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ABSTRACT
Computers are increasingly used to make decisions that have sig-
nificant impact on people’s lives. Often, these predictions can affect
different population subgroups disproportionately. As a result, the
issue of fairness has received much recent interest, and a number of
fairness-enhanced classifiers have appeared in the literature. This
paper seeks to study the following questions: how do these different
techniques fundamentally compare to one another, and what ac-
counts for the differences? Specifically, we seek to bring attention to
many under-appreciated aspects of such fairness-enhancing inter-
ventions that require investigation for these algorithms to receive
broad adoption.

We present the results of an open benchmark we have devel-
oped that lets us compare a number of different algorithms under
a variety of fairness measures and existing datasets. We find that
although different algorithms tend to prefer specific formulations
of fairness preservations, many of these measures strongly corre-
late with one another. In addition, we find that fairness-preserving
algorithms tend to be sensitive to fluctuations in dataset composi-
tion (simulated in our benchmark by varying training-test splits)
and to different forms of preprocessing, indicating that fairness
interventions might be more brittle than previously thought.
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1 INTRODUCTION
As the use of machine learning to make decisions about people has
increased, so has the drive to make fairness-aware machine learning
algorithms. A considerable body of research over the past ten years
has produced algorithms for accurate yet fair decisions, under vary-
ing definitions of fair, for goals such as non-discriminatory hiring,
risk assessment for sentencing guidance, and loan allocation. And
yet we have not yet seen extensive deployment of these algorithms
in the pertinent domains. The primary technical obstacle appears
to be our ability to compare methods effectively across different
evaluation measures and different data sets with consistent data
preprocessing and testing methodologies. Such comparisons would
not just reveal “best-in-class” methods; they would also suggest
which measures are robust and how different algorithms are sensi-
tive to different kinds of preprocessing. As pointed out by Lehr and
Ohm [24], such considerations of the data processing pipeline are
not just important for efficient implementation but also have legal
ramifications for the resulting automated decision-making process.

In this paper, we present a test-bed to facilitate direct compar-
isons of algorithms with respect tomeasures on a variety of datasets.
Our open-source framework allows for the easy addition of new
methods, measures and data for the purpose of evaluation. We show
how to use our test-bed for determining not only which specific
algorithm has the best performance under a fairness or accuracy
measure, but what types of algorithmic interventions1 tend to be
the most effective. In addition to the impact of these algorithmic
choices, we examine the impact of different preprocessing tech-
niques and different measures for accuracy and fairness that have
an important, and previously obscured, impact on the results of
these algorithms. Our goal is to provide a comprehensive compara-
tive analysis of existing approaches that is currently lacking in the
literature.

1In this paper, we use the term ’intervention’ to refer to how the choice of algorithm
used impacts the fairness of the overall system. We are not studying causal definitions
of fairness.
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1.1 Our results
Our evaluation yields the following major findings.

Fairness-accuracy tradeoffs depend on preprocessing (Section 5).
Different algorithms tend to have slightly different requirements in
terms of input: how are sensitive attributes encoded? Are multiple
sensitive attributes supported? Does the algorithm directly support
categorical attributes or are attribute transformations required?
Choices for these requirements directly affect the accuracy and
fairness of a fairness-aware classifier. This is significant because
prior formal studies of fairness-accuracy tradeoffs typically focused
on hyperparameter tuning, rather than preprocessing.

Measures of discrimination correlate with each other (Section 6).
Even though there has been a proliferation of measures designed to
highlight discrimination instances by machine learning algorithms,
we find that a large number of these measures tend to strongly cor-
relate with one another. As a result, techniques optimizing for one
measure could perform well for a different measure (and similarly
for poor performance).

Algorithms make significantly different fairness-accuracy trade-
offs (Section 7). The specific mechanisms that different algorithms
employ to increase fairness are quite varied, but surprisingly, the ac-
tual predictions made by these algorithms tend to vary significantly
as well. As a result, no algorithm’s performance (as of the latest
state of our benchmark) appears to dominate, either in accuracy or
fairness measures.

Algorithms are fragile: they are sensitive to variations in the input
(Section 7). We find surprising variability in fairness measures aris-
ing from variations in training-test splits; this appears to not have
been previously mentioned in the literature.

