
2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2939719, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2019 1

Hierarchical and Safe Motion Control for
Cooperative Locomotion of Robotic Guide Dogs
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Abstract—This paper presents a hierarchical control strategy
based on hybrid systems theory, nonlinear control, and safety-
critical systems to enable cooperative locomotion of robotic guide
dogs and visually impaired people. We address high-dimensional
and complex hybrid dynamical models that represent collab-
orative locomotion. At the high level of the control scheme,
local and nonlinear controllers, based on the virtual constraints
approach, are designed to induce exponentially stable dynamic
gaits. The local controller for the leash is assumed to be a
nonlinear controller that keeps the human in a safe distance
from the dog while following it. At the lower level, a real-time
quadratic programming (QP) is solved for modifying the local
controllers of the robot as well as the leash to avoid obstacles.
In particular, the QP framework is set up based on control
barrier functions (CBFs) to compute optimal control inputs that
guarantee safety while being close to the local controllers. The
stability of the complex periodic gaits is investigated through
the Poincaré return map. To demonstrate the power of the
analytical foundation, the control algorithms are transferred
into an extensive numerical simulation of a complex model
that represents cooperative locomotion of a quadrupedal robot,
referred to as Vision 60, and a human model. The complex model
has 16 continuous-time domains with 60 state variables and 20
control inputs.

Index Terms—Legged Robots, Motion Control, Dynamics

I. INTRODUCTION

THIS paper aims to develop an analytical foundation,
based on hybrid systems theory, nonlinear control,

quadratic programming, and safety-critical systems, to develop
a hierarchical control algorithm that enables safe and stable
cooperative locomotion of robotic guide dogs and visually
impaired people (see Fig. 1). According to [1], most of the
impaired people mainly rely on their useable vision, a guide
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Fig. 1: (a) Illustration of a visually impaired human being
guided by a quadrupedal assistance robot. (b) Vision 60 robot
manufactured by Ghost Robotics [6] whose full-order hybrid
model will be used for the numerical simulations.

dog, or a sighted guide rather than using white canes. Although
dogs are very smart animals with an outstanding level of
cooperation with people, behavioural traits such as trainability,
reactivity or attention to environmental stimuli, and level of
aggressiveness are of concern to some owners [2]. State-
of-the-art approaches to improve the quality of life for the
visually impaired are tailored to the navigation techniques
via GPS and smartphone applications (e.g., [3], [4], [5]) and
neglect mobility. It is to be noted that the difference between
navigation and mobility lies in the fact that navigation systems
point out obstacles/hindrances but mobility systems show the
way around. This together with the fact that more than half the
Earth’s landmass is inaccessible to wheeled vehicles motivates
the development of autonomous legged guide robots that
cooperatively work with visually impaired people in human-
centered communities.

Related Work: Although important theoretical and techno-
logical advances have occurred for the construction and control
of guide robots, state-of-the-art approaches are mainly tailored
to the deployment of wheeled vehicles and not legged guide
robots (e.g., [7], [8], [9]). Unlike wheeled guide robots, legged
robots are inherently unstable complex dynamical systems
with hybrid nature and high degrees of freedom (DOF). This
complicates the design of feedback control algorithms that
ensure stable and safe cooperative locomotion of guide dogs
and human. Hybrid systems theory has become a powerful
approach for the modeling and control of legged robots both in
theory and practice [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23]. Existing control approaches
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Fig. 2: (a) Illustration of the hybrid models for the unleashed and leashed locomotion of the guide robot and human. (b)
Illustration of the proposed hierarchical control strategy for the safe and stable cooperative locomotion.

that address the hybrid nature of legged locomotion models
are developed based on hybrid reduction [24], controlled
symmetries [21], transverse linearization [22], and hybrid zero
dynamics (HZD) [11], [13]. State-of-the art nonlinear control
approaches for dynamic legged locomotion have been tailored
to stable locomotion of legged robots, but not stable and safe
cooperative locomotion of legged guide robots and visually
impaired people.

