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ABSTRACT

A key goal of the fair-ML community is to develop machine-learning
based systems that, once introduced into a social context, can
achieve social and legal outcomes such as fairness, justice, and
due process. Bedrock concepts in computer science—such as ab-
straction and modular design—are used to define notions of fairness
and discrimination, to produce fairness-aware learning algorithms,
and to intervene at different stages of a decision-making pipeline
to produce "fair" outcomes. In this paper, however, we contend
that these concepts render technical interventions ineffective, in-
accurate, and sometimes dangerously misguided when they enter
the societal context that surrounds decision-making systems. We
outline this mismatch with five "traps" that fair-ML work can fall
into even as it attempts to be more context-aware in comparison to
traditional data science. We draw on studies of sociotechnical sys-
tems in Science and Technology Studies to explain why such traps
occur and how to avoid them. Finally, we suggest ways in which
technical designers can mitigate the traps through a refocusing of
design in terms of process rather than solutions, and by drawing
abstraction boundaries to include social actors rather than purely
technical ones.
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1 INTRODUCTION

On the typical first day of an introductory computer science course,
the notion of abstraction is explained. Students learn that systems
can be described as black boxes, defined precisely by their inputs,
outputs, and the relationship between them. Desirable properties
of a system can then be described in terms of inputs and outputs
alone: the internals of the system and the provenance of the inputs
and outputs have been abstracted away.

Machine learning systems are designed and built to achieve
specific goals and performance metrics (e.g., AUC, precision, recall).
Thus far, the field of fairness-aware machine learning (fair-ML) has
been focused on trying to engineer fairer and more just machine
learning algorithms and models by using fairness itself as a property
of the (black box) system. Many papers have been written proposing
definitions of fairness, and then based on those, generating best
approximations or fairness guarantees based on hard constraints
or fairness metrics [24, 32, 39, 40, 72]. Almost all of these papers
bound the system of interest narrowly. They consider the machine
learning model, the inputs, and the outputs, and abstract away any
context that surrounds this system.

We contend that by abstracting away the social context in which
these systems will be deployed, fair-ML researchers miss the broader
context, including information necessary to create fairer outcomes,
or even to understand fairness as a concept. Ultimately, this is be-
cause while performance metrics are properties of systems in total,
technical systems are subsystems. Fairness and justice are prop-
erties of social and legal systems like employment and criminal
justice, not properties of the technical tools within. To treat fairness
and justice as terms that have meaningful application to technology
separate from a social context is therefore to make a category error,
or as we posit here, an abstraction error.

In this paper, we identify five failure modes of this abstraction
error. We call these the Framing Trap, Portability Trap, Formalism
Trap, Ripple Effect Trap, and Solutionism Trap. Each of these traps
arises from failing to consider how social context is interlaced with
technology in different forms, and thus the remedies also require a
deeper understanding of "the social" to resolve problems [1]. After
explaining each of these traps and their consequences, we draw on
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the concept of sociotechnical systems to ground our observations in
theory and to provide a path forward.

The field of Science and Technology Studies (STS) describes
systems that consist of a combination of technical and social com-
ponents as "sociotechnical systems." Both humans and machines
are necessary in order to make any technology work as intended.
By understanding fair-ML systems as sociotechnical systems and
drawing on analytical approaches from STS, we can begin to resolve
the pitfalls that we identify. Concretely, we analyze the five traps
using methodology from STS, and present mitigation strategies
that can help avoid the traps, or at the very least help designers un-
derstand the limitations of the technology we produce. Key to this
resolution is shifting away from a solutions-oriented approach to a
process-oriented one—one that draws the boundary of abstraction
to include social actors, institutions, and interactions.

This paper should not be read as a critique of individual con-
tributions within the field of fair-ML, most of which are excellent
on their own terms. Rather, as scholars who have been invested
in doing this work, we take aim at fair-ML’s general methodology,
limited as it is by the bounds of our primarily technical worldview.
We echo themes of STS scholars such as Lucy Suchman [66], Harry
Collins [17], Phil Agre [5], and Diana Forsythe [35]—who in the
1990s critiqued the last wave of artificial intelligence research along
similar lines, highlighting that the culture of and modes of knowl-
edge production in computer science thwarted the social goals that
the field was trying to achieve. An emerging wave of similar cri-
tiques has been directed at the field of fair-ML [9, 29, 36]. We hope
to offer a constructive reform in our nascent field by highlight-
ing how technical work can be reoriented away from solutions to
process and identifying ways in which technical practitioners and
researchers can meaningfully engage social contexts in order to
more effectively achieve the goals of fair-ML work.

2 THE ABSTRACTION TRAPS

Abstractions are essential to computer science, and in particular
machine learning. The ubiquity of machine learning across so many
domains comes from the way in which the domain-specific aspects
of the problem—broadly, the social context—are abstracted so that
machine learning tools can be applied. In this section, we identify
and explain five different traps: failure modes that result from failing
to properly account for or understand the interactions between
technical systems and social worlds.

2.1 The Framing Trap

Failure to model the entire system over which a social
criterion, such as fairness, will be enforced

The most common abstractions in machine learning consist of
choosing representations (of data), and labeling (of outcomes). Once
these choices are made, they constitute the description of what we
call the algorithmic frame. Within this frame, the efficacy of an
algorithm is evaluated as properties of the output as related to the
input. For example, does the algorithm provide good accuracy on
training data and good generalizability to unseen data from the
same distribution? We refer to this as an end-to-end property of the
frame; it is how any particular algorithm is evaluated. Yet, while
in the algorithmic frame (where the vast majority of current data
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science resides [38]), the abstraction is taken as given and is rarely if
ever interrogated for validity. This is despite the fact that abstraction
choices often occur implicitly, as accidents of opportunity and
access to data.