2 BACKGROUND
Fairness-aware machine learning algorithms seek to provide meth-
ods under which the predicted outcome of a classifier operating on
data about people is fair or non-discriminatory for people based
on their protected class status such as race, sex, religion, etc., also
known as a sensitive attribute. Broadly, fairness-aware machine
learning algorithms have been categorized as those preprocessing
techniques designed to modify the input data so that the outcome
of any machine learning algorithm applied to that data will be fair,
those algorithm modification techniques that modify an existing
algorithm or create a new one that will be fair under any inputs,
and those postprocessing techniques that take the output of any
model and modify that output to be fair [28]. Many associated met-
rics for measuring fairness in algorithms have also been explored.
These are detailed further in Section 6 and are also surveyed in [31].
This description of fairness-aware machine learning methods is
limited to batch-learning-based interventions. We do not consider
interventions that focus on sequential or reinforcement learning
such as [8, 9, 15–17]

Preprocessing algorithms. The motivation behind preprocessing
algorithms is the idea that training data is the cause of the dis-
crimination that a machine learning algorithm might learn, and so
modifying it can keep a learning algorithm trained on it from dis-
criminating. This could be because the training data itself captures

historical discrimination or because there are more subtle patterns
in the data, such as an under-representation of a minority group,
that makes errors on that group both more likely and less costly
under certain accuracy measures. One such algorithm that we will
analyze in this paper is that of Feldman et al. [10] that modifies each
attribute so that the marginal distributions based on the subsets of
that attribute with a given sensitive value are all equal; it does not
modify the training labels. Additional preprocessing approaches
include [5, 19].

Algorithm modifications. Modifications to specific learning algo-
rithms, e.g., in the form of additional constraints, have been by far
the most common approach. We study three such methods in this
paper. Kamishima et al. [21] introduce a fairness focused regulariza-
tion term and apply it to a logistic regression classifier. Zafar et al.
[33] observe that standard fairness constraints are nonconvex and
hard to satisfy directly and introduce a convex relaxation for pur-
pose of optimization. Calders and Verwer [4] build separate models
for each value of a sensitive attribute and use the appropriate model
for inputs with the corresponding value of the attribute.

Another method that combines preprocessing and algorithm
modification is the work by Zemel et al. [35]. Their approach is to
learn a modified representation of the data that is most effective
at classification while still being free of signals pertaining to the
sensitive attribute.

Postprocessing techniques. A third approach to building fairness
into algorithm design is by modifying the results of a previously
trained classifier to achieve the desired results on different groups.
Kamiran et al. [20] designed a strategy to modify the labels of
leaves in a decision tree after training in order to satisfy fairness
constraints. Recent work by Hardt et al. [13] and Woodworth et al.
[32] explored the use of post-processing as a way to ensure fairness
with respect to error profiles (see Section 6 for more on this).

In this paper we focus on group fairness approaches that aim to
ensure non-discrimination across protected groups where the goal
is to optimize metrics such as disparate impact. Another line of
thought, known as individual fairness, is detailed in [7]. In this work,
we do not study algorithms that seek to optimize individual fairness:
our goal is to focus on methods that explicitly deal with group-
based discrimination and there are (to the best of our knowledge)
no publicly available implemented algorithms that optimize solely
for individual fairness, although [5] does use individual fairness
(approximately) as a distortion constraint in its pre-processing.

2.1 Related Work
Three prior efforts are relevant to our work. FairTest [30]2 pro-
vides a general methodology to explore potential biases or feature
associations in a data set, as well as a way to identify regions of
the input space where an algorithm might incur unusually high
errors. THEMIS[11]3 takes a blackbox decision-making procedure
and designs test cases automatically to explore where the procedure
might be exhibiting group-based or causal discrimination. Fairness
Measures [34] occupies a different point in the design space. Given
a particular algorithm that one wishes to evaluate, they provide

2https://github.com/columbia/fairtest
3https://github.com/LASER-UMASS/Themis
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a framework to test the algorithm on a variety of datasets and
fairness measures. This approach on the one hand is more general
than our framework, because it works with any algorithm. On the
other hand, it is less effective for a comparative evaluation of differ-
ent algorithms especially if they have different preprocessing and
training methods.

There are other software packages that audit black box software
to determine the influence of individual variables. We omit a de-
tailed description of these approaches as they are out of the scope of
the investigation presented here. For more information, the reader
is referred to the excellent new survey on explainability by Guidotti
et al. [12].

3 BENCHMARK STRUCTURE
In order to provide a platform for clear comparison of results across
fairness-awaremachine learning algorithms, we separate each stage
of the learning and analysis process (see Figure 1) and ensure that
each algorithm is compared using the same dataset (including the
same preprocessing), the same set of training / test splits, and all
desired fairness and accuracy measures. Much previous work has
combined the preprocessing for a specific dataset with the code
for the fairness-aware algorithm, which makes comparisons with
other algorithms and other datasets difficult. Similarly, algorithms
have often been analyzed only under one or two measures. Here,
we distinguish preprocessing, algorithms, and measures, and create
a pipeline in which all algorithms are analyzed under a standard
preprocessing of datasets and a large set of measures.

In order to encourage easy adoption of this codebase as a plat-
form for future algorithmic analysis, each of these choices is modu-
larized so that adding new datasets, measures, and/or algorithms
to the pipeline is as easy as creating a new object. The pipeline will
then ensure that all existing algorithms are evaluated under the
new dataset and measure. More details and instructions for adding
to the code base can be found at the repository.4

4 DATA
We perform all experiments based on five real-world data sets that
have been previously considered in the fairness-aware machine
learning literature and preprocess each consistently depending on
the needs of the algorithm.5 The real-world datasets come from
some of the domains impacted by questions of fairness in machine
learning: hiring and promotion, credit-worthiness and loans, and
recidivism prediction.