Objectives and Contributions: The objectives and con-
tributions of this paper are to present a formal foundation
towards 1) developing complex hybrid models of cooperative
locomotion of legged guide dogs and human, and 2) creating
a hierarchical control algorithm, based on nonlinear control,
quadratic programming, and control barrier functions (CBFs)
[25], [26], [27], to ensure stability, safety, and obstacle avoid-
ance. We address complex and high-dimensional models of
cooperative legged locomotion via hybrid systems approach.
An actuated leash structure is considered for the coordination
of the dog and human locomotion while steering the human
for safety and obstacle avoidance. At the higher level, the
proposed hierarchical control algorithm employs local and
nonlinear controllers that induce asymptotically stable un-
leashed locomotion patterns for the robotic dog and human.
The local controllers are synthesized via the HZD approach
and assumed to have access to the local state measurements as
well as the force measurement applied by the leash structure.
The leash local controller is then designed to keep the human
in a safe distance from the robot while following it. The
existence and stability of complex and leashed locomotion
patterns for the coupled dynamics are addressed through the
Poincaré return map. At the lower level of the control strategy,
the local controllers for the dog and leash are modified by
a real-time quadratic programming (QP) that includes CBF
constraints to ensure safety and obstacle avoidance. The power
of the anlytical results are demonstrated on an extensive nu-
merical simulation of a complex hybrid model that represents
cooperative locomotion of a quadrupedal robot, referred to
as Vision 60 [6] (see Fig. 1), and a human model in the
presence of a discrete set of obstacles. The proposed work
is a departure form authors’ previous work on HZD gait
planning and control and CBFs in [28], [29], [30], [14],
[25], [26], [27]. In particular, the previous work considers
the motion planning and control of one legged agent. The
current paper, however, addresses complex hybrid models of
human-robot cooperative locomotion (two agents) and then

develops hierarchical, distributed, and safe control algorithms
for these sophisticated systems in the presence of obstacles.
The work is also different from the solid analytical study
presented in [31], [32], [33] for locomotion adaptation of limit
cycle bipedal walkers in leader/follower collaborative tasks.
More specifically, the current paper addresses modeling of
two agents, their complex and coupled hybrid dynamics, and
designing local and optimal controllers for stable locomotion
and obstacle avoidance. References [31]-[33], however, con-
sider the follower dynamics while designing a switching based
controller for its adaptation to a persistent external force that
represents the leader.

II. HYBRID MODELS OF LOCOMOTION
In this section, we will first present the hybrid models for

the locomotion of each agent (i.e., robot and human). We
will then address the complex hybrid model that describes
the cooperative locomotion of agents. Throughout this paper,
we shall consider multi-domain hybrid models described by
the tuple Σ (G,D,S,∆, FG) [28], where G := (V, E) repre-
sents a direct cycle (i.e., graph) for the studied locomotion
pattern (see Fig. 2a). In our formulation, the vertices V
denote the continuous-time dynamics of legged locomotion,
referred to as domains or phases. The edges E ⊆ V × V
represent the discrete-time transitions among continuous-time
dynamics arising from changes in physical constraints. The
state variables and control inputs of the hybrid system are
shown by x ∈ X and u ∈ U , respectively. The set of state
manifolds and set of admissible controls are then denoted by
X and U . The set of domains of admissibility are further
represented by D ⊂ X × U . The evolution of the hybrid
system during the continuous-time domain v ∈ V is described
by an ordinary differential equation (ODE) arising from the
Euler-Lagrange equations as ẋ = fv(x)+gv(x)u. In addition,
FG := {(fv, gv)}v∈V represents the set of control systems on
D. The evolution of the hybrid system during the discrete-
time transition e ∈ E is further described by the instantaneous
mapping x+ = ∆e(x

−), where x− and x+ represent the state
of the system right before and after the discrete transition,
respectively. ∆ := {∆e}e∈E denotes the set of discrete-time
dynamics. The guards of the hybrid system are finally given
by S := {Se}e∈E .

A. Hybrid Model for One Agent
Continuous-Time Dynamics: We assume that q ∈ Q ⊂ Rn
denotes the configuration variables for the robot and/or human.
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The configuration space is further represented by Q. The state
vector is taken as x := col(q, q̇) ∈ TQ. We remark that the
Vision 60 has n = 18 DOFs. For the human model, we make
use of an n = 12 DOF tree structure with a torso and two
identical legs consisting of a femur and tibia links. The control
inputs u ∈ U ⊂ Rm are finally taken as torques at the joint
levels (i.e., m = 12 for the robot and m = 6 for the human
model). The equations of motion during the domain v are
then described by the Euler-Lagrange equations and principle
of virtual work as follows

D(q) q̈ + C (q, q̇) q̇ +G(q) = B u+ J>v (q)λ

Jv(q) q̈ +
∂

∂q
(Jv(q) q̇) q̇ = 0, (1)

where D(q) ∈ Rn×n denotes the positive definite mass-
inertia matrix, C(q, q̇) q̇ +G(q) ∈ Rn represents the Coriolis,
centrifugal, and gravitational terms, B ∈ Rn×m denotes the
input distribution matrix, λ represents the Lagrange multipliers
(i.e., ground reaction forces), and Jv(q) is the contact Jacobian
matrix with the ground. If Jv has full rank, one can eliminate
the Lagrange multipliers to express (1) as

D(q) q̈ +Hv (q, q̇) = Tv(q)u. (2)

Discrete-Time Dynamics: If a new contact point is added to
the existing set of contact points with the ground, we employ
a rigid impact model [34] to describe the abrupt changes in the
velocity coordinates according to the impact as x+ = ∆e(x

−)
(see [28] for more details). Furthermore, if the leg leaves
the ground, we take ∆e as the identity map to preserve the
continuity of states.

