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Abstract: We propose an on-chip triply resonant electro-optic modulator architecture for RF-to-
optical signal conversion, and provide a detailed theoretical analysis of the optimal “circuit-level”
device geometries and their performance limits. The designs maximize the RF-optical conversion
efficiency through simultaneous resonant enhancement of the RF drive signal, a continuous-wave
(CW) optical pump, and the generated optical sideband. The optical pump and sideband are
resonantly enhanced in respective supermodes of a two-coupled-cavity optical resonator system,
while the RF signal can be enhanced in addition, by an LC circuit formed by capacitances of the
optical resonator active regions and (integrated) matching inductors. We show that such designs
can offer 15-50 dB improvement in conversion efficiency over conventional microring modulators.
In the proposed configurations, the photon lifetime (resonance linewidth) limits the instantaneous
RF bandwidth of the electro-optic response but does not limit its central RF frequency. The
latter is set by the coupling strength between the two coupled cavities and is not subject to
the photon lifetime constraint inherent to conventional singly resonant microring modulators.
This feature enables efficient operation at high RF carrier frequencies without a reduction in
efficiency commonly associated with the photon lifetime limit and accounts for 10-30 dB of
the total improvement. Two optical configurations of the modulator are proposed: a “basic”
configuration with equal Q-factors in both supermodes, most suitable for narrowband RF signals,
and a “generalized” configuration with independently tailored supermode Q-factors that supports
a wider instantaneous bandwidth. A second significant 5-20 dB gain in modulation efficiency is
expected from RF drive signal enhancement by integrated LC resonant matching, leading to the
total expected improvement of 15-50 dB. Previously studied triply-resonant modulators, with
coupled longitudinal [across the free spectral range (FSR)] modes, have large resonant mode
volume for typical RF frequencies, which limits the interaction between the optical and RF fields.
In contrast, the proposed modulators support maximally tightly confined resonant modes, with
strong coupling between the mode fields, which increases and maintains high device efficiency
across a range of RF frequencies. The proposed modulator architecture is compact, efficient,
capable of modulation at high RF carrier frequencies and can be applied to any cavity design or
modulation mechanism. It is also well suited to moderate Q, including silicon, implementations,
and may be enabling for future CMOS RF-electronic-photonic systems on chip.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Sensitive electro-optic (EO) modulators are critical ingredients of microwave photonic (MWP)
systems for various applications including radio-over-fiber, optical beam forming, photonic signal
processing, photonic analog-to-digital conversion and satellite-based mm-wave sensing [1–4].
The efficiency with which the RF signal is converted to the optical domain by an EO modulator
is an essential parameter directly affecting the gain of a MWP link or sensor.

Mach-Zehnder (MZ) modulators, both discrete and integrated, have been used in MWP systems

https://doi.org/10.1364/OA_License_v1


over the past decades as the workhorse devices for RF-to-optical conversion. However, these
devices are large and power-hungry. Integrated photonics technology offers new opportunities
for sensitive microresonator-based EO modulators, such as microring and photonic crystal cavity
modulators. Owing to their resonant nature, these devices are compact and efficient. However,
they suffer from a tradeoff between sensitivity and the frequency range over which modulator
maintains high sensitivity, a kind of gain-bandwidth product limitation. This tradeoff is imposed
by the cavity photon lifetime [5–7]. In baseband data modulation, this effect imposes a tradeoff
between the resonant modulator’s sensitivity and data modulation rate, a speed-sensitivity tradeoff.
In RF-optical conversion, the tradeoff limits the RF carrier frequency in naive implementations.
This was previously addressed by using modulation-induced coupling between adjacent free
spectral range (FSR) modes of millimeter-scale whispering-gallery-mode disk and ring resonator
modulators, which have their RF center frequency instead set by the FSR of the resonator [8–10],
as discussed in more detail below. However, these devices are inherently large for typical RF
frequencies, and do not leverage the full potential for very tight confinement of fields in photonic
devices and potential resulting strong light-matter interaction and thus conversion efficiency.
Instead, they have relatively large mode volumes of electromagnetic field in the resonators, which
limits the interaction strength between the RF and optical fields and leads to limited conversion
efficiency.
In this work, we present a detailed analysis of a novel triply resonant modulator architecture,

consisting most generally of two coupled microresonator-based modulator cavities and lumped
RF resonators. The proposed device is compact and energy efficient, similar to conventional
microresonator-based modulators. It maximizes the potential for strong electromagnetic con-
finement and tiny mode volumes for all three participating frequency modes. Moreover, it does
not suffer from a sensitivity-frequency range tradeoff, since it uses multiple optical resonances,
similar to FSR-coupled modulators [8–10]. In addition, an RF resonant structure can further
boost the drive voltage which further increases the efficiency, as described below. This work is a
continuation of and builds on our proposal of doubly-resonant integrated photonic modulators
for RF-to-optical conversion [11], and also provides a performance analysis of those devices as
a limiting case. In general, the provided designs fundamentally outperform designs that use a
single resonator and couple longitudinal resonances across the FSR because they break a second
tradeoff – between high RF center frequency and low mode volume for efficient conversion – that
those designs suffer from.

1.1. Proposed modulator architecture

This work proposes a novel electrical and photonic “circuit” architecture for an electro-optic
modulator, where the objective is efficient conversion of RF signals into optical domain. By a
“circuit” architecture, we mean an arrangement of photonic and electrical building blocks, akin
to electrical circuits being arrangements of capacitors, resistors, etc. The performance gains
we present guide both the choice of design tradeoffs for the building blocks themselves, and
their configuration (their couplings to each other and to ports, where the performance gain is
obtained from the judicious configuration of the building blocks – active optical resonant cavities,
waveguides, inductor elements). The design gains of the electrical and photonic “circuit” designs
we present can be realized using any number of technologies for the implementation of the
building blocks (circuit elements), although we do this analysis with a view toward CMOS chip
technology and silicon implementations in mind.
RF signals are assumed to have a carrier frequency Ωo that is much larger than their signal

bandwidth, i.e. not so-called wideband signals. In this case, significant opportunities exist to take
advantage of the fact that the RF signal occupies only a fraction of spectrum between DC and its
highest frequency component – in order to achieve high conversion efficiency. Wideband signals,
on the other hand, are similar to baseband data modulation, and thus state of the art modulator
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Fig. 1. (a) Conceptual representation of the triply resonant modulator, consisting of one RF
and two optical mutually coupled resonances at frequencies of the three interacting waves:
the input RF drive, the input laser pump, and the output optical sideband. (b,c) Physical
realization of the two optical resonances by supermodes of (b) the basic coupled-cavity
design, with a conventional bus waveguide, and (c) the generalized coupled-cavity design,
with novel interferometrically coupled input/output waveguides. (d) Non-resonant RF design,
where the transmission line directly feeds the active optical cavities. Due to impedance
mismatch between them, RF power is almost completely reflected from the load. (e) Resonant
design, where the RF resonance from (a) is realized by LC circuits, consisting of integrated
inductors L1 and capacitances Cm of the active cavities. It greatly reduces RF power
reflection and enhances the voltage on the active cavities. (f) Resonant-matched design,
where critical coupling between the transmission line and the RF resonator is achieved using
impedance matching circuits which consist of inductors L2 and capacitors C2. The plots at
the bottom of (d)-(f) sketch the frequency dependence of the power reflection |Γ|2 of the RF
signal back into the transmission line.

designs are close to optimal for their conversion into the optical domain. An electro-optic
modulator can be viewed as a device where the interaction of two (input) waves, the laser
pump wave and the RF drive wave, creates a third (output) wave – an optical sideband shifted
in frequency by Ωo with respect to the laser pump. The goal is to maximize the modulation
efficiency, defined here as the fraction of the input laser pump power which gets converted into
the optical sideband (see Sec. 2.1 for formal definition).



The proposed device architecture is an integrated triply resonant RF electro-optic modulator,
where each of the two present optical waves and the RF input wave are resonantly enhanced
to maximize the modulation efficiency. Our work is a continuation of work on wavelength
converters in [12], and some aspects of these modulator architectures have been recently described
in [11,13–15]. A conceptual representation of the triply resonant device is shown in Fig. 1(a).
The three rectangles represent the input/output ports of the device, and the three circles represent
the three mutually coupled resonances. The RF resonance and one of the optical resonances are
excited by the input RF and the laser pump waves, while the other optical resonance is excited
by the optical sideband that is generated due to nonlinear interaction between the RF drive and
the optical pump within the device. During this interaction, an RF photon combines with a
pump photon to produce an optical sideband photon, translating each RF spectral component
to the optical domain. The key idea of the proposed device is that the conversion efficiency is
maximized when all three interacting waves are at resonance, and when their lifetimes/escape
efficiencies are properly tailored.
Physical realizations of the abstract triply-resonant modulator representation in Fig. 1(a)

include a system with two coupled optical cavities (each supporting one mode participating in
the conversion process) connected to an RF resonator. The resonance frequencies of the two
optical cavities can be tuned by applying a voltage to their built-in capacitive phase shifters,
which creates coupling between the optical and the RF waves. The phase shifters can be based
e.g. on the carrier plasma or linear electro-optic Pockels effects. In the text below, we will refer
to such tunable optical cavities as “active cavities”.