Ricci. The Ricci dataset comes from the case of Ricci v. DeStefano
[29], a case before the U.S. Supreme Court in which the question at
issue was an exam given to determine if firefighters would receive a
promotion. The dataset has 118 entries and five attributes, including
the sensitive attribute Race. The original promotion decision was
made by a threshold of achieving at least a score of 70 on the
combined exam outcome [26]. The goal in a fair learning context is
to predict this original promotion decision while achieving fairness
with respect to the sensitive attribute, Race.

4 https://github.com/algofairness/fairness-comparison
5All raw datasets, preprocessing code, and resulting processed datasets are available
in the repository: https://github.com/algofairness/fairness-comparison. Preprocessing
described here can be reproduced by running: python3 preprocess.py

Adult Income. The Adult Income dataset [25] contains informa-
tion about individuals from the 1994 U.S. census. It is pre-split into
a training and test set; we use only the training data and re-split
it. There are 32,561 instances and 14 attributes, including sensi-
tive attributes race and sex. 2,399 instances with missing data are
removed during the preprocessing step. The prediction task is pre-
dicting whether an individual makes more or less than $50,000 per
year.

German. TheGermanCredit dataset [25] contains 1,000 instances
and 20 attributes describing individuals along with a classification
of each individual as a good or bad credit risk. Sensitive attribute
sex is not directly included in the data, but can be derived from
the given information. Sensitive attribute age is included, and is
discretized into values adult (age at least 25 years old) and youth
based on an analysis by [18] showing this discretization provided
for the most discriminatory possibilities.

ProPublica recidivism. The ProPublica data includes data col-
lected about the use of the COMPAS risk assessment tool in Broward
County, Florida [2]. It includes information such as the number
of juvenile felonies and the charge degree of the current arrest
for 6,167 individuals, along with sensitive attributes race and sex.
Data is preprocessed according to the filters given in the original
analysis [2]. Each individual has a binary “recidivism" outcome,
that is the prediction task, indicating whether they were rearrested
within two years after the charge given in the data.

ProPublica violent recidivism. The violent recidivism version of
the ProPublica data [2] describes the same scenario as the recidivism
data described above, but where the predicted outcome is a rearrest
for a violent crime within two years. 4,010 individuals are included
after preprocessing is applied, including 652 instances of rearrest,
and the sensitive attributes are race and sex. Note that while the
individuals in this data set are a subset of the overall recividism set
from above, their labels might be different, i.e., the same individual
might have different recidivism labels in the two data sets.

5 PREPROCESSING
Each algorithm we will analyze has certain requirements for the
type of data it will operate over, and these necessitate different pre-
processing techniques. However, in order to provide a consistent
comparison across algorithms, it’s important that each algorithm re-
ceive the same input. We reconcile these needs by creating types of
inputs that multiple algorithms can handle. Algorithms that handle
the same input can be directly compared to each other. Algorithms
can also be compared across different preprocessing strategies for
the same dataset, even though in this setting conclusions are less
clear, since the two sources of variability might interfere with one
another.

Our first preprocessing step is to modify the input data according
to any data-specific needs: removing features that should not be
used for classification, removing or imputing any missing data, and
potentially removing items or adding derived features. In order to
allow the analysis of fairness based on multiple sensitive attributes
(e.g., not just ensuring fairness based on race or sex alone, but
based on both someone’s race and sex) we also add a combined
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Figure 1: The stages of the fairness-aware benchmarking program: data input, preprocessing, benchmarking, and analysis.

Intermediate files are saved at each stage of the pipeline to ensure reproducibility.

sensitive attribute (e.g., attribute “race-sex” with values like “White-
Woman”) to each dataset that contains multiple sensitive attributes.
All algorithms will receive versions of the dataset with this same
preprocessing applied.

While some algorithms are able to handle the datasets for train-
ing with only the described initial preprocessing (we’ll call this
version of the processed data original), most algorithms consid-
ered here have additional constraints.6 For algorithms that can only
handle numerical training data as input, we modify the data to in-
clude one-hot encoded versions of each categorical variable and call
this version of the data numerical. Some algorithms additionally
require that the sensitive attributes be binary (e.g., “White” and
“not White” instead of handling multiple racial categorizations) -
for this version of the data (numerical+binary) we modify the
given privileged group to be 1 and all other values to be 0. The
three data tags should be interpreted as indicating constraints on
the algorithms that use them.

5.1 Analysis

With these preprocessed versions of each data set in place, we can
compare how a single algorithm performs relative to all versions of
the dataset on which it can run. The most common form of input
for the algorithms we consider here is numerical, and all these
algorithms can additionally handle the numerical+binary version
of the dataset. This gives an opportunity to determine the effect,
per algorithm and per dataset, of allowing an algorithm access to
full information about sensitive attribute categorization or only a
binary summary.