Within the algorithmic frame, any notion of "fairness” cannot
even be defined. This is because the goal of the algorithmic frame
is to produce a model that best captures the relationship between
representations and labels. Investigating the idea of fair machine
learning requires us to expand the frame to encompass not just
the algorithm but the algorithm’s inputs and outputs. We refer to
this abstraction level as the data frame. The significance of this
change in abstraction is that what used to be part of the interface—
the inputs and outputs—is now brought into the system and can
be interrogated directly. Fair-ML algorithms explicitly investigate
ways in which the choices of representations and labels might affect
the resulting model. The end-to-end-guarantee, in addition to local
guarantees provided by the (now-embedded) algorithmic frame,
is a formal measure that seeks to approximate a socially desirable
goal like fairness.

Prioritizing the data frame is the first sign that there is a larger
social context to what appeared to be purely technical in the al-
gorithmic frame. Indeed, much of the literature on fair-ML can be
described as making this conceptual shift. Conceptualizing "fair-
ness" requires that we consider other characteristics of the data
such as demographic information. For example, the earliest fair-ML
work by Ruggieri et al. formulates "fairness" as a goal for model
optimization [59]. Others like Feldman et al. [24] argue that fair
outcomes can be achieved by removing bias in training data prior
to training a model. Such examples postulate a data frame in which
the fair-ML community may focus their efforts.

Whereas the data frame opens up consideration of the inputs and
outputs of the learned model, it is still an attempt to eliminate larger
context and abstract out the problems of bias in a mathematical
form. By contrast, a sociotechnical frame recognizes explicitly that a
machine learning model is part of a sociotechnical system, and that
the other components of the system need to be modeled. By mov-
ing decisions made by humans and human institutions within the
abstraction boundary, fairness of the system can again be analyzed
as an end-to-end property of the sociotechnical frame.

Consider the question of labels in a risk assessment setting.
Broadly speaking, a risk assessment tool is a predictive model to
assess the "risk" of a defendant to aid in decision-making at various
stages of the criminal justice pipeline. Risk assessment tools are
used at arraignment to determine whether defendants should be
released pretrial and whether bail should be required [68]. They
are also used at sentencing and parole hearings, but we will focus
here on the pretrial setting.

A common goal for a risk assessment is to determine whether a
defendant will fail to appear in court for relevant hearings. Occa-
sionally, a secondary goal is to determine whether there is a risk
that the defendant will commit other crimes while under pretrial
release. But though those stated goals are the outputs of the risk as-
sessment model, they are not outputs of the criminal justice system,
and are therefore not truly the question that determines fairness.
Ultimately, at an arraignment, a defendant is released on their own
recognizance, released on bail, or detained. These are the important
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human outcomes by which we measure fairness or justice in the
system.

In most jurisdictions, risk assessment scores are presented to a
judge as a recommendation. Yet, judges do not consistently take
the recommendations into account [15, 65]. Different judges might
exhibit automation bias [16, 62], deviate from recommendations in
biased ways, or ignore them entirely. Failure to account for how
judges respond to scores creates a problem for risk assessment tools
that come with fairness guarantees. Such a tool might present a
guarantee of the form "if you use these thresholds to determine
low, medium and high risks, then your system will not have a racial
disparity in treatment of more than X%". But if a judge only adopts
the tool’s recommendation some of the time, the claimed guarantee
might be incorrect, because a "shifted" threshold caused by judicial
modification comes with a much poorer effective guarantee of
fairness. Moreover, if the judge demonstrates a bias in the types of
cases on which she alters the recommendation, there might be no
validity to the guarantee at all. In other words, a frame that does
not incorporate a model of the judge’s decisions cannot provide the
end-to-end guarantees that this frame requires.

2.2 The Portability Trap

Failure to understand how repurposing algorithmic solu-
tions designed for one social context may be misleading,
inaccurate, or otherwise do harm when applied to a
different context

One reason designers might fall into the Framing Trap is be-
cause computer science culture prizes and often demands porta-
bility. Transferrable code, purposefully designed to be as abstract
as possible, is considered more useful (because it is reusable), skill-
ful, elegant, or beautiful. This imperative is ingrained strongly in
almost anyone trained as a computer scientist or engineer, and
suggests that design will first aim to create tools independent of
social context.

Portability is no less important in machine learning than in
other software domains. In fact, the structure of machine learning
yields a very simple expression of abstract design. Problems are
categorized by the nature of the learning task to be solved (e.g.,
classification, clustering, reinforcement learning, regression). This
task-centric abstraction is key: it allows the same "solution” (e.g. a
better algorithm for binary classification) to appear to be applicable
to problems in a variety of social settings—whether predicting risk
of recidivism, loan default, or being a bad employee—regardless
of the different social context around these questions. Indeed, the
vast codebase of tools for doing machine learning (e.g., scikit-learn,
Rstats) and platforms for deep learning (e.g.,tensorflow, pyTorch)
are explicitly designed to encourage this portability. The problem
"enters” the system as data and exits the system as a prediction.