The two optical resonances, labeled 2 and 3 in the abstract device of Fig. 1(a), correspond to
the two resonant supermodes of the coupled optical cavities, the electromagnetic field of each
occupying both cavities, as described below. The two optical cavities, which may be identical,
have the degenerate (equal) resonance frequencies when uncoupled. Here, they are evanescently
coupled as illustrated in Figs. 1(b,c). The coupling produces two new orthogonal states – the
symmetric and antisymmetric supermodes – with resonance frequencies split due to the coupling.
The coupling strength is selected to ensure that the resonant frequencies of the symmetric and
antisymmetric supermodes are separated by the RF carrier frequency Ωo. The two supermodes
correspond to the two optical resonances of the abstract device in Fig 1(a). The input pump
laser is tuned in frequency to the symmetric supermode, and the optical sideband is generated
at the frequency of the antisymmetric supermode (or vice versa). Our analysis in this paper
considers single sideband generation, but can be easily extended to dual sideband generation in
an analogous three-optical-resonance system such as the one proposed in [12].

We consider two configurations of the coupled optical cavity architecture: the basic coupled-
cavity design shown in Fig. 1(b), and the generalized coupled-cavity design shown in Fig. 1(c). In
the basic configuration, both supermodes have the same external quality factor (escape efficiency),
while the generalized configuration enables independent control of the external Qs of the optical
resonances, leading to higher modulation efficiency for broadband RF signals, as described in
Sec. 3.

The RF resonance in the abstract device of Fig. 1(a) is introduced by two LC resonators formed
by integrated inductors and the capacitance of the electro-optic region of the active optical cavities.
As shown in Fig. 1(e), the two LC resonators are identical with equal resonance frequencies
and are connected to RF transmission lines. The transmission line delivers a differential RF
signal, driving the two active cavities in push-pull mode. Unlike the optical resonators which
are coupled, the two RF resonators are uncoupled, and their resonances are degenerate and
behave as a single resonance, which is the RF resonance depicted in Fig. 1(a)1. The frequency of
this resonance is matched to the RF carrier frequency Ωo. If the RF drive is directly applied

1This could also be accomplished with a single inductor between the cavities in a subset of cases (e.g. not driven
differentially), or a three-terminal, differentially driven symmetric inductor.



to the capacitances of the active cavities [Fig. 1(d)], a significant fraction of the RF power is
reflected due to impedance mismatch. To a large extent, the reflection can be mitigated by
connecting integrated inductors in series with the capacitances of the active cavities as shown
in Fig. 1(e), forming LC circuits with resonance frequencies equal to the RF carrier. The LC
circuit removes the reactive load from the transmission line and boosts the voltage on the active
cavities. Perfect impedance matching (“critical coupling”) between the transmission line and
the modulator is still not guaranteed, because the transmission line impedance (usually 50
Ohm) is not necessarily equal to the parasitic resistance of the active cavities. By introducing a
lumped-element impedance matching circuit [16], as shown in Fig. 1(f), critical coupling between
the transmission line and the optoelectronic LC resonator can be achieved. This maximizes the
field in the capacitive EO region for a given RF drive power. In the remainder of the paper, we
analyze the RF configurations shown in Figs. 1(d-f).
The proposed modulator can in principle be implemented in any material platform that

allows integration of optical and RF resonators. Especially attractive are high-index-contrast
waveguide platforms with efficient optical phase shifter mechanisms as well as several metal
layers available to implement integrated inductors. With tight confinement of the optical and RF
fields in high-index-contrast active cavities and with RF resonant enhancement, such platforms are
promising candidates for implementing compact and efficient modulators based on the proposed
concept. Suitable examples might be monolithic electronic-photonic CMOS and RF CMOS
processes [17–19].

1.2. Comparison to prior art

Over the past decades MZ modulators have been extensively used in MWP systems, both in
discrete component and photonic integrated circuit form. Broadband MZ modulators with up to
40 GHz bandwidth have been demonstrated in silicon [20, 21]. Modulation beyond 100 GHz
has been achieved with MZ modulators based on lithium niobate, electro-optic polymer, and
plasmonic waveguides [22–24]. MZ modulators, employing traveling-wave electrodes, overcome
bandwidth limitations due to the RC time constant and provide impedance matching with the
input feed line. Nevertheless, the bandwidth of these devices does have limits imposed by
imperfect velocity matching between the RF and optical waves which has stronger impact on the
bandwidth of longer devices. Therefore, there is a tradeoff between efficient modulation and
large bandwidth, unless near-perfect velocity matching is achieved.
Microring modulators (based on a single ring, referred to here as “regular” microring

modulators), shown in Fig. 2(a), take advantage of optical field enhancement in the cavity through
multiple round trip propagation [25]. When implemented in high-index-contrast materials, these
devices feature small size and tight spatial confinement of optical and RF electric fields. The
small size of the device eliminates the need for traveling-wave electrodes and permits a large
RC-time-limited bandwidth. In silicon photonics, microring modulators have been extensively
used for low-energy data modulation [26–28] and have enabled energy-efficient photonic
interconnects [29]. Modulation frequencies up to 40 GHz have been demonstrated [27, 30].
Similar to MZ modulators, regular microring modulators suffer from a tradeoff between the
modulation efficiency and RF frequency range – in this case that is inherent to singly resonant
devices. This tradeoff arises due to the cavity photon lifetime: increasing the photon lifetime
helps to improve the efficiency but limits the frequency range, while decreasing the photon
lifetime makes the modulator faster, but reduces the efficiency [5–7]. The design of regular
microring modulators for RF applications has been studied in [7].

Modulation at RF carrier frequencies extending far beyond resonance linewidth of themodulator
has been demonstrated by using different resonant modes of millimeter-scale whispering-gallery
mode disk or ring resonators. In these devices, the RF carrier frequency is matched to the FSR
of the resonator, and RF modulation couples adjacent longitudinal resonant modes which are
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Fig. 2. Resonant modulators for RF-to-optical conversion (a,b) previously demonstrated
and (c,d) studied in this work. (a) Regular microring modulators are compact and efficient,
but suffer from the efficiency-frequency range tradeoff. (b) Millimeter-scale disk or ring
resonator modulators, which overcome the efficiency-frequency range tradeoff through
modulation-induced coupling between multiple resonant mode orders at adjacent FSRs, have
large footprint and require implementation of RF traveling-wave electrodes. (c,d) Optical
coupled-cavity designs of the proposed modulator perform RF-to-optical conversion by
transferring optical energy from the symmetric to the antisymmetric supermode resonance,
via push-pull modulation of the resonance frequencies of the coupled microresonators. The
designs are compact, efficient and do not suffer from the efficiency-frequency range tradeoff.
Additionally, unlike the basic proposed design, where supermodes have equal Q-factors,
(d) the generalized design allows independent tailoring of supermode Q-factors, providing
higher efficiency with larger modulation bandwidth if the symmetric resonance is kept at
critical coupling and the antisymmetric resonance is broadened just enough to accommodate
the RF spectrum.

spaced in frequency by the FSR, transferring pump light from one resonance to another, as
illustrated in Fig. 2(b) [8–10]. We refer to such modulators as “FSR-coupled” modulators. This
approach eliminates the tradeoff between the RF frequency range and efficiency, and has been
developed for lithium niobate (LN) whispering-gallery mode disk modulators which exhibit very
high quality factor (∼ 106 − 109). These modulators have found application as RF-optical mixers
in photonic receivers that provide high sensitivity and large dynamic range [8, 9]. However,



due to the large cross-sectional area of the waveguide and the optical mode, RF electrodes
need to be spaced farther from the waveguide core, resulting in weak RF electric field in LN
and limiting the coupling strength between the optical and microwave fields. Additionally, the
requirement to have the resonator FSR equal to the microwave carrier frequency, typically in
the range of 1 to 100 GHz, leads to a large size (respective radius of 10 mm to 100 µm for
high-index-contrast materials) and high phase shifter capacitance of the FSR-coupled modulators.
The large capacitance, driven by an RF source, produces small modulation voltage across the
phase shifter and limits the conversion efficiency of these modulators.
The modulator studied in this work incorporates the best features of the regular microring

modulator and the FSR-coupled modulator shown in Figs. 2(a,b). In particular, similar to the
FSR-coupled device of Fig. 2(b), the proposed modulator makes use of multiple resonant modes
and modulation-induced coupling between them, as shown in Figs. 2(c,d), to decouple the
RF frequency range from the cavity photon lifetime. This eliminates the efficiency-frequency
range tradeoff inherent in singly resonant devices such as the regular microring modulator [7].
Additionally, the frequency separation between the resonant modes is set by the strength of the
coupling between the two cavities, as opposed to FSR-coupled devices where the resonance
frequency separation is determined by the resonator radius. Therefore, in the proposed modulator,
the size of the cavities can be small, which provides tight confinement of optical and RF electric
fields and strong overlap between them. Additionally, the small capacitance of each active cavity
permits large RC-time-limited bandwidth, which is discussed in detail in Sec. 4.