Figure 2 illustrates this analysis on the impact of the numerical+
binary version of the preprocessed data on the algorithm pro-
posed by Feldman et al. [10]. In the left figure we examine the
relation between the accuracy on numerical preprocessing versus
numerical+binary binary-encoded sensitive attributes. Each al-
gorithm was run over ten random 2

3 : 1
3 splits and the result on

each split is shown as a single point on the figure. As discussed in
Section 7, Feldman et al. use a generic classifier after running a pre-
processing “fairness-enhancing” filter on the data, and the different
algorithms reflect the different classifiers used. We also automate

6For example, scikit-learn classifiers only handle numerical data, even for classifiers
like decision trees where this is not inherently a requirement. As a consequence, some
of the tested algorithms that would otherwise handle original data require numerical
data since these algorithms internally call scikit-learn procedures.

the parameter tuning for λ, the fairness-accuracy tradeoff parame-
ter for this algorithm (more about parameter tuning specifics can
be found in Section 7), for both accuracy and the disparate impact
value. As we can see, for most variants of the algorithm the resulting
accuracy is higher when using the numerical+binary representa-
tion than when using the numerical representation. We speculate
that this is because the Feldman et al. algorithm conditions on the
sensitive value in its preprocessing on the data, and this step better
preserves accuracy when a larger number of people are in each
sensitive group – as is the case when the unprivileged groups are
grouped together in the binary preprocessing variant.
We can do a similar analysis on the fairness achieved by the

methods, as seen in the right side of Figure 2. Again, we compare
the fairness measure (in this case DI – see Section 6) achieved for dif-
ferent data representations. First, we see that the fairness achieved
varies across runs, an issue we will return to when we discuss mea-
sure stability. Second, we notice that the algorithm variants achieve
greater fairness when using the numerical preprocessing of the
data, likely because each group’s fairness is separately ensured,
while in the numerical+binary variant all unprivileged classes are
grouped together. Note that this indicates the presence a fairness-
accuracy tradeoff which arises not from hyperparameters, but from
choice of preprocessing.

6 MEASURES

There are many ways to evaluate the accuracy and fairness of a
model. Rather than be exhaustive,7 we will focus on representative
measures for each aspect. Let D = (X, S,Y ) be a dataset where X is
the data subset that can be used for training (whether categorical
or numerical), S is the sensitive attribute where 1 is the privileged
class, and Y is the binary classification label where 1 is the positive
outcome and 0 is the negative outcome. Let Ŷ be the predicted
outcomes of some algorithm. We can define accuracy and fairness
measures in terms of conditional probabilities of outcome variables
(Y , Ŷ ) with respect to variables like Ŷ and S .

6.1 Accuracy measures

We consider the standard accuracy measures: the (uniform) accu-
racy (P[Ŷ = Y ]), the true positive rate (TPR) (P[Ŷ = 1 | Y = 1]), and
the true negative rate (TNR) (P[Ŷ = 0 | Y = 0]). We also consider

7A recent tutorial puts the number of fairness measures at 21 [27]!
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Figure 2: Examining the results of the Feldman et al. [10] algorithm under different preprocessing choices: numerical versus
numerical+binary. Each dot plots the result of a single split of the data in terms of the labeledmetric under both preprocessing
choices. The gray line shows equality between the preprocessing choices. The model used within the Feldman algorithm is
listed, and some variants of the algorithm had the tradeoff parameter optimized for either accuracy or disparate impact value.

the balanced classification rate (BCR), a version of accuracy that is
unweighted per class:

Definition 6.1 (BCR).

P[Ŷ = 1 | Y = 1] + P[Ŷ = 0 | Y = 0]
2

All of these measures lie in the range [0, 1].

6.2 Fairness measures
Fairness measures can be divided into three broad categories, in
all cases conditioned on values of the sensitive attribute S . In what
follows, we normalize measures to make comparisons easier. In all
cases, the measures lie in the range [0,∞) or [0, 2] where in both
cases perfect fairness is achieved at 1. We note that some of these
measures have appeared in the literature not as something to be
optimized (to be close to 1) but as a constraint to be satisfied (i.e,
that the appropriate value must equal 1).

6.2.1 Measures based on base rates.

Definition 6.2 (Disparate Impact (DI) [10, 33]).

P[Ŷ = 1 | S , 1]
P[Ŷ = 1 | S = 1]

This measure is inspired by one of the two tests for disparate
impact in the legal literature in the United States [3]. In the cases
where there are more than two values for a given sensitive attribute,
we consider two variants of DI (which are equivalent in the case
when there are only two sensitive values): binary and average. In
the binary case, all unprivileged classes are grouped together into
a single value S , 1 (e.g., "non White") that is compared as a group
to the privileged class S = 1 (e.g., "White"). In the average case,
pairwise DI calculations are done against the privileged class (e.g.,
"White" compared to "Black", "White" compared to "Asian", etc.) and
the average of these calculations is taken. This is analogous to the
one-vs-all and all-vs-all methodology in multi-class classification.