B. Complex Hybrid Models for Cooperative Locomotion
Throughout this paper, we shall assume that there is a rigid

and massless leash model that connects a point on the dog
(e.g., head) to a point on the human (e.g., hand or hip). The
leash will further be assumed to be actuated to control its
length and orientation so that the human can follow the dog
in a safe manner. This will be clarified with more details in
Section III-B.
Complex Graph: The state and control inputs for the robotic
dog and human are shown by xi := col(qi, q̇i) and ui,
respectively, for i ∈ {d, h}, where the superscripts “d” and “h”
stand for the dog and human. The complex hybrid model that
describes the cooperative locomotion of the robot and human
will have a complex graph that is taken as the strong product
of graphs Gd = (Vd, Ed) and Gh = (Vh, Eh). The strong
product is denoted by Gc := Gd � Gh that has the vertex set
Vc := Vd × Vh, and any two vertices (v, w) and (v′, w′) in
Vc are adjacent if and only if 1) v = v′ and (w → w′) is an
edge in Eh, or 2) (v → v′) is an edge in Ed and w = w′, or 3)
(v → v′) is an edge in Ed and (w → w′) is an edge in Eh. In
our notation, the superscript “c” represents the complex model.
The augmented state and control inputs are further denoted by
xc := col(xd, xh) and uc := col(ud, uh), respectively.
Complex Continuous-Time Dynamics: For every vertex
(v, w) ∈ Vc, the evolution of the composite mechanical
system, consisting of the robot and human, can be described

by the following nonlinear and coupled dynamics

Dd
(
qd
)
q̈d +Hd

v

(
qd, q̇d

)
= T dv

(
qd
)
ud − Jd>head

(
qd
)
F

Dh
(
qh

)
q̈h +Hh

w

(
qh, q̇h

)
= Thw

(
qh

)
uh + Jh>hand

(
qh

)
F, (3)

in which Jdhead(qd) and Jhhand(qh) denote the Jacobian matrices
for the end points of the leash at the dog and human sides,
respectively, and F ∈ R3 represents the force applied by the
leash to the human hand.
Complex Discrete-Time Dynamics: Since the leash model is
assumed to be massless and cannot employ impulsive forces,
the evolution of the composite mechanical system over the
discrete transition (v, w) → (v′, w′) can be described by the
following nonlinear and decoupled mappings

xd+ = ∆d
v→v′

(
xd−

)
, xh+ = ∆h

w→w′

(
xh−

)
. (4)

We remark that if v = v′ (resp. w = w′) in (4), the mapping
∆v→v′ (resp. ∆w→w′ ) is simply taken as the identity.

Remark 1: In this paper, we shall consider a trotting gait
for Vision 60 robot with 8 continuous-time domains (see
Fig. 2a for more details). The graph for the bipedal gait of
the human model also has 2 continuous-time domains that
represent the right and left stance phases. Consequently, the
complex hybrid model of locomotion would have 8× 2 = 16
continuous-time domains for which there are 2× (nd+nh) =
2 × (18 + 12) = 60 state variables and md + mh + ml =
12 + 6 + 2 = 20 control inputs. Here, ml = 2 represents the
actuator numbers for the leash (see Section III-B).

III. HIERARCHICAL CONTROL STRATEGY
In order to have stable and safe cooperative locomotion

for the robot and human, we will present a two-level control
strategy for the robotic dog and leash (see Fig. 2b). Since the
mathematical models for the local controller of the human part
are not known, we shall assume a nonlinear local controller
for the human, but will not change that controller to address
unforeseen events and obstacle avoidance. We will instead
focus on the dog and leash hierarchical control strategy to
ensure stability and safety. At the higher level of the control
strategy, we will employ a local nonlinear controller for the
robot that has access to its own state variables as well as the
force employed by the leash (i.e., force measurement). This
controller will be referred to as the robot local controller.
The objective is to asymptotically derive some outputs to zero
that encode the locomotion patterns for the guide robot. This
controller exponentially stabilizes gaits for the hybrid model of
the dog in the presence of the leash force. The local controller
for the leash will be designed to ensure that 1) there is always
a safe distance between the robot and human, and 2) human
follows the robot (see Section III-B). At the lower level, we
will solve a real-time QP optimization to modify the local
controllers of the robot and leash to ensure safety and obstacle
avoidance.