The fair-ML literature, even as it has moved beyond the algo-
rithmic frame, has still embraced portability as a core value. For
example, many of the papers that seek to provide "fair" solutions
to machine learning tasks fix a definition of fairness as a portable
module, and then seek to optimize a cost function that combines
this definition of fairness with standard notions of classifier accu-
racy [40, 72]. Other papers fix a definition of fairness and then seek
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to modify training data in order to prevent a black-box classifier (it-
self a portable module) from making "unfair" decisions [24]. Indeed,
a recent well-regarded paper is a stand-out example of abstract and
portable design: the entire paper describes a process for building a
"fair wrapper" around any classifier to make the resulting outputs
fair [4].

Each of these papers make certain assumptions about the world—
as they must for the sake of the formalism. For example, Friedler
et al. [26] discuss two: that the data observed is close enough to
the facts that matter (WYSIWYG) or that groups are, on the whole,
similar to each other with respect to the task, and thus "we’re all
equal.’ Certain assumptions will hold in some social contexts but not
others. The assumptions should reflect the anticipated application.

Suppose, then, that the social context is modeled well enough,
by including approximations of the relevant humans and human
institutions in the model—avoiding the Framing Trap—and that the
axioms that are true for the context are chosen. Then by taking the
social context into account, absorbing parts of the court or employ-
ment system into the model, and making assumptions specific to
the social context—avoiding the Formalism and Ripple Effect Traps
as discussed below—the designer has created a system that is not
portable between social contexts. Although designers are taught
from an early stage that portability is the ultimate goal of system
design, with social objectives, this produces the Portability Trap.
To design systems properly for fairness, one must work around a
programmer’s core programming.

There are two additional points to note. First, the problem is
not just about shifts in domain (e.g., from automated hiring to risk
assessments). Even within a domain, such as between court juris-
dictions, the local fairness concerns may be different enough that
systems do not transfer well between them. Second, while frame-
works like domain adaptation and transfer learning do provide a
limited degree of portability between contexts, they encode context
merely as shifts in the joint distribution of features and labels. This
is not sufficiently expressive to capture the vast changes in social
context that might occur between domains.

2.3 The Formalism Trap

Failure to account for the full meaning of social concepts
such as fairness, which can be procedural, contextual,
and contestable, and cannot be resolved through math-
ematical formalisms

Perhaps the issue that has received the most attention in the fair-ML
literature has been the definition of fairness. Because algorithms
"speak math,' the mandate within the fair-ML community has been
to mathematically define aspects of the fundamentally vague no-
tions of fairness in society in order to incorporate fairness ideals
into machine learning. Feldman et al. [24], for example, formalize
the Equal Employment Opportunity Commission’s (EEOC) 80% rule
into a formal measure of bias that they call disparate impact. The
well-known debate about the COMPAS risk score pitted journalists
at ProPublica who demonstrated that a certain measure of fairness
(equality of error rates) was violated [7], against Northpointe, the
creators of COMPAS, who argued that it was fair because the test
accuracy was equalized across groups [19].
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Fully describing the myriad proposed definitions is out of scope
of this work. Each of these definitions, however, are simplifications
that cannot capture the full range of similar and overlapping notions
of fairness and discrimination in philosophical, legal, and sociologi-
cal contexts. Limiting the question to a mathematical formulation
gives rise to two distinct problems in practice.

First, there is no way to arbitrate between irreconcilably conflict-
ing definitions using purely mathematical means [14, 42]. Assuming
that any of the mathematical definitions are appropriate, social con-
text must dictate the choice. Consider an automated resumé screen:
we might be less concerned with false negatives than false posi-
tives because there is more filtering at the back end (the interview
itself). Where false negatives end the process entirely, closing out
particular candidates, the consequence of false positives is a little
extra work for the employer. In the criminal justice context, how-
ever, we might be most concerned about equalizing false positives,
which result in keeping people locked up and where disparities
will further entrench a minority-dominated prisoner underclass.
Whether one agrees with these particular normative judgments
about the balance between false positives and negatives, it should
be clear that the normative values contained within the relevant
social context are the determinants.

The second problem with formalization arises from the concern
that no definition might be a valid way of describing fairness. Fair-
ness and discrimination are complex concepts that philosophers,
sociologists, and lawyers have long debated. They are at times pro-
cedural, contextual, and politically contestable, and each of those
properties is a core part of the concepts themselves.

Procedurality. The biggest difference between law and the fair-ML
definitions is that the law is primarily procedural and the fair-ML
definitions are primarily outcome-based. If an employer fires some-
one based on race or gender, it is illegal, but firing the same person
is legal otherwise, despite the identical outcome [73]. Disparate
impact is similarly procedural. The EEOC’s 80% guideline is the first
step in a doctrine that then asks the defendant whether a test was
"job related ... and consistent with business necessity," then whether
the plaintiff can show an equally effective but less discriminatory
alternative that the defendant refused to use [67]. Thinking about
disparate impact as the 80% threshold alone is incorrect.

Contextuality. Legal scholar and philosopher Deborah Hellman
has argued that what we mean by "discrimination" is actually wrong-
ful discrimination: we make distinctions all the time, but only cul-
tural context can determine when the basis for discrimination is
morally wrong [34, pp. 28-29]. Sociologist and legal scholar Issa
Kohler-Hausmann has similarly argued that discrimination "can
only be comprehended with access to situated cultural knowledge
about the relevant categories that make up a particular society’s
system of stratification and a normative critique of how those cat-
egories operate." [45, p. 7]. Though law should not ultimately be
our yardstick because it regularly fails to adequately incorporate
ideas about discrimination that are accepted by sociology [8] or be-
havioral psychology [46, 51], even existing law relies on the deeply
contextual nature of the question, with differences depending on
attribute (e.g. race, gender, disability, religion), sphere of society
(e.g. school, employment, housing) and discriminator (e.g. public
versus private and size, type, or mission of organization) [73].
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Contestability. Discrimination and fairness are politically con-
tested and shifting. Legislation and court cases change legal defi-
nitions, and advocacy and culture change social norms. The foun-
dations of liberal society depend on the idea that some concepts
will be fundamentally contestable and will shift over time, that
communities should be allowed to collectively define norms and
laws. To set them in stone—or in code [52]—is to pick sides, and to
do so without transparent process violates democratic ideals.