Definition 6.3 (CV [4]).

1 −
(
P[Ŷ = 1 | S = 1] − P[Ŷ = 1 | S , 1]

)
This measure is the same as DI, but where the difference is taken

instead of the ratio; such a measure has been used for example
to measure discrimination in the United Kingdom [28]. A binary
grouping strategy (described above for DI) is used in the case where
there is more than one sensitive value, and the averaging method
can also be used. Note that we do not take the absolute value of the
difference so that skew in favor of one group versus another can
be detected. We note that requiring CV = 1 is sometimes called a
demographic parity constraint.

6.2.2 Measures based on group-conditioned accuracy. In general,
we can think of fairness measures based on group-conditioned
accuracy as asking whether the error rates for each group are
similar. This yields the following definitions.

Definition 6.4. (Group-conditioned accuracy measures.)
s-Accuracy.

P[Ŷ = y | Y = y, S = s]

s-TPR.
P[Ŷ = 1 | Y = 1, S = s]

s-TNR.
P[Ŷ = 0 | Y = 0, S = s]

s-BCR.

P[Ŷ = 1 | Y = 1, S = s] + P[Ŷ = 0 | Y = 0, S = s]
2

We note that these measures have been studied under different
names. For example, error rate balance [6] is the aim of achieving
equal 1− s-TPR and 1− s-TNR values across sensitive groups and,
equivalently, equalized odds [13] is the aim of achieving equal s-TPR
and 1− s-TNR across sensitive groups.
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Figure 3: Examining the relationships between differ-

ent measures of accuracy and fairness when consid-

ered across all examined datasets and algorithms (includ-

ing both baseline and fairness-aware algorithms) under

numerical+binary preprocessing. A simple sample correla-

tion statistic is then computed for each set of pairs of mea-

surements. Strongly positively correlated metric pairs are

shown in blue and strongly negatively correlated pairs are

shown in red. The top figure shows the results when run on

the original datasets and the bottom when the datasets are

downsampled to be balanced by class and sensitive attribute.

Letting any of the above measures be denoted f (Y , Ŷ , s), the
values can then be aggregated for comparison by taking the mean8

directly
∑
s ∈S f (Y , Ŷ , s)/|S | or by taking themean over comparisons

analogous to DI and CV: f (Y , Ŷ , s)/f (Y , Ŷ , 1) or 1 − (f (Y , Ŷ , 1) −
f (Y , Ŷ , s)). In each of these cases, as we saw above, the unprivileged
sensitive values could be grouped together or handled separately
in the ratio or difference. For example, consider a dataset where
race is the sensitive attribute and which has been preprocessed
so that the sensitive attribute takes binary values. In this case,
the accuracy conditioned on having a sensitive value of 1 (e.g.,
"White") is denoted as the 1−accuracy. We will denote the average
of the 1−accuracy and 0−accuracy in this case as the race-accuracy
(or in general as the sensitive-accuracy) and the mean of the per-
race differences, i.e.,

∑
s ∈S [1 − (1-accuracy − s-accuracy)]/|S |, as

the comparative-race-accuracy (or in general as the comparative-

sensitive-accuracy). We’ll use the same naming scheme for other
accuracy measures and other sensitive attributes.

8Worst-case notions are not considered in this analysis and paper, but can be easily
added to the code repository. Future work will consider these measures as well.

Figure 4: A comparison between the CV and comparative-

sensitive-TPR (left) and comparative-sensitive-TNR (right)

metrics across all datasets and fairness-aware algorithms

considered. Each dot represents one out of 10 random train-

test splits. Dots are colored by algorithm. The color legend

is the same as that of Figure 5.

Figure 5: An illustration of the tradeoff between

sensitive-calibration- and sensitive-TPR for all al-

gorithms on the Adult dataset with sensitive value sex. Each
dot represents one run out of 10 random train-test splits.

6.2.3 Measures based on group-conditioned calibration. A pre-
dictor that outputs a probability Ŷ for an event is said to be well-
calibrated if P[Y = 1 | Ŷ = p] = p. Traditionally, calibration mea-
sures are used for measuring the consistency of confidence scores.
For instance, a well-calibrated predictor should be 75% accurate on
all predictions it issued with confidence at least 75%. Motivated by
this, we define fairness measures by conditioning the “calibration
function” p �→ P[Y = 1 | Ŷ = p] on a group.

Definition 6.5 (s-Calibration+).

P[Y = 1 | Ŷ = 1, S = s]

Definition 6.6 (s-Calibration-).