A. Local Controllers for the Agents
In this section, we consider the robot and human as two

multi-body “agents” specified by the superscript i ∈ {d, h}.
Definition 1 (Local Controllers): We suppose that there

are local and smooth feedback laws Γi(xi, F ) :=
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{Γiv(xi, F )}v∈Vi for agent i ∈ {d, h} yielding stable loco-
motion patterns. In our notation, Γiv(x

i, F ) is a local and
nonlinear feedback controller that is employed during the
continuous-time v ∈ Vi and assumed to have access to the
state variables of the agent i as well as the force F .

Assumption 1 (Transvsersal Stable Periodic Orbits): By
employing the local controllers for the agent i ∈ {d, h} in
the unleashed case (i.e., F ≡ 0), we assume that there is a
period-one gait for the closed-loop model Σi, denoted by
Oiul, that is transversal to the guards Si. In our notation, the
subscript “ul” stands for the unleashed gait. The orbit Oiul is
further supposed to be exponentially stable.

For future purposes, the evolution of the state variables
xi on the unleashed orbit Oiul is represented by xi?(t) for
t ≥ 0. The orbit Oiul can then be expressed as Oiul :={
xi = xi?(t) | 0 ≤ t < T i

}
, in which T i > 0 denotes the

minimal period of xi?(t).
Assumption 2 (Common Multiples of Gait Periods): We

assume that there are common multiples for the periods of
the dog and human unleashed gaits. More specifically, there
are positive integers Nd and Nh such that Nd T d = Nh Th.
For future purposes, we denote the minimum of these values
by Nd

min and Nh
min.

Assumption 2 states conditions under which there is a
periodic orbit for the unleashed and augmented hybrid model
including the dog and human. If this condition is violated, the
unleashed model may not have any periodic solution.

B. Leash Local Controller
Leash Structure: The leash structure is assumed to be rigid
with 3 DOFs including the leash length and its orientation in
the spherical coordinates as conceptually illustrated in Fig.
3. We denote the Cartesian coordinates of the leash ends
on the robot’s body and human hand by pdhead(qd) ∈ R3

and phhand(qh) ∈ R3, respectively. Next, we consider the
vector connecting phhand(qh) to pdhead(qd). The representation
of this vector in the spherical coordinates can be given by
the joint variables (r, θ, φ) as shown in Fig. 3. We further
suppose that r and θ can be controlled by linear and rotational
actuators, respectively, whereas the angle φ is unactuated.
There are linear and rotational encoders for the leash structure
to measure (r, θ). In addition, it is supposed that the angle φ is
very small and negligible for flat ground walking. A force cell
is utilized in the design as shown Fig. 3 to measure the force
applied by the leash structure on the dog dynamics. This will
be used for the force feedback measurement of the robot’s
local controller as mentioned in Definition 1. The objective
here is to design a local force feedback controller for the leash
that has access to (r, θ) to keep the human in a safe distance
from the robot dog while regulating the angle θ. In particular,
we are interested in (i) having r ∈ [rmin, rmax] for some
0 < rmin < rmax and (ii) imposing θ → 0. This controller
is referred to as the leash local controller. One possible way
to design such a controller is to decompose the force F into
(Fr, Fθ, Fφ) (see Fig. 3), in which Fr(r, ṙ) is the longitudinal
force to be zero over the safe zone [rmin, rmax]. Moreover,
Fθ(θ, θ̇) is a torsional force that can be taken as a simple
PD controller to regulate θ. Fφ is assumed to be zero. For

Fig. 3: Conceptual illustration of the leash structure.

future purposes, the leash local controller will be represented
by Fb(r, ṙ, θ, θ̇, κ) ∈ R3, where κ represents some adjustable
controller parameters, e.g., PD gains.

Assumption 3: We assume that Fb is sufficiently differen-
tiable with respect to its arguments (r, ṙ, θ, θ̇, κ). This would
help us to carry out the exponential stability analysis in
Theorem 1. Furthermore, for κ = 0, Fb(r, ṙ, θ, θ̇, κ) ≡ 0.

