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Abstract—In-network caching constitutes a promising ap-
proach to reduce traffic loads and alleviate congestion in
both wired and wireless networks. In this paper, we study
the joint caching and routing problem in congestible net-
works of arbitrary topology (JoCRAT) as a generalization
of previous efforts in this particular field. We show that
JoCRAT extends many previous problems in the caching
literature that are intractable even with specific topologies
and/or assumed unlimited bandwidth of communications. To
handle this significant but challenging problem, we develop a
novel approximation algorithm with guaranteed performance
bound based on a randomized rounding technique. Evaluation
results demonstrate that our proposed algorithm achieves near-
optimal performance over a broad array of synthetic and real
networks, while significantly outperforming the state-of-the-art
methods.

Index Terms—Content caching, request routing, joint opti-
mization, approximation algorithms, network congestion.

I. INTRODUCTION

A. Motivation

In-network caching promises to benefit not only classic
inter-networking architectures, e.g., Content Delivery Net-
works (CDN) [1], but also the emerging fifth generation
(5G) and Internet of Things (IoT) systems [2]. For instance,
caching data in intermediate nodes facilitates IoT end-users
to postpone communication when the batteries are low and
then recover it once having harvested enough energy [3].
Besides, in-network caching reduces the latency of retrieving
both transient (e.g., sensing data [4]) and non-transient (e.g.,
video clips [5]) content from remote cloud centers for end-
users [6].

Compared to other networked systems, IoT is expected
to have at least tenfold increase in the number of end-
users, which however merely rely on the bandwidth-limited
wireless backhaul links among the IoT network devices [7].
To handle this major connectivity issue, a key challenge in
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IoT-oriented caching is to optimally place contents in caches
distributed over a geographic area (caching policy) as well
as to efficiently route content requests of end-users to them
(routing policy).

Most of the existing works that investigate caching have
assumed that network bandwidth is abundant, and hence
can be freely leveraged to route requests from users to
caches and fetch contents from them instead of remote
cloud centers (e.g., see [8], [9], [10], [11]). This assumption
has greatly simplified the caching problem. However, such
simplification may be problematic in emerging 5G and IoT
scenarios where the link bandwidth capacities are at risk
of being overwhelmed (congested) by the massive traffic
volume generated by the IoT end-users. Motivated by such
scenarios, in this paper, we argue that caching needs to be
jointly designed with the routing policy so as to balance
the traffic load at the different links in the network and
effectively increase the number of requests served by the
caches.

Recently, the interplay between caching and routing poli-
cies has attracted the interest of the research community.
Various joint caching and routing (JCR) works have focused
on the theoretical analysis and approximation algorithms
of this problem (e.g., see [12], [13], [14], [15], [16] and
the discussion on related works in Section II). However,
most of these works concentrated on some specific network
topologies originated from classic networked systems, such
as hierarchical (e.g., IPTV in CDN [12]) or 2-tier (e.g.,
macro/femto cell [13], [14], [15], [16]) networks where the
available routing options are limited (e.g., a single routing
option from the bottom to the top layers in the hierarchical
network or the single-hop routing options in the 2-tier
network). Clearly, this is not a practical assumption in IoT
architectures where caches will be largely deployed at the
edge of the network (e.g., at macro-cell base stations (BSs),
femto-cells, edge cloud servers, fog nodes and gateways) and
multiple routing paths will often exist between end-users and
cache-nodes, possibly of multiple hops.

Practically, network operators are urging to leverage the
routing diversity to maximize the benefit of caching and
computation resources, e.g., to enable as many end-users
access the in-network caches as possible through multi-
hop multi-path connections [17], [18]. But nonetheless,
departing from the previous simplified topologies, jointly
optimizing the multi-hop multi-path connections together
with content placement introduces a huge number of inter-
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coupling variables into the JCR problem (see the analysis
in Section III). To the best of our knowledge, few studies
have addressed the theoretical aspects of this particularly
important JCR variant. To embrace the in-network caching
for IoT vision, comprehensive understanding of the JCR is
required to properly manage the limited network resources
allocated to end-users.

B. Methodology and contributions

Motivated by the above discussion, in this paper, we study
the joint content caching and request routing problem in
congestible networks of arbitrary topology (JoCRAT), with
the objective of maximizing the volume of requests served
by the caches. This objective is critical in scenarios of the
cache-capable IoT vision where the capacity of the network
may not suffice to serve all the content requests (e.g., see
the works in [12], [13], [19] that used the same objective).
We formulate the JoCRAT problem as an integer linear
program. We analyze the complexity of this problem and
show that for the special case of one cache the objective
function admits the property of submodularity [20]. The
submodularity property is theoretically attractive since there
are several greedy algorithms with the tightest approximation
ratio known for this class of problems. Interestingly, we find
a counter-example showing that this attractive property does
not hold for the general case of our problem and therefore
greedy algorithms perhaps are no longer suitable.

To solve the problem for the general case, we use a
randomized rounding technique along with an evaluation of
the risk of overwhelmed capacities approach and develop
a novel JCR algorithm with approximation guarantees. The
approximation ratio is sub-linear to the network size and
the minimum of cache and bandwidth capacities. The de-
velopment of such an approximation algorithm is of value
both in suggesting robust heuristic approaches to the in-
tractable JCR, and in providing a further understanding of
the elusive structure of their optima. Evaluation results on
both synthetic and real network topologies reveal that our
proposed algorithm achieves close-to-optimal performance,
while significantly outperforming state-of-the-art caching
schemes.

The technical contributions of this work can be summa-
rized as follows:

• JoCRAT Problem. We model the problem of jointly
designing the content caching and request routing
policies in congestible networks of arbitrary topology
(JoCRAT). This problem, primarily motivated by the
emerging scenarios in cache-capable IoT vision, ex-
tends many previous works that consider specific net-
work topologies and/or assumed non-overlapped rout-
ing paths as well as abundant bandwidth of the paths
connecting caches and end-users.

• Complexity Analysis. We show that the JoCRAT prob-
lem is NP-Hard and does not have the property of
submodularity which is commonly used in the caching

literature to derive approximation algorithms. We man-
age to show this property for the special case of one
cache only.

• Approximation Algorithms. We derive an algorithm with
approximation guarantees for the JoCRAT problem by
using a randomized rounding technique, appropriately
tailored to our problem. To the best of our knowledge,
this is the first approximation algorithm for the JCR
problem in its general form.

• Evaluation Results. We conduct evaluations for various
network topologies, both real and synthetic, and file
request patterns. We show that, in practice, the proposed
algorithm performs close-to-optimal and much better
than the worst-case approximation guarantees suggest.
Compared with four state-of-the-art caching schemes,
our approach significantly increases the volume of
requests served by the caches, especially for low and
moderate bandwidth capacity scenarios.

The rest of the paper is organized as follows. Section
II gives a comprehensive overview of related works while
section III presents the system model and the formulation
of the JoCRAT problem. We analyze the complexity of this
problem and derive approximation algorithms in Sections IV
and V, respectively. The evaluation results are presented in
Section VI. We conclude our work in Section VII.

II. RELATED WORKS

Broadly speaking, the algorithms for caching content are
classified into reactive and proactive. Reactive caching is a
popular technique that places content in caches on-demand.
Examples include the Least Frequently Used (LFU) and
Least Recently Used (LRU) algorithms as well as more
advanced schemes based on machine learning [21]. On
the other hand, proactive caching first estimates content
demand patterns for some time period of interest (e.g., a
few hours) and then places content in caches to meet the
demand efficiently. Proactive caching algorithms are simple
to implement and have been proven to improve performance
over reactive caching when the demand can be estimated
accurately [22]. Hence, this work is focused on proactive
caching.

Proactive caching is a well-investigated problem in the
literature (e.g., see [23] for a recent survey). This problem
is NP-Hard in general due to its combinatorial nature, i.e.,
a binary decision for the placement of each content to each
cache is needed. Therefore, previous works have focused
on designing approximation and heuristic algorithms that
can provide near-optimal solutions. Table I lists the main
previous works that tackle this problem, categorized based
on their objective, assumptions and solution techniques.

A. Caching in non-congestible networks

Until some years ago, most of the research efforts in
this area (e.g., [8], [9], [10], [11] to cite some of the
most recognized) focused on scenarios where the bandwidth
capacity of the network links always suffices to transport the
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TABLE I
RELATED WORKS ON JOINT CACHING AND ROUTING.

