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ABSTRACT

Hardware prefetching is an effective technique for hiding cache miss

latencies in modern processor designs. Prefetcher performance can

be characterized by two main metrics that are generally at odds

with one another: coverage, the fraction of baseline cache misses

which the prefetcher brings into the cache; and accuracy, the frac-

tion of prefetches which are ultimately used. An overly aggressive

prefetcher may improve coverage at the cost of reduced accuracy.

Thus, performance may be harmed by this over-aggressiveness be-

cause many resources are wasted, including cache capacity and

bandwidth. An ideal prefetcher would have both high coverage and

accuracy.

In this paper, we introduce Perceptron-based Prefetch Filtering

(PPF) as a way to increase the coverage of the prefetches generated

by an underlying prefetcher without negatively impacting accuracy.

PPF enables more aggressive tuning of the underlying prefetcher,

leading to increased coverage by filtering out the growing numbers

of inaccurate prefetches such an aggressive tuning implies. We also

explore a range of features to use to train PPF’s perceptron layer

to identify inaccurate prefetches. PPF improves performance on a

memory-intensive subset of the SPEC CPU 2017 benchmarks by

3.78% for a single-core configuration, and by 11.4% for a 4-core

configuration, compared to the underlying prefetcher alone.

ACM Reference Format:

Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz,

and Daniel A. Jiménez. 2019. Perceptron-Based Prefetch Filtering. In The

46th Annual International Symposium on Computer Architecture (ISCA ’19),

June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/https://doi.org/10.1145/3307650.3322207

1 INTRODUCTION

Processor and memory technologies have been developed with dif-

ferent goals in mind. While processor scaling has focused on speed

improvements, memory scaling has primarily focused on increasing

capacity. The difference in each technology’s scaling has led to the
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Figure 1: The impact of aggressive prefetching on performance

for 603.bwaves_s. The number of useful prefetches increases

with aggressiveness slower than total prefetches, which wastes

bandwidth and harms performance.

Memory Wall [1] – the increasing gap between processor and mem-

ory performance. Data prefetching is one important technique that

has been developed to minimize the effects of this trend.

An ideal prefetching scheme would perfectly capture a program’s

memory access pattern, and then predict and pre-load the needed

data into the processor’s caches in a timely manner. Memory access

patterns may be simple, such as accessing every item in an array

with a for-loop, or very complex, such as chasing pointers through

dynamically-allocated memory. All prefetchers are designed around

a fundamental trade-off between two important metrics: coverage

and accuracy. Prefetcher coverage refers to the fraction of baseline

cache misses that the prefetcher pulls into the cache prior to their

reference. For example, if an application experiences 1,000 cache

misses without a prefetcher, while 800 of those cache misses be-

come hits with a prefetcher, then the prefetcher has 80% coverage

for that application. Prefetcher accuracy refers to the fraction of

prefetched cache lines that end up being used by the application. So



if a prefetcher prefetches 1,200 cache lines, but only 800 of them are

used by the application, then that prefetcher’s accuracy is 66.7%.

Coverage and accuracy are generally at odds with one another, and

as one metric improves, the other usually gets worse. For example,

when an application accesses a new region of memory for the first

time, a naïve prefetcher may predict that all data in that region will be

used by the application. This will clearly result in 100% coverage for

that region, but with possibly a very low accuracy. In fact, so much

cache capacity and bandwidth may be wasted prefetching unused

data that performance can ultimately be harmed by this strategy. At

the other extreme, another prefetcher may be overly conservative

and never prefetch anything, wasting no capacity or bandwidth, and

achieving 0% prefetch coverage.

Figure 1 illustrates the above scenario. Here we consider a state-

of-the-art lookahead prefetcher – SPP [2]. Lookahead prefetchers

such as SPP provide a mechanism to speculate an arbitrary num-

ber of references ahead of the initial triggering access. In SPP, a

throttling confidence threshold is then used to ensure that the looka-

head stops when confidence falls too low to ensure that prefetches

are accurate. In the figure, we iteratively re-tuned this threshold

to allow the prefetcher to lookahead a fixed depth from 7 to 15.

The figure depicts the behavior of the 603.bwaves_s SPEC CPU

2017 benchmark. The IPC, the total number of prefetches issued

by the prefetcher (TOTAL_PF), and the actual useful predictions

(GOOD_PF), all have been normalized to lookahead depth 7. As the

lookahead depth increases, so do useful prefetches, and hence cover-

age. This coverage, however, comes at the cost of total prefetches

increasing at an even higher rate. This leads to cache pollution and

bandwidth contention, and leads to a reduction in IPC.

Therefore, a delicate balance between coverage and accuracy

is required for a prefetcher to maximize its performance impact.

Prefetchers are generally designed with internal mechanisms to

monitor their accuracy, and throttling mechanisms that can be tuned

for either coverage or accuracy. The more irregular an application’s

memory access pattern is, the more difficult it is to accurately predict

every access, so a prefetcher will have to be tuned more toward

coverage (and away from accuracy) in order to gain any benefit.

This may be especially dangerous to do in the context of a multi-

core processor, where overly aggressive prefetching in one core can

waste shared resources, such as last-level cache (LLC) capacity, and

off-chip bandwidth, impacting the performance of other cores [3].

Here, we propose Perceptron-based Prefetch Filtering (PPF) as

an enhancement to existing state-of-the-art prefetchers, allowing

them to speculate deeply to achieve high coverage while filtering

out the inaccurate prefetches this deep speculation implies. PPF

works by observing the stream of candidate prefetches generated

by a prefetcher, and then rejects those that are predicted by the

online-trained neural model to be inaccurate. The state-of-the-art

prefetcher that we use to evaluate PPF in this paper is the Signature

Path Prefetcher (SPP) [2], however as we describe, PPF can be

designed to benefit any prefetcher. In this design, PPF replaces SPP’s

existing confidence-based throttling mechanism, which itself was

a highly tuned feature of that prefetcher. Because PPF is so much

more effective at rejecting inaccurate prefetches than SPP’s internal

mechanism, we are free to re-tune the rest of SPP’s design around

maximizing coverage. The result is an increase in both accuracy and

coverage, and a notable increase in performance.

