
Clausal Proofs of Mutilated Chessboards?

Marijn J.H. Heule1, Benjamin Kiesl2,3, and Armin Biere4

1 Department of Computer Science, The University of Texas at Austin, United States
2 Institute of Logic and Computation, TU Wien, Austria

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
4 Institute for Formal Models and Verification, JKU Linz, Austria

Abstract. Mutilated chessboard problems have been called a “tough
nut to crack” for automated reasoning. They are, for instance, hard for
resolution, resulting in exponential runtime of current SAT solvers. Al-
though there exists a well-known short argument for solving mutilated
chessboard problems, this argument is based on an abstraction that is
challenging to discover by automated-reasoning techniques. In this pa-
per, we present another short argument that is much easier to compute
and that can be expressed within the recent (clausal) PR proof system
for propositional logic. We construct short clausal proofs of mutilated
chessboard problems using this new argument and validate them using
a formally-verified proof checker.

Introduction

The success of automated reasoning presents us with an interesting peculiarity:
While modern solving tools can routinely handle gigantic real-world instances,
they often fail miserably on supposedly easy problems. Their poor performance
is frequently caused by the weakness of their underlying proof systems, which
only allow them to derive facts that are logically implied. A recently proposed
proof system, called PR [?], overcomes this issue by allowing the derivation of
facts that are not necessarily implied but whose addition preserves satisfiability.

A well-known family of problems on which traditional reasoning approaches
fail are the mutilated chessboard problems. Given a chessboard of size n×n from
which two opposite corner squares have been removed (see Fig. 1), a mutilated
chessboard problem asks if the remaining squares can be fully covered with
dominos (i.e., with stones that cover exactly two squares). The answer is no,
based on a simple argument: Assume to the contrary that a mutilated chessboard
can be fully covered with dominos. Then, since every domino covers exactly one
black square and one white square, the number of covered black squares must
equal the number of covered white squares. But the number of black squares
on a mutilated chessboard is different from the number of white squares since
opposite corner squares (of which two were removed) are of the same color.

? Supported by NSF under grant CCF-1813993, by AFRL Award FA8750-15-2-0096,
Austrian Science Fund (FWF) under projects W1255-N23 and S11409-N23 (RiSE)
and the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

1



Fig. 1. An empty (left), almost full (middle), and reduced (right) mutilated chessboard.

Automated-reasoning methods on various representations have severe diffi-
culties finding this argument because they do not have colored squares, so they
need to come up with this abstraction themselves in order to use a similar ar-
gument. John McCarthy has called the mutilated chessboard problems a “tough
nut to crack” for automated reasoning [?], and it has been shown that these prob-
lems admit only proofs of exponential size within the propositional resolution
proof system, which forms the basis of many SAT solvers [?,?].

In this paper, we show that the recently introduced PR proof system facil-
itates a completely different but equally short argument for solving mutilated
chessboard problems. The new argument rules out possible patterns for the domi-
nos by generalizing—without loss of generality—from certain specific patterns
that are similar to them. Moreover, the argument also seems to be well suited for
automated reasoning since we discovered it when analyzing PR proofs that were
found by one of our tools [?]. We argue that the key to automatically solving the
mutilated chessboard problems and many other hard problems is not to simulate
human thinking but to equip computers with capabilities to find their own short
arguments. Moreover, our example demonstrates that automated-reasoning tools
cannot only provide us with simple yes/no answers but that they can also help
us gain further insights into the nature of a problem.

Representation

A successful approach to solving hard combinatorial problems is to encode them
into propositional logic and to solve the resulting propositional formulas with a
SAT solver. Mutilated chessboard problems can be naturally encoded in propo-
sitional logic: We consider only propositional formulas in conjunctive normal
form (CNF). Such formulas are conjunctions of clauses where each clause is a
disjunction of literals and each literal is either a variable or the negation of a
variable. We use a distinct Boolean variable for each possible placement of a
domino on the chessboard. On each square (apart from some border squares),
a domino can be placed either horizontally or vertically, having the square ei-
ther left or top. Intuitively, a variable should be true if and only if a domino is

2



placed on the corresponding location in the corresponding way (horizontally or
vertically). The number of variables is thus roughly twice the number of squares.

