle sector indices m̂T and m̂R are computed from the
SS burst indexm�

DIA in (12), i.e., m̂R = �(m�
DIA − 1)/MT+ 1,

and m̂T = m�
DIA − (m̂R − 1)MT. The large width of a sector

beam results in poor angular resolution in DIA. In order to im-
prove the resolution, hierarchical directional beam training scans
narrower beams within the sector of interest. Such procedure
occurs during CSI-RS bursts which are scheduled for individual
UEs.

VI. SQUINT ROBUST BEAMFORMING TRAINING IN BEYOND 5G

We have discussed the compressive sensing based beam train-
ing design in a 5G-NR compliant model without beam squint. In
the beyond 5G era, with the increased bandwidth as well as the
increased array size, the beam squint becomes more significant.
In this section, we present the enhanced version of beam training
robust to beam squint.

A. Received Signal With Spatial Wideband Effect

By extending the channel model of [34] to multi-antenna UEs
scenario, the channel in the p-th subcarrier is denoted as

H(f)[p] =
1√
NTNR

L∑

l=1

gle
−j2πτl(p−1)

PTs aR(φl)ã
H
T (θl, p). (28)

Due to the fact that antenna array at BS is commonly larger
than in mobile terminal, the beam squint is modeled at the

5In the NLOS environment, the Assumption 1 facilitates intuitive algorithm
design, but the failure to consider intra-cluster angular spread results in an
inaccurate performance analysis.

transmitter end. Thus the p-th subcarrier experiences a unique
transmitter array response, which is defined by its n-th element

[ãT(θ, p)]n = ejπ(n−1)
fp
2fc

sin(θ) = ejπ(n−1)(1+
p̃(p)

PTsfc
) sin(θ). The

function p̃(p) = p− P/2− 1 relates the index of subcarrier
p ∈ [1, P ]with the radio frequency for this subcarrier fp = fc +
p̃(p)/(PTs) [47]. For notational convenience, we use p̃ instead
of p̃(p) in the rest of the paper. Note that when the bandwidth in
beam training is negligible as compared to the carrier frequency,6

i.e., 1/(Tsfc) � 1, the transmitter array response vector reduces
to the one in Section III, i.e., ãT(θ, p) ≈ aT(θ), ∀p. Also, when
the array size is small or the true propagation angle is close to
bore-sight, i.e., θ ≈ 0, the impact of beam squint is negligible
[31].

In order to focus on the spatial wideband effect, we ignore the
initial synchronization error and utilize the unit symbols s =
1 when developing the enhanced training algorithm for beam
squint regime. Following extension of Section V-A, the received
signal in the frequency domain is

y(f)
m [p] = wH

mH(f)[p]vm + z(f)
m [p], (29)

where z(f)
m [p] is the post combining AWGN in them-th SS-burst

and the p-th subcarrier. Using the similar approach as in V-B and
ignoring noise for notational clarity, the above received signal
can be reformulated as y(f)

m [p] = (vT
m ⊗wH

m)(Ã∗
T[p]⊗AR ⊗

aT
d [p])g. In this expression, ÃT[p] ∈ CNT×GT is defined by its
k-th column as ãT([t]k, p)where the on-grid AoD candidates are
from (18), and AR is defined in Section V. The vector ad[p] ∈
CGD is defined as by its k-th element as e−j2π(p−1)[d]k/(PTs).
g ∈ CGTGRGD is L-sparse vector that contains path gain that
corresponds to a tuple of AoA, AoD, and delay on the grid.

B. Squint Robust Beam Training

We propose to apply the matching pursuit based al-
gorithm to estimate channel parameters from y(f)[p] =

[y
(f)
1 [p], . . . , y

(f)
M [p]]T. To incorporate beam squint in estimation,

the following components ĀT �
∑P−1
p=0 ÃT[p]/P ∈ CNT×GT

are pre-computed as it is then used in the squint aware dictionary.
Specifically, [ĀT]1,k = 1, ∀k, and
[
ĀT
]
n,k

= ejπ(n−1) sin([t]k)

· e
−j π(n−1)sin([t]k)

2fcTs − ej
π(n−1)sin([t]k)

2fcTs

P
(
1− ej

π(n−1)sin([t]k)

PfcTs

) , n �= 1.

(30)

The proposed method first identifies the delay of dominant
path τ̂l. Then, the signal y[p] is filtered as

ȳ =
1

P

P∑

p=1

y(f)[p]ej2π
τ̂l(p−1)

TsP (31)

With an accurate excessive delay estimate τ̂l, the compressive
sensing problem is formulated for the signal ȳ as

ȳ =

⎡

⎢⎢⎣

(vT
1 ⊗wH

1 )(Ā
∗
T ⊗AR)

...