This paper describes PPF, explains its merits, offers analysis, and

outlines the scope for future research. Its contributions are:

• An on-line neural model used for hardware data prefetching.

Previous work in this area either relied on program seman-

tics [4] or were application specific [5].

• Implementing PPF filtering a state-of-the-art prefetcher, giv-

ing a significant performance improvement compared to pre-

vious work. PPF learns to adapt itself to shared resource

constraints, leading to further increased performance in multi-

core and bandwidth-constrained environments.

• A methodology for determining an appropriate set of features

for prediction, regardless of the underlying prefetcher used.

More details are explained in Section 5.5.

In a single core configuration, PPF increases performance by

3.78% compared to the underlying prefetcher, SPP. In a multi-core

system running a mixes of memory intensive SPEC CPU 2017 traces,

PPF saw an improvement of 11.4% over SPP for a 4-core system,

and 9.65% for an 8-core system.

2 MOTIVATION

In this section we discuss the most closely related work to our

proposed technique. The idea of prefetching begins with Jouppi’s

Instruction Stream Buffers [6]. Early prefetchers detected stride

access patterns in order to predict future memory requests [7–9].

Modern prefetching mechanisms are more sophisticated as they

look into past memory behavior [10, 11], locality [12–17], control-

flow speculation [18, 19], and other other aspects to detect complex

memory access patterns. See Section 7 for other relevant work.

2.1 Underlying Prefetcher: SPP

Kim et. al. proposed Signature Path Prefetcher (SPP) [2], a confidence-

based lookahead prefetcher. SPP creates a signature associated with

a page address by compressing the history of accesses. By correlat-

ing the signature with future likely delta patterns, SPP learns both

simple and complicated memory access patterns quickly. While the

basic idea of perceptron based prefetch filtering is applicable to any

lookahead prefetcher, we develop a practical implementation of our

proposed prefetch filter using SPP as our underlying mechanism.

Here we describe the basic architecture of SPP.

Signature Table: As shown on the left side of Figure 2, the Signa-

ture Table (ST) keeps track of 256 most recently accessed pages. It

is meant to capture memory access patterns within a page boundary.

SPP indexes into an entry of the Signature Table using the page num-

ber. For each entry corresponding to a page, the table stores a ‘last

block offset’ and an ‘old signature’. Last block offset is the block

offset of the last memory access of that given page. The block offset

is calculated with respect to the page boundary. The signature is a

12-bit compressed representation of the past few memory accesses

for that page. The signature is calculated as:

NewSignature = OldSignature << 3bits XOR Delta

Delta is the numerical difference between the block offset of the

current and the previous memory access. In case a matching page

entry is found, the stored signature retrieved and used to index into

the Pattern Table. This process is illustrated in Figure 2.
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Figure 2: SPP Data-path Flow

Pattern Table: The Pattern Table (PT), shown on the right side

in Figure 2 is indexed by the signature generated from the Signature

Table. Pattern Table holds predicted delta patterns and their confi-

dence estimates. Each entry indexed by the signature holds up to 4

unique delta predictions.

Lookahead Prefetching: On each trigger, SPP goes down the pro-

gram speculation path using its own prefetch suggestion. Using the

current prefetch as a starting point, it re-accesses the Pattern Table

to generate further prefetches. As illustrated in Figure 3, it repeats

the cycle of accessing the PT and updating the signature based on

highest confidence prefetch from the last iteration. The iteration

counter on which SPP manages to predict prefetch entries in the

lookahead manner is characterized as its ‘depth’. While doing so,

SPP also keeps compounding the confidence in each depth. Thus as

depth increases, overall confidence keeps decreasing.

Confidence Tracking: As shown in Figure 3, the Pattern Table

keeps a count of hits to each signature through a counter Csig. The

number of hits for a given delta per signature are tracked using a

counter Cdelta. The confidence for a given delta is approximated

through Cd = Cdelta / Csig. When SPP enters into a lookahead mode,

the path confidence Pd is:

Pd = α .Cd . Pd-1

Here α represents the global accuracy, calculated as the ratio of

the number of prefetches which led to a demand hit to the num-

ber of prefetches recommended in total. The range of α is [0,1].

The lookahead depth is represented by d. For d = 1, when SPP

is in non-speculative mode, P0 can be thought of as 1. The final

Pd is thresholded against prefetch threshold (Tp) to reject the low

confidence suggestions and then against a numerically bigger fill

threshold (Tf) to decide whether to send the prefetch to L2 Cache

(high confidence prefetch) or Last Level Cache (low confidence

prefetch). The two thresholds were empirically set to 25 and 90

respectively, on the scale of 0 to 100.

2.2 Case for an On-line Filter

As was noted in Figure 1, aggressive lookahead prefetching, if done

without any accuracy check, can harm the performance of the sys-

tem. As the figure shows, aggressive lookahead and its accompa-

nied loss of accuracy degrades performance by almost 9%. This

is despite a growing number of useful prefetches generated by the

prefetcher. Thus, we need a mechanism that is orthogonal to the

Signature: 0xC 
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= 0.8

Lookahead
Signature

Pd > Tp
Prefetch 
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Figure 3: SPP Architecture

underlying prefetching scheme and can be used to prune out the

useful prefetches from the useless ones.

Moreover, the on-line confidence mechanism used by most prefetch-

ers is very rudimentary. For example, SPP’s internal confidence

mechanism is based on taking the ratio Cd = Cdelta / Csig. This confi-

dence was used to make the decision of whether to prefetch or not

to prefetch; and which level to prefetch. While this approximation

was shown to work in the original implementation, we believe that

a better form of generalized on-line decision making is possible.

Hence, it was necessary to build a robust and adaptable learning

mechanism to accept / reject the prefetch suggestions, and to decide

the fill level (L2 Cache vs Last Level Cache). Thus, we introduce an

independent on-line perceptron based filtering mechanism.

2.3 Perceptron Learning

Perceptron learning for microarchitectural prediction was introduced

for branch prediction [20]. Our predictor uses a version of microar-

chitectural perceptron prediction known as the “hashed perceptron”

organization [21]. As an abstract idea, a hashed perceptron predic-

tor hashes several different features into values that index several

distinct tables. Small integer weights are read out from the tables

and summed. If the sum exceeds some threshold, a positive pre-

diction is made, e.g. “predict branch taken” or “allow the prefetch.”