Congestible
Ref. Objective Topology links Technique Solution

Caching
[8] Min delay Arbitrary 7 Relaxation & rounding 10-approx.
[9] Min delay Hierarchical 7 Swapping 2-approx.

[10] Min delay 2-tier cell 7 Submodularity e
e−1

-approx.
[11] Min traffic cost Arbitrary 7 Submodularity e

e−1
-approx.

Joint Caching and Routing
[16] Min delay 2-tier cell Only one Submodularity e

e−1
-approx.

[13] Max cache hits 2-tier cell 3 Facility location O(F)-approx.
[14] Min schedule length 2-tier cell 3 Column generation (1 + ε)-approx.
[15] Max delay savings 2-tier cell & devices 3 Lagrangian relaxation Heuristic
[12] Max cache hits Hierarchical IPTV 3 Lagrangian relaxation Heuristic
[24] Min transmit power 2-tier drone 3 Learning & clustering Heuristic
[25] Min brown energy Arbitrary 3 Sequential fixing Heuristic
[26] Min traffic cost 1-tier cell & devices 3 Branch-and-bound Exp.-time optimal
[27] Min traffic energy Arbitrary 3 Branch-and-bound Exp.-time optimal
[28] Min delay Arbitrary 3 Conditional gradient Heuristic

Joint Caching, Routing and Computation
[29] Max cache hits 2-tier cell 3 Submodularity 1

2
-approx.

[30] Max cache hits 2-tier cell 3 Randomized rounding Bicriteria-approx.
[17] Min cost & delay Arbitrary 7 BSUM Heuristic
[18] Min Energy & bandwidth Arbitrary 3 ADMM Heuristic

This work Max cache hits Arbitrary 3 Randomized rounding e
e−1

(
2ReM+1

e−1

) 1
M−2 -approx.

contents from the caches to the end-users (non-congestible
links). Under this assumption, the question of routing the
content requests to caches becomes trivial; simply routes
each request to the lowest-delay or lowest-cost cache having
stored the requested content, depending on the objective of
interest. Here, the delay or cost were modeled as linear
functions of the number of hops between the caches and
the end-users. This simplification allowed the derivation of
tight approximations for this problem; a 10-approximation
using linear-relaxation and rounding techniques in [8], a 2-
approximation combinatorial algorithm that iteratively swaps
files in and out of the caches in [9], as well as other im-
proved e/(e−1)-approximations based on the submodularity
property of this problem [10], [11].

B. Joint caching and routing in congestible networks

Interestingly, the caching problem becomes more chal-
lenging if we take into account the bandwidth capacities
of the (congestible) links in the network (e.g., for small
network operators that cannot provision enough capacity
or for the scenarios of massive demand). In this case, the
content caching and request routing decisions affect each
other and therefore they need to be optimized jointly. Due
to the high complexity of this joint problem, recent efforts
have focused on special network topologies that facilitate
its solution. Dehghan et al. [16] formulated this problem
for a two-tier network consisting of a remote server and
many local caches in proximity to end-users. For the case
that only the link to the remote server is congestible, this
problem was formulated as a submodular problem and
an e/(e − 1)-approximation was derived. However, as we
showed in Section III-B, the submodularity property does

not hold for the general case of arbitrary network topologies
and multiple congestible links. For a similar 2-tier network
setup (where caches are installed at small-cell base stations
to offload a macro-cell base station), Poularakis et al. [13]
proposed facility-location inspired algorithms with approxi-
mation ratios that in the worst case increase proportionally
with the number of files. However, the reduction to the
facility location problem cannot be extended for networks of
arbitrary topologies. This problem was extended to account
for the interference caused by the base station data transmis-
sions in [14]. An approximation algorithm was developed
using the column generation method that approaches the
optimal solution in exponential time. Another extension was
provided in [15] by allowing the caching of contents at the
user devices. A heuristic algorithm was proposed based on
the Lagrangian relaxation method. The same method was
used in [12] for the video caching in a hierarchical IPTV
network scenario. Additional heuristic algorithms have been
proposed for different 2-tier network scenarios. For a 2-
tier network formed by drones and infrastructure cache-
nodes, learning and clustering techniques were applied in
[24]. For cache-nodes that operate using renewable energy
a sequential-fixing algorithm was proposed in [25]. Another
integer programming formulation was proposed in [26] for
the scenario of caching contents at a cellular base station and
the mobile devices. Problems of this type can be solved using
branch and bound integer solvers, but these solvers require
exponential time and thus do not scale for large problem
instances. A similar formulation was proposed in [27] to
minimize the energy consumption caused by the traffic
transmission in networks of arbitrary topology. For arbitrary
topologies, a conditional gradient-based heuristic method
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was also proposed in [28]. However, all the aforementioned
works either assume special topologies (2-tier, hierarchical)
or propose exponential-time or heuristic methods without
any approximation guarantees.

C. Joint caching, routing and computation

Additional joint caching and routing schemes have been
proposed in [29], [30], [17], [18]. These works consider
the placement or caching of services that require not only
storage and bandwidth resources but also computation re-
sources for some task execution associated with the service
in mobile-edge computing for IoT. We note that these joint
caching, routing and computation algorithms can be used to
solve the joint caching and routing problem as well since
they solve a more general problem. However, the existing
solution approaches in [29], [30], [17], [18] have the same
limitations with all the approaches mentioned above (i.e.,
either solve the problem for a special topology or find
heuristic solutions). Our work in this paper fills this gap
in the literature by designing approximation algorithms for
congestible networks of arbitrary topology.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider a heterogeneous network consisting of a large
number of 5G and IoT interconnected nodes such as BSs,
femto-cells, edge cloud servers, fog nodes, gateways, etc. We
represent the network by a directed graph G = (N ,L) where
N and L indicate the sets of nodes and links, respectively.
A subset of the nodes equipped with caches is denoted by
Nc ⊆ N . A set of users K arbitrarily distributed over the
network generate requests for content files (e.g., video clips,
sensing data, etc.) as illustrated in Figure 1.

We denote by F the set of possible content files, also
referred by the library. All files in the library have the same
size normalized to one. This is a mild assumption that can be
easily removed as, in real systems, files can be divided into
chunks or blocks of the same size (e.g., see the discussion
in [10], [11], [12], [15]). Each user k ∈ K requests one
of these files denoted by f(k) ∈ F1. The requests can be
predicted by the network operator by using historical traffic
data and applying machine learning techniques [21], [31].

For each file request of a user, the network operator needs
to find an in-network cache that stores and delivers the file
through the network along some routing paths, possibly of
multiple hops. Each file request successfully served will
consume the bandwidth of every link along the routing
path. These routing paths should be carefully chosen so that
network congestion can rarely happen. Additionally, since
the data size of a request is usually much smaller than that
of a file, we ignore the respective bandwidth consumption
to deliver the request and merely count the traffic volume
for content data.

1We note that a real-life user requesting more than one files can be simply
represented by multiple users in the set K.
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Fig. 1. An example network. Four out of eight nodes are equipped with
caches that can be used to store and deliver content to users upon requests.
Link capacities limit the volume of requests routed from caches to users.

Both of the links and the nodes in the network are
capacitated, i.e., the bandwidth capacity of a link l ∈ L and
the storage capacity of a node n ∈ N are limited. We denote
the bandwidth capacity by Bl as the maximum number of
files a link l can deliver during a given time period of interest
(e.g., a few hours). Also, the maximum number of files that
a node n ∈ Nc can store is denoted by Cn.

For each pair of a user k ∈ K and a cache-node n ∈ Nc,
there may be several possible paths that can be used for file
delivery. We denote this set of possible paths by Pkn. For
example, Pkn may include all the paths connecting k and
n that consist of at most a given number of hops or within
a maximum end-to-end delay budget. This way, we prevent
users from experiencing prohibitively large content delivery
delays.