That the mathematical definitions eliminate these nuances is a
fact known to many fair-ML researchers [14, 24, 31, 53]. But that
each of these attributes are core components of the concepts of
fairness and discrimination has been underappreciated thus far.

2.4 The Ripple Effect Trap

Failure to understand how the insertion of technology
into an existing social system changes the behaviors
and embedded values of the pre-existing system

When a technology is inserted into a social context, it has both in-
tended and unintended consequences. Chief among the unintended
consequences are the ways in which people and organizations in
the system will respond to the intervention. To truly understand
whether introduction of the technology improves fairness outcomes,
it is not only necessary to understand the localized fairness con-
cerns, as discussed above, but also how the technology interacts
with a pre-existing social system.

For example, without risk assessments, probation officers make
recommendations to judges about release based on their observa-
tions about the defendant, and the judge makes her own determi-
nation about likelihood of a defendant’s failure to appear. These
judgments are inherently riddled with potential for bias (which
motivates technical interventions). With risk assessments, however,
judges see mathematically calculated scores and recommendations
before making a decision. Avoiding the Ripple Effect Trap requires
us to account for how the technical system can affect the judge’s
behavior, the judge’s perception of her role and expertise, and the
relative power dynamics between the judge and other actors in the
context. Judges’ responses to risk assessments may be constrained
or discretionary, depending on jurisdiction [64]. Judges might defer
to the risk assessment because it appears more rigorous, or they
might resist the influence of private companies on their domain.
How scores are initially used might differ from what happens when
judges see them frequently [65]. Political pressure and other social
forces might influence judges over time in ways they themselves
don’t recognize. Understanding how the intervention affects the
context also requires evaluating not just the abstract possibility
of the technology but what unfolds in situ because the effects of
the technology will change based on the particulars of the social
context; the responses of actors to technical interventions in the
employment and criminal justice contexts will differ.

Technologies can also alter the underlying social values and in-
centives embedded in the social system. Specifically, new tools offer
the possibility of unconsciously privileging quantifiable metrics.
Switching from bail to sentencing, the purpose of risk assessments
becomes identifying dangerousness so as to prevent releasing some-
one who is likely to reoffend. But incapacitation is only one of at
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least seven existing rationales for punishment: prevention, inca-
pacitation, rehabilitation, deterrence, education, retribution, and
restoration [47, § 1.5]. These rationales are always in tension; a
potential consequence of risk assessments is privileging the social
value that is quantified [21]. More attention is needed to understand
when technologies trigger value shifts in social systems.

2.5 The Solutionism Trap

Failure to recognize the possibility that the best solution
to a problem may not involve technology

Because fair-ML is rooted in computer science, there is no con-
cept of the system without a technical intervention. This might be
recognized as the "law of the instrument” (colloquially described
as "if you have a hammer, everything looks like a nail") [41] or
"technological solutionism" [56]. In the best case, fair-ML system
creators can iteratively work outwards to improve a model, en-
compassing more and more social context as required. When done
well, this process may approximately model enough of the social
environment that useful claims about fairness can be made. But by
starting from the technology and working outwards, there is never
an opportunity to evaluate whether the technology should be built
in the first place [11].

There are two broad situations in which starting with technol-
ogy may be the wrong approach, or rather, one where modeling
the situation will not work no matter how many approximations
one makes. The first is when fairness definitions are politically
contested or shifting, as described in the Formalism Trap. Modeling
requires pinning down definitions. Code calcifies. When fairness
is a politically contested, movable issue, a model may not be able
to capture the facets of how it moves. The second is when the
modeling required would be so complex as to be computationally
intractable.

To understand whether to build, we must also understand the
existing social system. In the risk assessment context, we need to
know how arresting officers, prosecutors, and judges introduce
bias into both the process and the data. We need to understand
how social factors (e.g., poverty) shape criminal activity as well
as the contested ideas of the role of criminal justice in the first
place. We need to understand how concepts of fairness that sur-
round assessing someone’s risk are political, contested, and may
shift over time. More concretely, this leads to questions about, for
example, whether judges are elected and responsive to political
shifts, whether "failure to appear" is culturally and practically a
proxy for being poor, or how demographics of the jurisdiction may
change in the near future. If the fairness concept is contested or
shifting, it might not be easily be modeled.

One might think that the uncertainty could itself be modeled,
and that leads to the second issue. When there is not enough in-
formation to understand everything that is important to a context,
approximations are as likely to make things worse as better. This
could occur because some of the aforementioned traps have not
been resolved or because there is not enough empirical evidence to
know. In such a case—and especially when the stakes are high, as
they are in criminal justice—it is prudent to study what might hap-
pen before implementing a technology simply based on its potential
to improve the situation.
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But it could also be that a particular system relies on unmea-
surable attributes. Trying to predict how politics will change is
difficult. Human preferences are not rational and human psychol-
ogy is not conclusively measurable [63]. Whether one is trying to
model political preference or something else, the system could just
be too complex, requiring a computationally and observationally
impossible amount of information to model properly. In that case,
there should be heavy resistance to implementing a new technology
at all.