(vT
M ⊗wH

M )(Ā∗
T ⊗AR)

⎤

⎥⎥⎦

︸ ︷︷ ︸
Ψ

ḡ (32)

6Such condition holds true in 5G-NR compliant frame structure.



YAN AND CABRIC: COMPRESSIVE INITIAL ACCESS AND BEAMFORMING TRAINING FOR MILLIMETER-WAVE CELLULAR SYSTEMS 1159

where ḡ = (1T
GD

⊗ IGTGR)g ∈ CGTGR is the sparse vector
whose non-zero elements correspond to AoA and AoD of the
the significant path whose delay is estimated as τ̂l. The filtering
(31) significantly reduce contribution of other paths in (32)
when operating in wideband. The beam squint aware dictionary
Ψ ∈ CM×GTGR utilize the knowledge of ĀT in (30), AR, and
sounding beamformer wm and vm.

The on-grid estimates of AoA and AoD can be effectively
achieved by applying matching pursuit in (32). Further, the
off-grid accuracy can be achieved in a similar manner as
Section V-E. Specifically, iterative gradient descent algorithm
is used based on an initial value from the on-grid estimates. The
gradient for each of the parameter of interest is directly available
by taking the derivative of (29). The residual error in the k-th
iteration is defined by e(k) =

∑
m,p |y(f)

m [p]−wmĤ(f)[p]vm|2
where Ĥ(f)[p] in the k-th iteration is computed by plugging
the estimated channel parameters into (28). The algorithm is
summarized in Algorithm 2.

The proposed approach provides AoA/AoD report robust to
beam squint during training. In addition, the beamforming vector
of BS in data communication phase also needs to accommodate
squint. Although detailed discussion is beyond the scope of
this work, we propose a simple heuristic approach for data
communication phase, where frequency flat7 beamformer v�

are design such that it provides constant gain for all frequency
range of data bandwidth, i.e., [fc −Btot/2, fc +Btot/2]. Given
estimated AoD θ�, the squint aware beam v� needs to have its
beam-width large enough to cover [θmin, θmax], which correspond
to the squinted directions of the entire data channel. Specifically,
the two critical directions are θmin = sin−1[(1− Btot

2fc
) sin(θ�)]

and θmax = sin−1[(1 + Btot
2fc

) sin(θ�)].

C. Benchmark BF Training 2: Squint Non-Aware CS

There are various wideband mmW channel parameter estima-
tion approaches that use compressive sensing [18], [19], [23],
[24], [34], [36]. To compare the performance of proposed squint
robust beam training, we use [18] as the second benchmark
method. In this method, the channel parameters are estimated
for each subcarrier seperately, i.e., the problem is decoupled into
multiple parallel parameter estimations, which are then solved
via compressive sensing algorithm. Although [18] is originally
designed for on-grid angle estimation, the off-grid accuracy
can be achieved by narrowband refinements. Due to a squint
non-aware nature of this approach, AoD estimated from different
subcarriers has deviation under beam squint regime. We use
the empirical average of AoD estimates over all subcarriers for
comparison with our wideband AoD estimates.

VII. ACCESS LATENCY, OVERHEAD AND DSP COMPLEXITY

In this section, we present a model for analyzing three system
performance indicators, namely access latency, overhead, and
computational complexity. Note that this unified model applies
to both directional scheme and the proposed approach.

7Frequency flat beamformers can be implemented by analog array architec-
ture. Readers are referred to [34], [36] for approaches using frequency dependent
beamformer design in handling squint after beam training, where digital or
hybrid array architecture is used.

Algorithm 2: Squint Robust BF Training.

Input: Received IA signal sequence y[n]
Output: AoA/AoD pair φ�, θ�

% —— Beam Training (Coarse) ——
1: Estimate excessive delay τ̂l as (19).
2: Convert y[n] to frequency symbols y(f)[p]
3: Filter frequency domain measurements as (31).
4: On-grid angle estimates via matching pursuit in (32) that

utilize squint aware dictionary (30).
% —— BF Training (Fine) ——
5: while e(k) > ε0 do
6: Use gradient refinement based on (29); k = k + 1.
7: end while
8: Report AoA/AoD pair φ� = φ

(k)
l , θ� = θ

(k)
l .

Fig. 3. Initial access latency model for directional IA and the proposed
compressive IA. The associated latency in each step is shown under bracket.