B. Problem formulation

We introduce the optimization variable xfn ∈ {0, 1} that
indicates whether the cache of node n has stored file f (xfn =
1) or not (xfn = 0). The caching policy is then described by
the matrix:

x = (xfn : n ∈ Nc, f ∈ F). (1)

We also introduce the optimization variable ypkn ∈ {0, 1}
that indicates whether the file request of user k is routed
to the cache-node n along the path p (ypkn = 1) or not
(ypkn = 0). The respective routing policy matrix is denoted
by the matrix:

y = (ypkn : k ∈ K, n ∈ Nc, p ∈ Pkn). (2)

Due to the limited cache sizes, it may not be possible to
store all the files in the caches. Even if this is possible, the
bandwidth capacity of the links may not suffice to serve all
the users by the caches. The goal of the network operator
is to find the caching and routing policies x and y that
maximize the volume of file requests that can be served
by the caches. Formally, the Joint Caching and Routing
in congestible networks of Arbitrary Topology (JoCRAT)
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problem can be expressed as follows:

max
x,y

∑
k∈K

∑
n∈Nc

∑
p∈Pkn

ypkn (3)

s.t.:
∑
k∈K

∑
n∈Nc

∑
p∈Pkn,p3l

ypkn ≤ Bl, ∀l ∈ L, (4)∑
n∈Nc

∑
p∈Pkn

ypkn ≤ 1, ∀k ∈ K, (5)

ypkn ≤ x
f(k)
n , ∀k ∈ K, n ∈ Nc, p ∈ Pkn, (6)∑

f∈F

xfn ≤ Cn, ∀n ∈ Nc, (7)

xfn ∈ {0, 1}, y
p
kn ∈ {0, 1}, (8)

∀n ∈ Nc, f ∈ F , k ∈ K, p ∈ Pkn,

where the objective (3) stands for the total volume of
requests served by the caches (cache hits). Inequalities in (4)
represent the bandwidth constraints on the links. Inequalities
in (5) ensure that each user request will be served at most
once. Inequalities in (6) indicate that node n can serve the
file request of user k if f(k) is stored in the cache of
node n. The cache size constraints are represented by (7).
Finally, constraints in (8) indicate the integer nature of the
optimization variables.

JoCRAT is an integer optimization problem, and this type
of problems are typically hard to solve. In fact, JoCRAT
generalizes several NP-Hard caching problems in literature.
For example, JoCRAT degrades into the caching problem
described in [13] when the graph G is bipartite (2-tier) and
the independent nodes are the N and K sets. JoCRAT also
degrades into the caching problem described in [12] when
G is hierarchical. Therefore, the following theorem can be
shown.

Theorem 1: The JoCRAT problem is NP-Hard.
In the next two sections, we study the complexity of the
JoCRAT problem further and present efficient solutions.

IV. COMPLEXITY ANALYSIS

In this section, we show that for the special case of
one cache the JoCRAT problem can be approximatively
solved using existing algorithms in the literature. This result
is based on the submodularity property of the objective
function, a property that has been used by several works in
the past to tackle various caching problems. This attractive
property, however, does not hold for the general case of our
problem.

A. Special case of one cache

We consider the special case where there is only one
cache-node in the network, i.e., |Nc|=1. Yet, we make no
restrictions on the network paths that can be used for the
delivery of content, i.e., all the possible network paths are
included in the Pkn set. We note that the JocRAT problem
remains challenging even in this special case. Consider
for example the network in Figure 1 when there is only
one cache deployed at the leftmost BS. If the bandwidth

Store file f

S f

λ1f λ2f λ3f

λ4f

λ5f

1

2 3

4

5

76σ 

Fig. 2. Reduction from JoCRAT to SLP problem. The instance of the SLP
problem is depicted that is equivalent to the JoCRAT instance in Figure 1
for the special case of only one cache deployed at the leftmost BS.

capacities were abundant (very large values Bl,∀l ∈ L), then
finding the optimal caching policy would be trivial; simply
cache the most popular files with respect to the demand of
all the end-users. However, if the links connecting the two
BSs have arbitrarily low bandwidth capacities, it would be
wasteful to cache any of the files requested by the end-users
in the rightmost macrocell (since these end-users cannot be
served by the cache in any case). Instead, the most popular
files with respect to the demand of the end-users in the
leftmost BS only should be cached. Therefore, the bandwidth
capacities make unclear what is the optimal caching policy
and the problem is far from trivial.

We will show that in this special case the JoCRAT
problem falls into the class of submodular maximization
problems. Formally, we introduce the definition of submod-
ular functions.

Definition 1: Given a finite set of elements G (referred to
as ground set) a set function φ : 2G → R is submodular if
for any sets X1 ⊆ X2 ⊆ G and every element g ∈ G \X2, it
holds:

φ(X1 ∪ {g})− φ(X1) ≥ φ(X2 ∪ {g})− φ(X2), (9)

i.e., the marginal value of the function when adding a new
element in a set decreases as this set expands.

We will prove the submodularity property for the objective
function of our JoCRAT problem, by showing that our prob-
lem is equivalent to the Sink Location Problem (SLP) [32].

SLP: We are given a capacitated network with a single
source σ, a set of possible sinks S and a number Q > 0.
The question is to locate a subset X ⊆ S of Q sinks so as
to maximize the flow that can be sent from the source to the
located sinks.

Lemma 1: For the special case of one cache, JoCRAT is
equivalent to the SLP problem.

Proof: To show the equivalence of the two problems,
consider the example in Figure 2. Given the instance of the
JoCRAT problem, we can construct the equivalent instance
of the SLP problem as follows. First, we create a capacitated
network with the same topology as in the JoCRAT instance.
Second, we install a source σ at the node corresponding to
the cache-node in the JoCRAT instance. Third, we create a
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sink sf for each file f ∈ F and define the respective set
of sinks S accordingly. We connect each sink sf to every
node n in the network with a link of capacity equal to the
total user demand at node n for file f , denoted by λnf . It
is not difficult to show that storing a file f in the cache in
the JoCRAT instance is equivalent to locating a sink sf in
the SLP instance. Similarly, storing a subset of files in the
cache is equivalent to locating the respective subset of sinks.
The maximum flow in the SLP instance will be equal to the
maximum number of cache hits in the JoCRAT instance.

Given a subset of sinks X ⊆ S, we define by g(X )
the maximum flow in the SLP instance. Previous works
have shown that the function g(X ) is submodular (see
Proposition 3.3 in [32]). Due to the equivalence of the two
problems, the submodularity property holds for the objective
of cache hits as well. This is an important result since there
exist several approximation algorithms in the literature for
maximizing a monotone submodular function. For example,
a simple greedy algorithm that iteratively stores the file in
the cache that improves the objective function the most,
until the cache becomes full, returns a solution with value
at most e/(e−1) ' 1.58 times worse than the optimal [20].
Formally, the following theorem holds.

Theorem 2: For the special case of one cache, there
exists an e/(e−1)-approximation algorithm for the JoCRAT
problem.

B. General case

It would be tempting to conjecture that the property
of submodularity holds for the general case of the Jo-
CRAT problem. However, as we show below, this attractive
property does not hold when more than one caches are
available. Specifically, consider the counter-example of a
wireless caching network in Figure 3. There are two BSs
each one equipped with a cache, and four end-users inside
the intersection of the coverage regions of the BSs. Hence,
there exists a single one-hop routing path from each user to
each cache. The first two end-users request file f1, while the
rest two end-users request file f2. For the first BS, the cache
size is C1 = 1 and the bandwidth capacity of its downlink
is B1 = 2. For the second BS, we set C2 = 2 and B2 = 2.

To show that the submodularity property does not hold for
this example, we consider two caching policies represented
by the sets X1 = {x1

2} where BS 2 caches file 1 and X2 =
{x1

2, x
2
2} where BS 2 caches both files 1 and 2. Clearly,

X1 ⊆ X2. The set function g(X ) is used to represent the
cache hits for a given caching policy X . The number of
cache hits for the two caching policies will be: g(X1) = 2
and g(X2) = 2 since in both cases the bandwidth capacity of
BS 2 limits the number of served end-users to two. Next we
consider the number of cache hits when we add the element
{x1

1} to the two sets. It becomes g(X1 ∪ {x1
1}) = 2 and

g(X2 ∪ {x1
1}) = 4 since in the X1 ∪ {x1

1} policy only the
two end-users requesting file f1 can be served. Therefore, it
holds that:

g(X2 ∪ {x1
1})− g(X2) > g(X1 ∪ {x1

1})− g(X1) (10)

C1=1 

B1=2

C2=2 

B2=2

C1=1 

B1=2

C2=2 

B2=2

f1

f1

f2

f2

Fig. 3. A counterexample showing that the objective function of JoCRAT
is not submodular in the general case.

In other words, the marginal gain of adding element x1
1 is

higher for set X2 than X1, and X2 ⊃ X1. This contradicts
the definition of submodular functions.