Otherwise, a negative prediction is made. Once the ground truth is

known, the weights corresponding to the prediction are incremented

if the outcome was positive, or decremented if it was negative. This

update only occurs if the prediction was incorrect or if the magnitude

of the sum failed to exceed a threshold. Beyond branch prediction,

perceptron learning has been applied to last-level cache reuse pre-

diction [22, 23]. In this paper, we apply it for the first time to do

prefetch filtering.

3 PPF DESIGN AND ARCHITECTURE

It can be beneficial to allow a prefetcher to speculate as deeply as

possible. Often, some useful prefetches are generated long after

the confidence of the prefetcher has fallen below the point at which

performance degrades due to the increase of inaccurate prefetches. In

order to allow deep speculation in the prefetcher, however, inaccurate

prefetches must be filtered out. We propose to leverage perceptron-

based learning as a mechanism to differentiate between potentially

useful deeply speculated prefetches and likely not-useful ones. The

Perceptron Prefetch Filter (PPF) is placed between the prefetcher

and the prefetch insertion queue, as illustrated in Figure 4, to prevent

3
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not-useful prefetches from polluting the higher levels of the memory

hierarchy.

Perceptron learning is a light-weight mechanism to pull together

disparate forms of information and synthesize a decision from them.

Our work considers a number of features corresponding to a prefetch,

such as speculation depth, page address and offset, and uses this

information as the inputs to our perceptron-based filter in order to

predict the usefulness of a prefetch. Here, we discuss our the design

of our proposed perceptron prefetch filter (PPF). PPF enhances an un-

derlying prefetcher by filtering out predicted unused prefetches. PPF

is a generalized prefetch filtering mechanism that may be adapted to

any prefetcher with appropriate feature selection and modifications

which we describe below.

3.1 The Perceptron Filter

Figure 5 shows the microarchitecture of PPF, as well as the steps

required to filter out not-useful prefetches. The perceptron filter is

organized as a set of tables, where each entry in the tables holds a

weight. For a configuration of PPF using N number of features, N

different tables of weights are needed. Each feature is used to index

a distinct table. The number of entries of each table varies according

to the corresponding feature, hence, different number of bits are

needed to index different tables. Each weight is a 5-bit saturating

counter ranging from -16 to +15. We found that having 5-bit weights

provides a good trade-off between accuracy and area. A detailed ex-

planation of the storage overhead of PPF can be found in Section 5.6.

Inferencing

The prefetcher is triggered on every demand access to the L2 Cache,

as seen in Figure 4. At this point, it has the opportunity to trigger a

prefetch. If it does so, it will also need to decide how many cache

blocks to prefetch. These blocks can be either placed in the L2 or

L3 cache according to the confidence of the prefetching mechanism.

Once the underlying prefetcher is triggered, the suggested prefetch

candidates are fed to the perceptron filter to determine the usefulness

of these prefetches. The filter ultimately decides whether to issue the

prefetch suggestions of the underlying prefetcher. As shown in step 1
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Figure 5: PPF Data Path and Operation

of Figure 5(a), to make the decision, each feature corresponding to a

suggested prefetch is used to index a table and all the corresponding

weights are summed. The sum denotes the confidence value for the

suggested prefetch, and is thresholded against two different values:

τhi and τlo.

Prefetches whose sum exceeds τhi are placed into the L2 cache.

The higher confidence value hints the prefetch would be useful and

should be prioritized. A prefetch for which the features result in a

confidence value between τlo and τhi is allocated in the larger LLC,

as the filter is moderately confident of the future reuse of the cache

block, but not enough to possible pollute a significantly smaller L2.

Suggested prefetches for which the features lead to a confidence

value lower than τlo are not prefetched, as the low confidence value

represents that the perceptron learned that a similar set of features

are associated with non-useful prefetches.

Recording

As shown in step 2 of Figure 5(a) the prefetches that make it through

the inference stage are recorded in the “Prefetch Table”. The prefetch

table is a 1,024-entry, direct mapped structure that contains all meta-

data required to re-index the perceptron entries for training. Ten bits

of the address are used to index into the tables, and another six bits

are stored to perform tag matching.

4



In addition to the prefetch table mentioned above, PPF also main-

tains a 1,024-entry direct-mapped “Reject Table.” If a prefetch sug-

gestion is rejected by the perceptron layer, it is logged into the reject

table. The table is used to train the perceptron to avoid false negatives

i.e., cases where the prediction suggested to reject the prefetch but

the prefetch was proven to be useful based on the observed demand

accesses to the L2.

Feedback and Data Retrieval

As depicted in step 3, when there is an eviction or a demand ac-

cess to the L2, training for both the underlying prefetcher and our

filter mechanism is triggered. The address of the cache block that

triggered the training is used to index both the Prefetch and Reject

tables. If it is a match, the corresponding features are retrieved to

index into the tables of perceptron weights.

Training

As can be seen in step 4 of, the address from the demand request

triggering the training is looked up in both tables. If the address is

in the prefetch table and marked as valid, this hints the previous

prediction was correct and this is a useful prefetch. We compute the

sum of the corresponding weights. If the sum falls below a specific

threshold, training occurs and the corresponding weights are ad-

justed accordingly. These thresholds are introduced in order to avoid

over-training, helping the filter adapt quickly to changes in memory

behavior. These thresholds are referred to as θp and θn, respectively

for the positive and negative values of training saturation.

On a cache block eviction, we look up the corresponding address

in the prefetch table. If there is a valid entry with this address, the

filter made a misprediction. The block was allocated in the L2 with

a prefetch request that the filter should have categorized as a useless

prefetch. Thus, the corresponding features of the prefetch request

are used to re-index the tables of weights, and those weights are

adjusted accordingly.

Parallel to accessing the prefetch table, on a demand access, the

reject table is accessed. Before the demand access triggers the next

set of prefetches, the reject table is checked for a valid entry. A hit

means that the corresponding cache block was initially suggested by

the underlying prefetcher, but wrongly rejected by the perceptron

filter. The perceptron filter learns from this and makes use of the

corresponding features associated to the original prefetch request,

which are stored in the reject table, to index the weights tables and

adjust the weights accordingly. The implementation of the reject

table, allows us to capture the information of prefetches that were

rejected, and that can be used to further optimize our prefetching

mechanism.

