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Abstract—WiFi is increasingly used by carriers for opportunis-
tically offloading the cellular network infrastructure or even for
increasing their revenue through WiFi-only plans and WiFi on-
demand passes. Despite the importance and momentum of this
technology, the current deployment of WiFi access points (APs)
by the carriers follows mostly a heuristic approach. In addition,
the prevalent free-of-charge WiFi access policy may result in
significant opportunity costs for the carriers as this traffic could
yield non-negligible revenue. In this paper, we study the problem
of optimizing the deployment of WiFi APs and pricing the WiFi
data usage with the goal of maximizing carrier profit. Addressing
this problem is a prerequisite for the efficient integration of WiFi
to next-generation carrier networks. Our framework considers
various demand models that predict how traffic will change in
response to alteration in price and AP locations. We present
both optimal and approximate solutions and reveal how key
parameters shape the carrier profit. Evaluations on a dataset of
WiFi access patterns indicate that WiFi can indeed help carriers
reduce their costs while charging users about 50% lower than
the cellular service.

Index Terms—WiFi deployment, WiFi pricing, Profit optimiza-
tion, Network design

I. INTRODUCTION
A. Motivation

Mobile data traffic continues to grow, rising by more than
79% worldwide in 2018 [2]. This “data tsunami” threatens to
drain the capacity of cellular networks resulting in degrada-
tion of user service quality [3]. Traditional network capacity
expansion methods, such as cellular technology upgrades and
additional spectrum acquisition, are expensive and constantly
outpaced by the continuing traffic increase. Therefore, carriers
are today in a position where their traffic and hence expendi-
tures increase sharply, but revenues do not necessarily follow'.

This demand has motivated many new business models that
leverage the availability of WiFi to complement or increase
cellular network capacity [5]. For example, Google recently
announced a hybrid mobile data plan, called Project Fi [6],
where user devices can automatically access either of three
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'As an example, China Mobile reported for 2014 115.1% increase in
mobile data traffic and, at the same time, 10.2% profit reduction [4].

partner cellular networks (T-Mobile, Sprint and US Cellular)
or any available open WiFi network. Users are not charged
for WiFi, while they pay $10 per gigabyte of cellular data
usage. Additional plans that bundle WiFi and cellular data
are currently advertised by other small virtual carriers. For
example, Republic Wireless charges WiFi data alone at the
flat rate of $5, while the price increases up to $45 when bun-
dled with caps of cellular data (provided by Sprint’s cellular
network) and other services [7], [8]. Similarly, US Mobile
and Boingo offer cheap prepaid WiFi-only plans (at $10 flat
rate), especially suitable for users who travel frequently or
live a domestic lifestyle [9], [10]. Comcast advertises WiFi
on-demand passes to millions of access points (APs) that are
free for its subscribers but are priced from $3.95 per two hours
to $54.95 per month for non-subscribers [11].

The existence of so many models and solutions is not
surprising since there are several reasons favoring the use of
WiFi by carriers today. First, WiFi utilizes unlicensed spectrum
which is separate from licensed cellular bands. In fact, Federal
Communications Commission recently released an additional
100 megahertz of spectrum for WiFi usage [12]. Second, the
latest WiFi technology can provide a very high data rate. Third,
WiFi and cellular technology are continuously converging with
the development of mechanisms and protocols following the
specifications of the latest 3GPP releases [13], while this
integration is expected to be even higher in next-generation
networks [14].

To reap the potential benefits from WiFi technology, it
is required to incorporate it properly in cellular networks.
Indeed, many carriers today deploy their own WiFi APs to
offload traffic from cellular networks. To ease deployment and
keep costs low, carriers often cooperate with the owners of
crowded places such as shopping malls, restaurants and cafes
on AP deployment?>. When such venues are not available or
cooperation is not possible, carriers have the option to build
‘from the ground up’ new APs3. In this case, however, the AP
deployment cost increases to account for labor expenses, cost
of backhaul installation, power supply, etc.

The current deployment of WiFi APs by the carriers is
accomplished mainly in an ad hoc fashion using simple heuris-

2For example, AT&T has been cooperating with hotspot venues (such as
Starbucks) to install its own public WiFi APs [15].