The cases described above help us to obtain a better under-
standing of the complexity of JoCRAT problem and which
of the previous results in the literature can be exploited to
tackle it. However, the problem in its general form remains
open. In the next section, we will show how to address it.

V. APPROXIMATION TO JOCRAT PROBLEM

In this section, we present one of the main contributions
of this work, a novel joint caching and routing algorithm that
achieves an approximate solution to the JoCRAT problem.
The approximation ratio of this algorithm is sublinear on
the number of nodes and links in the network. To the best
of our knowledge, this is the first non-trivial approximation
for this important problem. We summarize this result in the
following theorem.

Theorem 3: Define M = minn∈Nc,l∈L{Cn, Bl} > 2
and R = |Nc| + |L|. Then, there exists a polynomial-
time algorithm that finds a feasible solution to the JoCRAT

problem with value at most ( e
e−1 ) ×

(
2ReM+1

e−1

) 1
M−2

times
lower than the optimal.

We defer the proof of the above theorem to the Ap-
pendix B. The proposed algorithm builds upon randomized
rounding, a popular technique for deriving approximate
solutions to various NP-Hard problems in literature, e.g., the
unsplittable flow routing [33] and general assignment [34]
problems, to name two. The algorithms of this type typically
start by solving a relaxation of the problem and then round
the variables from fractional to integer values. The rounding
may be performed in iterations over which the value of the
objective (e.g., in-network flow volume) increases while at
the same time the risk of violating constraints (e.g., link
bandwidth capacities) is kept low. As we explain in the
sequel, however, our problem is more complicated than the
aforementioned problems as it involves both caching and
routing decisions, which are interrelated (cf. constraint (6)),
and thus a new variant of the randomized rounding algorithm
is required.

In the rest of this section, we describe in detail the pro-
posed algorithm, referred to as JoCRAT algorithm. We begin
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by describing the relaxation of the problem (Subsection
V-A) and the risks of violating the constraints (Subsection
V-B) that will be later used for the algorithm description
(Subsection V-C).

A. Linear Relaxation of JoCRAT problem

We allow the optimization variables in x and y to take
any real value from 0 to 1, as opposed to integer values only:

xfn ∈ [0, 1], ypkn ∈ [0, 1], ∀n ∈ Nc, f ∈ F , k ∈ K, p ∈ Pkn.
(11)

Formally, the Linear Relaxation of JoCRAT problem (LR-
JoCRAT) is expressed as follows:

max
x,y

∑
k∈K

∑
n∈Nc

∑
p∈Pkn

ypkn (12)

s.t.: constraints: (4), (5), (6), (7), (11).

LR-JoCRAT problem can be optimally solved using stan-
dard linear optimization techniques. We denote by x̄ and ȳ
the optimal (fractional) solution values to this problem.

B. Risks of Rounding

The randomized rounding algorithm we propose rounds
the fractional values in x̄ and ȳ into binary values x∗ and y∗.
If not appropriately designed, however, this rounding process
risks to violate the constraints of the problem. In addition,
the obtained objective function value (cache hits) risks to be
out of the approximation region specified in Theorem 3. We
dedicate this subsection to formally define these risks which
will be later used in the description of the algorithm and the
proof of Theorem 3.

We define the events El and En that the bandwidth
capacity of link l ∈ L and the cache capacity of node n ∈ N
are violated after rounding, respectively. Similarly, we define
by Ech the event that the number of cache hits after rounding

is more than ( e
e−1 )×

(
2ReM+1

e−1

) 1
M−2

times worse than the
optimal. This essentially means that the approximation ratio
of Theorem 3 is not reached.

The proposed algorithm rounds the variables in ȳ se-
quentially over the end-users in the set K. Therefore, we
define the above events conditioned to the values rounded
so far. Specifically, we define by U ⊆ K the subset of end-
users for which the rounding decisions have been made so
far and by y∗(U) the respective rounded variable vector.
We next define the conditional probabilities P{El|y∗(U)},
P{En|y∗(U)} and P{Ech|y∗(U)} that the respective events
occur given the rounded variable vector y∗(U). To compute
these conditional probabilities (or, risks), we will use the
results in the following lemma.

Lemma 2 (Poisson Binomial Distribution [35]): Let yt,
t = 1, · · · , T be a series of T independent and non-
identical distributed random indicators. In particular, yt ∼
Bernoulli(ȳt), t = 1, · · · , T , where ȳt is the success prob-
ability of indicator yt. Then, the summation

∑t=T
t=1 yt is

defined by a Poisson Binomial random variable, and its

closed-form CDF is given by the following Discrete Fourier
Transformation (DFT):

P{
t=T∑
t=1

yt ≤ B}

=
k=B∑
k=0

{
1

T + 1

l=T∑
l=0

W−lk
t=T∏
t=1

[
1− ȳt + ȳtW

l
]} (13)

where B ≤ T is a positive constant, W = exp( 2πi
T+1 ) is the

DFT core, and i stands for the imaginary unit in complex
numbers.

We note that if B > T in the above expression, the
respective probability is trivially equal to one since even
if all the random variables take the value one they cannot
exceed the threshold value B. By using the above lemma,
we will derive the expressions for the aforementioned risks
as follows.

1) P{El|y∗(U)} risk expression. For a given
y∗(U), the end-users in U have already consumed∑
k∈U

∑
n∈Nc

∑
p∈Pkn:l∈p y

∗p
kn bandwidth capacity of link

l. Thus, the bandwidth that remains for the end-users not
in U is equal to Bl −

∑
k∈U

∑
n∈Nc

∑
p∈Pkn:l∈p y

∗p
kn.

Therefore, we obtain that:

P{El|y∗(U)} = 1−

P
{∑
k/∈U

[ ∑
n∈Nc

∑
p∈Pkn
l∈p

ypkn
]
≤ Bl −

∑
k∈U

[ ∑
n∈Nc

∑
p∈Pkn
l∈p

y∗pkn
]}
(14)

Next, we define the number of end-users that have already
routed their requests through link l:

bl(U) ,
∑
k∈U

[
∑
n∈Nc

∑
p∈Pkn:l∈p

y∗pkn]. (15)

and the number of end-users that may route their requests
through link l in next iterations of the algorithm as:

ql(U) ,
∑
k/∈U

[1−
∏
n∈Nc

∏
p∈Pkn

(1l/∈p)]. (16)

The above expression counts the end-users that have not
been examined yet by the algorithm and for which there is
at least one path available for them that contains link l.

We note that for each user k /∈ U the summation∑
n∈Nc

∑
p∈Pkn:l∈p y

p
kn represents a random variable. This

random variable is binary because of the constraint (5).
Besides, these variables are independent across end-users be-
cause of the way the algorithm assigns values to them (as we
will explain in the next subsection). The respective success
probability is equal to

∑
n∈Nc

∑
p∈Pkn:l∈p ȳ

p
kn. Therefore,

we can apply Lemma 2 for B = Bl− bl(U) and T = ql(U)
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and, assuming that Bl − bl(U) ≤ ql(U), to obtain that2:

P{El|y∗(U)} = 1−
Bl−bl(U)∑
s=1

{ 1

1 + ql(U)

m=ql(U)∑
m=0

W−sml

[
∏
k/∈U

(1−
[ ∑
n∈Nc

∑
p∈Pkn
l∈p

ȳpkn
]

+
[ ∑
n∈Nc

∑
p∈Pkn
l∈p

ȳpkn
]
Wm
l )
]}
,

(17)
where Wl , exp( 2πi

ql(U)+1 ) stands for the corresponding
DFT core. We note that when Bl − bl(U) > ql(U), the
end-users that have not been examined yet by the algorithm
are not many enough to violate the capacity of link l and,
therefore, P{El|y∗(U)} is trivially equal to zero.

2) P{Ech|y∗(U)} risk expression. The analysis of
P{Ech|y∗(U)} is similar to the P{El|y∗(U)} expression.
For a given y∗(U), the service of the end-users in the set
U has already ensured

∑
k∈U

∑
n∈Nc

∑
p∈Pkn y

∗p
kn cache

hits. The approximation ratio of Theorem 3 will not be
reached, however, if the additional cache hits associated
to the end-users not in U are not enough relatively to the
optimal solution value (OPT). Since, we do not know the
value of OPT, we will use in our analysis the value of the
linear relaxed problem (LOPT), which upper bounds OPT.
Specifically, the number of additional cache hits that the
algorithm should achieve to ensure that the approximation
ratio holds is equal to:

APX =
LOPT

( e
e−1 )×

(
2ReM+1

e−1

) 1
M−2

−
∑
k∈U

∑
n∈Nc

∑
p∈Pkn

y∗pkn.