1 − P[Y = 1 | Ŷ = 0, S = s]

Calibration has been introduced previously with the goal of
equalizing across sensitive value [6, 23]. Note that we define s-
Calibration- so that “good” values are close to 1, consistent with
the other measures in this paper.

6.3 Analysis

Most of the algorithms considered here (discussed in more detail in
Section 7) were analyzed with respect to the single fairness measure
being introduced in the paper, or with respect to a subset of the
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Figure 6: The performance of all algorithms on each dataset
with the goal of removing discrimination on a specific at-
tribute. From top to bottom, the algorithms and sensitive
attributes considered are: Adult Income on race, German
Credit on sex, Ricci on race, ProPublica recidivism on race,
and ProPublica violent recidivism on race. Each point is the
result of a single algorithm running on a single training /
test split - each algorithm is shown for ten such splits.

measures. Incorporating all of the above accuracy and fairness mea-
sure variations into our software framework allows us to examine
measure trends across multiple measures and multiple algorithms.
While these measures are often presented as opposing, here we are
interested in analyzing the extent to which this is true in practice.

There are many variations on these and other measures, but we
find many of these are correlated on these algorithms and datasets.
This is not entirely surprising as these measures are definitionally

related. For example, DI takes the ratio of two probabilities while
CV takes the difference. However, by analyzing resulting measures
across many algorithms, we find correlations that are less obvious.
In fact, it appears that there are a few main clusters of measures.

In Figure 3 we show the correlations between measures across
all algorithms (both baseline and fairness-aware) and datasets when
each fairness-aware algorithm is run for each sensitive attribute
(including the combined sensitive attributes such as “race-sex”). The
top of the figure shows the results when run on the full datasets.
There appear to be four main clusters: DI and CV, accuracy-related
measures, TPR-related measures, and sensitive-calibration-.

To determine the extent how this clustering was impacted by
the skew in the data (in terms of both class and sensitive attribute),
the datasets were downsampled uniformly with replacement to
contain 1000 items that were balanced so that 500 have the posi-
tive classification and 500 the negative, and within each of those
250 have the privileged sensitive attribute and 250 have an un-
privileged value. The bottom of Figure 3 shows the correlations
between metrics on this balanced sample. This clarifies the clus-
terings and five are found: DI-related measures, accuracy-related
measures, comparative-accuracy measures, TPR measures, and
sensitive-calibration-. On this balanced sample there also appear to
be two weaker but larger clusterings: DI-related measures versus all
accuracy, comparative-accuracy, and calibration-related measures.

Within this clustering there are some clear patterns. Pairs of ac-
curacy measures and their sensitive counterparts (e.g., accuracy and
sensitive-accuracy, TPR and sensitive-TPR, and TNR and sensitive-
TNR) are always clustered together. Recall that sensitive-accuracy is
the average of the accuracy on the privileged group (the 1-accuracy)
and the accuracy on the unprivileged groups (the 0-accuracy), so it
makes sense that improving the overall accuracy would improve
this average as well. Perhaps more surprisingly, the 0-accuracy and
1-accuracy are also strongly positively correlated, i.e., improving
the accuracy on the privileged group also improves the accuracy
on the unprivileged groups on these algorithms and datasets.

A caveat to the strength of these clusterings is that these results
only consider the measures when assessed on these algorithms.
Algorithms might exist or be created that focus on optimizing one
specific measure that change these clusterings, especially in cases
where the rationale for the clusterings is less obvious (e.g., the
clustering of accuracy and TNR together). But this experiment
does allow us to assess in practice how optimizing for one fairness
measure affects other fairness measures.

The Calders, Feldman, Kamishima, and Zafar algorithms were
all designed to optimize DI, CV, or similarly motivated measures.
Since DI and CV are analytically closely related to each other, op-
timizing for one can be reasonably expected to optimize for the
other. But does optimizing for these base rate focused fairness mea-
sures also optimize for the group-conditioned accuracy focused
fairness measures? When considering only these fairness-aware
algorithms, the clusterings presented in Figure 3 still hold, i.e., opti-
mizing for DI and CV does not tend to increase accuracy and the
other measures in that cluster. Interestingly though, DI and CV do
have a strong positive correlation with comparative-sensitive-TPR
and a strong negative correlation with comparative-sensitive-TNR.
Figure 4 demonstrates these correlations empirically for CV with
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comparative-sensitive TPR (correlation of 0.65) and comparative-
sensitive-TNR (correlation of −0.76). Similar results (correlations of
0.76 and −0.71 respectively) are found on the datasets when sam-
pled to be balanced. Note that these numbers are not completely
reflective of the correlation due to outliers that have a fixed value of
CV. We retained them in spite of this in the interest of transparency.

Additionally, in some cases we expect would be tradeoffs be-
tween measures. Assuming unequal base rates across populations,
impossibility results show it is impossible to achieve both calibra-
tion and error rate balance (both the same false positive rate and
the same false negative rates across groups) [6, 23]. In Figure 5 we
empirically examine this tradeoff. As before, each colored point rep-
resents one instance of train-test split for an algorithm. As Figure 5
shows, there is a clear tradeoff between sensitive-calibration- and
sensitive-TPR for each dataset. Interestingly, different algorithms
situate themselves in different parts of the tradeoff line.