3.2 Optimizing PPF for a Given Prefetcher

The above discussion of PPF shows that it is highly modular and can

be adapted to be used over any underlying prefetcher for increased

prefetch accuracy. As a first step, all the prefetch candidates of the

prefetcher have to pass through the perceptron filter. If qualified, the

metadata for perceptron indexing has to be stored. Next, when the

feedback of a prior prefetch is available in form of a subsequent de-

mand hit or cache eviction, the stored metadata needs to be retrieved

to update the state of the perceptrons.

In general, PPF can be adapted to a new prefetcher with only a few

modifications:

Making the Underlying Prefetcher More Aggressive: By Tuning

down any internal thresholds or throttling mechanisms to increase

its aggressiveness.

Inferencing and Storing: All prefetch recommendations are tested

using the perceptron inferencing algorithm. The perceptron’s output,

true or false, should be saved appropriately, along with all metadata

required for perceptron indexing.

Retrieving and Training: When feedback for a prefetch becomes

available, the previously stored metadata can be used to re-index

into the perceptron entries and increment or decrement the weights.

Feature Selection: Perceptrons essentially integrate contributions

from different features to get a single sum representing the final

confidence. Thus, perceptron learning can only be as good as the

set of features chosen. Interestingly, this is what makes perceptron

learning scalable, as it can easily learn to incorporate newer informa-

tion in the form of new features. Some of the features we developed

use information derived directly from program execution, agnostic

to the underlying prefetcher. Beyond that, the feature set can be

expanded to convey any useful information or metadata available in

the underlying prefetcher itself.

Using Metadata from the Prefetcher: Some of the internal coun-

ters specific to the underlying prefetcher can be suitable candidates

for the perceptron features. To make sure that the perceptron layer

sees that, the relevant metadata must be exported from the prefetcher

to PPF. This way, PPF can be optimized to work tightly-knit with

the underlying prefetcher.

4 PPF IMPLEMENTATION USING SPP

This section describes a case study implementation of PPF and

the range of features that are used to determine the usefulness of

prefetches. Here, we have selected SPP as the underlying prefetcher.

4.1 Changes Made to SPP

To modify the SPP design to suit our scheme, the following changes

were made:

Exporting Features from SPP: PPF uses the metadata specific

to SPP, to build some of the perceptron features. These include the

lookahead depth, signature and the confidence counter. These fea-

tures were made visible to PPF.

Original Thresholds Discarded: In PPF, the perceptron sum is

used to decide whether to prefetch or not, and the fill-level in case of

prefetch. Thus, the confidence thresholds used by SPP – Tf and Tp

are no longer needed to throttle the prefetcher and can be discarded.

4.2 Features used by Perceptron

Here we discuss the various features that correlate the prefetching

decision with the program behavior. All the features we used can be

derived from the information available in the L2 Cache access stream

5



or are taken as metadata derived from the underlying prefetcher. Our

feature selection involved searching over a large space of relevant

perceptron features. Note that part of the process of tuning PPF

to a specific prefetcher involves examining the available metadata

in the prefetcher itself, and thus PPF is attuned to the underlying

prefetcher’s design. Using the statistical methodology outlined in

Section 5.5, we pruned the feature set to a minimal yet relevant set

of features.

Physical Address: Here we use the lower bits of the physical ad-

dress of the demand access that triggers the prefetch. This address

corresponds to a stream of accesses that SPP and the PPF have seen

before. Therefore, PPF will correlate the past behavior of this ad-

dress to the prefetch outcome.

Cache Line and Page Address: These two separate features are

derived from shifting the base address that triggered the prefetch by

the size of the cache blocks or by the size of a page. The idea behind

using three different shifted versions of the same feature is that it

allows the filter to focus its examination in more detail on different

aspects of the address than with a single version. It also helps give

more importance to the overlapping bits and lesser importance to

most and least significance bits. This approach can also eliminate

destructive interference that can be caused by directly folding the

address bits into half.

Program Counter XOR Depth: The PC is for the instruction that

triggered the prefetch chain. Depth refers to the iteration count of

the lookahead stages. By itself, we find the PC to not be a good

basis for filtering a lookahead prefetcher, as all the prefetches with

depth >= 1 are aliased into the same PC, which will not be the PC of

the eventual actual demand access. This feature resolves a PC into

a different value for each lookahead depth of prefetch speculation,

giving a more accurate correlation in lookahead cases. This is akin

to the concept of Virtual Program Counters [24] introduced by Kim

et. al. for indirect branch prediction.

PC1 XOR PC2»1 XOR PC3»2: Here PCi refers to the last ith PC

before the instruction that triggered the current prefetch. Hashing

together the last three PCs informs PPF about the path that led to the

current demand access and helps capture and branching information

of the current basic block. PCs are shifted in the increasing order of

history before being hashed together. This is done to avoid the resul-

tant value of zero when 2 or more PCs are the same. Additionally,

blurring the information as it gets older allows us to get a wider and

yet more approximate look into the program’s history.

Program Counter XOR Delta: This feature tells us if a given PC

favors particular value(s) of delta. As noted earlier, while the PC

alone does not convey useful information, this hash resolves the PC

into different values based on the tendency of that PC to favor a

certain delta. Thus, the dynamic nature of different instances of the

same memory access instruction is captured here.

Confidence: The confidence, on a scale of 0 to 100, used to throt-

tle lookahead depth in the original SPP design. While the original

confidence does not directly make the decision to prefetch, PPF

Block Configuration

CPU Core
1-8 Cores, 4 GHz

256 entry ROB, 4-wide

Private L1 DCache
32 KB, 8-way, 4 cycles

8 MSHRs, LRU

Private L2 Cache
256 KB, 8-way, 8 cycles

16 MSHRs, LRU, Non-inclusive

Shared LLC
2MB/core, 16-way, 12 cycles

32 MSHRs, LRU, Non-inclusive

DRAM

4 GB 1-Channel (single-core)

8 GB 2-Channels (multi-core)

64-bit channel, 1600MT/s

Table 1: Simulation Parameters

correlates it to the correctness of a proposed prefetch. While the

original SPP may have dismissed a prefetch due to running further

into speculation, PPF can use the original confidence as indicator

of not only when prefetches become less confident, but also how

likely a low confident speculation is correct in the context of other

features.