(18)
Therefore, we obtain that:

P{Ech|y∗(U)} = P
{∑
k/∈U

[ ∑
n∈Nc

∑
p∈Pkn

ypkn
]
≤ bAPXc

}
(19)

By applying Lemma 2, we obtain that:

P{Ech|y∗(U)} =

bAPXc∑
s=1

{ 1

1 + qch(U)

m=qch(U)∑
m=0

W−smch

[
Π
k/∈U

(1−
[ ∑
n∈Nc

∑
p∈Pkn

ȳpkn
]

+
[ ∑
n∈Nc

∑
p∈Pkn

ȳpkn
]
Wm
ch)
]}
,

(20)
where qch(U) , |K\U|, and Wch , (exp 2πi

qch(U)+1 )
stands for the corresponding DFT core. We note that when
bAPXc > qch(U), the end-users that have not been examined
yet are not many enough to reach the approximation ratio
and, therefore, P{Ech|y∗(U)} is trivially equal to one.

3) P{En|y∗(U)} risk expression. Compared to
P{El|y∗(U)} and P{Ech|y∗(U)}, analyzing P{En|y∗(U)}
requires some more effort. Specifically, in order for
constraint (6) to always hold, the algorithm will round the

2Here, we use the convention that both the results of
∑

s∈∅ and∑s=a−b
s=1 where a < b are zeros, and that the result of Πk∈∅ is one.

caching variables using the following rule:

x∗fn = 1−
∏

k:f(k)=f

[
1−

∑
p∈Pkn

y∗pkn
]
,∀n ∈ Nc,∀f ∈ F .

(21)
The above means that x∗fn will be 1 if at least one user
requesting file f is served by cache n. We note that[
1−

∑
p∈Pkn y

p
kn

]
is a binary random variable since user k

can only fetch a file from a single cache-node and through
a single path. Besides, these binary random variables are
independent for different end-users because of the way the
proposed algorithm assigns values to them. Therefore, xfn
terms are also independent binary random variables, the
success probabilities of which are given by:

x̄fn , 1−
∏

k/∈U :f(k)=f

[
1−

∑
p∈Pkn

ȳpkn
]
,∀n ∈ N , f ∈ F . (22)

By applying Lemma 2, we obtain that:

P{En|y∗(U)} = 1−
Cn−bn(U)∑

s=1

{ 1

1 + qn(U)

×
m=qn(U)∑
m=0

W−smn

[
Π

k/∈U :f(k)=f
(1− x̄fn + x̄fnW

m
n )
]}
,

(23)
where

bn(U) ,
∑
f∈F

[
1−

∏
k∈U :f(k)=f

(
1−

∑
p∈Pkn

y∗pk,n
)]

(24)

represents the number of files that have been stored in the
cache of node n so far, and

qn(U) ,
∑
k/∈U

1{Pkn 6=∅}. (25)

represents the number of files that may be stored at cache n
in next iterations of the algorithm. Here, 1{.} is the indicator
function. Wn , exp( 2πi

qn(U)+1 ) denotes the corresponding
DFT core. Similar to the previous expressions, we note that
when Cn−bn(U) > qn(U), the end-users that have not been
examined yet are not many enough to violate the capacity
of cache n and, therefore, P{En|y∗(U)} is trivially equal to
zero.

4) Aggregate risk expression. The last step is to evaluate
the aggregate risk that any of the events El,∀l ∈ L,
En,∀n ∈ Nc and Ech will happen. Since this is extremely
challenging to compute [36], we find instead an upper bound
on the aggregate risk, described in the following lemma
(proved in the Appendix A).

Lemma 3 (Potential Energy (PE)): Given an instance of
the JoCRAT problem, we define the PE function for a given
y∗(U) as follows:

h(y∗(U)) = 1 + P
{
Ech|y∗(U)

}
− Π
l∈L

(
1− P{El|y∗(U)

)
× Π
n∈Nc

(
1− P{En|y∗(U)

)
(26)

Then, PE upper bounds the aggregate risk of violat-
ing any of the bandwidth and cache capacity constraints
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or the number of cache hits being less than LOPT ×
(1− 1

e )×
(

e−1
2ReM+1

) 1
M−2 .

C. The proposed JoCRAT algorithm

Having defined the risk and PE expressions, we can now
formally present the JoCRAT algorithm. The pseudocode is
given in Algorithm 1. It consists of three phases, as described
in detail below.

A. Initialization phase. JoCRAT algorithm first solves the
linear relaxed problem to find the initial fractional solutions
x̄ and ȳ (line 2). It also initializes U to ∅ and y∗(∅) to the
all-zero vector (line 3). Then, it scales down the initial values
of ȳ by a factor γ. The γ value is picked such that the initial
value of the PE function h(y∗(∅)) is close to but strictly less
that one. Satisfying this condition at the initialization phase
is critical for ensuring that undesirable events will not occur
in the end of the algorithm, as described in the proof of
Theorem 3. In order to find such a γ value the algorithm
performs a bisection search (lines 4-6). This search starts
with γ = e and will increase it as much as needed for the
PE function to become strictly less than one. We note that
as the γ value changes during the search, the ȳ and x̄ also
change. Specifically, ȳ is scaled down by its initial value
by the current factor γ, while x̄ is updated according to the
rule in equation (22). This update will affect the risk values
since they depend on x̄ and ȳ (cf. equations (17), (20), (23)),
which in turn will affect the PE function value (cf. equation
(26)).

B. Sequential rounding phase. In this phase, the algo-
rithm iteratively examines all the end-users one-by-one to
decide how to compute the rounded routing variables y∗pkn
∀k, n, p (lines 8-17). At a typical stage of the algorithm, we
are examining some user k, where k /∈ U . The end-users
in {1, 2, . . . , k − 1} , U have been already examined and
the respective routing variables have been already rounded.
For the currently examined user k, the algorithm checks if
there is a cache n and a path p ∈ Pkn to route the request
of user k, or equivalently round y∗pkn to one, such that the
PE function value will remain less than one (line 9). If yes,
we round y∗pkn(U ∪ {k}) = 1 and y∗p

′

kn′(U ∪ {k}) = 0
∀n′ 6= n and p′ 6= p (lines 10-11). If not, we round
y∗p

′

kn′(U ∪ {k}) = 0 ∀n′ ∈ Nc and p′ ∈ Pkn (the request
of user k is not served) (line 13). The rest values of the
vector y∗(U ∪{k}) are the same with the vector y∗(U) (line
15). In the end of the loop, i.e., when U = K, we will have
computed the final rounded values of the routing variables
y∗ = y∗(K) (line 18).

C. Final rounding phase. The last step is to round the
caching variables x∗ based on the values in y∗. This will be
done by applying the rule in equation (21) (lines 20-22).

Finally, we analyze the computational complexity of Jo-
CRAT algorithm. From equation (17), (20), (23), and (26),
the complexity to evaluate the PE function is O

(
(|L| +

|Nc|) × |Nc| × |K| × log(|Nc| × |K|)
)
. Since the proposed

algorithm calculates the PE function at most O(|Nc| × |K|)
times (|Nc| times for each user), the overall complexity is

Algorithm 1 JoCRAT

1: A. Initialization phase:
2: Solve the LR-JoCRAT problem to find x̄ =
{x̄1

1, · · · , x̄fn, · · · }) and ȳ = {ȳ1
11, · · · , ȳ

p
kn, · · · }.

3: Init U = ∅ and y∗(∅) = 0.
4: repeat

5: Bisection Search: γ ∈
(
e,
(

2ReM+1

e−1

) 1
M−2

]
6: until 1− ε ≤ h(y∗(∅)) < 1

7: B. Sequential rounding phase:
8: for k ∈ K do
9: if ∃ n ∈ Nc and p ∈ Pkn: h(y∗(U ∪ {k})) < 1

then
10: Round y∗pkn(U ∪ {k}) = 1

11: Round y∗p
′

kn′(U ∪ {k}) = 0 ∀n′ 6= n and p′ 6= p
12: else
13: Round y∗p

′

kn′(U ∪ {k}) = 0 ∀n′, p′
14: end if
15: Set y∗p

′

k′n′(U ∪ {k}) = y∗p
′

k′n′(U) ∀k′ 6= k, n′, p′

16: U = U ∪ {k}
17: end for
18: y∗ = y∗(U)

19: C. Final rounding phase:
20: for n ∈ N ,f ∈ F do:
21: x∗fn = 1− Π

k:f(k)=f

[
1−

∑
p∈Pkn

y∗pk,n
]

22: end for
23: return x∗ and y∗

O
(
(|L| + |Nc|) × |Nc|2 × |K|2 × log(|Nc| × |K|)

)
. This

complexity is acceptable in practice given that the problem
will be solved offline by the network operator, i.e., in the
beginning of each day using predictions of the user demand.
In the next section, we perform evaluations that show the
running time in practical scenarios.