3For example, see Facebook’s Express WiFi initiative targeting many
underserved areas around the world [16].

0090-6778 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2019.2919590, IEEE

Transactions on Communications

tic approaches (e.g., deployment to the densest areas and/or
venues where installation costs are the lowest). Therefore,
from a network perspective the resulting architecture is not
optimized. Additionally, it is not clear how much the mobile
users should be charged for using these auxiliary networks.
Charging cheaper the WiFi than the cellular access can be
regarded by the users as a discounted price and an incentive
to offload their data. However, the currently prevalent free-of-
charge WiFi access policy may result in significant opportunity
costs for the carriers as this traffic could yield non-negligible
revenue because of the users who would otherwise have
consumed their cellular data plans (opportunity cost).

It is clear from the above that there are currently many
key questions which we need to ask in a systematic way and
answer in a rigorous fashion, so as to be able to unleash
the power of the next-generation carrier-grade WiFi data
offloading solutions. In particular:

1) Which AP deployment policy maximizes the carrier

profit, i.e., the difference between revenue and costs?

2) How does the pricing policy affect the user demand for

WiFi and cellular data, and how can it be determined to
reduce opportunity costs but not offloading benefits?

The above questions remain open, since until now WiFi data
offloading has been an opportunistic solution. To answer these
questions, we need a valid mechanism to identify a set of AP
locations and prices, which takes into account the deployment
costs and the preferences of the users. However, users are often
unpredictable which makes difficult to model their demand
for WiFi and cellular data. Therefore, we need to investigate
different models for user demand, to ensure that out analysis
covers a wide spectrum of cases.

B. Methodology and contributions

In this paper we follow a systematic methodology in order
to overcome these obstacles and answer the above questions.
Motivated by new business models that leverage WiFi to
complement or increase cellular network capacity, we focus
on a virtual carrier like Google, Republic Wireless and US
Mobile. This carrier has the option to deploy WiFi APs to
reduce usage of other providers’ cellular networks and save
the respective payments. For the users, we describe three
alternative models to capture their demand at the WiFi APs.
Namely, we consider the Maximum-Surplus Demand (MSD),
Constant Elasticity Demand (CED) and Logit Demand (LD)
models which have been also used in studies of Internet
transit [17] and residential broadband [18] markets. For each
demand model, we formulate the Joint WiFi AP Deployment
and Pricing (JWDP) problem with the goal of maximizing the
carrier’s profit.

The complexity of the JWDP problem highly depends on
the demand model. For the MSD model, we show that the
optimal WiFi access price belongs to a finite set of values,
and derive an approximation algorithm using a connection to a
facility location-type problem [19]. We then present an optimal
solution in closed-form for the CED model, and show that the
optimal number of deployed APs is a decreasing function of

the AP deployment cost, the net carrier profit for delivering
data by the cellular infrastructure, the cost for delivering
data via WiFi APs, and the “sensitivity” of the users to price
changes. Finally, for the LD model we present a randomized
greedy based approximation algorithm by expressing the prob-
lem as the maximization of a submodular set function [20].
These solutions reveal the dependency of carrier profit on key
system parameters and provide insights to carriers or policy
makers.

We evaluate the performance of the proposed solutions us-
ing WiFi access patterns collected from real users. Referencing
cost and pricing information from several sources, we synthe-
size a variety of scenarios and investigate the impact of WiFi
in each scenario. The results we present clearly differentiate
situations in which WiFi can notably help carriers, and those
in which the gains are marginal. The main contributions of
this work can be summarized as follows:

o Joint WiFi Deployment and Pricing. We introduce the
JWDP problem that jointly derives WiFi AP deployment
and pricing policies to maximize the carrier’s profit, using
general and diverse models of user demand.

o Analytical and approximate solutions. We present an op-
timal solution to the JWDP problem for the CED model.
For the MSD and LD models, we present approximate
solutions by identifying non-trivial connections to facility
location and submodular function optimization problems
respectively.

e Dataset-driven evaluation. We use a dataset of WiFi
access patterns collected from real users and examine the
cost-benefit impact of our solutions in different scenarios.
We find that WiFi can help carriers reduce their costs,
while charging users about 50% lower than the cellular
service. Some small virtual carriers may even halve
their payments for using other’s cellular infrastructure.
However, deploying APs in an ad-hoc manner can lead
to a net loss for the carrier.