Only one constraint needs to be encoded for mutilated chessboard problems:
Each square must be covered by exactly one domino. This constraint can be
easily expressed in propositional logic, resulting in two clauses for corner squares,
four clauses for border squares, and seven clauses for center squares: One clause
(consisting only of positive literals) expresses that the square is covered by at
least one domino whereas the other clauses (each containing exactly two negative
literals) express that the square is covered by at most one domino.

Mutilated chessboard problems using this encoding were part of the SAT
Competition 2018 (in the main, parallel, and no-limits tracks). The problems
used in the competition encoded mutilated chessboards of size n × n, with
n ∈ {15, 16, 17, 18, 19, 20}. None of the solvers were able to solve the two largest
instances within the time limit of 5000 seconds. In this paper, we consider sig-
nificantly larger mutilated chessboards with n ∈ {20, 30, 40, 50}.

Notice that the problem encoding does not include any information regarding
the colors of squares as in the illustrations. It would be possible to include this
information using only a subset of the clauses, allowing at most one domino for
white squares and requiring at least one domino for black squares (assuming that
the removed corner squares are black). These formulas would still be hard for
resolution (using a subset of the clauses cannot yield shorter resolution proofs)
but they would become easy for cutting-plane reasoning [?].

Clausal Proofs

Informally, a clausal proof system allows us to show the unsatisfiability of a
CNF formula by continuously deriving more and more clauses until we obtain
the empty clause. Thereby, the addition of a derived clause to the formula and
all previously derived clauses must preserve satisfiability. As the empty clause
is trivially unsatisfiable, a clausal proof shows the unsatisfiability of the original
formula. Moreover, it must be checkable in polynomial time that each derivation
step does preserve satisfiability. This requirement ensures that the correctness
of proofs can be efficiently verified. In practice, this is achieved by allowing only
the derivation of specific clauses that fulfill some efficiently checkable criterion.

Formally, clausal proof systems are based on the notion of clause redundancy.
A clause C is redundant with respect to a formula F if F and F ∧C are equisatis-
fiable (i.e., they are either both satisfiable or both unsatisfiable). Given a formula
F = C1∧· · ·∧Cm, a clausal proof of F is a sequence (Cm+1, ωm+1), . . . , (Cn, ωn)
of pairs where each Ci is a clause, each ωi (called the witness) is a string, and Cn

is the empty clause [?]. Such a sequence gives rise to formulas Fm, Fm+1, . . . , Fn,
where Fi = C1 ∧ · · · ∧ Ci. A clausal proof is correct if every clause Ci (i > m)
is redundant with respect to Fi−1, and if this redundancy can be checked in
polynomial time (with respect to the size of the proof) using the witness ωi.

An example for a clausal proof system is the resolution proof system, which
only allows the derivation of resolvents (with no/empty witnesses). Moreover, the

3



Fig. 2. Two equivalent placements of five dominos on a mutilated chessboard.

recently introduced proof system PR [?] is a clausal proof system that allows to
derive a clause Ci if that clause is propagation redundant with respect to Fi−1.
For the details of propagation redundancy, we refer to the original paper [?].
Here, we just note that (1) propagation-redundant clauses are clauses for which it
can be checked efficiently that their addition preserves satisfiability, and (2) every
resolvent is a propagation-redundant clause but not vice versa.

The key to constructing short clausal proofs is to aim for deriving short
clauses to quickly obtain the empty clause. One approach to achieve this is
the clause learning technique based on first unique implication points [?] used in
modern SAT solvers. Starting from a falsifying assignment (found by the solver),
this technique derives a redundant clause by computing a subassignment of the
falsifying assignment. The derived clause is then the maximal clause that is
falsified by that subassignment, thereby ruling out the subassignment and all
its extensions. Thus, if the subassignment makes x true and y false, then the
derived clause is x∨ y. When the empty clause is eventually derived, all possible
assignments are ruled out, implying that the formula is unsatisfiable.

On mutilated chessboards, clauses intuitively rule out possible placements
of dominos. For instance, if a SAT solver arrives at the falsifying placement of
the 30 dominos shown on the middle of Fig. 1, it is able to derive the clause
that rules out the placement of 14 dominos on the right of Fig. 1, resulting in
a 14 literal redundant clause. Deriving this clause rules out all placements that
extend the smaller placement, including the falsifying placement of 30 dominos.