We previously proposed coupled-cavity modulators similar to Fig. 1(b) for on-chip wavelength
conversion [12] and modulation of high-carrier-frequency RF bandlimited signals [11,13,15].
The use of electro-optic coupled resonators for quantum microwave-to-optical conversion has
been studied in [14]. It should be noted that dual-ring modulators were also proposed prior to
these works [31], but these were designed for baseband digital modulation and operated in a
different regime.

In the remainder of this paper we analyze in detail the different optical and electrical designs
of the proposed triply resonant modulator architecture, illustrated in Figs. 1(b-f). We start off
with a qualitative description of operation of the both optical and the RF parts of the device in
Sec. 2. In Sec. 3, using the formula for conversion efficiency derived in Appendix A, we study
the basic and generalized coupled-cavity structures from Figs. 1(b,c) and present their optimal
designs that maximize the conversion efficiency. In Sec. 4 we explore the different RF circuits
shown in Figs. 1(d-f) and derive formulae for the gain in conversion efficiency produced by the
resonant circuits of Figs. 1(e) and (f) compared to the non-resonant case of Fig. 1(d). Finally,
Sec. 5 summarizes and discusses the results.

2. Principle of operation

Before turning to the mathematical analysis of the proposed modulator, in this section we provide
a qualitative description of its optical and RF constituents and their different configurations as
shown in Fig. 1.

2.1. Problem formulation

Our goal is to develop a modulator which efficiently converts RF signals into the optical domain.
An RF signal modulating a continuous-wave optical input pump produces optical sidebands, and
our goal is to maximize the conversion efficiency defined as the ratio of the power in the optical
sideband to the input pump power, for a given RF drive power,

G =
Psideband

Ppump
. (1)



Optimizing the modulator for the most efficient conversion into the optical sideband alone is
relevant when the sideband is detected without the carrier, such as in direct-detection receivers [32]
or photonics-assistedmicrowave radiometers [4]. Another application is coherent communications
systems, where the modulated signal is detected via the homodyne or heterodyne technique by
interfering the sideband with a local oscillator.

2.2. Optical design

The two proposed optical modulator designs – the basic and the generalized coupled-cavity
designs – are shown in detail in Figs. 2(c,d). The basic version of Fig. 2(c) consists of two
identical evanescently coupled cavities that have the same unperturbed resonance frequency, ωo,
and a bus waveguide that is coupled to one of them. The coupling strength between the resonators
is described by cavity energy amplitude coupling rate µ, commonly used in the coupled-mode
theory (CMT) in time [33]. When two isolated resonators with the same resonance frequency ωo

are brought together, coupling induced splitting of supermode frequencies places the symmetric
and antisymmetric supermode resonances at frequencies ωo ∓ µ, respectively, as indicated in
Fig. 2(c). The coupling strength between the symmetric (antisymmetric) supermode and the
input/output waveguide is characterized by the external energy amplitude decay rate re,s (re,a).
Since both supermodes are coupled to the same bus waveguide through the bottom cavity, the
external energy decay rates of the supermodes are equal to each other and are equal to half of the
energy amplitude coupling rate of the bottom cavity to the bus waveguide, i.e. re,s = re,a = re/2,
as shown in Fig. 2(c).

If the resonance frequencies of the two cavities are modulated in time to be ωo ∓ δω(t), where
the shifts ∓δω(t) are induced by push-pull modulation, the instantaneous supermodes of the
coupled cavity system at a given time instance are not orthogonal to the supermodes at the
previous time instance. Therefore, the energy gets redistributed between the symmetric and
the antisymmetric supermodes at each “time step”. In other words, the RF drive voltage which
produces the ∓δω(t) resonance frequencies’ modulation leads to energy coupling between the
supermodes of the unperturbed system. Therefore, laser pump light at frequency ωo − µ, entering
the input port of the bus waveguide and exciting the symmetric supermode, is transferred to the
antisymmetric supermode at frequency ωo + µ due to push-pull modulation by the RF signal at
carrier frequency Ωo = 2µ, replicating the RF spectrum in the optical sideband. The modulated
light couples back into the bus waveguide and leaves through the output port.

The idea underlying the proposed modulator concept is that the modulation efficiency depends
on the resonant enhancement of each of the interacting waves. This is confirmed by analytic
derivation of the conversion efficiency in the Appendix A, which shows that the efficiency
contains a product of the Lorentzian lineshape of the symmetric resonance at the frequency of
the pump laser and the Lorentzian lineshape of the antisymmetric resonance at the frequency of
the sideband, see Eq. (A.10). For the moment, we only consider the efficiency limitation due to
photon lifetime in the optical part of the modulator; the RF frequency response of the circuits is
considered later.

The above has several implications for the modulator performance. First, for a given RF field
inside the active optical cavities, efficiency of the proposed modulator does not degrade when
the RF carrier frequency is much larger than the linewidth of optical resonances, much like the
efficiency of the FSR-coupled modulator shown in Fig. 2(b). Second, for the best modulation
efficiency, the laser pump should always be aligned to the frequency of the symmetric resonance
(under the assumption that the RF carrier frequency is matched to the resonance frequency
spacing). Third, when the input laser is aligned to the symmetric resonance, the shape of the small
signal RF frequency response of the modulator follows the shape of the antisymmetric resonance,
as can be seen from Fig. 3. This means that the RF bandwidth of the modulator does not depend
on the linewidth of the symmetric supermode, and is equal to the linewidth of the antisymmetric



supermode (which is inversely proportional to the antisymmetric mode photon lifetime). In case
the RF bandwidth needs to be increased, the antisymmetric supermode linewidth needs to be
broadened. In the basic design this can be achieved by increasing the coupling strength between
the bus waveguide and the ring. However, this is accompanied by an unwanted reduction in
Q-factor of the symmetric supermode, which reduces the pump enhancement and degrades the
efficiency of the modulator.
This brings us to the generalized configuration shown in Fig. 2(d). The key idea of the

generalized configuration is to enable independent control of the Q-factors of the symmetric
and the antisymmetric supermodes, so that high Q-factor for the symmetric resonance can be
maintained for maximum pump enhancement, while the Q-factor of the antisymmetric resonance
can be reduced just enough to accommodate the modulated optical signal bandwidth within the
resonance linewidth, as illustrated in Fig. 2(d). The independent control of the Q-factors of the
symmetric and the antisymmetric modes is achieved with a novel interferometrically coupled
input/output bus waveguide configuration, where the symmetric supermode is coupled only to
the input waveguide and the antisymmetric supermode is coupled only to the output waveguide
(analogous to a design for nonlinear optics [34]). In this case, the external energy decay rates of
the two supermodes can also be set independently.
The interferometric coupling in the generalized coupled-cavity modulator of Fig. 2(d) works

in the following way. The pump laser light, entering the input waveguide, couples into both rings
in-phase, exciting the symmetric supermode. The in-phase coupling is ensured by designing
the optical path difference between the two rings to be an integer of 2π. The light from the
symmetric supermode can couple back to the input waveguide, but not to the output waveguide
because of destructive interference of the waves coupled from each of the two rings into the
output waveguide. The destructive interference is ensured by having a π phase shifter in the
output waveguide between the two rings, so that the light from the symmetric mode coupled into
the output waveguide through the first and the second rings interfere destructively and cancel
each other out. As a result, there is no net coupling of light from the symmetric mode to the
output waveguide. The situation is reversed for the antisymmetric supermode, which has fields
in the two rings oscillating out of phase with respect to each other. The waves coupled from
the antisymmetric supermode into the input waveguide interfere destructively and the waves
coupled into the output waveguide interfere constructively, so that the antisymmetric supermode
is coupled only to the output but not to the input waveguide. The electric field configurations of
the symmetric and antisymmetric supermodes are illustrated in Fig. 2(d). The energy amplitude
coupling rates from the symmetric supermode to the input waveguide is re,s = 2re,in, and the
coupling rate from the antisymmetric supermode to the output waveguide is re,a = 2re,out , where
re,in and re,out are energy amplitude coupling rates between the individual rings and the input
and output waveguides, respectively, as indicated in Fig. 2(d). By adjusting the gaps between
the rings and each of these waveguides, the external decay rates re,s and re,a can be adjusted
independently.

Note that in the special case when the external energy decay rates re,s and re,a of the generalized
design equal those of the basic design, the two designs become equivalent and are expected to
have equal modulation efficiencies (provided that other device parameters, such as losses and
phase shifter efficiencies, are identical).