Page Address XOR Confidence: This feature scores the tendency

of each page to be prefetch friendly or prefetch averse. It helps re-

solve a page into different entries depending on its confidence for

prefetching, which can vary during phases of a program execution.

Current Signature XOR Delta: Recall from the discussion of SPP

in Section 2.1 that the new signature is generated using the old sig-

nature and the current block delta. The result of this feature is the

next signature that is predicted to be accessed based on the delta

predicted by SPP. While “Current Signature XOR Delta” is not the

exact formula for generating the future signature, it gives an approx-

imate idea of the path that the combination of these two values can

lead to.

As can be noted above, some composite features are derived from

simple hashing (XOR) of two primary features. There is always

a question of usefulness of such composite features and the new

information added. We justify the choice of each feature by quanti-

fying the contribution made towards predicting prefetch behavior,

in Section 5.5. Finally, as noted above, each feature indexes into its

independent entry of perceptron weights.

5 METHODOLOGY

5.1 Performance Model

We use the ChampSim [25] simulator for the evaluation of PPF

against prior work techniques. ChampSim is an enhanced version

of the framework that was used for the 2nd Data Prefetch Cham-

pionship (DPC-2) [26], also used in the 2nd Cache Replacement

Competition (CRC2) [27]. We model 1-core, 4-core, and 8-core

out-of-order machines. The details of the configuration parameters

are summarized in Table 1.

The block size is fixed at 64 bytes. Prefetching is only triggered

upon L2 cache demand accesses but could be directed to the L2
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or last-level cache. No L1 data level prefetching is done. The LRU

replacement policy is used on all levels of cache hierarchies. Branch

prediction is done using the perceptron branch predictor [20]. The

page size is 4KB. ChampSim operates all the prefetchers strictly in

the physical address space.

5.2 Testing Under Additional Memory

Constraints

The default single-core configuration simulates a 2MB LLC and a

single channel DRAM with 12.8GB/s bandwidth. We extend the

simulations to include memory constraints introduced in DPC-2.

Specifically we look at the following two variations: Low Bandwidth

DRAM, where DRAM bandwidth is limited to 3.2 GB/s, and small

LLC, where the LLC size is reduced to 512 KB. All the multi-core

simulations are only done in the default configuration.

5.3 Workloads

We use all the 20 workloads available in the SPEC CPU 2017

suite [28]. Using the SimPoint [29] methodology, we identified

95 different program segments of 1 Billion instructions each.

Single-core performance: For single-core simulations, we use the

first 200 million instructions to warm-up the microarchitectural struc-

tures and the next one billion instructions to do detailed simulations

and collect run-time statistics. We report the IPC speedup over the

baseline of no prefetching. The final numbers reported are the geo-

metric mean of the weighted mean speedup achieved per application

using the SimPoint methodology.

Multi-core performance: For multi-application workloads, we gen-

erate 100 random mixes and another 100 mixes from the memory

intensive subset of SPEC CPU 2017. For 4-core workloads, 200

Million instructions are used for warm-up and additional 1 Bil-

lion instruction simulated for collecting statistics. Each CPU keeps

executing its workload till the last CPU completes one billion in-

structions after warm-up. For collecting IPC and other data, only the

first billion instructions are considered as the region of interest.

Here we report the weighted speedup normalized to baseline i.e.,

no prefetching. For each of the workloads running on a particular

core of the 4-core 8 MB LLC system, we compute IPCi. We then find

the IPC_isolatedi of the same workload running in isolated 1-core 8

MB LLC environment. Then we calculate the total weighted-IPC for

a given workload mix as Σ (IPCi / IPC_isolatedi). For each of the

100 workload-mix, the sum obtained is normalized to the weighted-

IPC calculated similarly for baseline case i.e., no prefetching, to get

the weighted-IPC-speedup. Finally the geometric mean of these 100

weighted-IPC-speedup is reported as the effective speedup obtained

by the prefetching scheme.

We repeat the same process for 8-core workloads, correspondingly

with 16MB LLC. The only difference is that 20 million warm-up

instructions and 100 million full instructions are executed. This is

done so as to keep the simulation run-time within reasonable limits

as a single 8-core mix takes up to 3 days to simulate one billion

instructions.

Validation: We cross-validated our PPF model using SPEC CPU

2006 [30] and CloudSuite [31] benchmarks. For single-core SPEC

CPU 2006, we developed 94 simpoints spread across all the 29 ap-

plications. For multi-core, we followed the same methodology as

SPEC CPU 2017. For CloudSuite, we used the traces made available

for the 2nd Cache Replacement Competition (CRC-2) [27]. The

traces include four 4-core applications with six distinct phases per

application.

In total, we used 285 traces representing workloads across 53

applications. Throughout the paper, we consider memory intensive

subset as the applications with SimPoint weighted LLC MPKI > 1.

This includes 11 out of 20 SPEC CPU 2017 applications. For SPEC

CPU 2006, this includes 16 out of 29 applications.

5.4 Prefetchers Simulated

We compared PPF against three of the latest, state of the art hardware-

only prefetchers: Best Offset Prefetcher (BOP), DRAM Aware -

Access Map Pattern Matching (DA-AMPM) [32] and Signature

Path Prefetcher (SPP). BOP was the winner of 2nd Data Prefetch-

ing Championship. DA-AMPM is the enhanced version of AMPM,

modified to account for DRAM row buffer locality. SPP has been

shown to outperform BOP on SPEC CPU 2006 traces [2]. For each

of these, we compare their speedups taking the no prefetching case

as the baseline.

5.5 Developing Features for PPF

This section describes the intuition and analysis that went behind

developing the perceptron features. As noted earlier, we developed

a set of nine features that allow the perceptron layer to correlate

prefetching decision with the program behavior. To study the corre-

lation across each feature, we statistically examine the perceptron

weights and try to interpret their distribution.

Global Pearson’s Correlation: Here we examine the perceptron

weights at the end of all trace execution by which time the weights

have settled to steady values. The weights obtained from running all

the SPEC CPU 2017 traces are concatenated. Features with a bulk of

their perceptron weights concentrated around 0 or small magnitude

numbers show a weak correlation with the prefetching outcome. On

the other hand, features with most of the weights saturated around

highest value (+15) show a high positive correlation and the features

with weights close to the lowest value (-16) show a strong negative

correlation.