Based on [7], we propose to use the latency model8 for both
SS burst and CSI-RS as shown in Fig. 3. In both IA schemes,
the failure of cell discovery introduces penalty of TF for a new
IA block. When cell discovery occurs, the additional latency is
required for scheduled CSI-RS according to the required number
Ntrain. Thus the access latency is

Tlatency =MTB +
+∞∑

k=0

P kMD(1− PMD)kTF + T̃RNTrain (33)

where the first term includes latency for cell discovery. In the
second term, T̃R is the average time for the UE to get the
scheduled CSI-RS for beam training and it is expressed as

T̃R =
1

NU

[
KF∑

k=0

KR∑

q=1

((k − 1)TF + qTR) +

Kres∑

q=1

(KFTF + qTR)

]

In the above equation, NU denotes the number of UEs in the
network. They share available CSI-RS in a time division manner
to combat channel dynamic. Due to the limited number of
CSI-RS KR = �(TF −MTB)/TR within one IA period, more
than one frame duration is required to meet scheduling of large
number of UE NU. Therefore, in (33) KF = �(NU − 1)/KR
is the number of frames required to assign all CSI-RS to UEs

8Note that model is simplified to emphasize the topics discussed in this work.
There are other types of latency including processing and feedback through
beam reporting.
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TABLE II
DIGITAL BASEBAND OPERATIONS (COMPLEX MULTIPLICATIONS)

andKres = NU −KcycKR is the residual delay in the last frame.
As shown in the next section, DIA and directional BF training
typically require larger Ntrain than the proposed approach.

Following [7], the overhead (OH) ratio is modeled by counting
the time-frequency resource in IA and CSI-RS

OH =
MBIATB +KRBtotTr

BtotTF
× 100% (34)

whereBIA = 1/Ts is the bandwidth in IA and the channel usage
is MTs every period TF. We focus on varying CSI-RS density
KR. Note that with reduced KR (increased TR), the OH reduces
with a cost of additional latency.

Although existing work shows that narrowband based IA pro-
vides SNR gain due to the low noise bandwidth [6], increasing
bandwidthBIA in IA and beam training offers improved latency.
In this work, we assume that increasing BIA is achieved by
using fixed pilot lengthP and reduced Ts. This facilitates shorter
OFDM symbol periods, and thus latency reduces with smaller
TB in (33). Furthermore, the overhead remains the same since
BIATB in (34) remains constant.

The required baseband operations of the proposed approach
are summarized in Table II, where only the complex multiplica-
tions are taken into account. To reach the on-grid accuracy, the
existing compressive sensing based wideband channel estima-
tion requires complexity O(PMGTGR) when all P subcarriers
are used [18], or O(PselMGTGR) where a selective number of
Psel subcarriers are used [19]. The proposed approach reduces
this most computationally demanding steps into O(MGTGR).
Admittedly, the refinement stage involves higher complexity,
since each iteration contains the computation of gradient and
gradient based updates (26) and (25). Here, only scaling laws in
terms of system parameters are provided for clarity. Refinements
require Kite iteration and quantitative analysis of this values
is left as future work. The beam squint robust algorithm in
Section VI contains the same online computational complexity.
Moreover, it is worth noting that the above analysis contains
online computation, and assumes there is an offline pre-
computation of all required dictionaries for matching pursuit,
i.e., pq in (19), ãk in (21). Lastly, directional IA involves the
computation of (4) or (5) and its computational complexity is
given in Table II.

VIII. RESULTS

This section presents the numerical comparison between the
proposed approach and DIA with directional beam training.

Fig. 4. Beam patterns of two sector beam designs [14], [42] with MT = 16
transmit sectors and one realization of 16 pseudorandom beams. In the polar
plot, the r-axis refers to the gain in dB and the angular axis refers to steering
angle in degrees. All patterns correspond to NT = 128 ULA.

A. Simulation Settings

The simulations follow 5G-NR frame structure. We first eval-
uate performance in the simplified 2D S-V channel model. The
maximum excess delay is set as Nc = 4 samples. As for the
DIA, we use two approaches to design directional sector beams,
i.e., least-squares based sector beamforming (LS-Sec) codebook
[14] and frequency sampling method based sector beamforming
(FSM-Sec) codebook [42, C23.4]. Examples of beam patterns9

are shown in Fig. 4. In each of the Monte Carlo simulations,
we generate an independent random realization of pseudoran-
dom sounding beam codebook and channel parameters, unless
otherwise mentioned.