VI. EVALUATION RESULTS

In this section, we conduct extensive evaluations to
demonstrate the advantages of the proposed JoCRAT algo-
rithm over existing JCR algorithms. Various IoT scenarios
differing in the network topologies, available bandwidth and
storage resources, and file requests patterns are examined.
Overall, we find that JoCRAT can increase the cache hits
especially in the low and moderate bandwidth capacity
regimes. In the rest of this section, we discuss these results
in detail.

A. Compared JCR schemes
We begin by introducing the following JCR methods that

will be compared with our proposed JoCRAT algorithm.
• Femtocaching [10]. This state-of-the-art algorithm

starts with all the caches being empty. Then, it it-
eratively places the file to the cache that yields
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the highest cache hits neglecting the bandwidth con-
straints, i.e., at each iteration it maximizes the func-
tion

∑
k∈K 1{

∑
n∈Nc

∑
p∈Pkn

x
f(k)
n ≥1}, where 1{.} is the

indicator function. Each user request is routed to the
nearest (with respect to the number of hops) cache
having stored the requested file following a path with
available bandwidth (if any).

• Max Popularity. Each cache n stores independently the
Cn most popular files. Each user request is routed to the
nearest cache having stored the requested file following
a path with available bandwidth.

• LP-ROUND [29]. This randomized rounding algorithm
solves the linear relaxation of JoCRAT and then rounds
x and y into integers as follows. For each cache-node
n, it sorts the files f ∈ F into decreasing order of
the fractional values of the relaxed xnf ,∀f ∈ F , and
greedily stores the top Cn files at the cache n. Each user
k sorts routing paths p ∈ Pkn,∀n ∈ Nc into descending
order with respect to the fractional values of the relaxed
ypkn,∀n ∈ Nc,∀p ∈ Pkn, and routes the request of k
along the paths to the first accessible cache (if any).

• Lag-Dual [15]. This Lagrangian heuristic applies the
hierarchical primal-dual decomposition method to ap-
proximate the optimal solution of JoCRAT iteratively.
Specifically, at each iteration, each cache n calculates
the caching policy x based on the optimal dual variables
of constraints in (6). Then, each link l solves routing
policy y based on the optimal dual variables of con-
straints in (4). The algorithm repeats a fixed number of
iterations unless the stop criterion is met.

• LR-JoCRAT. The upper bound of the optimal solution
value found by solving the linear relaxation of the
JoCRAT problem.

It is well-known that greedy caching schemes, such as
Femtocaching [10] and the variant in [16], perform nearly
optimal if link bandwidth is fairly enough or there is only
one congestible single-hop path. Meanwhile, the heuristics
based on Lagrangian dual are of high efficiency in hierar-
chical networks [3], [12], [15]. We therefore need to ask
whether these classic JCR schemes can reap the benefits
of routing diversity when the links are congestible in the
general topology.

B. Evaluation setup

The main part of the evaluation is carried out for networks
of Poisson geometric topology. Specifically, we consider a
1000 meters × 1000 meters geographical region where N =
50 nodes are deployed at random. 10% of the nodes in the
network are equipped with caches. We say a pair of nodes are
connected by a wireless link only when the distance between
them is less than 200 meters. For each pair of nodes k and
n, there is a set Pkn that contains the three shortest (with
respect to the number of hops) paths for routing the traffic
between them. The bandwidth capacity of each link l is set
to Bl = 45 files during the time period. The storage capacity
of each cache n is set to Cn = 100 files.
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Fig. 4. Impact of bandwidth capacity.

Requests for |F| = 10, 000 files are generated by users
that are associated with the nodes for a time period. The
number of users is set to |K| = 2, 250, i.e., 50 users per node
(except from the 5 caches). The popularity of file requests
follows the Zipf distribution [37]. Namely, the probability
of requesting the ith most popular file is proportional to i−z

for some shape parameter z > 0 (z = 0.9).
We note that all the above values are varied during the

evaluations. Besides, to smoothen the impact of randomness
on the location of nodes (and hence topology) and file
requests, the results we present are taken from the average
of 40 evaluations. Confidence intervals are also depicted in
the following figures to illustrate the statistic details of the
simulations.

C. Evaluation results

We first explore the impact of bandwidth capacity Bl, ∀l
on the cache hits. In Figure 4, Bl spans a wide range of
values, starting from 1 file to 250 files during time period.
Supposed that the size of a file is of about 15 MB, and
the time period lasts one minute. Then, the lower extreme
bandwidth rates are of around 750 MB per minute or about
0.1 Gbps, which can be achieved by current LTE networks,
while the upper extreme bandwidth rates are of 3750 MB
per minute or about 0.5 Gbps, which is easier achieved by
today’s Internet Service Provider (ISP) backbone networks.
Therefore, the evaluations capture a range of scenarios and
types of networks, including the common IoT over the antici-
pated 5G networks. While the cache hits increase with Bl for
all the algorithms, the proposed JoCTAT algorithm performs
close-to-optimal and better than the simplified randomized
rounding LP-ROUND, Max Popularity, Femtocaching, and
Lag-dual. The benefits are more pronounced for low and
moderate bandwidth, while Femtocaching and LP-ROUND
gradually approach JoCRAT as bandwidth increases. We
note that Lag-Dual performs significantly worse than the
other algorithms. This is because we let the Lag-Dual run
for 100 iterations only, which takes time similar to the
other algorithms (about 20 minutes), so as to make a fair
comparison. Overall, JoCRAT can even double the cache
hits compared to its counterparts.
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Fig. 5. Impact of cache capacity.

Interestingly, Max Popularity performs better than Fem-
tocaching in the low bandwidth regime, and vice versa in
the high bandwidth regime. This can be attributed to the
fact that Femtocaching tends to diversify the files among
the caches, so that users can find more files at the accessed
caches. However, such diversity is only useful when there is
enough bandwidth for the users to access and download files
from the caches. For low bandwidth, instead, duplicating the
most popular files across caches can be more useful as there
is not enough bandwidth to serve less popular files in the
first place.

The impact of cache capacity Cn is next studied in
Figure 5. As expected, adding more cache capacities in-
creases cache hits for all the algorithms, as more files are
made available by the caches. The rate of growth gradually
decreases, however, and the cache hits saturate eventually.
The intuition is straightforward, namely, when the network
is heavily congested, some end-users perhaps cannot access
any of the cache-nodes and therefore many of file requests
may not be served due to the lack of available bandwidth.
The proposed JoCRAT algorithm and LP-ROUND perform
consistently better than Max Popularity, Femtocaching and
Lag-Dual. Interestingly, when bandwidth is limited, a sim-
plified randomized rounding algorithm, i.e., LP-ROUND,
also achieves relatively high cache hits, defeating the rest
of JCR schemes except for the proposed JoCRAT. We
address that our proposed JoCRAT always stays on the top
no matter when bandwidth is limited or adequated. This
implies that the core procedure in proposed JoCRAT, i.e.,
the risk evaluation, is indispensable in optimally utilizing
the available storage and bandwidth resources.

In the following, we analyze the impact of the Zipf shape
parameter z on algorithms’ performance as illustrated in
Figure 6. On the one hand, as the z value increases the file
request distribution becomes steeper and a few files attract
most of the requests. On the other hand, a small z value
corresponds to an almost uniform file request distribution.
We observe that the cache hits increase with z for LP-
ROUND, and JoCRAT and Max Popularity algorithms. This
is because the files cached by these algorithms attract more
requests resulting in more cache hits. However, the cache
hits remain roughly the same for Femtocaching as well as
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Fig. 6. Impact of Zipf shape parameter.
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Fig. 7. Results for different networks.