The rest of the paper is organized as follows: Section II
describes the system model and defines the JWDP problem
formally. In Section III, we present the optimal and approx-
imate solutions for the different demand models. We study
practical issues including the congestion of the APs in Section
IV. Section V presents our dataset-driven evaluation results,
while Section VI reviews our contribution compared to related
work. We conclude our work in Section VIL.

II. MODEL AND PROBLEM FORMULATION
A. Carrier model

We consider a virtual carrier (e.g., Google, Republic Wire-
less, US Mobile) that provides mobile data services in a certain
geographical area, as in Figure 1. The virtual carrier has to
pay its cellular provider (e.g., Sprint) for the data sent over
its network. The real payment information is proprietary, but
typically the billing is per unit of data [21]. We denote this
cost by ¢, ($/GB). The carrier charges users for the service at
the rate of p, > 0 ($/GB). For example, Google charges $10
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Fig. 1. Graphical illustration of the proposed model. Rectangles represent
candidate sites for WiFi AP deployment. Arrows indicate communication links
between users and WiFi APs or cellular base stations (BSs).

for each GB of data consumed to the nearest 0.01GB [6].* To
ensure the viability of the carrier, it should be p, > cy.

The carrier may deploy several WiFi APs to divert traffic
from the cellular network and reduce its costs. In practice,
the deployment will be constrained to a finite collection N
of N candidate sites. For example, APs can be deployed
in venues their owners have agreed to cooperate with the
carrier on AP installation or in sites the carrier has acquired
or leased for building new APs. The deployment cost will
be different depending on the scenario since different cost
factors are involved, e.g. wireless equipment purchase and
installation, backhaul link connection, site rental, labor cost,
repair/maintenance cost, etc. We note that some of these costs
represent capital investments (CAPEX) paid once while others
are operational costs (OPEX) paid multiple times, e.g., on a
monthly basis. To capture both types of cost, we take the
aggregate of the OPEX cost and the CAPEX cost amortized
for a period of study (one month). Then, we denote by d,, > 0
the monthly cost associated with the deployment of an AP at
site n € N.

The carrier requests a payment p, > 0 ($/GB) from the
users for the WiFi access, where p, is not necessarily equal
to py. Typically, p, will be lower than p;, (or even zero), which
can be regarded as a discounted price or an incentive for the
users to shift their data from the cellular to the WiFi network.
For example, by setting p, equal to p,/2, the carrier can
advertise this as billing only half of the data consumption if the
user voluntarily subscribes to a hybrid cellular/WiFi data plan.
We refer by p, the pricing policy of the carrier. Transmitting
data by an AP causes a servicing cost (e.g., due to energy
consumption), denoted by ¢, > 0 ($/GB), which is typically
lower than the cellular servicing cost (¢, < ¢p).

We introduce the variable z,, € {0,1} to indicate whether
an AP at site n is deployed (x,, = 1) or not (x,, = 0). These
variables constitute the deployment policy of the carrier:

x=(x, €{0,1}:neN). (D)
We also denote by M, C N the subset of sites where APs are

deployed, i.e., containing every site n with z,, = 1.

40ur work is focused on the volume-based pricing scheme where every unit
of data consumed is charged. Alternative schemes included time-dependent
pricing, data-cap pricing, bundled pricing of multiple services, etc.