The next evaluation focuses on the performance of the pro-
posed algorithm in a realistic 3D mmW propagation envi-
ronment where the sparsity is compromised, i.e., there are
non-trivial angular and delay spreads within each multipath clus-
ter. In Section VIII-C we simulate the system with QuaDRiGa
simulator [48] based on mmMAGIC model [41] in 28 GHz
urban-micro (UMi). We remove Assumptions 1, 2 from Sections
III-A and V-A. Uniform planar arrays (UPA) NT = 16 × 4,
NR = 4 × 4 are used at BS and UE, respectively, to exploit the
higher sparsity in the elevation plane. The proposed algorithm
follows straightforward extension, namely, the estimated indices
in dictionary (23) are mapped to AoA/AoD in both azimuth and
elevation plane to fit into 3D environment. In the simulations,
the transmit power is set to Pout = 46 dBm. The large scale
channel model includes pathloss and shadowing. The AWGN
on the receiver with 4 dB noise figure is added with power of
−170 + 10 log10(BW) dBm, where the noise bandwidth is 1/Ts

and Btot = 400 MHz [49] for IA and data stage, respectively.
Moreover, the UE phase noise, ψ[n] in (1), is modeled as
Weiner process [50] that corresponds to oscillator with phase
noise spectrum −114 dBc/Hz at 1 MHz offset [51]. The other
detailed simulations setting in QuaDRiGa can be found in
the supplementary material [52]. The DIA and beam training are
also extended for UPA and 3D channel, i.e., FSM-Sec beams are
extended in both azimuth and elevation plane. During each one
ofNtrain CSI-RS, BS and UE use 16 sounding beams pairs which

9We uses an optimistic DIA system where sector beams are synthesized by
arrays with ideal phase and magnitude control.
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TABLE III
SUMMARY OF SIMULATION SETTINGS

bisect previous scanned azimuth and elevation angular regions.
We use post-training SNR as performance indicator, which is
evaluated by dividing channel gainPout

∑Nc−1
d=0 |(w�)HH[d]v�|2

over noise power in Btot.
Lastly, we evaluate the performance of the enhanced beam

training under beam squint regime, where up to 2 GHz band-
width for IA and beam training is considered. To demonstrate
the impact of spatial wideband phenomenon, we assume that
the transmitter uses linear arrangement with NT = 128 antenna
elements, and the AoD is chosen to be far from bore-sight,
i.e., randomly drawn from [35◦, 45◦]. The UE uses NR = 16
elements, and beam squint is not modeled at the receiver. The
training SNR is 10 dB regardless of the bandwidth.

Unless otherwise mentioned, the simulation parameters are
summarized in Table. III.

B. Performance in Simplified S-V Channel Model

The miss detection rate10 of the proposed approach for initial
discovery is shown in Fig. 5, and it is verified against the
theoretical expressions (9). We have the following findings.
Firstly, the lack of perfect timing synchronization introduces
around 3 dB sensitivity loss as shown between the blue circled
curve and red solid curve. However, this issue is unavoidable in
practical systems. Secondly, less than 3 dB sensitivity loss occur
when ±5 ppm CFO is present in addition to STO, as shown
by the light blue dashed and green dashed-and-dotted curves.
Finally, the practical STO (≤10 μs) is noncritical as shown
by red solid and blue dashed curves. But when STO is large
enough to cause transmitter and receiver burst beamforming
window mismatch, e.g., 17 μs STO which corresponds to large
K(εT) in (11), severe sensitivity loss is introduced as shown in
grey dotted curves. In summary, these simulations verified the
findings from Section IV that practical initial synchronization
error introduces up to few dB sensitivity loss as compared to
perfect synchronization scenario.

The comparison among proposed approach and benchmark
DIA based discovery approaches is also presented in Fig. 5.
Although common sense may doubt the efficacy of the proposed
approach since there is no significant angular gain for any beam

10Miss detection rate in simulation is evaluated by a generalized definition
Pr(γNT > ηNT, ε̂T = εT|H1) in this proposed approach when εT �= 0.

Fig. 5. Simulated (Sim.) and theoretical (Theo.) results of the miss detection
rate of the proposed initial discovery with various synchronization errors. The
discovery rate of the directional initial access is also included as benchmark and
both LS-Sec. and FSM-Sec. are used as sector beams. The BS and UE have
NT = 128 and NR = 32 ULA and SV channel has L = 2 multipaths.