Can we immediately learn way shorter clauses, ruling out way more place-
ments? Yes, but not within the resolution proof system. Within the PR proof
system, however, much shorter clauses—consisting of only two literals—can be
derived. Placements that are represented by such clauses will be discussed below.

Without Loss of Satisfaction

Consider the placements of dominos in Fig. 2. Although the placement on the left
is different from the one on the right, they are equivalent in the sense that both
cover exactly the same squares. A common way in mathematics to deal with such
similar cases is to argue without loss of generality, thereby generalizing a specific

4



case to other similar cases. Within the PR proof system, we can formalize such
arguments by deriving clauses that rule out cases that are similar to others.

For mutilated chessboard problems, PR allows us to derive clauses that rule
out placements where two horizontal dominos are placed below each other (like
the left two dominos on the left mutilated chessboard of Fig. 2). The reasoning is
as follows: If it were possible to extend such a placement to a valid placement that
covers the whole board, then this would also be possible for the similar placement
where two vertical dominos are placed next to each other (such as the left pattern
on the right chessboard of Fig. 2). We thus argue without loss of satisfaction :
If there was a satisfying assignment before ruling out a placement, then there will
be a satisfying assignment afterwards. Ruling out all the placements where two
horizontal dominos are placed below each other shrinks the number of possible
placements aggressively, thus leading to short proofs.

We observed that this pattern and others can be ruled out within the PR
proof system when we analyzed automatically generated PR proofs produced by
a modified version of the SAT solver Lingeling. This modified version of Lin-
geling is based on our recently introduced satisfaction-driven clause learning
(SDCL) paradigm [?]. In the proofs, derived clauses represent the ruled out as-
signments while the witnesses represent the equivalent placements. Our modified
Lingeling is not particularly strong on the mutilated chessboard problems but
these binary clauses stood out since they are so short. We thus believe that the
solver might be able to solve large mutilated chessboard problems efficiently if
we can equip it with the right decision heuristics.

Another pattern that can be ruled out in the PR proof system is the placement
of a horizontal domino on top of two vertical dominos as in the right pattern
on the left mutilated chessboard of Fig. 2. Such a pattern can be replaced by
moving the two vertical dominos one square up and the horizontal domino two
squares down as in the right pattern on the right mutilated chessboard of Fig. 2.

Deriving clauses to rule out both patterns—no two horizontal dominos and
no horizontal domino on top of two vertical dominos—on all positions of the
mutilated chessboard exponentially reduces the number of placements that a
solver explores. We require O(n3) PR clauses to rule out these patterns for a
n× n mutilated chessboard. The resulting formula can be easily solved using a
usual SAT solver. The observed runtime and number of conflicts is also O(n3).

Proof Production and Validation

We constructed and validated PR proofs of reasonably large mutilated chess-
board problems. Both the problem encodings and the proofs are available at
https://github.com/marijnheule/mchess. The proofs consist of a first part that
eliminates the earlier mentioned patterns by deriving PR clauses and a second
part that refutes the remaining cases using resolution. We generated the first part
of the proofs with a dedicated tool that enumerates the required PR clauses. For
the second part, we used a SAT solver. Both proof parts are roughly equal in
size. The largest problem instance for which we produced a proof is a 50 × 50

5



Table 1. Overview of the proof validation results. The second and third column show
the numbers of variables and clauses in the encodings of mutilated chessboard problems.
The fourth and fifth column show the numbers of clause addition steps in the PR and
DRAT proofs, respectively. The last four columns show the runtimes (in CPU seconds,
2.9 GHz Intel Core i7) of non-verified PR proof checking, PR to DRAT conversion, DRAT
proof optimization, and verified DRAT proof checking (certification), respectively.

size #var #cls #PR #DRAT check convert optimize certify

20 × 20 760 2 552 7 598 501 766 0.71 0.99 7.06 10.78
30 × 30 1 740 5 932 22 879 2 489 657 5.74 11.11 85.38 99.45
40 × 40 3 120 10 712 48 967 7 776 380 32.77 62.57 488.40 518.38
50 × 50 4 900 16 892 91 665 18 845 988 134.24 252.01 1 862.03 1 702.61

chessboard. Proof production took only a second. Recall that not even the 20×20
mutilated chessboard problem could be solved in the SAT Competition 2018.