Lag-Dual. This can be attributed again to the fact that both
Femtocaching and Lag-Dual tend to diversify the files among
the caches. JoCRAT avoids this problem by strategically
storing the popular files in a way that load balances the
links and utilizes the available bandwidth the most.

Finally, we repeat the evaluations for different network
topologies, both real and synthetic, as shown in Figure 7.
Specifically, we use the real topologies of China Telecom
(44 nodes, 62 links), France Renater (43 nodes, 56 links) and
USA Deltatelecom (113 nodes, 183 links) that are available
in [38]. We randomly deploy 4, 4, and 11 caches in these
networks, respectively. We also generate synthetic topologies
using the Erdős-Rényi (E-R) [39], Lattice, Geometric and
Albert-Barabási (A-B) [40] randomized graph models (49
nodes for the Lattice, 50 nodes for the rest). Interestingly,
the Lagrangian heuristic approaches the nearly-optimal in
China Telecom network and France Renater network. This
is reasonable since the topologies of these two networks are
hierarchical and there is small duality gap under the lay-
ered topology. In contrast, our proposed JoCRAT is totally
topology-free, i.e., we achieve nearly-optimal performance
in almost all the networks regardless of the bandwidth and
connectivity constraints. The results verify the superiority
of the proposed JoCRAT algorithm over the state-of-the-art
schemes.

VII. CONCLUSION

Despite the recent spur of research in designing in-
network caching algorithms, most of the previous works
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were based on networks of special topologies (e.g., two-
tier, hierarchical) or assuming non-congestible bandwidth
capacities. Our work in this paper filled this important
gap in the literature by considering the joint caching and
routing problem in its general form. We formulated this
problem for the objective of maximizing the number of
content requests served by the caches (or cache hits) and
analyzed its complexity. By using a randomized rounding
technique, we proposed a solution algorithm and proved
its approximation ratio. Evaluation results demonstrated the
performance benefits of this algorithm over the state-of-the-
art methods, as well as the key system parameters that affect
these benefits.

APPENDIX A
PROOF OF LEMMA 3

The aggregate risk of violating the constraints or
not reaching the number of cache hits specified
by the approximation ratio can be written as
P{ ∪

l∈L
El

⋃
∪

n∈N
En

⋃
Ech|y∗(U)}. This can be upper

bounded by the potential energy function (PE) as follows:

P{ ∪
l∈L

El

⋃
∪

n∈N
En

⋃
Ech|y∗(U)}

(a)

≤P{ ∪
l∈L

El

⋃
∪

n∈N
En|y∗(U)}+ P{Ech|y∗(U)}

(b)
=1− P{ ∩

l∈L
Ec
l

⋂
∩

n∈N
Ec
n|y∗(U)}+ P{Ech|y∗(U)}

(c)

≤1 + P{Ech|y∗(U)}

−
∏
l∈L

(P{Ec
l |y∗(U)})×

∏
n∈N

(P{Ec
n|y∗(U)})

=1 + P{Ech|y∗(U)}

−
∏
l∈L

(1− P{El|y∗(U)})×
∏
n∈N

(1− P{En|y∗(U)}),

(27)
where we have denoted by Ec the complementary of event
E. Inequality (a) follows since the Boole’s inequality. Equa-
tion (b) holds because of De Morgan’s law. What remains to
show is inequality (c). To this end, it suffices to show that:

P{ ∩
l∈L

Ec
l

⋂
∩

n∈N
Ec
n|y∗(U)}

≥
∏
l∈L

(P{Ec
l |y∗(U)})×

∏
n∈N

(P{Ec
n|y∗(U)} (28)

The above inequality can be directly proved by using the
FKG inequality [41], a fundamental tool that tightly bounds
the likelihood of concurrently happening a set of positively
correlated events.

Lemma 4: The FKG inequality [41]: Define by y a
random vector whose elements are independent but non-
identical binary random variables. Consider two different
outcomes of the random vector y′ and y′′. We denote by
y′ � y′′ if and only if y′ is element-wise larger than y′′.
We refer to E as a decreasing event if P{E|y′} = 1 implies

that P{E|y′′} = 1, ∀y′ � y′′. Let E1,E2, · · · ,Ei, · · · be a
sequence of decreasing events. Then, for any non-empty set
I, it holds that: P{ ∩

i∈I
Ei} ≥

∏
i∈I

P{Ei}.

To apply the FKG inequality into (28), however, we need
to show that the events Ec

l ,∀l ∈ L and Ec
n,∀n ∈ N are de-

creasing. Specifically, we consider a current set of examined
users U ′ ⊆ K and a current rounded solution y∗(U ′) during
our algorithm execution such that P{Ec

l |y∗(U ′)} = 1 for all
links l. Then, we remove a subset of users S from U ′ to
construct another set U ′′ = U ′ \ S , and update y∗(U ′′) as
follows:

y∗pkn(U ′′) =

{
y∗pkn(U ′), if k /∈ S,
0, if k ∈ S.

Obviously, we have y∗(U ′) � y∗(U ′′), and the term Bl−∑
k∈U

[∑
n∈Nc

∑
p∈Pkn:l∈p y

∗p
kn

]
(remaining bandwidth of

link l) will not decrease if we replace U = U ′ with U = U ′′.
Therefore, by equation (14), P{Ec

l |y(U ′)} = 1 implies that
P{Ec

l |y(U ′′)} = 1. This means that Ec
l is a decreasing event.

Similarly, we can show the same property for Ec
n event, thus,

conclude the proof of lemma 3.

APPENDIX B
PROOF OF THEOREM 3

We will prove Theorem 3 by showing that the PE value
will be zero in the end of the JoCRAT algorithm execution.
Therefore, the aggregate risk of violating the constraints or
not reaching the approximation ratio will be zero.

We note that after the last iteration of the algorithm (when
U = K), each of the risks P{El|y∗(K)}, P{En|y∗(K)} and
P{Ech|y∗(K)} will be either zero or one. This is due to the
expressions in equations (17), (20) and (23). Therefore, the
PE value h(y∗(K)) will be zero, one or two (cf. equation
(26)). To prove that it will be zero, and therefore Theorem
3 holds, we will show the following two claims:

1) we can always find a γ value such that the initial PE
h(y∗(∅))) value is strictly less than 1, and

2) the PE h(y∗(U) values always decrease or keep the
same value during the iteration over users thus the
value can always keep being less than 1.

Therefore, the final PE h(y∗(K)) value must be zero. We
formally prove the above claims below, in Propositions 1
and 2.

Proposition 1: There always exists a value γ ∈(
e,
(

2ReM+1

e−1

) 1
M−2 )

such that the initial PE value h(y∗(∅))
is strictly less than 1.

To prove the above proposition, we will use the following
concentration inequalities.

Lemma 5 (The generic Chernoff bounds [42]): Consider
a set of independent Bernoulli random variables
y1, y2, · · · , yt, · · · with respective success probabilities
ȳ1, ȳ2, · · · , ȳt, · · · . Let µ , E

{∑
t∈T

yt
}

=
∑
t∈T

ȳt. Then, it
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holds that:

P

{∑
t∈T

yt ≥ µ(1 + δ)

}
≤

(
eδ

(1 + δ)
(1+δ)

)µ
,∀δ > 1,

(29)
and,

P

{∑
t∈T

yt ≤ µ(1− δ)

}
≤ e

−µδ2
2 ,∀δ ∈ (0, 1), (30)

In inequality (29), let δ > e − 1, γ > δ + 1 > e, Bl =

(1 + δ)×
∑
ȳ
p
kn

γ >
∑
ȳpkn, and µ =

∑
ȳpkn
γ . Then, P{El} =

P
{∑

k∈K
[∑

n∈Nc
∑
p∈Pkn:l∈p y

p
kn

]
> Bl

}
is strictly less

than
(
e
γ

)Bl . The same goes for 1 − P{En} ≥ 1 −
(
e
γ

)Cn
.

However, in order to get a lower bound for P{Ech} some
additional effort is needed. Specifically, we use the following
lemma.

Lemma 6 (Goemans-Williamson inequality [43]):
Consider a sequence ȳ = (ȳ0 , · · · , ȳt , · · · ). Then, ∀t ∈ T
and ȳt ∈ [0, 1], it holds that:

(1−1

e
) min

{∑
t∈T

ȳt, 1

}
≤ 1−

∏
t∈T

(1−ȳt) ≤ min

{∑
t∈T

ȳt, 1

}
.