We plot a histogram for each feature depicting weights distribu-

tion from -16 to +15 and generate the Pearson’s correlation factor for

that feature. Pearson’s factor is a numerical measure ranging from -1

to 1 of the degree of linear correlation between two variables. The

magnitude of Pearson’s factor gives the extent of correlation and

the sign indicates whether it is a positive correlation or a negative

correlation. Values close to 0 suggest a low correlation while a value

of +1/-1 suggests a perfectly linear positive / negative correlation

respectively.

As a part of our perceptron feature selection methodology, we

explored a wide variety of features to begin with. Features with a

low Pearson’s coefficient were rejected as they didn’t provide much

useful correlation. Figure 6 depicts the histogram distribution of

trained weights for two features. The first feature, Confidence XOR

Page address has the highest observed P-value, hence was retained.

On the other hand, the second feature, Last Signature did not provide
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Figure 6: Distribution of Trained Weights
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Figure 7: P-Values for all Features

any meaningful correlation and hence was rejected. This is visible

from the bulk of its trained weights settling to near zero values.

Figure 7 shows all the features which are finally used, arranged

in the increasing order of their Pearson’s factor. As can be seen 5

out of the 9 features provide a moderate to high correlation, with

the magnitude of P-value > 0.6. The single most important feature,

Confidence XOR Page address helps provide a correlation to prefetch

outcome with a factor of 0.90.

Per Trace Correlation: Another important way to look at the per-

ceptron features is to see how much their contribution varies across

the traces. Here we give special attention to features with low P-

values in. Figure 8 shows the variation of P-values for three features :

PC XOR Delta, Signature XOR Delta and PC XOR Depth; across all

the SPEC CPU 2017 traces. For simplicity, the traces are arranged

in an increasing order of contribution made by the feature. It can be

seen that even features with a low overall correlation provide useful

correlation (magnitude > 0.5) for a significant number of traces. This

study motivated us to choose PC XOR DELTA over Last Signature

as it provided useful correlation in at least some of the traces.

Trimming Features Using Cross-correlation: Beside providing
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Figure 8: P-value Variation across Traces for selected Features

interesting insights into prefetching behavior, P-value can also be

used for feature selection and prefetcher tuning.

As we examined correlation of each feature with the final outcome,

we also studied correlation between the features. We used the above

methodology to eliminate features providing little information that

has already been captured in other features.

We initially came up with a set of 23 features. By studying cross

correlation of each of these features against others in a 23×23 ma-

trix, we identified pairs of features with correlation factor > 0.9 in

magnitude and eliminated redundant features, using guidance from

Global and per-trace Pearson’s factor of those features. By doing

this, we reduced the feature count to 9. Thus, in the final implemen-

tation of PPF, no two features have a high correlation between them.

This way we can be sure that each feature makes a contribution that

cannot be captured using other features.

Secondly, studying the relative importance of each feature enabled

us to vary the number of entries dedicated for each feature. Features

with higher correlation, cache line and page address were given

most importance and allowed full 12-bits of indexing. Features like

PC XOR delta and PC XOR depth with a low overall P-value were

allocated fewer entries in the feature table.

5.6 Overhead for PPF

In this section, we analyze the hardware overhead required to imple-

ment PPF. The Prefetch Table was enhanced to accommodate storing

of metadata for perceptron training. Table 2 depicts the metadata

stored for each entry in the Prefetch Table. Table 3 shows the total

storage overhead of PPF implementation. The hardware budget for

2nd Data Prefetching championship was 32 KB. Keeping that in

mind the considerable speedup PPF obtained over the winner, the

extra hardware budget can be accounted for. The extra hardware also
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Field Bits Comment

Valid 1 Indicates a valid entry in the table

Tag 6 Identifier for the entry in the table

Useful
1 To show if the given entry led to a

useful demand fetch

Perc Decision 1 Prefetched vs Not-prefetched

PC 12

Address 24

Curr Signature 10
Metadata required for perceptron

PCi Hash 12
training

Delta 7

Confidence 7

Depth 4

Total 85 bits

Table 2: Metadata Stored in Prefetch Table

makes the overall scheme more scalable than SPP. In the original

SPP paper, it was demonstrated that adding extra hardware brings

little advantage in terms of performance gain. The newly added per-

ceptron tables can be scaled to increase / decrease features depending

on the permitted budget.

Structure Entry Components Total

256

Valid (1 bit)

Tag (16 bits)
11008

Signature Table Last Offset (6 bits)
bits

Signature (12 bits)

LRU (6 bits)

512

Csig (4bits)
24576

Pattern Table Cdelta (4*4 bits)
bits

Delta (4*7 bits)

Perceptron
4096*4

5 bits
113280

Weights

2048*2

bits1024*2

128*1

Prefetch
1024 85 bits

87040

Table1 bits

Reject
1024 84 bits

86016

Table2 bits

Global

8

Signature (12 bits)

264 bitsHistory
Confidence (8 bits)

Register
Last Offset (6 bits)

Delta (7 bits)

Accuracy 1 Ctotal 10 bits

Counters 1 Cuse f ul 10 bits

Global PC
PC1 (12 bits)

Trackers
3 PC2 (12 bits) 36 bits

PC3 (12 bits)

Total: 322,240 bits = 39.34 KB

Table 3: SPP-Perc Storage Overhead

In terms of computations, the perceptron mechanism only intro-

duces an extra adder tree. The hash perceptron mechanism makes

sure than there is no actual vector multiplication happening in the

hardware. Obtaining the perceptron sum requires addition of nine

5-bit numbers. Using an adder tree of four 5-bit adders, this can be

done in ceil(log29) = 4 steps. Perceptron update only requires weight

update by +1 or -1. Thus, all the operations required for perceptron

inferencing or updating the states of the perceptrons can be easily

done in the time constraints of L2 Cache Accesses.
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Figure 9: SPEC CPU 2017 Single-Core IPC Speedup

6 RESULTS

This section discusses the results obtained from running PPF in terms

of speedup and prefetch cache, for the SPEC CPU 2017 benchmarks.