To increase the confidence in the correctness of the proofs, we converted the
PR proofs into DRAT proofs for which formally-verified checkers exist. We used
the tool pr2drat [?] for the conversion, optimized the DRAT proofs using the
drat-trim tool [?] and validated the optimized proofs using the formally-verified
tool ACL2check [?]. Table 1 provides an overview of the results. Notice that there
is a significant gap between verified and non-verified proof checking. This gap is
mainly caused by the blowup of the proofs during the conversion.

Conclusion and Challenges

We constructed and validated short propositional proofs of mutilated chessboard
problems in the PR proof system. Our proofs show the unsatisfiability of problem
instances that are much larger than the largest instances that can be solved by
state-of-the-art SAT solvers. The proofs are based on an argument we found when
analyzing automatically generated PR proofs. This argument allows us to rule
out two small patterns, which exponentially reduces the number of placements
that need to be explored. There is an enormous gap between the size of the
proofs generated by the modified Lingeling solver and the ones we constructed
manually. We believe that an SDCL solver should be able to produce proofs that
are close in size to our manual proofs when using the right heuristics and restart
strategy, which we consider an important challenge for future research.

Even though the usage of PR clauses in mutilated chessboard problems
goes beyond plain symmetry reasoning—existing symmetry-breaking techniques,
both static [?] and dynamic [?], are not effective on these formulas—the general
argument has a symmetry-reasoning flavor. To further illustrate the power of the
PR proof system, we are seeking examples where PR clauses give an exponential
benefit without this kind of global and semantic symmetry argument.

Acknowledgements. The authors thank Alexey Porkhunov for contributing the
mutilated chessboard formulas to the 2018 SAT Competition and for his sug-
gestion to study these formulas in the context of the PR proof system, and also
thank Jasmin Blanchette for his comments on an earlier version of this paper.

6



References

1. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolu-
tion. Theoretical Computer Science 310(1-3), 513–525 (2004)

2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: Efficient symmetry-breaking
for boolean satisfiability. In: Proceedings of the 40th Annual Design Automation
Conference. pp. 836–839. DAC ’03, ACM (2003)

3. Dantchev, S.S., Riis, S.: “Planar” tautologies hard for resolution. In: Proc. of the
42nd Annual Symposium on Foundations of Computer Science (FOCS 2001). pp.
220–229. IEEE Computer Society (2001)

4. Heule, M.J.H., Biere, A.: What a difference a variable makes. In: Proc. of the 24th
Int. Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2018). LNCS, vol. 10806, pp. 75–92. Springer (2018)

5. Heule, M.J.H., Hunt Jr., W.A., Kaufmann, M., Wetzler, N.D.: Efficient, verified
checking of propositional proofs. In: Proc. of the 8th Int. Conference on Interactive
Theorem Proving (ITP 2017). LNCS, vol. 10499, pp. 269–284. Springer (2017)

6. Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In: Proc. of
the 26th Int. Conference on Automated Deduction (CADE-26). LNCS, vol. 10395,
pp. 130–147. Springer (2017)

7. Heule, M.J.H., Kiesl, B., Seidl, M., Biere, A.: PRuning through satisfaction. In:
Proc. of the 13th Haifa Verification Conference (HVC 2017). LNCS, vol. 10629,
pp. 179–194. Springer (2017)

8. de Klerk, E., van Maaren, H., Warners, J.P.: Relaxations of the satisfiability prob-
lem using semidefinite programming. Journal of Automated Reasoning 24(1), 37–65
(2000)

9. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

10. McCarthy, J.: A tough nut for proof procedures. Stanford Artificial Intelligence
Project Memo 16 (1964)

11. Metin, H., Baarir, S., Colange, M., Kordon, F.: Cdclsym: Introducing effective
symmetry breaking in SAT solving. In: Beyer, D., Huisman, M. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 99–114. Springer
International Publishing (2018)

12. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: Proc. of the 17th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2014). LNCS, vol. 8561,
pp. 422–429. Springer (2014)

7