Fig. 6. Simulated results of the proposed algorithm, with and without re-
finement steps, and theoretical bound of RMSE of AoA/AoD estimation in
LOS. Both array geometry setting,{NT,NR} = {32, 8}ULA and{NT,NR} =
{128, 32} ULA are evaluated. System has 5ppm CFO.

pattern, as illustrated in Fig. 4, the results show that there is only a
couple of dB difference among the proposed approach and DIA.
However, such gap is less than the performance fluctuation of
DIA with difference codebooks. The rationale behind this result
is that the proposed scheme collects signal energy spread over all
M SS bursts which in fact gives equivalent energy measurement
as directional approach where energy collection occurs only
when a sector beam aligns with true propagation direction.

The beam training performance of the proposed BF training
algorithm in LOS is presented in Fig. 6. The performance metrics
are the residual mean square error defined by RMSEAoA =√

E|φ̂1−φ1|2 and RMSEAoD =
√

E|θ̂1−θ1|2. The simulations are
conducted with Assumption 2. The same pseudorandom setting
is used in both simulation and theoretical CRLB evaluation. The
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Fig. 7. Initial access and beam training of proposed and directional beam training evaluated in 3D outdoor UMi network using 28GHz mmMAGIC channel
model [41]. The trade off between post-training SNR in the data phase, required overhead, and access latency are also studied.

refinement steps are forced to terminate in up to 100 iterations.
We have the following findings. Firstly, when the off-grid refine-
ment are used, the proposed algorithm reaches CRLB in high
SNR regime. Secondly, the coarse estimation in high SNR has
a compromised performance as compared to CRLB. However
coarse estimation (without refinement) has adequate accuracy
for beam steering since RMSE is order of magnitude lower than
3 dB beam-width in steering, i.e., 102◦/NT and 102◦/NR. Fi-
nally, Fig. 5 and 6 reveal that in SNR region between−15 dB and
−7.5 dB reliable detection occurs but beam training performance
is poor. Admittedly, this implies a compromised experience for
UEs at the cell edge, which is worth further investigation.

C. Performance in QuaDRiGa Channel Simulator

Fig. 7(a) illustrates the network setting implemented in
QuaDRiGa. We simulate the performance of typical UEs
distributed in two planes, with different distance towards the
pico-cell mmW BS. We present the following findings based
on Fig. 7(b), which shows the cumulative distribution function
(CDF) of post-training beam steering SNR. Firstly, the pro-
posed approach provides comparable performance to DIA with
Ntrain = 2 CSI-RS. In fact, in LOS, both approaches closely
achieve beam steering towards true LOS path. Although the SNR
seems excessively high in LOS, this implies that the transmit
power can be reduced to save power. Secondly, DIA with less
than Ntrain = 2 CSI-RS has compromised SNR performance.
This drawback is intuitive because wide sounding sector beam

fails to extract precise angle information. The SNR improve-
ment of using higher Ntrain is more significant in LOS. Thirdly,
although the proposed approach is tailored for sparse channels
and presence of phase measurement error due to CFO, it is robust
in NLOS scenarios where channel sparsity is compromised and
practical phase noise occurs. Admittedly, the algorithm has a cer-
tain chance to completely fail when NLOS UEs are distributed in
the second plane. However, in these cases the counterparts based
on DIA and CSI-RS training cannot do much better job either.
In fact, they have lower probability to reach post-training beam
steering SNR above 0 dB compared to the proposed approach.

The overhead and initial access latency savings of the pro-
posed approach are significant, since it does not require CSI-RS,
as shown in Fig. 7(c). As explained in Section VII, for DIA
based approaches when number of UEs in the network increases,
the latency increases dramatically due to CSI-RS scheduling.
Increasing the density of CSI-RS effectively reduces latency, but
it results in increased overhead. The proposed approach relies on
advanced signal processing to digitally conduct beam training
and avoids requesting CSI-RS after initial access. In summary,
up to two order of magnitudes saving in initial access latency is
reached as compared to DIA.

D. Performance Under Beam Squint Phenomenon

Fig. 8 shows the AoD estimation accuracy as a function
of beam training channel bandwidth. The proposed approach
retains non-compromised accuracy throughout an entire range
of bandwidths since the squint tailored dictionary is accounted



YAN AND CABRIC: COMPRESSIVE INITIAL ACCESS AND BEAMFORMING TRAINING FOR MILLIMETER-WAVE CELLULAR SYSTEMS 1163

Fig. 8. AoD estimation accuracy of the proposed squint robust training and
the benchmark BF training method 2 for different training bandwidths.

Fig. 9. Beamforming gain after beam training across a wide frequency range.
Two types of beams are compared: width adjusted beam that utilizes approach
in Section VI and pencil beam that uses steering vector. Beams are pointed to
the center direction based on beam training.

in the processing. The squint non-aware method (benchmark
training 2) has increased error when bandwidth increases.