Example 1: One typical example for the longitudinal force
Fr(r, ṙ) can be given by a discontinuous and piecewise-
defined function as Fr(r, ṙ) = −(kr(r−rmin)+br ṙ) 1(rmin−
r) − (kr(r − rmax) + br ṙ) 1(r − rmax), which is zero over
[rmin, rmax]. Here, 1(·) is the step function and kr and br
are some positive gains. By approximating the step function
by 1(r) ≈ ϕ(r) := 1

1+exp(−r/ε) for some 0 < ε � 1, one
can obtain a smooth version of this longitudinal force. The
torsional force can be then taken as Fθ(θ, θ̇) := −kθ θ− bθ θ̇.
The leash controllers is finally represented by Fb(r, ṙ, θ, θ̇, κ)
with κ := col(kr, br, kθ, bθ) which satisfies Assumption 3.

C. Stability Analysis of Complex Gaits
This section addresses the existence and stability of periodic

orbits for the cooperative locomotion of the robot and human
in the presence of leash. For future purposes, we let Σc denote
the augmented closed-loop system with the local controllers
in Sections III-A and III-B.

Theorem 1 (Stability of Complex Gaits with Leash):
Under Assumptions 1-3, there is an open neighborhood of 0,
denoted by N (0), such that for all gain values κ ∈ N (0),
there is an exponentially stable complex gait for Σc.

Proof: From Assumptions 1 and 2, the augmented orbit
Ocul := {xc = col(xd?(t), x

h
?(t)) | 0 ≤ t < Nd

min T
d} is indeed

a periodic orbit for the complex and unleashed hybrid system
Σc. We next choose a Poincaré section transversal to this
orbit, denoted by S , and consider a Poincaré return map
for Σc from S back to S as P c(xc, κ). According to the
construction procedure, there is a fixed point for the Poincaré
map that corresponds to Ocul, that is P c(xc?,ul, 0) = xc?,ul,
in which xc?,ul represents the fixed point. We next consider
the algebraic equation E(xc, κ) := P c (xc, κ) − xc = 0.
Since Ocul is exponentially stable for the unleashed complex
system, the Jacobian matrix ∂E

∂xc (xc?,ul, 0) = ∂P c

∂xc (xc?,ul, 0)−I is
nonsingular. Hence, from the Implicit Function Theorem, there
exists N (0) such that for all κ ∈ N (0), there is a fixed point
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for P c(xc, κ). Moreover, since the elements and eigenvalues of
the Jacobian matrix ∂P c

∂xc (xc, κ) continuously depend on κ, one
can choose N (0) sufficiently small such that the eigenvalues
of the Jacobian matrix remain inside the unit circle.

IV. LOCAL VIRTUAL CONSTRAINT
CONTROLLERS WITH FORCE FEEDBACK

The objective of this section is to design the local controller
for the robotic dog. The controller is designed based on virtual
constraints approach [10], [11] to ensure exponential stability
of the gait for the unleashed case. Virtual constraints are
defined as kinematic constraints (i.e., outputs) that encode
the locomotion pattern. They are imposed through the action
of the local controllers. We make use of relative degree one
and relative degree two virtual constraints (i.e., outputs). In
particular, during the continuous-time domain v ∈ Vd, we
consider the outputs ydv(xd) := col(yd1v(q

d, q̇d), yd2v(q
d)) to be

regulated, in which yd1v(q
d, q̇d) represents relative degree one

nonholonomic outputs for velocity regulation and and yd2v(q
d)

denotes relative degree two holonomic outputs for position
tracking. Using the nonlinear dynamics (3) and standard input-
output linearization [35], one can obtain

col
(
ẏd1v, ÿ

d
2v

)
= Adv

(
xd

)
ud + bdv

(
xd, F

)
, (5)

where Adv(x) is a decoupling matrix and bdv consists of Lie
derivatives (see [28] for more details). Furthermore, we would
like to solve for ud that results in[

ẏd1v
ÿd2v

]
= −`v(xd) := −

[
KP y

v
1d

KD ẏ
d
2v +KP y

d
2v

]
(6)

with KP and KD being positive-definite PD gains. The local
controller for the dog is finally chosen as

Γdv
(
xd, F

)
:= −Ad>v

(
Adv A

d>
v

)−1 (
bdv + `v

)
(7)

that 1) requires local state and force measurement and 2)
exponentially stabilizes the origin for the output dynamics (6)
in the presence of the external force, i.e., limt→∞ ydv(t) = 0.

Remark 2 (Proper Selection of Virtual Constraints): For a
given periodic gait Odul, the output functions ydv are chosen to
vanish on Odul. We have observed that the stability of gaits in
the virtual constraint approach depends on the proper selection
of the output functions ydv to be regulated [29]. Our previous
work [29], [30] has developed a recursive optimization al-
gorithm to systematically design output functions for which
the gaits are exponentially stable for the hybrid dynamics.
The algorithm is offline and assumes a finite-dimensional
parameterization of the output functions to be determined.
Then it translates the exponential stabilization problem into
a recursive optimization problem involving linear and bilinear
matrix inequalities.