First, we present the results for single-threaded workloads then for

multi-core workloads.

6.1 Single-core Results

Figure 9 shows the single core speedup obtained by BOP, DA-

AMPM, SPP and PPF for each of the individual SPEC CPU 2017

applications, followed by the geomean of the memory intensive sub-

set and finally the geomean across the full suite. All the results have

been normalized to the baseline of no prefetching.

PPF yields a geometric mean speedup of 26.95% over the base-

line. This is equivalent to 4.63% over DA-AMPM, 4.61% over

BOP and 3.78% over SPP. Out of the 20 SPEC CPU 2017 appli-

cations, PPF nearly matches or outperforms all the other prefetch-

ers on 19 applications. Benchmarks 603.bwaves_s, 605.mcf_s,

623.xalancbmk_s and 649. fotonik3d_s benefit the most from

PPF, with the speedup over SPP ranging from 10% to 25%.

One interesting case here is 623.xalancbmk. Despite SPP under

performing on that application, PPF manages to considerably out-

perform all prefetchers. Since this benchmark has varying prefetch

deltas, SPP’s conservative throttling mechanism catches that and

quickly halts prefetching at an average depth of 2.1. On the other

hand, PPF’s more efficient accuracy check enables it to prefetch up

to a lookahead depth of 3.3. Doing this, PPF suggests 1.61 times

more total prefetches and 2.53 times more useful prefetches than

SPP.

The only benchmark where PPF fails to match the improvement

offered by any other prefetcher is 607.cactuBSSN_s. Based on our

observation of prefetching behavior, we gather that BOP’s aggressive

and localized nature fits this workload very well; as opposed to SPPs

lookahead nature. As a result, SPP, and hence PPF, underperform on

this benchmark.

On the full SPEC CPU 2017 suite, PPF improves the geometric

mean IPC of the baseline by 15.24%, which is 2.27% better than

1Components of Prefetch Table can be found in Table 2.
2The Reject Table does not need to maintain the useful bit as that only applies for
prefetches that ultimately made through.
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the next best prefetcher – SPP. For PPF, the average lookahead depth

over the full benchmark is 3.97, while it is 3.28 for just SPP. It is

evident that on average for SPP, our scheme allows the prefetcher to

speculate 21% deeper.
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Figure 10: Fraction of Cache Misses Covered

Coverage: Prefetcher coverage is defined as the ratio of the number

of misses avoided through prefetching over the number of misses

with no prefetching. Figure 10 shows the fraction of misses in the

L2 and LLC avoided by the various prefetchers. PPF has the highest

coverage of all the prefetchers simulated. On the SPEC CPU 2017

benchmarks, PPF reduces misses by 75.5% and 86.9% in the L2 and

LLC respectively. For the same benchmarks, the next best prefetcher,

DA-AMPM, covers 54.3% and 78.5% of the misses respectively.

This superior coverage of PPF can be attributed to aggressive

re-tuning of the underlying SPP, enabled by the Perceptron Filter

making sure the high coverage does not lead to increased cache

pollution.
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Figure 11: Speedup for 4-core SPEC CPU 2017

6.2 Multi-core Results

In this section, we demonstrate the improvement achieved by PPF

for a mix of multi-programmed workloads.

4-Core: Figure 11 shows a comparison of speedups obtained on

4-core mixes of a memory intensive subset of SPEC CPU 2017. We

plot all 4 prefetchers, normalized to the baseline. The workloads

have been sorted in increasing order of the speedup. PPF offers a

speedup of 51.2% on these traces, an improvement of 11.4% over

the underlying SPP, 9.7% over the next DA-AMPM, and 16.9%

over BOP. On a different set of fully random SPEC CPU 2017 4-

core mixes (not illustrated for space reasons), PPF provides an IPC

speedup of 26.07% over the baseline, which is an improvement of

5.6% over SPP.
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Figure 12: Speedup for 8-core SPEC CPU 2017

8-Core: The sorted comparison of speedups on the memory in-

tensive 8-core mixes is shown in Figure 12. PPF improves baseline

performance by 37.6%, an improvement of 9.65% over SPP. For a

random set of SPEC CPU 2017 mixes (not illustrated for space rea-

sons), PPF improves performance by 23.4% over the baseline, cor-

responding to 4.6% over SPP. This increased improvement achieved

by PPF over the underlying prefetcher, SPP, in a multi-core environ-

ment is expected as PPF is a very accurate filter. Thus, it eliminates

useless prefetches before they can cause pollution in the shared LLC.

BOP offers a better improvement than SPP for the memory intensive

mixes. This superiority can be attributed to BOP’s inherent aggres-

sive nature. DA-AMPM is also ahead of SPP in both the mixes.

Interestingly, in all these cases, PPF consistently outperforms the

best performing prefetcher.
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6.3 Additional Memory Constraints

We also model PPF with reduced LLC and with low bandwidth

constraints, respectively (not illustrated for space reasons). Bench-

mark 605.mcf_s in low bandwidth conditions is prefetch averse.

In general, any prefetcher yields a negative speedup on that trace.

On 654.roms_s and 607.cactuBSSN_s, PPF is unable to match the

performance achieved by the best prefetcher. On the other hand,

PPF outperforms all the other prefetchers on 623.xalancbmk_s

and 638.imagick_s benchmarks. Overall, PPF provides a greater

improvement under small LLC condition and matches the best

prefetcher, BOP, under low DRAM bandwidth conditions.

1

1.1

1.2

1.3

1.4

Mem Intensive All

DA-AMPM BOP SPP PPF

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Cassandra Cloud9 Nutch Streaming GeoMean

IP
C

 S
p
ee

d
u
p

BOP DA-AMPM SPP PPF

(a) CloudSuite (b) SPEC CPU 2006

Figure 13: IPC Speedup for Unseen Workloads

6.4 Cross Validation

Figure 13(a) shows the performance benefit comparison of all the

prefetch schemes on 4 different applications in the CloudSuite bench-

mark. In general, these applications are prefetch agnostic. Even so,

PPF manages a 3.78% improvement over no prefetching, putting

it ahead of the next best prefetcher, SPP, which provides a 3.08%

speedup.