The post training BF gain in data phase is also important
performance indicator. To better understand the impact of AoD
estimation accuracy, we evaluate two beam design candidates in
the transmitter, wide beams and pencil beams, that steer the beam
in direction reported by corresponding beam training algorithm.
The training occurs over 2 GHz bandwidth, and its AoD esti-
mation accuracy can be inferred from Fig. 8. We assume analog
architecture, therefore a single precoding vector is applied to all
subcarriers. The wide beam precoder is designed with critical
beam width based on Section VI, with vector coefficients as in
[42, C23.4]. The pencil beam uses conventional steering vector.
The beamforming gain across a wideband range is presented in
Fig. 9. We have the following findings. First, utilizing the beam
squint non-aware CS approach, the pointing direction of beams
could be completely mis-aligned with the true propagation angle,
thus resulting in significant loss of beamforming gain, for both
pencil and wide beams. Second, by utilizing the wide beam
width, our proposed squint aware algorithm achieves almost
constant BF gain across 1500 MHz bandwidth. Lastly, RMSE
of AoD< 0.1◦ is sufficient to achieve broadband BF gain when
wide beams are used.

E. Baseband Processing Requirements

Using the simulation parameters in Table III to evaluate
required operations in Table II, the baseband resource of the
proposed method are in the same order of magnitude with DIA,
i.e., (PNB + PGd + 3MGTGR)/(PNB) ≈ 7.2. There are two
reasons for this finding. Firstly, exhaustive PSS correlation filter

(3) is extreme computational demanding in IA. This filter is
required by IA regardless of sounding beam design. Secondly,
the proposed approach sequentially estimates parameters and
avoids multi-dimensional grid search. This feature is particularly
appealing in wideband operation since the savings as compared
to the benchmar training method 2 whose complexity scales with
P , number of subcarriers.

IX. DISCUSSION ON OPEN ISSUES

In this section, we discuss relevant issues in practical imple-
mentation of compressive IA and beam training.

Required a priori knowledge: Firstly, this work assumes
coarse timing is available. It would be also important to study the
case when timing is completely unknown, i.e., there is no a priori
information about the range of εT in (1), which could cause SS
burst index misalignment to occur. Secondly, the compressive
approach requires precise information about the sounding beam
pattern ãk in (21). As a results, array geometry and sounding
codebooks of both BS and UE need to be known a priori.
This raises new challenges in communication protocol design
to effectively incorporate this information. It also requires an
increase in baseband operations if all dictionaries need to be
computed on-the-fly. Further, mmW testbed experiments in [54]
showed that the measured beam patterns commonly have mis-
matches with patterns predicted by codebook and array geome-
try model. Future research should address these impairments.

Channel sparsity: The efficacy of compressive approach is
affected by the sparsity level in AoAs, AoDs, and multipath
delays. Sparsity is endorsed by various mmW channel mea-
surement campaigns, and urban NLOS, which is known with
infavorable sparsity, is tested in this work. However, severely
rich scattering situation are modeled from standard perspective
[55]. It is important for system that utilize CS-based approach
to flexibly handle situation when channel sparsity disappears.

Array architecture: This work focuses on the scenario where
UE uses a single RF-chain to process a single stream of IA
signals. This allows other RF-chains, if available at BS or UE, to
operate in the band of data communication during IA. Since [6]
shows that the hybrid analog/digital array and fully digital array
are advantageous for DIA, it would be interesting to investigate
benefits of compressive IA and beam training algorithm when
they are adapted to utilize multiple RF-chain.

MIMO Multiplexing: The proposed beam training is compat-
ible with multiuser multiplexing. In fact, multiplexing designs
[24], [56] rely on each RF-chain and corresponding analog
beamformer to provide adequate post-BF SNR, and use the
digital baseband processing to handle multi-beam interference.
However, as mentioned in Remark 1, the comparison with chan-
nel estimation based approaches, i.e., estimation of the entire
wideband channel or its covariance during CSI-RS for optimal
MIMO processing, is rarely investigated.

Phase coherency: To date, there is no coherent CS-based beam
training prototype reported in mmW band. The only notable
prototype [57] operates at 8GHz with two phased arrays synchro-
nized by cabled reference clock. Prototype [58] utilizes channel
emulator to avoid issue of phase coherency. In addition to CFO,
as emphasized in this work, the phase noise can also severely de-
grade coherency among channel observations. The phase noise
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TABLE IV
ELEMENTS OF FISHER INFORMATION MATRIX

detrimental impact becomes more severe with increased carrier
frequency and shall be properly modeled and incorperated in
signal processing techniques for mmW [59]. Proper phase noise
compensation as well as non-coherent CS-based beam training
[28]–[30] are naturally immune to phase error and are worth
investigation.