Remark 3: Nonlinear local controllers for the human model
are not known. However, for the purpose of this paper, we
assume virtual constraint-based controllers, analogous to (7),
for the human model. Furthermore, evidence suggests that the
phase-dependent models can reasonably predict human joint
behavior across perturbations [36].

V. QP FOR SAFETY-CRITICAL CONTROL
This section aims to develop low-level safety-critical control

algorithms that ensure obstacle avoidance while implementing
the local controllers. We will address safety critical conditions
through set invariance and CBFs. In particular, a system
being safe is commonly defined as the system never leaving
the safety set [25], [26], [27]. We make use of a real-time
QP formulation to address safety specifications represented
by CBFs [25]. To present the main idea, let us consider a
discrete set of static and point obstacles Po

α for α ∈ Io
whose Cartesian coordinates in the xy-planes are given by
roα := col(xoα, y

o
α). Next we assume a set of critical points on

the robot and human that are supposed to be in a safe distance
from these obstacles. These points are denoted by Pd

β and
Ph
γ for the dog and human, respectively, for some β ∈ Id

and γ ∈ Ih. One typical example includes the hip points of
the robot and human models. The Cartesian coordinates of Pd

β

and Ph
γ in the xy-plane are further denoted by rdβ(qd) ∈ R2

and rhγ (qh) ∈ R2. We formulate the safety set as C :=
{xc = col(xd, xh) |hdβ,α(qd) ≥ 0, hhγ,α(qh) ≥ 0, ∀(α, β, γ) ∈
Io × Id × Ih}, where hdβ,α(qd) := ‖rdβ(qd) − roα‖22 − h2min

and hhγ,α(qh) := ‖rhγ (qh) − roα‖22 − h2min for some safety
distance hmin > 0. The safety constraints hdβ,α(qd) ≥ 0 and
hhγ,α(qh) ≥ 0 are relative degree two. Our objective is to
modify the torques for the dog robot ud as well as the leash
force F to render the safety set C forward invariant under the
flow of the closed-loop complex model. We remark that we are
not allowed to change the human controller uh = Γh(xh, F )
as the person can be visually impaired and cannot react
properly. For this purpose, we make use of the concept of
exponential CBFs (ECBFs) [37]. In particular, we define the
ECBFs as follows

Bdβ,α
(
xd

)
:= ḣdβ,α

(
xd

)
+λhdβ,α

(
xd

)
(8)

Bhγ,α
(
xh

)
:= ḣhγ,α

(
xh

)
+λhhγ,α

(
xh

)
(9)

for all (α, β, γ) ∈ Io × Id × Ih =: I, where λ > 0
is an adjustable parameter. The exponential CBF condition
further implies that Ḃdβ,α(xd, ud, F ) + ω Bβ,α(xd) ≥ 0 and
Ḃhγ,α(xh, F ) +ω Bγ,α(xh) ≥ 0 for all (α, β, γ) ∈ I and some
adjustable scalar ω > 0. This results in ḧdβ,α + (λ+ω) ḣdβ,α +

λω hdβ,α ≥ 0 and ḧhγ,α+(λ+ω) ḣhγ,α+λω hhγ,α ≥ 0. From (3),
these lateral inequalities can be expressed as affine inequalities
in terms of (ud, F ), i.e.,

Adβ,α
(
xd

)
col

(
ud, F

)
+ bdβ,α

(
xd

)
≥ 0 (10)

Ahγ,α
(
xh

)
F + bhγ,α

(
xh

)
≥ 0 (11)

for all (α, β, γ) ∈ I . Next, we set up the following real-time
QP to ensure safety-critical constraints while being close to
the local controllers

min
(ud,F )

∥∥ud − Γd
(
xd, F

)∥∥2
2

+
∥∥∥F − Fb (r, ṙ, θ, θ̇, κ)∥∥∥2

2

s.t. Adβ,α
(
xd

) [ud
F

]
+ bdβ,α

(
xd

)
≥ 0, ∀(α, β, γ) ∈ I

Ahγ,α
(
xh

)
F + bhγ,α

(
xh

)
≥ 0, ∀(α, β, γ) ∈ I

umin ≤ ud ≤ umax, Fmin ≤ F ≤ Fmax, (12)
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where umin, umax, Fmin, and Fmax denote the lower and upper
bounds for the torques and forces. We remark that according
to the construction procedure of the local controller in (5) and
(7), bdv(x

d, F ) and Γdv(x
d, F ) are affine in terms of the leash

force F for every v ∈ Vd. Hence, the cost function in (12) is
indeed quadratic in terms of (ud, F ).