3 A SOCIOTECHNICAL PERSPECTIVE

Achieving fairness in machine learning systems requires embracing
a sociotechnical view. That is, technical actors must shift from seek-
ing a solution to grappling with different frameworks that provide
guidance in identifying, articulating, and responding to fundamen-
tal tensions, uncertainties, and conflicts inherent in sociotechnical
systems. In other words, reality is messy, but strong frameworks
can help enable process and order, even if they cannot provide
definitive solutions.

The wide range of findings in the sociotechnical systems litera-
ture have important implications for the design of ML systems that
are meant to interface with social life and produce socially benefi-
cial outcomes. Chief among these insights is that the social must
be considered alongside the technical in any design enterprise. For
example, it is as important to understand the behaviors of hiring
managers and job candidates when using an automated resumé
screen as it is to understand the role of the software. The same is
true for how judges use risk assessment tools.

But how can this be done effectively? Social systems are large,
sprawling, and unruly, while technologies are surely more distinct
and tractable. Sociotechnical thinking can allow us to gain purchase
on the problem, first by realizing that technologies only appear to
be distinct and tractable. In reality, technology always involves
social actors [48]. Second, certain theories from STS can be read
as encouragements to build differently. They allow us to see the
otherwise invisible actors, social groups, and pressures involved, to
identify forks in the technological road, and to make design choices
responsibly [57]. This is because STS approaches shed light on the
misconception that technology advances of its own accord, along
some predetermined path or to satisfy optimal efficacy. Instead,
different social environments, actors, and social groups shape the
kinds of technology that eventually becomes successful. In what
follows, we return to the traps previously discussed and in each case
explain how an STS perspective points the way to understanding
the trap and avoiding it.

3.1 An STS Lens on the Framing Trap
Adopting a "heterogeneous engineering" approach

If the Framing Trap is the result of choosing only certain tech-
nical parts of the system to model and manage, a more effective
way forward is to consider both human activities and machine
ones at the same time [49]. This is what sociologist John Law calls
"heterogeneous engineering" [50]. Heterogeneity here refers to the
requirement that we think simultaneously about what different
technical parts of the apparatus will do, and what the humans that
operate, live alongside, and otherwise contribute to them will do
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as well. This does not mean that we can engineer human deci-
sions. Rather, heterogeneous engineering suggests that we draw
the boundaries of abstraction to include people and social systems
as well, such as local incentives and reward structures, institutional
environments, decision-making cultures and regulatory systems.
Working with multiple elements of the sociotechnical puzzle allows
us to model (and hopefully, produce) "fair" outcomes as properties
of systems that are sociotechnical through and through.

To see how heterogeneous engineering works, consider the cell
phone. While phones appear to be distinct, technological objects,
they require a network of many technical and social elements to
operate: from satellites, wireless protocols, batteries, chargers, and
electrical outlets to companies like Apple, Google, or Verizon, regu-
latory agencies like the FCC, and standards setting organizations
like the IEEE. It is only when all these elements are assembled and
working together effectively that the phone turns on, connects to a
network, and lets a user make a call. By conceptually separating
machine learning from the social context in which it is operating,
those invested in fair-ML risk making the same categorical mistake
as a company that designs a cell phone without knowledge of data
plans, satellites, regulators, or anyone else to call.

Of course, designing for all social exigencies is an overwhelming
and impossible task. "Successful large scale heterogeneous engi-
neering," explains Law, "is difficult” precisely because the various
pieces of the sociotechnical puzzle always threaten to shift or move
away [50, p. 114]. A wireless company upgrades its network; an
IEEE meeting sets a new standard; a hurricane knocks out power
for three weeks. But this, according to Law, is all the more reason to
think sociotechnically. Because such systems are inherently fragile
and complex, ignoring certain elements of the network or assuming
that they are too unruly or unpredictable to incorporate undermines
the ability of the system to operate as intended. As Law puts it, "we
must be ready to handle heterogeneity in all its complexity, rather
than adding the social as an explanatory afterthought." [50, p. 117]

The heterogeneous engineering perspective on sociotechnical
systems combats the Framing Trap by suggesting that we draw our
analytical boxes around both human and technical components. Be-
cause fairness cannot exist as a purely technical standard, thinking
about people and their complex environments—such as relation-
ships, organizations, and social norms—as part of the technical
system from the beginning will help to cut down on the problems
associated with framing and solutionism. Of course, it would elim-
inate the benefits of abstraction to include the entire network of
people and things that interact with the fair-ML tools. But drawing
our black box boundary around at least one technical element and
one social element—a social institution, an organizational context,
a regulatory necessity, a possibility of human action—will give bet-
ter results while still enabling some tractability on the problem.
Equally importantly, recognizing which parts of this sociotechni-
cal system are in focus when evaluating for fairness is crucial for
communicating the boundaries of the fairness guarantee.

3.2 An STS Lens on the Portability Trap

Contextualizing user "scripts”
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Heterogeneous systems thinking [13, 48, 50] also addresses the
Portability Trap. Take the cell phone out of its sociotechnical network—
where there is no cellular coverage or where the company does
not have a roaming contract with a local carrier, for instance—and
it will not work [6]. This was anthropologist Madeleine Akrich’s
central realization when she studied how light bulbs and genera-
tors, developed in France as part of a development project, failed
once imported to West Africa. The engineers had designed with
different standards for electric ports in mind, but did not consider
how power generators might be shared in rural villages or how
electricity was metered and paid for. Akrich realized that the user
"scripts" that dictate how technologies are supposed to be used
only work if all the social and technical elements of a network are
assembled properly.