Figure 13(b) shows the speed-up achieved on the memory inten-

sive subset and the full SPEC CPU 2006 suite for a single-processor

machine. PPF provides a speedup of 36.3% over the baseline on the

memory intensive subset of SPEC CPU 2006 benchmark, giving an

improvement of 6.1% over SPP and 8.44% over DA-AMPM and

9.93% over BOP. On the whole of the SPEC CPU 2006 suite, the

speedup is 19.6%, an improvement of 3.33% over SPP.

For 4-core memory intensive mixes, PPF improves the baseline

by 59.1%, 8.6% ahead of SPP. For 8-core memory intensive mixes,

the speedup over the baseline is 47.8%, 11.3% ahead of SPP.

We developed PPF to yield good performance on the SPEC CPU

2017 benchmarks. Nevertheless, the performance is consistently

good on other benchmark suites. We attribute this fact to the in-

herent adaptability of the perceptron model. In general, perceptron

weights are able to adjust in real-time so as to find the best possible

correlation between the output and the given set of features.

7 RELATED WORK

7.1 Spatial Prefetchers

Spatial prefetchers include such well-understood examples as the

next-line (or next-n-line) prefetcher, and the stream prefetcher, and

are distinguished by prefetching data without regard for the order in

which the data will be accessed. In addition to these simpler exam-

ples, Somogyi et al. propose Spatial Memory Streaming (SMS) [13].

SMS works by learning the spatial footprint of all data used by a

program within a region of memory around a given missing load, and

when the load that causes an new miss elsewhere, the same spatial

footprint is prefetched. Ishii et al. propose the Access Map Pattern

Matching prefetcher (AMPM) [11], which creates a map of all ac-

cessed lines within a region of memory, and then analyzes this map

on every access to see if any fixed-stride pattern can be identified

and prefetched that is centered on the current access. DRAM-Aware

AMPM (DA-AMPM) [32] is a variant of AMPM that delays some

prefetches so they can be issued together with others in the same

DRAM row, increasing bandwidth utilization. Pugsley et al. pro-

pose the Sandbox Prefetcher [33], which analyzes candidate fixed-

offset prefetchers in a sandboxed environment to determine which is

most suitable for the current program phase. Michaud proposes the

Best-Offset Prefetcher [34], which determines the optimal offset to

prefetch while considering memory latency and prefetch timeliness.

7.2 Lookahead Prefetchers

Unlike spatial prefetchers, lookahead prefetchers take program order

into account when they make predictions. Shevgoor et al. propose

the Variable Length Delta Prefetcher (VLDP) [35], which correlates

histories of deltas between cache line accesses within memory pages

with the next delta within that page. SPP [2] and KPC’s prefetching

component [36] are more recent examples of lookahead prefetchers.

They try to predict not only what data will be used in the future,

but also the precise order in which the data will be used, within

a given page. Predictions made by lookahead prefetchers can be

fed back into their prediction mechanisms to predict even further

down a speculative path of memory accesses. These prefetchers can

also generalize their learned patterns from one page, and use those

patterns to make predictions in other pages.

7.3 Managing Prefetched Data

A low-accuracy aggressive prefetcher can significantly harm perfor-

mance. To minimize interference from prefetching, Wu et al. propose

PACMan [37], a prefetch-aware cache management policy. PACMan

dedicates some LLC sets to each of three competing policies that

treat demand and prefetch requests differently, using the policy in the

rest of the cache that shows the fewest misses. Seshadri et al. propose

ICP [38], which demotes a prefetch to the lowest reuse priority on a

demand hit, based on the observation that most prefetches are dead

after their first hit. To address prefetcher-caused cache pollution, it

also uses a variation of EAF [39] to track prefetching accuracy, and

inserts only accurate prefetches to the higher priority position in

the LRU stack. Jain et al. propose Harmony [40] to accommodate

prefetches in their MIN algorithm-inspired Hawkeye cache manage-

ment system. Ebrahimi et al. introduce HPAC [41] which provides a

coordinated control between multiple prefetchers present in a CMP

by looking at the prefetcher-induced inter-core interference.

7.4 Machine Learning for Prefetching

Peled et al. introduce interesting ideas for on-line Reinforcement

Learning and dynamically scaling the magnitude of feedback given

to the baseline prefetcher [4]. The prefetcher relies on compiler

support to receive features and build the context. Liao et al. focus on

prefetching for data center applications [5]. They use offline machine

learning algorithms such as SVMs and logistic regression to do a
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parametric search for an optimal prefetcher configuration. Hasheni

et al. [42] categorize prefetching as a regression problem and use

LSTM based Deep Learning approach.

Wang and Lou propose a similar work where perceptrons filter

useless prefetches [43]. In their design’s primary focus was on im-

proving the accuracy of an unmodified baseline prefetcher. Unlike

the scheme presented here, they implement a basic Rosenblatt per-

ceptron, with general error-correction learning. While they are able

to increase accuracy, their design results in lower coverage, and

hence has low impact on overall performance.

7.5 Perceptrons in Cache Management

In addition to branch prediction [20], perceptron-based learning

has been applied to the area of cache management. Teran et al.

propose using perceptrons to predict cache line reuse, bypass, and

replacement [22]. Perceptron Learning trains weights selected by

hashes of multiple features, including the PC of the memory access

instruction, some other recent PCs, and two different shifts of the tag

of the referenced block. These features are used to index into weight

tables, and the weights are then thresholded to generate a prediction.

When a block from one of a few sampled sets [44] is reused or

evicted, the corresponding weights are decremented or incremented,

according to the perceptron learning rule. Multiperspective Reuse

Prediction [23] improves on Perceptron Learning by contributing

many new features.

8 CONCLUSION

In this paper, we introduce the Perceptron-Based Prefetch Filtering

(PPF). PPF acts as an independent check on the quality of predictions

made by the underlying prefetch engine. We also created a case

study implementation of PPF using SPP as the underlying prefetcher,

while in principle other prefetchers could be used. We show that

PPF effectively filters bad prefetches, such that the given underlying

prefetcher can be highly aggressively tuned to achieve increasing

coverage. PPF improves performance over the underlying prefetcher

by up to 11.4%. PPF is a robust and adaptable technique that can be

used to enhance any existing prefetcher and can be a valuable tool

in the design of future memory latency constrained systems.
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