2.3. RF configurations

Different ways in which the RF drive can be applied to the active cavities of the proposedmodulator
are illustrated in Figs. 1(d-f). In the simplest, non-resonant scenario, shown in Fig. 1(d), the
transmission lines are directly connected to the terminals of the capacitive electro-optic region of
the active cavities. From the RF perspective, the active cavity is a capacitor Cm connected in
series with a resistor Rm. The capacitor acts as a phase shifter that tunes the resonance frequency



of the optical cavity in response to the RF signal, either by means of electrical charge accumulated
on the capacitor plates [10, 27] or by the electric field between them changing refractive index of
an electro-optic material [24,35]. The resistor accounts for the parasitic series resistance between
the capacitor plates and the terminals of the active cavities. For a fixed RF input power, the voltage
on the capacitor plates and, therefore, resonance frequency modulation is maximized when the
RF power is completely dissipated on the active cavities. In the non-resonant configuration of
Fig. 1(d), however, part of the RF power is reflected back to the source, due to the termination of
the transmission lines by the unmatched load of the active cavities. This can be considered a
consequence of the frequency of the RF signal not matching the frequency of the RF resonance,
which in the absence of a series inductance can be viewed as being infinite. This is illustrated in
the bottom plot in Fig. 1(d), which sketches the frequency dependence of the power reflection
coefficient |Γ|2.

The RF resonance frequency can be shifted to a finite frequency by connecting an inductor in
series with each active cavity. This resonant configuration is shown in Fig. 1(e). By appropriately
choosing the inductance L1, the frequency of the RF resonator formed by the inductor L1 and
the capacitor Cm can be matched to the carrier frequency of the RF drive, i.e. 1/

√
L1Cm = Ωo

[the bottom plot in Fig. 1(e)]. RF resonance boosts the voltage on the capacitors of the active
cavities, improving the efficiency of the modulation. The resonance removes the reactive load
from the transmission line, however, perfect load matching is still not guaranteed due to the
parasitic resistance Rm. Therefore, the dip in reflection function, plotted in Fig. 1(e), does not
reach zero, in general, even at resonance frequency.

Critical coupling between the RF feed line and the resonator can be achieved by introducing an
impedance transforming circuit between them, as shown in the resonant-matched configuration
in Fig. 1(f). The figure shows an L-match impedance down-converter, which consists of capacitor
C2 and inductor L2, and converts the higher resistance of the load to the lower characteristic
impedance of the transmission line [16]. At critical coupling, the dip in the reflection function
reaches zero, as shown in Fig. 1(f) and field is maximized on the load capacitor, i.e. the EO
region of the modulator cavities.
A detailed analysis of the different RF schemes is carried out in Sec. 4, where the parasitic

resistances of the inductors are taken into account. It is shown that resonant and resonant-matched
circuits, implemented with CMOS inductors with typical Q-factors of ∼10-30 [36, 37], provide
substantial ∼5-20 dB gain in conversion efficiency relative to the non-resonant scheme.

3. Analysis of the optical design

The designs of the optical and the electrical parts of themodulator can be considered independently
because the electrical circuits provide the voltage which determines the optical resonant frequency
swing δωm, which then leads to modulation of the optical signal. This section gives a detailed
analysis of the performance of the optical part of the modulator, specifically the basic and
generalized configurations shown in Fig. 2(c, d), for given δωm. The electrical configuration
which determines this δωm is analyzed in the next section.

An analytic expression for the modulator conversion efficiency can be found by applying the
CMT-in-time to the two active cavities whose frequencies are modulated in push-pull fashion as
ωo ±

δωm

2 cos(Ωt), where Ω is the RF frequency. The derivation is provided in the Appendix A.
The resulting formula for the conversion efficiency G which is applicable to both basic and
generalized configurations is
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Fig. 3. Graphical representation of the parameters in conversion efficiency formula (2), with
decay rates ro and re,s (re,a) determining the linewidth of the symmetric (antisymmetric)
supermode resonance, shown by light (dark) blue dashed line, coupling rate µ determining
the frequency splitting between the supermode resonances, RF frequency Ω setting the
separation between the laser pump (light blue arrow) and the optical sideband (dark blue
arrow), and ∆ωs (∆ωa) representing the detuning of the laser pump (optical sideband) from
the symmetric (antisymmetric) resonance. The relationship between µ, Ω, ∆ωs and ∆ωa is
given by Eq. (3).

G =
1
4re,sre,aδω2

m[
(ro + re,a)∆ωs + (ro + re,s)∆ωa

]2
+

[
(ro + re,s)(ro + re,a) +

(
δωm

4

)2
− ∆ωs∆ωa

]2

(2)
In this formula, ro is the intrinsic decay rate of the energy amplitude of the supermodes due to

linear losses in cavities (which is equal to the decay rate of the modes of the individual cavities,
assumed equal here), and re,s and re,a are the decay rates of the amplitudes of the symmetric and
the antisymmetric supermodes, respectively, due to coupling to the input and output waveguides.
For the basic design, which has just one waveguide coupled to a ring with coupling rate re,
the supermode coupling rates are re,s = re,a = re/2 and are always equal to each other. In the
generalized design, the input waveguide is coupled to each of the rings with rate re,in and the
output waveguide is coupled to each of the rings with rate re,out ; in this case, the supermode
coupling rates are re,s = 2re,in and re,a = 2re,out , and can be chosen independently from each
other. Energy amplitude coupling rate µ determines the strength of coupling between the two
cavities; this coupling leads to 2µ frequency splitting of the two supermodes. The frequency
separation of the laser pump from the symmetric resonance is denoted by ∆ωs , and the frequency
separation between the generated optical sideband and the antisymmetric resonance is denoted
by ∆ωa. These parameters are illustrated in Fig. 3. The values of ∆ωs and ∆ωa are related to µ
and Ω through

∆ωa − ∆ωs = Ω − 2µ. (3)

Note that while the RF frequency Ω is not explicitly present in Eq. (2), the efficiency does depend
on Ω through the above relation.

The discussion below examines the maximum conversion efficiency that can be achieved with



the two proposed modulator configurations. First, we consider a single-frequency RF signal, and
find the parameters which maximize the conversion efficiency at this frequency. We then find
the RF bandwidth obtained in this modulator. If an RF bandwidth different from the obtained
bandwidth is desired, the parameters of the modulator can be changed to ensure the required
bandwidth; this is done in the last part of this section which optimizes the modulator parameters
for maximum conversion efficiency while ensuring the required RF bandwidth.
First, we find the optimum conditions for modulation with an RF signal at single frequency
Ωo. By inspection of Eq. (2), it is clear that the conversion efficiency is maximized when
∆ωs = ∆ωa = 0, regardless of the values of other parameters. This is not surprising, since under
this condition pump and optical sideband fields are maximally enhanced in the resonators. From
Eq. (3), it follows that the coupling rate µ between the cavities must be designed so that Ωo = 2µ,
i.e. the frequency splitting between the resonances must match the RF frequency, in agreement
with the discussion in the preceding sections.

The next step is to find the optimum coupling strengths. The conversion efficiency is maximized
for Ωo = 2µ when

re,s = re,a =

√
r2
o +

(
δωm

4

)2
. (4)

Here, δωm/4 corresponds to the energy amplitude coupling rate between the supermodes, see
Eq. (A.8) in the Appendix A. For a very weak modulating signal when the resonance frequency
swing is much smaller than the intrinsic resonance linewidth, i.e. δωm � 2ro, this simplifies to
re,s = re,a = ro, which is the critical coupling condition for the supermodes. If the modulation
is not weak, the above formula can be viewed as a modified critical coupling condition which
takes into account the modulation-induced coupling between the supermodes, which acts as an
additional source of loss for the supermodes. Note that according to Eq. (4), both of the two
proposed configurations of Figs. 2(c,d) have the same supermode coupling coefficients, and show
identical performance.
After substitution of the optimum values for ∆ωs, ∆ωa, re,s, and re,a, the expression (2)

becomes a function of the cavity losses and the resonance frequency swing only. Fig. 4(a) plots
the conversion efficiency versus normalized resonance frequency swing, i.e. the ratio of the
frequency swing to the intrinsic resonance linewidth δωm/2ro. For the blue line, the modulator
parameters are optimized at each point along the x-axis. When δωm . 2ro, conversion efficiency
increases quadratically with the resonance frequency swing. This is the weak modulation regime
where Eq. (2) reduces to

G(Ωo) =

(
δωm

4
1

2ro

)2
. (5)

In this regime the conversion efficiency is proportional to the square of the ratio of coupling rate
between the supermodes δωm/4 and the intrinsic decay rate ro. This means that the efficiency of
the modulator is higher if there is a higher probability of a pump photon being converted to a
sideband photon, compared to the probability of losing the photon to different loss mechanisms
in the cavities. When the modulation is very strong, i.e. δωm � 2ro, almost all the light from the
pump can be converted to the sideband. The dashed lines in Fig. 4(a) show the dependence of
the conversion efficiency on δωm for devices optimized for a specific resonance frequency swing
δω

opt
m . If the resonance frequency swing is smaller than the one the modulator is optimized for