A technology may be designed with many use cases in mind,
but in each case, a designer or computer scientist hopes to embed
certain "scripts” for action into their product. In our case, the scripts
are nothing less than producing fair outcomes in social contexts as
varied as hiring employees and assessing someone’s risk to society.
But the theory of scripts shows that such outcomes will always
be disrupted as soon as the code, device, or software moves to a
different context. At the very least, the code will be taken up in a
new context that shifts the outcome of the system altogether to one
that may or may not be fair.

Scripts also demonstrate, for the fair-ML researcher, that con-
cepts such as "fairness" are not tied to specific objects but to specific
social contexts. While fair-ML engineers may be tempted to make
their code abstract and portable, attaching the label "fair" to the code
will erroneously encourage others to appropriate this code without
understanding how the script changes or is disrupted with a shift
in social context. In other words, the theory of scripts shows how a
portable orientation will almost always undo the very possibility
of fairness that makes the code desirable.

3.3 An STS Lens on the Formalism Trap

"o

Identifying "interpretive flexibility,
and "closure”

relevant social groups,”

Avoiding the formalism trap seems to require a rejection of
mathematical solutions, but this is not necessarily the case. Instead,
we should consider how different definitions of fairness, includ-
ing mathematical formalisms, solve different groups’ problems by
addressing different contextual concerns. Here, the Social Construc-
tion of Technology program (SCOT) developed by sociologist Trevor
Pinch and historian Wiebe Bijker offers relevant ways forward [57].

Social constructivism describes how technology is developed,
made sense of, and adopted in social contexts, with human users
at the forefront. The key elements of the SCOT framework are
a period of interpretive flexibility experienced by relevant social
groups, followed by stabilization, and eventually closure. As Pinch
and Bijker describe, when a new technology is proposed, many
different versions are produced, built, and sold. While there is no
agreed-upon version of what constitutes success, the value and
use cases for each version are open to interpretation. Pinch and
Bijker show that different interpretations emerge, each advanced
by a relevant social group: a group in society that has a specific
idea of what problems the technology needs to solve. Designers
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respond by producing different versions of the tool that eventually
are deemed to solve the local problem, ultimately stabilizing the
artifact in question. Which version wins out is a question of whether
or not that relevant social group considers the problem solved: this
produces closure.

SCOT suggests that social groups, including users and design-
ers, have the power to shape technological development. We are
currently in a period of interpretive flexibility in the fair-ML com-
munity. There is agreement among several social groups that al-
gorithmic bias is a problem that needs redress. Computer science
researchers, as one relevant social group, are choosing between
different fairness formalizations with distinct solutions. As fair-ML
researchers seek to define the “best” approach to fairness, we also im-
plicitly decide which problems and relevant social groups are impor-
tant to include in this process. Our choices prioritize certain views
over others, exerting power in ways that must be accounted for.
We may privilege the needs of people in our community—technical
practitioners aiming to have precise modules of portable code or
technical academics who need to publish innovative algorithms—
over those impacted by the use of fair-ML algorithms.

Recognizing that our version of "fairness" is only one interpreta-
tion of the problem is critical for considering potential solutions
that may address the needs of other relevant social groups. Outside
of the research community, some stakeholders—such as companies
building risk assessment tools—are also seeking closure that stabi-
lizes their approach to fairness, while others—usually those subject
to the effects of technology—have little voice at all [23]. Because
the discourse in industry and academia shapes the resulting tech-
nologies, and accordingly the standards, it seems likely that fair-ML
practitioners and researchers will be influential in achieving closure.
At the same time, our community might be rendered accidental
kingmakers by privileging the fairness-related concerns of certain
social groups with access: groups who become "relevant” simply
by means of their existing relationships to fair-ML researchers or
by means of an existing voice in society. Designers can and must
make informed choices as to who—not just what—they will listen
to and include as they seek to produce fair outcomes.

The SCOT literature documents many examples in which the
power of a relevant social group impacted closure, ranging from the
Model T Ford to the electric refrigerator, DRM, and Betamax [18,
28, 30, 43]. In each case, the technologies that "won" did so not
because they were technically superior to their competition, or
solved actual users’ problems, or even because their uptake was
subject to the free market—but because of powerful companies or
actors with vested interests in their development. Closure is not
always achieved when the best solution is found; it is typically a
byproduct of other social mechanisms.

More common is rhetorical closure, which occurs when the rele-
vant social groups describe the problem as solved, and move on. In
some cases, one design is deemed to achieve this goal, while other
functional measures are said to not matter if this goal is achieved
(i.e. if the algorithm is fair, does it matter if it is fast?). In other
cases, individuals redefine the problem such that the solution they
already have at hand, or can easily create, becomes the solution
to a problem (i.e. if the algorithm runs the fastest, does it matter
if it is only passably fair?). Pinch and Bijker call this closure by
redefinition of the problem. A danger of the Formalism Trap is that
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the assumption that "fairness can be defined mathematically” may
become a general agreement amongst those creating the technol-
ogy, leading designers to assume that a system is fair when it has
a mathematical model of fairness built into it. This is rhetorical
closure because such systems may not produce fair outcomes when
placed into contexts of use. It redefines the problem of fairness to
one that a computer can solve.