7 ALGORITHMS
We choose a selection of existing fairness-aware algorithms to
assess, based on availability of source code and diversity of fairness
interventions (e.g., preprocessing versus algorithm modification).
Each algorithm is run on each dataset and each metric is calculated
on the predicted results.9 Synthesis statistics (such as stability) are
then calculated and comparison graphs are produced.10 We analyze
the following algorithms along with non-fairness-aware algorithms
chosen for a baseline comparison: SVM, decision trees, Gaussian
naive Bayes, and logistic regression (LR).

Calders and Verwer [4]. Calders and Verwer introduce a fairness-
aware algorithm modification called Two Naive Bayes. Their ap-
proach trains separate models for the values and iteratively assesses
the fairness of the combined model under the CV measure, makes
small changes to the observed probabilities in the direction of re-
ducing the measure, and retrains their two models. This algorithm
can handle both categorical and numerical input data, but requires
that the given sensitive attribute be binary. We use the Kamishima
et al. [21] implementation of this algorithm.11 The algorithm has
a β hyperparameter specifying a prior probability for the features.
We follow the original implementation and use a default of β = 1.0.

Feldman et al. [10]. Feldman et al. give a preprocessing approach
that modifies each attribute so that the marginal distributions based
on the subsets of that attribute with a given sensitive value are all
equal; it does not modify the training labels. Any algorithm can
then be trained on the resulting “repaired" data. The algorithm can
handle both categorical and numerical input data, but since we
train scikit-learn classifiers based on this preprocessed data, our
implementation can only handle numerical input. Both binary and
non-binary sensitive attributes can be handled. A tuning parameter
λ is provided to tradeoff between fairness and accuracy, where
λ = 0 gives the fairness of a regular non-fairness aware classifier
and λ = 1 maximizes fairness. λ = 1 is used as the default, and all

9All algorithm implementations can be found in the repository (https://github.com/
algofairness/fairness-comparison), along with all resulting metric calculations. The
full set of results can be reproduced by running: python3 benchmark.py
10Algorithm analysis code can be found in the repository, and can be reproduced by
running: python3 analysis.py
11https://github.com/tkamishima/kamfadm/releases/tag/2012ecmlpkdd

Figure 7: The stability of algorithms on Adult. Each algo-
rithm is tested on ten random train / test splits and a rectan-
gle centered on the mean and with a width and height equal
to the standard deviation along that measure is plotted. On
the left, the algorithms attempt to remove race discrimina-
tion, and on the right, sex discrimination.

values of λ at increments of 0.05 in [0, 1] are included when the
algorithm is optimized using a grid search over the parameters. The
implementation comes from Feldman et al. [10] and [1].12

Kamishima et al. [21]. Kamishima et al. introduce a fairness-
focused regularization term and apply it to a logistic regression
classifier. Their approach requires numerical input and a binary
sensitive attribute. A tuning parameter η is provided to tradeoff
between fairness and accuracy, where η = 1 is the default. When
optimizing the parameter we use values between 0 and 300, with a
finer grid used for the lower values of that range; these parameter
choices are based on the experimental exploration of this parameter
given in [21]. As above, we use Kamishima et al.’s implementation.

Zafar et al. [33]. Zafar et al. re-express fairness constraints
(which can be nonconvex) via a convex relaxation. This allows them
to define efficient versions of fairness-aware logistic regression and
support vector machines. They propose two related optimization
problems, one that maximizes accuracy subject to fairness con-
straints (in our experiments, we call this “ZafarAccuracy”), and
another to maximize fairness subject to accuracy constraints (we
call this “ZafarFairness”). They use two parameters: c is a parameter
that controls the degree of independence of the outcome and the
sensitive attribute via a covariance calculation: setting c = 0 forces
complete independence (and therefore fairness). The second param-
eter γ fixes the degree of approximation they are willing to tolerate:
the algorithm is only required to find an answer that is within a 1+γ
factor of the optimal solution. In their experiments they set γ = 0.5
and vary c as a linear function of the corresponding covariance
estimate for an unconstrained classifier. When optimizing, we use
values between 0.001 and 1 in 10 logarithmic steps.