(δωm . δω
opt
m ), the conversion efficiency increases with the swing, reaching its maximum value

at δωm = δω
opt
m . As δωm increases further, the conversion efficiency drops, which happens due

to backward energy transfer from the antisymmetric to the symmetric supermode.
It should be noted that the modulation efficiency does not depend on the frequency Ωo, if for

each frequency the coupling strength between the cavities is designed so that Ωo = 2µ (assuming
drive strength δωm does not depend on Ωo). This is in stark contrast to the modulation efficiency
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Fig. 4. (a) Peak conversion efficiency versus resonance frequency swing δωm, where re,s
and re,a are optimized according to Eq. (4) either at each point along the x-axis (solid
blue line), or for each of several values of resonance frequency swing δω

opt
m (dashed

lines). (b) Small-signal conversion efficiencies of the proposed and the regular microring
modulators versus RF carrier frequency, where the modulators are optimized for maximum
efficiency at each point along x-axis. (c) RF-to-optical conversion frequency response of
the modulator, optimized for maximum conversion at Ω = Ωo, for several values of δωm.
(d) Photon-lifetime-limited RF bandwidth, defined as full width at half maximum of the
magnitude response, versus resonance frequency swing δωm.

of the regular microring resonator modulators, which drops as the signal frequency increases. A
thorough analysis of the regular microring modulators for optimal RF-to-optical conversion is
given in [7]. As an example, in Fig. 4(b) the small-signal conversion efficiencies of the proposed
and the regular microring modulators are plotted versus the RF signal frequency normalized by
the cavity resonance intrinsic linewidth 2ro. At each frequency Ωo the modulators are optimized
for maximum conversion efficiency. In the case of the proposed modulator it is done by adjusting
the coupling strength between cavities; in the case of the microring modulator, by adjusting the
cavity resonance linewidth through an appropriate choice of ring-bus coupling strength. As
expected, the efficiency of the proposed modulator stays constant, while the efficiency of the
microring modulator drops (20 dB/decade) as the RF frequency increases. Referring to Fig. 4(b),
for instance, the proposed modulator shows between 10 and 30 dB improvement over a regular
microring modulator when the carrier frequency exceeds the intrinsic linewidth by 5 to 50 times.
For signals with carrier frequency less than the optical resonance linewidth, such as baseband
digital signals (Ωo = 0), the proposed modulator shows little or no improvement compared to the
simpler regular microring modulators.
Let us now find the RF bandwidth of the modulator optimized for the best performance at a

single RF frequency. Strictly speaking, Eq. (2) is applicable to harmonic RF input only. However,



for weak modulating signal that does not deplete the laser pump, formula (2) can be applied
to each spectral RF component independently and used to study the frequency response of the
modulator. To find the frequency response, the laser frequency is set at the resonance frequency
of the symmetric supermode (∆ωs = 0) and the RF frequencyΩ is swept aroundΩo = 2µ, which,
according to Eq. (3), is equivalent to sweeping ∆ωa around zero.
The magnitude response for several values of resonance frequency swing δωm is plotted in

Fig. 4(c). For each δωm, the external coupling rates are found from Eq. (4). The maximum
values of each response are indicated on the blue curve in Fig. 4(a) with a matching black marker.
Note that with an increase in δωm not only does the peak conversion efficiency increase but the
spectral response becomes wider.
The RF bandwidth of the modulator ∆Ω3dB, defined as full width at half maximum of the

magnitude response centered at the carrier frequency Ωo, can be found from Eq. (2) to be

∆Ω3dB = 4

√
r2
o +

(
δωm

4

)2
. (6)

Note that the RF bandwidth is simply equal to the optical bandwidth of the antisymmetric
resonance, which is 4 times the critical coupling rate given by Eq. (4). Figure 4(d) plots the
modulation bandwidth versus peak-to-peak resonance frequency swing δωm. When δωm . 2ro,
the bandwidth is limited to twice the intrinsic linewidth of the ring cavities. As modulation
becomes stronger and δωm increases, the effective energy escape rate in the supermodes goes up,
broadening the optical resonances and the RF bandwidth.
The analysis above found a modulator design which provides the maximum conversion

efficiency at a given RF carrier frequency and determined the resulting RF bandwidth for this
design. This approach works well for narrowband RF signals, however, many applications require
RF bandwidths wider than provided by the above design. Our goal now is to obtain a design
which not only maximizes the efficiency at given carrier frequencyΩo, but also meets a minimum
required RF bandwidth.

Expression (6) is only valid when the external coupling rates are given by (4). A more general
expression for the 3dB bandwidth with arbitrary, independent re,s and re,a is

∆Ω3dB = 2(ro + re,a) +
1

2(ro + re,s)

(
δωm

2

)2
. (7)

In the above expression, the second term can usually be neglected in comparison to the first term
except when the modulation is strong. Therefore, to increase the RF bandwidth, one needs to
increase re,a, the coupling rate of the antisymmetric mode (only), increasing its optical bandwidth.
Widening of the bandwidth comes at the expense of reduced conversion efficiency due to an
increase of the denominator in Eq. (2). In the basic design, re,a can be increased by increasing the
coupling between the microresonator and the bus waveguide. However, as discussed earlier, the
coupling rate re,s increases by the same amount, which causes an added reduction in conversion
efficiency according to Eq. (2). In contrast, in the generalized architecture of Fig. 2(d), re,a can be
increased by increasing the coupling of the rings to the output waveguide, without changing the
coupling to the input waveguide and changing re,s . Thus, broadband modulation can be realized
with significantly higher efficiency in the generalized than in the basic design, in principle.

To quantify the improvement that the generalized design provides over the basic design, the
conversion efficiency formula (2) must be expressed in terms of ∆Ω3dB. This is straightforward
for the basic architecture. The external coupling rates are set to be equal in Eq. (7) and are
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Fig. 5. (a,b) Design external decay rates re,s and re,a versus RF bandwidth ∆Ω3dB for (a) the
basic and (b) the generalized designs, optimized for maximum conversion efficiency. (c,d)
Peak conversion efficiency versus ∆Ω3dB and δωm for (c) the basic and (d) the generalized
designs. (e) The improvement in conversion efficiency that the generalized design provides
over the basic design versus ∆Ω3dB and δωm.

expressed in terms of ∆Ω3dB

re,s = re,a =
∆Ω3dB

4
− ro +

√(
∆Ω3dB

4

)2
−

(
δωm

4

)2
,

and ∆Ω
min
3dB =


2ro +

1
2ro

(
δωm

2

)2
, if δωm ≤ 4ro

δωm , if δωm > 4ro

(8)



is the lower limit of the RF bandwidth. Finally, the expression for re,s and re,a from Eq. (8) are
substituted into Eq. (2). For the generalized architecture the process is slightly more involved.
One of the decay rates is found from Eq. (7), substituted into Eq. (2) and the optimum value of
the second decay rate is found among the extrema of Eq. (2), which results in

re,s =
1

8(∆Ω3dB − 2ro)

[
δω2

m +

√[
δω2

m − 8ro(∆Ω3dB − 2ro)
]2
+ 8roδω2

m(∆Ω3dB − 2ro)
]
,

re,a =
∆Ω3dB − 2ro

3
−

1
48ro

[
δω2

m −

√[
δω2

m − 8ro(∆Ω3dB − 2ro)
]2
+ 8roδω2

m(∆Ω3dB − 2ro)
]
,

and ∆Ω
min
3dB = 2ro .

(9)
Finally, the above expressions for coupling rates are substituted into Eq. (2). In the limit when the
modulation is weak (δωm . 2ro) and the required photon-lifetime-limited bandwidth is much
larger than the intrinsic linewidth (∆Ω3dB � 2ro), Eqs. (8) and (9) simplify to

re,s = re,a ≈
1
2
∆Ω3dB − ro (basic),

re,s ≈ ro, re,a ≈
1
2
∆Ω3dB − ro (generalized).

(10)

In Figs. 5(a) and (b) the external decay rates, given by Eqs. (8) and (9), are plotted versus the
normalized bandwidth for δωm = 0.1× 2ro. Fig. 5(b) shows that for given bandwidth, maximum
conversion efficiency is achieved when the symmetric resonance is critically coupled to the input
port, while the coupling strength between the antisymmetric resonance and the output port is
increased until the required bandwidth is reached.
The peak conversion efficiencies of the basic and the generalized designs are plotted versus

the target RF bandwidth ∆Ω3dB and the resonance frequency swing δωm in Figs. 5(c) and
(d). The white regions in the plots indicate that no design exists for ∆Ω3dB < ∆Ωmin

3dB, where
∆Ωmin

3dB for the basic and generalized designs is given in Eqs. (8) and (9), respectively. The peak
conversion efficiency of both designs drops as the target bandwidth increases, however, the drop
is significantly slower in the generalized (10 dB/decade) than in the basic design (20 dB/decade).
The improvement the generalized design provides over the basic design is shown in Fig. 5(e). It
is negligible when the target RF bandwidth is close to the intrinsic resonance linewidth, which
means that the generalized design gives little advantage over the simpler basic design if the
target RF bandwidth is low, or the microrings are lossy. The advantage of the generalized
design increases as the target RF bandwidth increases relative to the intrinsic linewidth of the
resonators. For instance, when the required RF bandwidth is about 40 times larger than the
intrinsic linewidth, the generalized design provides 10 dB higher conversion efficiency than
the basic design. Therefore, generalized configuration, based on tailoring of resonance photon
lifetimes, is expected to be particularly useful when a low-loss optical phase shifting mechanism
is available, such as in [35, 38].