Ultimately, SCOT allows engineers to see that the social world
is a mechanism that fundamentally shapes technical development
at every level. This recognition allows us to intervene and shape
technologies in line with the concerns of different relevant social
groups. It also demonstrates that the problems associated with for-
malism are not simply problems of finding more, better, or different
mathematical expressions. They are instead related to underlying
assumptions about who can solve the problems of fairness and how,
which other problems must be solved, and which social groups are
deemed relevant in the process. They are also related to closure
mechanisms at play that are not "solving” the problem of fairness
at all, but rather re-defining the problem space such that it can be
solved. By defining fairness as a problem that can be resolved math-
ematically, without reference to context and by computer scientists
alone, the problem of fairness can look like it is solved cleanly—but
only because it has been defined so narrowly, and by a certain social
group competing for relevance.

3.4 An STS Lens on the Ripple Effect Trap

Avoiding "reinforcement politics" and "reactivity"

It may seem impossible to predict what will change when a
technology enters a social context. Fortunately, several common
changes are well documented and understood in the literature.
Awareness of these common "ripple effects” in advance can alert the
fair-ML practitioner to avoid common pitfalls that may negatively
affect the fairness of their proposed systems.

First, countless studies of new technologies emphasize how ex-
isting groups use the occasion of this new technology to reinforce
or argue for power and position. Computer scientist Rob Kling
calls this process reinforcement politics [44]. We typically see such
reinforcement of political power when management purchases soft-
ware for monitoring or otherwise controlling subordinate groups
in an organization. In other cases, new technologies become op-
portunities to argue for more power in an organizational context.
Sociologist Steve Barley noted that when CT scanners were intro-
duced in two otherwise identical hospitals, the devices became a
resource in an existing power struggle between radiologists and
technicians over who could manage the machine or interpret its
results [10].

The designers of CT scanners or marketing software no doubt did
not intend for their technology to reproduce organizational inequal-
ities, any more than fair-ML researchers might expect their risk
assessment software to produce arguments between judges, court
clerks, and technical experts. Introducing a new technology may
appear to alter an organization’s dynamics but may in fact aid in
reifying a pre-existing group’s claim to power, while downplaying
or downgrading other groups’ authority.

Second, studies of monitoring, evaluation, and measuring tech-
nologies demonstrate that they produce reactivity behaviors, thus
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altering the very social context that the original design was meant
to support [15, 22, 25]. This may undermine social goals, exacer-
bate old problems and actively introduce new ones. Classic exam-
ples of this include how individuals introduce and then proceed
to game credit scores or publication counts. The COMPAS risk as-
sessment was based in part on a questionnaire that asked about
criminal history, drug use, and "criminal personality” [7]. Some of
the questions—for example, how many of one’s friends have been
arrested—seem likely to indicate greater criminality, so it would not
be difficult to imagine that arrestees filling out the survey would
answer dishonestly. If the algorithm is configured assuming a distri-
bution based on honest answers, this reactivity behavior will alter
the risk assessment tool itself, in a way that must be accounted for.
While this is a relatively straightforward example, there are many
different ways technologies that inspire reactivity may destabilize
existing values, incentives, and structures to such a degree that the
designed tool no longer solves the critical problems in the domain.

Finally, the heterogeneous engineer must be aware that once a
technology is part of the social context, new relevant social groups
can arise and radically reinterpret it, return it to a state of inter-
pretive flexibility, and suggest new mechanisms for closure. In this
way, technologies that were first developed to produce fairness can
be torqued to achieve other aims, even nefarious ones. In the risk
assessment context, this could occur where people have agreed
that a tool should be used for decarceral purposes, but after a local
election, a government could aim to use it to keep people in jail.
The engineering process must include "what if" scenarios that can
account for the rise and fall of relevant social actors and driving
concerns should the social environment change in the context of
use. We cannot completely eliminate unintended consequences,
but considering key choices in a technology’s development at the
intersection of the concerns of a variety of social groups can go
a long way toward controlling ripple effects and even detecting
trouble spots in advance.

3.5 An STS Lens on the Solutionism Trap

Considering when to design

Computer science programs do not typically incentivize the
social science research necessary to ensure robust system use in
the world—or even to fulfill the Hippocratic oath’s equivalent in
engineering to "first, do no harm" However, it may be that after
careful consideration of the complex sociotechnical system at play—
or even following an unsuccessful implementation of a "fair" system
found to reinforce political distinctions and power relations—the
evident and correct conclusion is to shelve the technological fix.

Fair-ML researchers would not be alone in choosing to do so.
A robust conversation in the field of human-computer interaction
has also addressed such concerns, cautioning system designers that
in many cases, their hammer does not make the social situation
at hand into a nail [11]. It may also be that careful consideration
of and engagement with social contexts concerned with the ad-
ministration of justice produces insights and lessons learned for
other researchers to build on, instead of pre-packaged algorithms
stamped with "fairness" [20]. This does not mean that fair-ML is
impossible to implement. It does, however, mean that not all prob-
lems can or should be solved with technology. In such cases, taking
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ourselves out of the equation as a relevant social group requires
and rewards researcher humility.

4 TAKEAWAYS: WHAT FAIR-ML
RESEARCHERS CAN AND SHOULD DO

In a standard computer science paper, this is where we would
suggest technical solutions. But guided by our analysis, our main
proposed "solution" is a focus on the process of determining where
and how to apply technical solutions. Much of this work will re-
quire technical researchers to learn new skills or partner with social
scientists, but no less a transformation is required. We must also
become more comfortable with difficult or unresolvable tensions
such as that between the usefulness and dangers of abstraction.
Specifically, we propose considering the five traps, perhaps in re-
verse order from how we have presented them. When considering
designing a new fair-ML solution, this would mean determining if
a technical solution:

(1) is appropriate to the situation in the first place, which re-
quires a nuanced understanding of the relevant social context
and its politics (Solutionism);

(2) affects the social context in a predictable way such that the
problem that the technology solves remains unchanged after
its introduction (Ripple Effect);

(3) can appropriately handle robust understandings of social
requirements such as fairness, including the need for proce-
durality, contextuality, and contestability (Formalism);

(4) has appropriately modeled the social and technical require-
ments of the actual context in which it will be deployed
(Portability); and

(5) is heterogeneously framed so as to include the data and
social actors relevant to the localized question of fairness
(Framing).