Figure 6 shows a basic summary of the performance of each algo-
rithm considered on each data set. 13 Since each algorithm focuses
on creating a fair outcome with respect to a specific attribute in the
data, we have chosen a single sensitive attribute to consider per

12https://github.com/algofairness/BlackBoxAuditing
13For propublica-violent-recidivism and propublica-recidivism,
the results for GaussianNB and Feldman-GaussianNB are drawn behind
Feldman-GaussianNB-accuracy. In addition, propublica-violent-recidivism is
unbalanced, with only 16% of the data representing rearrests.
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Figure 8: The results of the Zafar et al. [33] algorithm on
Ricci (top) and the Feldman et al. [10] algorithm on Adult
Income (bottom)when the provided parameter to tradeoff be-
tween fairness and accuracy is used. The parameter is varied
and each split and each new parameter value is shown.

dataset in these overall results. It is clear that there is no one “win-
ner" - no algorithm that is both more fair and more accurate than
the others on all datasets. It is also clear that there is tremendous
variation even within a single algorithm over the random splits it
receives. We examine this point in more detail next.

7.1 Stability
When analyzing algorithms, we are additionally concerned with
stability - will the algorithm still perform well if the training data
is slightly different? To assess this, we considered the standard
deviation of each metric over 10 random splits, where for each
split the algorithm is trained and evaluated on a different train/test
partition. The results are shown in Figure 7 for Adult Income for
all algorithms when focusing on non-discrimination in terms of
race (left) and sex (right) using numerical+binary preprocessing.
These results give perhaps the clearest indication of the quality
of an algorithm on a given data set. It is also easy to see that
each algorithm occupies a slightly different place on the trade-off
between fairness (measured here by CV when taken over binary
sensitive attributes) and accuracy. For example, when focusing on
non-discrimination in either sex or race on the Adult dataset, Zafar
et al.’s algorithm is potentially the best choice in terms of a balance
between fairness and accuracy, but the large standard deviation
over CV may make it a less desirable option.

7.2 Parameters
Many fairness-aware learning algorithms provide a parameter to
allow manually trading off fairness and accuracy. We automate the
search for this balance and present results for all algorithms opti-
mizing accuracy or fairness. This provides an additional means of
testing the algorithm, as well as the possibility for further optimiz-
ing the tradeoff between the two. Figure 8 shows different results
based on parameter tuning for the Zafar et al. [33] algorithm on
Ricci (left) and the Feldman et al. [10] algorithm on Adult Income.
A clear tradeoff between fairness and accuracy in these algorithms
can be seen; the parameters are appropriately allowing exploration
of the possible solution space.

7.3 Multiple sensitive attributes

Figure 9: Four algorithmsmaking predictionswhile account-
ing for different protected attributes (race, sex, and a com-
posite attribute). These not only behave quite differently
fromone another, but their performance varies significantly
depending on which specific attribute is being considered.

While there are still few fairness-aware algorithms that can ex-
plicitly handle multiple sensitive attributes ([14, 22]), all algorithms
discussed can handle them if preprocessed as described earlier so
that they are combined into a single sensitive attribute (e.g., race-
sex). However, wemight expect combining the attributes in this way
to degrade performance under some metrics, especially when such
algorithms can only handle binary sensitive attributes, or when
too many combinations cause imbalance issues for some of the
new combined sensitive values. Looking at the Adult dataset when
fairness-aware algorithms are run focusing on non-discrimination
in terms of race, sex, and both, we find varying results for each
of the algorithms in Figure 9. Sex is especially predictive on the
Adult Income data set, so the CV value for sex is low, even on these
fairness-aware algorithms. Race generally receives a higher CV
value from these algorithms. When correcting for both at once,
most of the algorithms find that the CV value is somewhere in
between that for race and that for sex, but the Zafar et al. [33]
algorithm has a much larger variance over race and sex than over
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either individually. While it might have been the case that looking
at a combined sensitive value would cause these algorithms to dras-
tically lower in accuracy and/or fairness, encouragingly this does
not appear to be the case.

8 DISCUSSION
Besides providing a central point of access to existing fairness-
enhancing interventions and classification algorithms, our bench-
mark also highlights a number of gaps in the current practice and
reporting of fairness issues in machine learning. We conclude with
the following recommendations for future contributions to the area:

Emphasize preprocessing requirements. If there are multiple plau-
sible ways in which a dataset can be processed to generate training
data for an algorithm, provide performance metrics for more than
one of the possible choices. If algorithms are being compared to each
other, ensure they are compared based on the same preprocessing.

Avoid proliferation of measures. New fairness measures should
only be introduced if they behave fundamentally differently from
existing metrics. Our study indicates that a combination of group-
conditioned accuracy and either DI or CV is a good minimal set.

Account for training instability. Showing the performance of an
algorithm in a single training-test split appears to be insufficient.
We recommend reporting algorithm success and stability based on
a moderate number of randomized training-test splits.

One limitation of our benchmark is the number of methods it
currently provides implementation for. We hope other researchers
will contribute their implementations to the repository. It would be
particularly interesting to see how our conclusions above evolve as
the number and variety of methods increases.

Additionally, while we frame some of the differences in algo-
rithm performance as fairness versus accuracy tradeoffs, this can
be misleading since it makes many assumptions about the data
and social context, including, e.g., that the labels represent desired
outcomes. We leave the examination of how the algorithmic choices
interact with the social context for other work.
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