Remark 4: In the QP formulation (12), one would need to
asymptotically estimate the human state variables xh to check
for the constraints (11). This assumption is not restrictive. In
particular, our previous work [38] has developed asymptotic
observers to estimate the state variables for 3D human models
via a set of wearable inertial measurement units (IMUs)
attached to the links (e.g., torso, tibia, and femur). Alternative
observer design approaches for bipedal locomotion have been
developed in the literature, e.g., [39], [40], which validates the
feasibility of this assumption.

Remark 5: If the QP in (12) is not feasible for a time
sample, one may employ the local controllers Γd(xd, F ) and
Fb(r, ṙ, θ, θ̇, κ) (i.e., higher-level control) for the dog and
leash structure, respectively. From (3), it is easy to show
that Adβ,α(xd) = 2(rdβ − roα) Jdβ (Dd)−1 [T dv − Jd>head], where
Jdβ := ∂rdβ/∂q

d. Consequently, if the safety critical point rdβ on
the robot is sufficiently close to the object roα, then Adβ,α may
not be full-rank. This may happen for steep curvatures and
result in infeasibility of the QP. Consequently, the proposed
approach can “locally” modify the pre-designed robot and
human trajectories to avoid obstacles.

Remark 6: The output of the QP is indeed used at the ac-
tuator and joint levels. The higher-level control is synthesized
with offline optimization algorithm as mentioned in Remark
2, while the lower-level control is synthesized via the online
QP. This makes the control strategy a hierarchical policy.
The higher-level is for the stability, and the lower-level is for
modification in case of obstacles.

VI. NUMERICAL SIMULATIONS AND RESULTS
The objective of this section is to numerically validate the

theoretical results of the paper. For this purpose, we consider a
complex and full-order hybrid dynamical model that describes
the cooperative locomotion of Vision 60 and a human model.
Vision 60 is an autonomous quadrupedal robot manufactured
by Ghost Robotics [6]. It weighs approximately 26 kg with
18 DOFs. More specifically, each leg of the robot consists
of a 1 DOF actuated knee joint with pitch motion and a
2 DOF actuated hip joint with pitch and roll motions. In
addition, 6 DOFs are associated with the translational and
rotational motions of the torso. The human model consists
of a rigid tree structure with a torso link, including hands
and head, and two identical legs terminating at point feet (see
[30]). Each leg of the robot includes 3 actuated joints: a 2
DOF hip (ball) joint with roll and pitch motions and a 1
DOF knee joint. The model has 12 DOFs: 6 DOF for the
translational and rotational motions of the torso and 6 DOF
for the internal shape variables. The kinematic and dynamic
parameter are taken according to those reported in [41] from
a human cadaver study.
Path Planning: We consider an unleashed trotting gait Odul for
the dog robot at the speed of 1.2 (m/s). To generate the gait,

we make use of FROST (Fast Robot Optimization and Sim-
ulation Toolkit) — an open-source toolkit for path planning
of dynamic legged locomotion [42], [14]. FROST makes use
of the Hermite-Simpson collocation approach to translate the
path planning problem into a nonlinear programming (NLP)
that can be effectively solved with state-of-the-art NLP tools
such as IPOPT. Two periodic bipedal gaits Ohul are designed for
the locomotion of the human model at the speeds of 1.1 (m/s)
and 1.3 (m/s). We intentionally design two gaits, one slower
and the other faster than that of the dog, to show that the
proposed control strategy results in a common speed leashed
gait for both scenarios.
Local Controllers: Using the optimization algorithm of [29],
[30], we synthesize the virtual constraint controllers of (7) in
an offline manner to exponentially stabilize the unleashed gaits
for the dog and human models. We further do not consider
the full state stability for the human gait. Instead, we consider
the stability modulo yaw [29, Section 6.5] to have a model
of visually impaired people locomotion. We remark that the
dog robot together with the leash structure will have the
responsibility to stabilize the yaw motion for itself as well
as the human. The leash local controller is further designed
to keep the human in the safe zone of [1.25, 1.8] (m). Figures
4a and 4b depict the robot and human center of mass (COM)
trajectories in the xy-plane without and with using the leash
structure, respectively. Here, we make use of the slower gait
for the human. We remark that without the leash, the human
gait does not have the yaw stability (see Fig. 4a). However,
utilizing the leash structure, the robot and human trajectories
converge to a complex gait with the same speed while having
the yaw stability (see Fig. 4b).
Obstacle Avoidance: We consider a set of point obstacles Po