4. Analysis of the RF design

In the previous section, the analysis was focused on determining the optimum optical design of
the proposed triply resonant modulator. In this section we turn our attention to the RF design,
and find the gain in conversion efficiency that the resonant and resonant-matched circuits in
Figs. 1(e) and (f) produce compared to the non-resonant circuit in Fig. 1(d), for a given input RF
power. The RF designs are replicated on the left side of Fig. 6, with corresponding equivalent
circuits shown on the right side.



The relationship between the resonance frequency swing δωm and the input RF power PRF

needs to be determined first. The RF signal is brought to the modulator by a transmission line
with characteristic impedance Zo. The voltage amplitude of the forward-propagating wave is
equal to VRF =

√
2ZoPRF . The voltage amplitude across the capacitor of the active cavity VCm

is equal to the product of VRF and the voltage enhancement frequency response of the RF circuit,
VCm = |H(Ω)|VRF . Finally, the resonance frequency swing is related to the voltage amplitude
across the capacitor of the active cavity VCm through

δωm =
2πcVCm

ngVπL
=

2πc
ngVπL

|H(Ω)|
√

2ZoPRF , (11)

where c is the speed of light in vacuum, ng is the group index of the waveguide that makes up the
cavities and, finally, VπL [Vm] is the voltage-length product of the capacitive phase shifter (L is
typically the ring roundtrip length). In Eq. (11) we assumed a linear dependence of the phase shift
on voltage. This is true if the phase shifter is based on the linear electro-optic (Pockels) effect. In
a depletion-mode p-n diode phase shifter, operating based on the carrier plasma dispersion effect,
the phase shift shows nonlinear (square root) dependence on applied voltage. Moreover, the
propagation loss and capacitance of the phase shifter are not constant but change with the drive
voltage. However, when the drive voltage is small the propagation loss and capacitance are nearly
constant and the relationship between the voltage and resulting phase shift can be considered
linear to a first order approximation. In this work, we restrict the discussion to this case (linear
phase modulation). This case is relevant to many applications such as receivers for weak antenna
signals or passive microwave radiometry where the RF signal is the target’s blackbody radiation.
Analysis of the nonlinear behavior for large signal modulation is out of the scope of this paper
and remains to be addressed in future work.
According to Eq. (5), the conversion efficiency changes quadratically with δωm in the weak

modulation regime. Therefore, the gain in conversion efficiency produced by the resonant and
resonant-matched circuits is equal to the magnitude squared of the voltage enhancement produced
by these circuits relative to the non-resonant design.
Next, the voltage enhancement frequency responses of the different circuit configurations

are found. The non-resonant circuit configuration is shown in Fig. 6(a). Here the two active
cavities of the modulator are directly connected to the terminals of the transmission lines that
deliver the differential RF signal from a signal source to the modulator. The equivalent circuit of
one of the branches is shown on the right of Fig. 6(a), where the active cavity is represented by
the series connection of the capacitor Cm and the parasitic resistance Rm. The voltage on the
terminals of the active cavity is equal to the sum of voltages of the incident and the reflected
waves Vm = VRF (1 + Γ), where the reflection coefficient Γ is given by the well known expression
Γ =

Zm−Zo

Zm+Zo
, and Zm = Rm +

1
jΩCm

is the total impedance of the active cavity with capacitance
Cm and resistance Rm. The voltage on the capacitor of the active cavity is VCm =

1
jΩCmZm

Vm,
and the voltage response of the circuit is readily expressed as

HRC(Ω) ≡
VCm

VRF
=

2
1 + jΩ(Zo + Rm)Cm

. (12)

The factor of two in the numerator indicates that the low-frequency components reflect
entirely due to the large impedance of the capacitor, doubling the voltage on the load. Note
that RC-time-limited bandwidth depends not only on the parasitic resistance Rm, but on the
impedance of the transmission line as well. The capacitance of state-of-the-art silicon microring
modulators is on the order of femtofarads or several tens of femtofarads, and the resistance is
between tens and hundreds of Ohms [27, 30]. As an example, the blue line in Fig. 7(a) shows the
magnitude response of the non-resonant circuit with Cm=5 fF, Rm=100 Ohm, and a transmission
line with Zo=50 Ohm.
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Fig. 6. RF configurations of the proposed modulator with (a) non-resonant, (b) resonant, (c)
resonant-matched designs on the left and corresponding equivalent circuits on the right.

In the resonant configuration of Fig. 6(b), series RLC circuits are formed by the active cavities
and integrated inductors. The inductance L1 is chosen such that the resonance frequency of
the RLC circuit is equal to the RF carrier frequency, 1/

√
L1Cm = Ωo. The equivalent circuit is

shown on the right of Fig. 6(b). Here, the parasitic resistance of the inductor is expressed through
RL1 = ΩoL1/QL , where QL is the quality factor of the inductor. The frequency response of this
circuit, calculated following the same steps as in the previous case is

HRLC =
VCm

Vs
=

2
1 −Ω2L1Cm + jΩ(Zo + Rm + RL1 )Cm

. (13)

At resonance, the real part of the denominator is zero, and the imaginary part is the inverse
of the total quality factor of the RLC circuit, Qtot

RF = 1/(Zo + Rm + RL1 )ΩoCm. This means
that the voltage across the capacitor is Qtot

RF times larger at resonance than at low frequencies.
The magnitude of Eq. (13) is plotted in Fig. 7(a) [dashed lines] for three different values of the
resonance frequency Ωo, assuming the same values of Cm, Rm and Zo as in the previous example
and infinite QL . As the resonance frequency approaches the RC-time-limited bandwidth, the
maximum voltage gain, shown by the dotted line in Fig. (7), diminishes, which happens due to
the reduction of total quality factor of the RLC resonator.
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Fig. 7. (a) Magnitude response of the non-resonant circuit of Fig. 6(a) (solid blue line) and of
the resonant circuit of Fig. 6(b) for RF resonance frequency Ωo equal to 1, 10, and 100 GHz
(dashed lines). (b) The gain in conversion efficiency the resonant design provides compared
to the non-resonant design versus Ωo for several values of QL of the integrated inductor.
Values of Cm=5 fF, Rm=100 Ohm, Zo=50 Ohm are assumed for the plots in (a) and (b). (c)
The additional gain in conversion efficiency the resonant-matched circuit provides compared
to resonant design versus normalized parasitic resistance of the active cavities.

The gain in the modulator conversion efficiency at frequency Ωo the resonant circuit produces
compared to the non-resonant circuit, is equal to the square of the voltage gain, which can be
found from Eqs. (13) and (12):

G1(Ωo) =

����HRLC

HRC

����2
Ωo

=
(
Qtot

RF

)2
[
1 +

(
1

Qtot
RF

−
1

QL

)2
]
. (14)

For QL � Qtot
RF , this simplifies to G1 = 1 +

(
Qtot

RF

)2. The dependence of G1 on the resonance
frequency Ωo is shown in Fig. 7(b) for several values of QL and the same values of Cm, Rm and
Zo as in the previous examples. Referring to Fig. 7(b), for instance, in the 1-100 GHz frequency
range a resonant circuit with an inductor that has Q-factor QL=10 provides 5 to 20 dB gain. This
illustrates that large gain is expected at microwave frequencies from a resonant circuit with Q′Ls
typical of CMOS inductors [36, 37]. Even larger gains are possible for smaller capacitances and
resistances of the active cavities.

It is worth noting that the RF resonance quality factorQtot
RF , as well as the optical photon-lifetime

(discussed in Sec. 3) determine the overall RF bandwidth of the modulator.
One can show that, in the resonant circuit of Fig. 6(b), the voltage VCm on resonance (and for a

fixed PRF power) is maximized if the characteristic impedance Zo matches the load resistance
Rm+RL1 . If the characteristic impedance differs from the load resistance, an impedance matching
circuit can be implemented with lumped elements [16], as is done in the resonant-matched



design in Fig. 6(c). If the load resistance is higher than Zo, an L-match impedance transformer,
consisting of the capacitor C2 and the inductor L2, can be used to down-convert the active load
resistance to match it with the characteristic impedance Zo, as shown in Fig. 6(c). If the load
resistance is lower than Zo an impedance up-converter, shown on the bottom right in Fig. 6(c) can
be used. In both cases the gain in conversion efficiency compared to the non-resonant circuit is

G2(Ωo) =

�����Hmatch
RLC

HRC

�����2
Ωo

=
1
4

(√
Rm

Zo
+

√
Zo

Rm

)2

G1 = G21G1, (15)

where the gain term G21 represents the improvement over the resonant design. Here, for the
sake of simplicity, we assumed the inductors have infinite quality factors. Figure 7(c) shows the
dependence of G21 on the Rm/Zo ratio. The gain that the resonant-matched design provides
compared to the resonant design is about 0.5 dB when Rm = 2Zo and reaches 10 dB only when
the load resistance exceeds the characteristic impedance 40 times. Since the matching circuit
adds additional complexity to the system, its implementation is justified only when there is a
large impedance mismatch between the load and the transmission line.