At any point, it could be reasonable to stop and consider creating a
technical solution, but only if the results of the examinations of all
traps are fully spelled out and included in any resulting documen-
tation or research publications as clear limitations to the work [33].

As an example of how this process should be enacted, we return
to the case of pre-trial risk assessments. We argue that the first
question that should be considered is whether developing a risk as-
sessment is appropriate given the current societal goal of reducing
pre-trial detention. Before building anything, legal and social re-
search may be required into the likely impacts of a risk assessment
on the local context and the meaning of fairness within that context.
Though risk assessments have been in place as part of the criminal
justice pipeline for more than a century [70], each renewed com-
mitment to developing risk assessments should still address these
questions. Researchers should compare a risk assessment proposal
against not only other possible algorithmic solutions, but also the
existing human processes. The proposal should also be weighed
against alternate policies that obviate the need for risk assessments,
such as presumptively decarcerating defendants charged with non-
violent crimes [3]. If a designer can determine that a risk assessment
is still the best path forward for fairness—or that there is no way to
avoid creating a risk assessment, for example because it is mandated
by law (e.g. Pennsylvania in the sentencing context [2])—then our
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process argues that the creation of the technology should proceed
with a consideration of the remaining traps.

A full examination of the Ripple Effect Trap requires examining
societal motivations and anticipating potential consequences, ide-
ally with the help of a domain expert. For risk assessments, this
means understanding that introducing the risk assessments may
alter the embedded values; predicting dangerousness may lead to a
focus away from other societal goals such as rehabilitation. If the
tool will lead away from the desired social goals, we should once
again ask whether it should be built. Also important is to attempt
to account for unintended consequences by, e.g., doing pilot studies
to measure and monitor the impact of the introduction of the tech-
nology into the social context. This might allow one to know before
full deployment whether judges will follow risk recommendations.

Avoiding the Formalism Trap involves assessing the ability of a
risk assessment to encompass the complete notions of fairness and
justice that are relevant in the pretrial setting. A risk assessment
designer should carefully consider if and how these aims could be
satisfied and assessed within the system they are building. For exam-
ple, the desire for contestability might be satisfied by a combination
of creating interpretable models and instituting a formal process by
which a defense attorney has the chance to contest the results with
the judge, based on data errors and/or the individualized situation
of their client [54, 61, 69]. Concerns about relevant social groups
can be obviated by taking seriously the needs of people typically un-
derrepresented in these processes, rather than making assumptions
about their welfare [23], and by understanding the power dynamics
that prevent these voices from having influence in society to begin
with. This can involve working with advocacy organizations, with
social scientists, or directly with the populations in question. Effort
should be made by the community to avoid closure and maintain
interpretive flexibility until the technologies address a wider array
of concerns from various social groups. Finally, the value judgments
made in building the assessment should be visible so that if shifts in
social context occur it is possible to understand how to re-engineer
the risk assessments.

In order to avoid the Portability Trap, researchers should next
carefully consider the social context for which we are creating the
tool and make sure that the assumptions built into the algorithm
match the properties of that context. In the case of transferring
an algorithm designed to predict good hires to the context of risk
assessment this means that any assumptions built into the algorithm
or the fairness definition used could render such an algorithm
inappropriate to the risk assessment context. In other words, the
researcher should assume that any off-the-shelf algorithm used,
even if it is labeled fairness-aware, may need to be modified to work
within the given social constraints or may not work for the context
at all. As a concrete step, researchers should adopt the concept of
user scripts to clearly describe the intended uses and limitations of
their code. In fact, a number of recent papers have proposed ideas
along these lines [12, 27, 37, 55, 58, 60, 71].

Finally, if creating or applying an algorithm, we should avoid the
Framing Trap by adopting a sociotechnical frame. This means using
our new knowledge about the practical aspects of how the social
context operates, and includes working with the relevant people
to understand how the humans use the system, and when human
actors belong inside the black box and should be modeled as such
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via a heterogeneous engineering approach. The designer should be
able to recognize what particular decision the fairness criteria apply
to—for example, the detain-or-release decision as opposed to the
dangerousness determination, as discussed above. Or alternatively,
that the outcome being predicted (e.g. failure to appear, re-arrest
within two years) is the same as the outcome given in the data.

By following these steps, we in the fair-ML community can
learn the perspectives of the relevant parties and the hidden power
structures in the social systems in which we seek to intervene.
This includes becoming domain experts ourselves or working with
them. While we believe that deep collaboration with domain ex-
perts is the right path forward to move fair-ML into practice, we
also recognize that all researchers may not have such opportunities.
Lest the perfect be the enemy of the good, we encourage even re-
searchers who work in subfields traditionally separated from their
ultimate application to consider how to incorporate the sociotech-
nical context more directly into their work. Whether by modeling
human actions or even the simpler practice of clearly stating the
contextual limitations of the results, considering the social context
when designing technical solutions will lead to better—and more
fair—sociotechnical systems.
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