X. CONCLUSIONS

In this work, quasi-omni pseudorandom sounding beam is
proposed for the mmW initial access, synchronization, and
beam training. We design associated signal processing algo-
rithm based on the proposed sounding beam structure that is
compatible with 5G-NR frame format. We provide theoretical
analysis of cell discovery rate and CRLB of beam training
performance, and evaluate them via simulations using the mmW
hardware and urban channel models from the literature that are
supported by measurements. The results show that the proposed
approach provides comparable performance to the state-of-the-
art directional cell search for initial discovery, but achieves
significantly more accurate angle estimation during initial beam
training. This advantage holds true across different propagation
condition (LOS/NLOS) and UE-BS distance at 28 GHz band.
Due to the saving of additional radio resource (CSI-RS) for beam
refinement, the proposed approach reduces up to two order of
magnitude access latency compared to the directional initial
access when the same signaling overhead and post-training
beam steering SNR are targeted. An enhanced beam training
algorithm that is robust to beam squint is proposed for future 5G
evolution when increased IA channel bandwidth is considered.
The proposed squint robust CS based beam training algorithm
is able to retain non-compromised AoD estimation accuracy
and beamforming gain across a wide range of beam training
bandwidths.

All numerical results are reproducible with scripts in [52].

APPENDIX

A. Initial Discovery Performance

The noise after correlation z̃[n] = 1
P

∑P−1
k=0 (w

H[n+ k]z[n+
k])s∗zc[k] isNC(0, σ2

n/P ). Thus |z̃[n]|2 is Chi-Square distributed
with degree-of-freedom 2, meanσ2

n/P , and varianceσ4
n/P

2. We

denote detection statistic in PT and NT scenario under H0 and
H1 as denoted as γPT,0, γPT,1, γNT,0, γNT,1, respectively, and find
their distribution.
γPT,0 is the sum of squared NcM realizations of z̃[n] divided

byM , thus central limit theory (CLT) applies. The distribution of
γPT,0 is N (μPT,0, σPT,0), where μPT,0 = Ncσ

2
n/P and σPT,0 =√

Ncσ4
n /(P

2M), respectively. As a result, the optimal detection
threshold that reaches target false alarm rate P �FA is given by (7).
Similarly, the detection statistic under H0 with TO is denoted
as γNT,0. It is the maximum operation with degrees of freedom
εT,max of γPT,0. With large εT,max, γNT,0 follows extreme value
distribution, Gumbel Distribution, where the mean and stan-
dard deviation are μNT,0 = μPT,0 + σPT,0Q

−1(1/εT,max) and
and σNT,0 = σPT,0/Q

−1(1/εT,max), respectively. Using its in-
verse cumulative distribution function, the optimal detection
threshold is η�NT = μNT,0 − (

√
6π)σNT,0 ln(− ln(1− P �FA)). It

gives (7) using expressions of μNT,0, σNT,0 and
√
6/π ≈ 0.78.

Detection statistic γPT,1 is the sum of noise energy
and signal energy, i.e., γPT,1 = γPT,0 + (

∑M
m=1

∑L
l=0

|g̃m,l
∑P
n=1 |szc[n]|2ejεFn|2)/(PMNTNR), where g̃m,l is

defined in Section V-A. Using the fact |szc[n]| = 1, definition
κ(0, εF) � |∑P

n=1 e
jεFn|2 in (10), and approximation that dif-

ferent multipaths are resolvable, i.e., pc(dTs − τl) = 1, d ∈ Sd

where Sd has L integers in range [0, Nc − 1], the above
equation becomes γPT,1 = κ(0, εF)

∑M
m=1 ζm/M + γPT,0

where ζm =
∑L
l=0 |glwH

maR(φl)a
H
T (θl)vm|2/(NTNR). Using

the fact that ζm are mutually independent due to independent
vm and wm, the mean and variance of ζm are E(ζm) =∑L
l=1 |gl|2E|wH

maR(φl)|2E|aH
T (θl)vm|2/(NTNR) = σ2

g and

var(ζm) = (NTNR)
−2
∑L
l=1 |gl|4E|wH

maR(φl)|4E|aH
T (θl)vm|4

−σ4
g = σ4

g (2− 1
NT

)(2− 1
NR

)− σ4
g ≈ 3σ4

g , respectively. The
above approximation holds true with typical antenna array
sizes NR and NT in mmW. Therefore, according to CLT
γPT,1 ∼ CN (κ(0, εF)σ

2
g + μPT,0, 3κ

2(0, εF)σ
4
g/M + σ2

PT,0),
which gives the miss detection probability PMD,PT =
Q[(E(γPT,1)− η�PT)/

√
var(γPT,1)], and it equals to (9).