5. Discussion and summary

In this work we proposed and studied a triply resonant modulator architecture for high-carrier-
frequency RF modulation. The device, supports two optical and one RF resonances and
simultaneously enhances all three interacting waves – the laser pump, the RF drive, and the
generated optical sideband – maximizing the modulation efficiency.
The modulator was studied by analyzing the designs of its optical and RF parts separately,

with Eqs. (2) and (11) describing the performance of the optical and the electrical constituents.
By combining these equations, the full electro-optic response of the modulator was found. The
modulator was shown to provide a 15 to 50 dB improvement in conversion efficiency over
conventional microring modulators under reasonable assumptions for the device parameters.

On the optical side, it was shown that the performance of the proposed modulator is intrinsically
insensitive to RF carrier frequency (as long as the modulator is designed for this frequency). This
is in contrast to regular resonant modulators, where the photon lifetime degrades the performance
as RF carrier frequency goes up. For the proposed modulator, the photon lifetime is decoupled
from the RF carrier frequency, and determines the RF bandwidth around the carrier frequency.
The optical resonator portion of the proposed architecture is capable of providing 10-30 dB
improvement in conversion efficiency relative to regular resonant modulators. Two optical
designs – the basic design shown in Fig. 1(b) and the generalized design shown in Fig. 1(c)
– were considered. If the spectral width of the RF signal is lower than or on the order of the
intrinsic linewidth, the basic optical design shown in Fig. 1(b) works well, and the more complex
generalized design brings no performance advantages. However, the generalized design is
preferable for RF signals with spectrum significantly wider than the intrinsic linewidth of the
cavity. By proper engineering of loaded Q-factors of the supermode resonances in the generalized
design, the conversion efficiency of wide-spectrum RF signals can be significantly increased in
comparison to the basic design.

On the RF side, it was shown that the efficiency of themodulator can be enhanced by introducing
inductors in series with the active cavities to form LC resonators with resonance frequency equal
to the RF carrier frequency. The LC resonance improves the conversion efficiency relative to the
case when the active cavities are connected directly to the transmission line by approximately(
Qtot

RF

)2
+ 1, where Qtot

RF is the quality factor of the resonant circuit. It was shown that 5-20 dB
gain in conversion efficiency can be achieved by implementing the resonant circuit. Additionally,
an impedance matching scheme was proposed for situations when there is large impedance
mismatch between the RF feed line and the modulator. In the impedance-matched design, input



RF power is directed to maximally build up energy (and thus voltage drop) in the active region
capacitance of the modulator, maximizing its efficiency.
The analysis of the previous sections showed that the modulator efficiency depends on a

number of factors such as efficiency of the electro-optic phase shifters, optical loss in the cavities,
the capacitance and the resistance of the active cavities, etc. A useful figure of merit can be found
from the weak signal peak conversion efficiency formula (5). Combining Eqs. (5), (11), (13), and
the first expression of Eq. (A.6), we arrive at

G(Ωo) = 2ZoPRF

(
5π

ln(10)

)2 (
Qtot

RF

VπLα

)2
(16)

where α [dB/m] is waveguide propagation loss of the cavities. The last term in Eq. (16), which
depends on VπLα-product of the phase shifter and total quality factor Qtot

RF of the RF resonator,
can serve as a figure of merit (FOM) for the proposed modulator and can be used to compare
performance of the modulator achievable in different material platforms,

FOM =
Qtot

RF

VπLα
. (17)

Electro-optic phase shifters with very low VπLα-products have been demonstrated in platforms
such as lead zirconate titanate-on-silicon nitride with VπL=1.02 Vcm and VπLα<1 VdB [38],
hybrid barium titanate-silicon with VπL=0.3 Vcm and VπLα=1.7 VdB [39], and silicon-organic
hybrid with VπL=0.032 Vcm and VπLα=1.2 VdB [40]. Carrier-depletion-based electro-optic
phase shifters in silicon have been demonstrated with VπLα-product as low as 5.7 VdB and
VπL=0.46 Vcm [41]. Although the VπLα metric for silicon is not as low as for some other
platforms, siliconmodulators can be readily implemented inCMOSprocesses (including processes
with fT ’s up to 305 GHz [18] and 485 GHz [42]) alongside CMOS electronics, enabling complex
CMOS RF-photonic systems. Moreover, RF resonators, implemented monolithically with CMOS
inductors available in these processes [18], can significantly improve the modulator performance
at low cost and with low parasitics.
With the increasing importance of high bandwidth RF signal processing, and the complex

photonic and electronic-photonic integrated circuit platforms that are emerging [29], modulators
such as those proposed may find a natural place in MWP integrated circuits. In addition to
experimental validation, work remains to address the linearity and power handling of these
designs. Furthermore, while this paper addresses single sideband generation, the presented ideas
can be applied to e.g. triple-optical-cavity systems [12] for dual sideband generation.

Appendix A: Derivation of the conversion efficiency formula

Here, we derive the conversion efficiency formula (2), using the coupled-mode theory (CMT) in
time [33]. The analysis below is general and applicable to both the basic and the generalized
architectures of Figs. 2(c,d).

We start with the system of two coupled cavities, which are not coupled to external waveguides,
and which have their resonance frequencies modulated in push-pull mode. The CMT equations
for such a system can be formulated as

d
dt

ā = j ¯̄ω · ā − j ¯̄µ · ā (A.1)

with

ā =
©­­«
a1

a2

ª®®¬ , ¯̄ω =
©­­«
ωo − δω(t) + jro 0

0 ωo + δω(t) + jro

ª®®¬ , ¯̄µ =
©­­«
0 µ

µ 0

ª®®¬ .



Here, a1(t) and a2(t) are energy amplitudes of the optical fields in the microresonators which
oscillate at resonance frequency ωo in absence of modulation. The term δω(t) represents the
instantaneous changes in the resonance frequencies due to modulation, and different signs of
δω(t) in diagonal terms of the ¯̄ω matrix indicate that the resonance frequencies of the two rings
are modulated in push-pull mode. Energy amplitude decay rate ro accounts for the intrinsic
losses in the microresonators, and is assumed equal in both here. The derivations are easily
modified to remove this assumption.
By solving Eq. (A.1) in the absence of the modulating signal (δω(t) = 0), we find the

eigenvectors (supermode fields) and the eigenvalues (resonant frequencies) of the coupled-cavity
system: ©­­«

a1

a2

ª®®¬s,a =
1
√

2

©­­«
1

±1

ª®®¬ , (A.2)

ωs,a = ωo ∓ µ + jro . (A.3)

The two supermodes are referred to as “symmetric” and “antisymmetric” because according to
Eq. (A.2), the fields in the two rings are in phase for one supermode and out of phase for the
other. According to Eq. (A.3), resonance frequencies of the supermodes, given by the real parts
of the eigenvalues ωs,a, are split by twice the energy amplitude coupling rate µ between the
rings. Additionally, the decay rate of each supermode due to losses in the cavities, given by the
imaginary parts of ωs,a, is the same as cavity intrinsic decay rate ro.
The CMT equations (A.1) can be rewritten in terms of the supermodes of the unperturbed

system (i.e. the system in absence of modulation),

d
dt

b̄ = j ¯̄ω · b̄ − j ¯̄µ · b̄ (A.4)

where b1 and b2 are the energy amplitudes of the supermodes,

b̄ =
©­­«
b1

b2

ª®®¬ =
1
√

2

©­­«
a1 + a2

a1 − a2

ª®®¬ ,
and

¯̄ω =
©­­«
ωo − µ + jro 0

0 ωo + µ + jro

ª®®¬ , ¯̄µ =
©­­«

0 δω(t)

δω(t) 0

ª®®¬ .
One can notice that modulating term δω(t) appears in off-diagonal elements of the coupling
matrix ¯̄µ, indicating modulation-induced coupling between the supermodes.
The prior analysis considered the isolated system of coupled cavities which are not coupled

to external waveguide(s). Now, we introduce coupling of the supermodes to input/output ports,
which is characterized by energy amplitude decay rates re,s and re,a for the symmetric and the
antisymmetric supermodes, respectively. The CMT equation for the amplitudes of the supermode
energies and the input/output optical fields can be written as

d
dt

b̄ = j ¯̄ω · b̄ − j ¯̄µ · b̄ − j ¯̄Mi · s̄+

s̄− = − j ¯̄Mo · b̄ + s̄+

(A.5)



where

¯̄ω =
©­­«
ωo − µ + j(ro + re,s) 0

0 ωo + µ + j(ro + re,a)