(31)
By using the above lemma, we can show that:

1−Πp∈PknΠn∈N (1−
ȳpk,n
γ

)

≥ (1− 1

e
) min

{ ∑
p∈Pkn

∑
n∈N

ȳpk,n
γ
, 1

}

= (1− 1

e
)
∑
p∈Pkn

∑
n∈N

ȳpk,n
γ

(32)

and

µ = E
{∑
k∈K

∑
n∈N

∑
p∈Pkn

ypk,n

}
=

LOPT
γ
≥ (1− 1

e
)× LOPT

γ

(33)

Due to (30), we have:

P
{∑
k∈K

∑
n∈N

∑
p∈Pkn

ypk,n ≤
LOPT× (1− 1

e )

γ

}
≤ e

−LOPT(1− 1
e

)

2 ×(1− 1
γ )2

≤ 1− e− 1

2e
× 1

γ2
(34)

where γ ≥ e and we have set δ = 1− 1
γ .

To conclude the proof, we will use the bounds 1 −
P{El} ≥ 1 −

(
e
γ

)Bl
, 1 − P{En} ≥ 1 −

(
e
γ

)Cn
, and

P{Ech} ≤ 1 − e−1
2e ×

1
γ2 shown above. We first define

M = min
l∈L,n∈N

{Cn, Bl}, R = |Nc| + |L| and assume that

γ > e. Then, we note that since ∀x ∈ R, x ≥ −1 it
holds that ∀n ∈ N: (1 + x)n > 1 + nx, an easier sufficient
condition to ensure that the initial PE value is strictly less

than one is 1 −
(
e
γ

)M
R ≥ 1 − e−1

2eγ2 . By substituting

γ =
(

2ReM+1

e−1

) 1
M−2

into the above expression, we conclude
the proof.

Proposition 2: Given the set of already examined users U ,
there always exists a routing strategy {yp∗kn,∀n ∈ Nc, p∗ ∈
Pkn|

∑
yp∗kn ≤ 1} for the current user k /∈ U such that the

next PE value h(y∗(U ∪{k})) is less or equal to the current
PE value h(y∗(U)).

To facilitate the proof, we introduce the notation IR ,
{Ec

l ,∀l ∈ L} ∪ {Ec
n,∀n ∈ N}. Then, we refer to

the product
∏
l∈L

(P{Ec
l |y∗(U)}) ×

∏
n∈N

(P{Ec
n|y∗(U)}) as∏

i≤R

(
P{Ec

i |y∗(U)}
)

.

We also denote by y∗np({k}) the case where we choose the
routing strategy {yp∗kn,∀n ∈ Nc, p∗ ∈ Pkn|

∑
yp∗kn ≤ 1} for

the current user k, i.e., to route the file request of the current
user k along the path p towards cache node n. Similarly, by
y∗∅({k}) we denote the case where we refuse to serve the
request of user k by the caches.

In order to prove that the PE value can always decrease
or keep the same value, it suffices to show that there is at
least one convex combination of all the possible values of
h(y∗np(U∪{k})) in which ypkn = 1, yp

′

kn′ = 0 : ∀n ∈ Nc, p ∈
Pkn, p′ 6= p is larger than the value of h(y∗(U)). We turn
to prove the following easier sufficient condition:

∏
i≤R

(
P
{
Ec
i |y∗(U)

})
− P{Ech|y∗(U)} ≤

∑
p∈Pkn
n∈Nc

[
ȳpkn ×

(∏
i≤R

P
{
Ec
i |y∗np(U ∪ {k})

}

− P{Ech|y∗np(U ∪ {k})}
)]

+

(
1−

∑
p∈Pkn
n∈Nc

ȳpkn

)

×
(∏
i≤R

P
{
Ec
i |y∗∅(U ∪ {k})

}
− P{Ech|y∗∅(U ∪ {k})}

)
,

(35)
where the right hand side (R.H.S) expression is a convex
combination of the PE values h(y∗np(U ∪ {k})),∀n ∈
Nc, p ∈ Pkn.

We will prove that (35) holds for all IR by using math-
ematical induction. Specifically, we define an (|L|+ |Nc|)-
size increasing sequence of the subsets of IR by I1 ( I2 (
· · · , Ir ( · · · ( IR, where |Ir| = r.

A. Case r = 1. We show that for any index 1 ≤ i ≤ |IR|
it holds that:

P{Ec
i |y∗(U)} a1

=
∑
p∈Pkn
n∈Nc

[
ȳpkn × P

{
Ec
i |y∗np(U ∪ {k})

}
]

+

(
1−

∑
p∈Pkn:n∈Nc

ȳpkn

)
× P

{
Ec
i |y∗∅(U ∪ {k})

}
,

(36)
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and,

P{Ech|y∗(U)} a2
=
∑
p∈Pkn
n∈Nc

[
ȳpkn × P{Ech|y∗np(U ∪ {k})

}
]

+

(
1−

∑
p∈Pkn:n∈Nc

ȳpkn

)
× P{Ech|y∗∅(U ∪ {k})

}
(37)

where equations (a1) and (a2) are valid because of the
definitions in (17), (20), and (23). Specifically, these equa-
tions hold because the y∗np({k}),∀p ∈ Pkn,∀n ∈ Nc are
independently rounded to integers as in Algorithm 1, and the
law of total probability. By substituting the above equations
into the left hand side (L.H.S.) of (35), we show that it is
valid for the case of r = 1.

B. Case 2 < r < R. We suppose that (35) is valid for Ir
where 1 ≤ r < R. Substituting (37) into the L.H.S. of the
case for r , we can cancel the terms P{Ech|·} in the both
sides of (35) and obtain:∏

i≤r

P{Ec
i |y∗(U)}

≤
∑
p∈Pkn
n∈Nc

ȳpkn × κ(r, k) +

(
1−

∑
p∈Pkn:n∈Nc

ȳpkn

)
× ν(r, k),

(38)
where κ(r, k) =

∏
i≤r

P
{
Ec
i |y∗np(U ∪ {k})

}
and ν(r, k) =∏

i≤r

(
P
{
Ec
i |y∗∅(U ∪ {k})

}
. We note that the product of

the L.H.S. of (38) and P{Ec
j |y∗(U)} is equivalent to∏

i≤r
P{Ec

i |y∗(U)} × P{Ec
j |y∗(U)},∀j > r for case r + 1.

We will complete the proof by showing that the product of
the R.H.S. of (38) and the term P{Ec

j |y∗(U)} is less or equal
to the R.H.S. of the the sufficient condition in (35). To this
end, we will prove by brute-force calculation that:∑

p∈Pkn
n∈Nc

[
ȳpkn × κ(r, k)×

(
P{Ec

j |y∗(U)}
)]

+

(
1−

∑
p∈Pkn
n∈Nc

ȳpkn

)
× ν(r, k)×

(
P{Ec

j |y∗(U)}
)

is at most:∑
p∈Pkn
n∈Nc

[
ȳpkn × κ(r + 1, k)

]
+

(
1−

∑
p∈Pkn
n∈Nc

ȳpkn

)
× ν(r + 1, k),

The key is to substitute (36) into the above and then to cancel
the following term:∑

p,p′∈Pkn
n,n′∈Nc

ȳpknȳ
p′

kn′

[
κ(r, k) + ν(r, k)

]

×
[
P{Ej |y∗∅(U ∪ {k})} − P{Ec

j |y∗n′p′(U ∪ {k})}
]
.

Then, the residual is:(
1−

∑
p∈Pkn:n∈Nc

ȳpkn

)
×

∑
p∈Pkn:n∈Nc

ȳpkn

[
∏
i≤r

P{Ec
i |y∗∅(U ∪ {k})} −

∏
i≤r

P{Ec
i |y∗np(U ∪ {k})}

]
×
[
P{Ej |y∗∅(U ∪ {k})} − P{Ec

j |y∗np(U ∪ {k})}
]
≥ 0.

(39)
Inequality (39) is valid by the fact that ∀i ∈ IR,∀k, ∀p ∈
Pkn : n ∈ Nc, it holds that: P{Ec

i |y∗∅(U ∪ {k})} −
P{Ec

i |y∗np(U ∪ {k})} ≥ 0,∀1 ≤ r ≤ R. Intuitively, the
risks of violating the bandwidth and cache capacities do not
increase as the number of users served by the remote server
increases. Therefore, inequality (35) is valid for Ir+1.
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