In NT scenario, we make the following approximations: 1) the
detection statistic γNT,1 corresponds to the correlation peaks for
the correct timing εT; 2) the abrupt beamformer changes during
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m-th PSS reception, when present, result in an independent
realization of sounding beam w̃m. Although the former is not
valid with low SNR, the MD rate with typical threshold in such
SNR regime already approaches 1. Therefore, impact of such
loose approximation is negligible. Based on these assumptions,
we evaluate distribution of γNT,1 as γNT,1 = γPT,0 +

1
PMLNTNR

(
∑M
m=1

∑L
l=0 |g̃(1)m,l

∑K−1
n1=1 |szc[n1]|2ejεFn1+ g̃

(2)
m,l∑P

n2=K
|szc[n2]|2ejεFn2 |2) where g̃

(1)
m,l = glw

H
maR(φl)a

H
T (θl)

vm and g̃(2)m,l = glw̃
H
maR(φl)a

H
T (θl)vm are the post-BF channel

gain due to partially overlapped burst window in BS and
UE. In other words, K follows (11) and n1 ∈ [1,K − 1] and
n2 ∈ [K,P ] are the sample window where K represents
the abrupt change in BF. The independent wm and
w̃m lead to uncorrelated g̃

(1)
m,l and g̃

(2)
m,l. For notational

convenience of finding statistic of γNT,1, we define ζm,l

as ζm,l � (|g̃(1)m,l 1−e
jKεF

1−ejεF
+ g̃

(2)
m,l

1−ej(P−K)εF

1−ejεF
|2)/(NTNR) in

γNT,1 after simplification with the fact |szc[n]|2 = 1, ∀n ∈ S
as well as

∑K
n=1 e

jεTn = (1− ejKεF)/(1− ejεF). The
mean and variance of ζm,l are E (ζm,l) = κ(εF, εT)σ

2
g ,

and var (ζm,l) ≈ 3σ4
g ζ

2(εF, εT) after plugging in definition
of κ(εF, εT) from (10). Using CLT and statistic of ζm,l,
γNT,1 ∼ CN (μPT,0 + κ(εF, εT)σ

2
g , σ

2
PT,0 + 3σ4

gκ
2(εF, εT)/M .

The MD rate PMD,NT = Q[(E(γNT,1)− η�NT)/
√

var(γNT,1)]

reduces to (9).

B. CRLB of Joint Estimation Problem

The FIM has the following form

J =
1

σ2
n

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΦεF,εF ΦεF,θ ΦεF,φ ΦεF,τ ΦεF,α ΦεF,β

Φθ,εF Φθ,θ Φθ,φ Φθ,τ Φθ,α Φθ,β

Φφ,εF Φφ,θ Φφ,φ Φφ,τ Φφ,α Φφ,β

Φτ,εF Φτ,θ Φτ,φ Φτ,τ Φτ,α Φτ,β

Φα,εF Φα,θ Φα,φ Φα,τ Φα,α 0

Φβ,εF Φβ,θ Φβ,φ Φβ,τ 0 Φβ,β

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Φx,x denotes for Φx,x = ∂2L(y; ξ)/∂x∂y =
(∂L(x(ξ)/∂x)H(∂L(x(ξ))/∂y). The exact expressions of
each elements in FIM are summarized in Table IV, where for
notational convenience the following matrices are defined.
The derivative over CFO matrix is a diagonal matrix whose
p-th diagonal element is [Q̇m]p,p = j[(m− 1)NB + (p−
1)]ejεF[(m−1)NB+(p−1)]. The vector ḟ = ∂f(τ)/∂τ whose p-th
element is [ḟ ]p = j2π(p− 1)Tse

j2π(p−1)εFTs Other expression
in Table IV include fH(τ)FHQH

mQmFf(τ) = P, ∀m,
Cdf =

∑P−1
p=0 2πpTs = (P − 2)(P − 1)πTs, Cdq,m �

fH(τ)FHQ̇H
mQmFf(τ) = (m− 1)TB + (P−2)(P−1)Ts

2 ,, and

Cd2q,m =
∑P−1
p=0 [(m− 1)TB + pTs]

2.
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