ª®®¬ , ¯̄µ =
©­­«

0 δω(t)

δω(t) 0

ª®®¬ ,
¯̄Mi =

©­­«
√

2re,s 0

0
√

2re,a

ª®®¬ , ¯̄Mo =
¯̄MT
i , s̄+ =

©­­«
s+1

s+2

ª®®¬ , s̄− =
©­­«
s−1

s−2

ª®®¬ .
Here, s+1, s+2, s−1, s−2 are the input/output field amplitudes, shown next to corresponding ports
in Figs. 2(c,d). In the proposed modulator the only optical input is the laser pump s+1, therefore
s+2 is always assumed to be zero. The fields at the output of the modulator have amplitude s−1
for the residual pump and amplitude s−2 for the generated optical sideband.
In this work, we consider the basic and the generalized designs of Figs. 2(c,d) for physically

realizing the described coupling of the supermodes to the input and the output ports. In the
basic design [Fig. 2(c)], the input pump light couples to the symmetric mode and the light in the
optical sideband is extracted from the antisymmetric supermode via the same bus waveguide,
which is coupled to one of the cavities. As mentioned in Secs. 2 and 3, the coupling rates of the
supermodes, re,s and re,a, are the same and are equal to half of the energy amplitude coupling rate
of the cavity to the bus waveguide, i.e. re,s = re,a = re/2. In the generalized design [Fig. 2(d)],
the pump is coupled into the symmetric supermode and and the generated sideband is coupled out
of the antisymmetric supermode through separate input and output waveguides. Each waveguide
is coupled to both cavities with coupling strength described by cavity decay rates re,in and re,out .
As explained in Secs. 2 and 3, the supermode coupling rates re,s and re,a are set independently
by the ring-waveguide coupling strengths re,in and re,out , with re,s = 2re,in and re,a = 2re,out ,
where the factors of 2 result from constructive interference of the fields coupled out from the two
rings. Note that the CMT loss rate ro, the ring-to-waveguide coupling rates re,in, re,out , and the
ring-to-ring coupling rate µ are related to the propagation loss α [dB/m], the waveguide-to-ring
power coupling coefficients κ2

in, κ
2
out , and the ring-to-ring power coupling coefficient κ2

rr through

α =
20ngro
ln(10)c

, κ2
in =

2re,in
∆ fFSR

, κ2
out =

2re,out
∆ fFSR

, κ2
rr =

µ2

∆ f 2
FSR

, (A.6)

where ∆ fFSR is the free spectral range of the ring (in Hz) [33].
Equations (A.4) can be solvedwhen an input harmonicmodulating signal, δω(t) = δωm

2 cos(Ωt),
is applied, where δωm is peak-to-peak resonance frequency swing. Assuming that the frequency
of the input pump wave is close to the frequency of the symmetric supermode ωo − µ and the
frequency of the generated sideband is close to the frequency of the antisymmetric supermode,
we can simplify the analysis by introducing slowly-varying envelopes with

b1(t) ≡ B1(t)e j(ωo−µ)t, b2(t) ≡ B2(t)e j(ωo+µ)t, s+1(t) ≡ S+1(t)e j(ωo−µ)t

where B1(t), B2(t) are the slowly varying envelopes of the supermode energy amplitudes, and
S+1(t) is the slowly varying envelope of the input pump wave. The coupled mode equations (A.4)
can then be rewritten as

d
dt

B̄ = j ¯̄H · B̄ − j ¯̄Mi · S̄+

S̄− = − j ¯̄Mo · B̄ + S̄+

(A.7)



where

B̄ =
©­­«
B1

B2

ª®®¬ , ¯̄H =
©­­«

j(ro + re,s) −
δωm

4
(e j(Ω+2µ)t + e−j(Ω−2µ)t )

−
δωm

4
(e j(Ω−2µ)t + e−j(Ω+2µ)t ) j(ro + re,a)

ª®®¬ ,
S̄+ =

©­­«
S+1

S+2

ª®®¬ , S̄− =
©­­«
S−1

S−2

ª®®¬ ,
To allow closed form solutions, the contribution from the rapidly oscillating exponentials

with arguments ±(Ω + 2µ) can be neglected compared to the contribution from slowly varying
exponentials with arguments ±(Ω − 2µ). For numerical simulations of the CMT equations’
evolution, they may be retained.
Using the convention introduced in Sec. 3 and Fig. 3, we let the pump frequency be different

from the symmetric supermode frequencyωo− µ by ∆ωs , so that S+1(t) = S̃+1e j∆ωs t . We look for
solutions for the slowly varying envelopes in the form of B1(t) = B̃1e j∆ωs t and B2(t) = B̃2e j∆ωa t ,
where B̃1 and B̃2 are constants, and ∆ωa is the detuning of generated optical sideband frequency
from the resonance frequency of antisymmetric supermode, as shown in Fig. 3. The relation
between ∆ωs , ∆ωa, the frequency Ω and coupling rate µ is given by Eq. (3).
Substituting the expressions for S+1(t), B1(t), and B2(t) into Eq. (A.7) and replacing the

derivatives with j∆ωs and j∆ωa we get

j ¯̄∆ω · ¯̃B = j ¯̄H · ¯̃B − j ¯̄Mi ·
¯̃S+

¯̃S− = − j ¯̄Mo ·
¯̃B + ¯̃S+

(A.8)

where

¯̄∆ω =
©­­«
∆ωs 0

0 ∆ωa

ª®®¬ , ¯̃B =
©­­«
B̃1

B̃2

ª®®¬ , ¯̄H =
©­­«

j(ro + re,s) −
δωm

4

−
δωm

4
j(ro + re,a)

ª®®¬ , ¯̃S+ =
©­­«
S̃+1

S̃+2

ª®®¬ , ¯̃S−
©­­«
S̃−1

S̃−2

ª®®¬ ,
The first equation in (A.8) can be readily solved for the supermode envelopes B̃1 and B̃2, and
the amplitude of the optical sideband S̃−2 can be found from the second equation in (A.8). The
conversion efficiency of the modulator, defined as the ratio of the output power at optical sideband
to the input laser power according to Eq. (1), is then

G =
���� S̃−2

S̃+1

����2 = (A.9)

=

1
4re,sre,aδω2

m[
(ro + re,a)∆ωs + (ro + re,s)∆ωa

]2
+

[
(ro + re,s)(ro + re,a) +

(
δωm

4

)2
− ∆ωs∆ωa

]2

The expression (A.9) is used in this work for analyzing the operation of the proposed modulator.
It is important to note that for weak modulation, i.e. δωm � 2ro, Eq. (A.9) can be written as

G =
(
δωm

4
1

2ro

)2 1(
∆ωs

2√rore,s

)2
+

1
4

(√
ro

re,s
+

√
re,s
ro

)2
1(

∆ωa

2√rore,a

)2
+

1
4

(√
ro

re,a
+

√
re,a
ro

)2 ,

(A.10)



where the second and the third fractions can be recognized as the Lorentzian lineshapes of the
symmetric and the antisymmetric supermodes evaluated at the frequencies of the optical carrier
and the sideband, respectively. This confirms the idea that for efficient sideband conversion, each
of the interacting optical waves need to be resonant in the device.

Appendix B: List of symbols

Table B.1: List of the commonly used symbols and their description.

Symbol Description

ωo Resonance frequency of the optical cavities when uncoupled.
ro Intrinsic decay rate of the cavity and supermode energy amplitudes due to losses.
µ Coupling rate between the optical cavities.
re Coupling rate from the bottom cavity to the bus waveguide in the basic design.
re,in Coupling rate from the cavities to the input waveguide in the generalized design.
re,out Coupling rate from the cavities to the output waveguide in the generalized design.
re,s Coupling rate from the symmetric supermode to the input/output waveguide(s).
re,a Coupling rate from the antisymmetric supermode to the input/output waveguide(s).
δωm Peak-to-peak cavity resonance frequency swing due to modulation.
∆ωs Detuning of the laser pump from the symmetric resonance in frequency.
∆ωa Detuning of the optical sideband from the antisymmetric resonance in frequency.
Ωo Carrier frequency of the RF drive signal and frequency of the RF resonance.
Ω Arbitrary frequency of the RF drive signal.
∆Ω3dB Photon-lifetime-limited RF bandwidth.
α Waveguide propagation loss of the optical cavities.
VπL Voltage-length product of the electro-optic phase shifters of the cavities.
Zo Characteristic impedance of the transmission line delivering the RF signal.
Cm Capacitance of the electro-optic region of the active cavities.
Rm Parasitic resistance of the active cavities.
L1 Inductance of the monolithically integrated inductors.
RL1 Parasitic resistance of the inductor L1.
QL Quality factor of the inductors.
Qtot

RF Total quality factor of the RF resonator.
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