α

for some α in the discrete set Io. The critical points on the
robot and human (i.e., Pd

β and Ph
γ ) are then chosen as the hip

points. For both the slower (i.e., 1.1 (m/s)) and faster (i.e., 1.3
(m/s)) unleashed gaits of the human, we consider 18 obstacles
around the steady-state trajectories. In both scenarios, the
unleashed gait for the dog has the speed of 1.2 (m/s). Without
employing the real-time QP-based modification, the robot and
human COM can hit the obstacles. In particular, Fig. 4b
illustrates an undershoot around −0.3 (m) along the y-axis
for the human COM that can easily collide with the obstacle
located there in Fig. 4c. However, utilizing the hierarchical
control algorithm with QP running at 1kHz, the robot and
human trajectories are locally modified around the steady-
state gait such that the safety critical conditions are satisfied
(see Figs. 4c and 5a for the simulated scenarios with slow
and fast gaits of the human, respectively.). The numerical
results show that using the proposed approach, the human
model can adapt to the guide dog whose speed and heading
direction are in the rang of ±10% of the human’s speed and
[−π6 ,

π
6 ] (rad), respectively. The time profile of (r, θ) as well as

the optimized (Fr, Fθ) generated by QP to accommodate the
obstacles of Fig. 4c is depicted in Figs. 5b and 5c, respectively.
We observe that the peak values for Fr and Fθ are 12 (N) and
20 (N), respectively, which results in the peak value for the
torque τ = r Fθ as 42 (Nm). This range of data validates the
feasibility of implementing the proposed control approach in
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Fig. 4: (a) Robot and human COM trajectories in the xy-plane without using the leash structure. The unleashed gait for the
dog is exponentially stable (i.e, it walks along a line parallel to the x-axis on which the yaw angle is zero). However, the one
for the human is modulo yaw stable. The unleashed gaits for the dog and human have the speed of 1.1 (m/s) and 1.2 (m/s),
respectively. (b) COM trajectories using the leash structure. Here the leash and each agent have its own local controllers and
there is no CBF-based QP optimization. Both the robot and human converge to a complex gait with a common speed while
having yaw stability. (c) COM trajectories using the proposed hierarchical control strategy in the presence of point obstacles.
The obstacles are illustrated by the circles.
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Fig. 5: (a) COM trajectories using the proposed hierarchical control strategy for the case in which the unleashed gaits for the
dog and human have the speed of 1.2 (m/s) and 1.3 (m/s), respectively. Both agents reach a common speed. (b) Time profiles
of r and θ using the proposed hierarchical control strategy in the simulation of Fig. 4c. (c) Time profiles of the modified
longitudinal and torsional forces Fr and Fθ generated by the QP optimization for obstacle avoidance in Fig. 4c.

reality. Figure 6 finally illustrates the snapshots of the robot
and human locomotion around the obstacles. Animations can
be found online [43].

VII. CONCLUSION
This paper presented a formal method towards 1) addressing

complex hybrid dynamical models that describe cooperative
locomotion of guide legged robots and humans and 2) system-
atically designing hierarchical control algorithms that enable
stable and safe collaborative locomotion in the presence of
discrete obstacles. At the higher level of the proposed control
strategy, local controllers are assumed for the robotic dog and
the leash structure. The robot local controller is developed
based on HZD approach to asymptotically stabilize a pre-
designed unleashed gait for the quadrupedal robot. The leash
local controller is further developed to keep the human in a
safe distance from the dog while following it. The existence
and exponential stability of leashed gaits for the complex
model are investigated via the Poincaré return map. At the
lower level, a real-time QP is solved to modify the local con-
trollers for the robot as well as the leash to ensure safety (i.e.,
obstacles avoidance) via CBFs. The power of the analytical
approach is validated through extensive numerical simulations
of a complex hybrid model with 60 state variables and 20
control inputs that represents the cooperative locomotion of
Vision 60 and a human model. We considered an unleashed

trotting gait for the dog and two bipedal gaits for the human. It
is shown that using the proposed control strategy, the dog and
human can reach a common speed for the leashed motion.
Moreover, we demonstrated that the robot can stabilize the
yaw motion for the human model. The proposed approach
can locally guarantee safety around pre-designed unleashed
trajectories. For future research, we will improve control
algorithms to address sharp turns around corners and obstacles.
We will also investigate robust hierarchical approaches to
address cooperative locomotion over uneven terrains.
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