B. User demand models

In response to the deployment policy (x) and the pricing
policy (pg), a portion of the user traffic will be directed to
the APs instead of the cellular base stations (BSs). We denote
by Q.(x,p,) the respective demand for the AP at site n.
Similarly, Qy(x,p,) specifies the demand for cellular BSs.
Intuitively, the lower the AP price p, and the higher the
number of deployed APs are, the more demand is offloaded
to the WiFi network (increasing Q,,(x, p,), ¥n) and the lower
the cellular network load becomes (decreasing Qp(x,p,)).
Nevertheless, uncovering the exact shape of the demand
functions is challenging. To ensure that our analysis covers a
wide spectrum of users, we consider three alternative demand
models: namely (i) maximum-surplus demand, (ii) constant
elasticity demand and (iii) logit demand models. Each demand
model comes with its pros and cons as we explain below.

i. Maximum surplus demand (MSD). The MSD model
has been widely used in the economics and marketing litera-
ture [22]. In this model, a seller offers a variety of products and
each consumer chooses a single product that yields the greatest
nonnegative surplus. The consumer surplus for a product is
defined as the difference between the consumer reservation
price (or the maximum monetary value she is willing to pay
for this product) and the price set by the seller. In the context
of mobile data service, the consumers are the subscribers of
the carrier (or users) and the choice is between the WiFi and
cellular networks.

Formally, we consider a set L of K mobile users. The
users are arbitrarily distributed within the area based on a
probability distribution that can be estimated by the carrier
(e.g., by analyzing historical location data). A user &k € K
can associate only to APs in communication range, where
Ni € N denotes the respective set of sites. Without loss of
generality, we consider all users to have the same demand for
data’, normalized to 1 (GB). A user k is willing to pay up to
lka > 0 ($/GB) for downloading data by a WiFi AP and up
to lgp > 0 ($/GB) by a cellular BS. The surplus of user k for
an AP is I, — pa, While it is [y, — p, for a BS. We consider
that [, — pp > 0, otherwise the user would have switched to
a different carrier.

User k will be served by a WiFi AP instead of a cellular BS
if this yields higher surplus, i.e., if there exists an AP n € N,
such that z,, = 1 and lxq, — pa > Iy — pp. Otherwise, user
k will be served by a BS. When more than one APs cover
the user, we pick the one that is closer to the user. We will
revisit the closest AP selection assumption in Section IV where
the impact of AP congestion will be studied. We denote with
n(k) € Ny U{b} the choice of user k based on the above rule,
where b indicates the cellular network. Then, the demand of
AP n can be written as:

Qn(T,po) = Z Lin(k)=n}s )

keKx

SThis is a mild assumption as users generating more demand than others
can be represented by multiple users in the /C set.
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Fig. 2. CED function example. The demand of an AP decreases with price,
with the function becoming steeper with 7.

where 1 is the indicator function, i.e., it is equal to one if
the condition in the subscript is true; otherwise zero. Similarly,
we can write the demand of the cellular network as:

Qp(x,pa) = Z Lin@r)=b} 3)
kex

Although plausible, the MSD model has a limitation; it
assumes that the location (N}, sets) and the amounts of money
that each user is willing to pay for WiFi and cellular data
(lkq and Iy, values) are known in advance. The latter requires
the estimation of 2K values, 2 values for each user. These
values essentially represent a distribution of demand in the
network the carrier needs to estimate. Accurate estimation may
be possible in regions with small population for which the
carrier can perform extensive surveys to gather the required
information. For large population of users, however, alternative
more scalable demand models are needed, as we discuss below.
ii. Constant elasticity demand (CED). The CED model is
derived from the alpha-fair utility model [23], [17]. This model
does not require fine-grained information about the location
and behavior of users and therefore it is more suitable for
large user populations than the MSD model. It only requires
the estimation of the following values; the price sensitivity
r € (1,400) and the valuation coefficient v,, for every AP
site n, i.e., N + 1 values in total. Specifically, the demand for

a WiFi AP n can be written as:

Qn(mvpa) = <Zn> 1{9:":1} . 4

a

where the demand will be zero for non deployed APs (x,, #
1). For a given price p, and sensitivity r, the demand will
be higher for sites with larger v,, values, capturing the users’
preferences among sites. For example, sites close to popular
venues are expected to attract more user demand (and hence
have higher v,,) than the rest. Higher values of r indicate
higher elasticity; users are more sensitive to changes in price
Po- In other words, when 7 is high users respond to price
changes in a more dramatic way. Figure 2 presents an example
of the CED function for an AP with v; = 5, and three values
of r, 1, 2 and 3.

The demand offloaded to the APs will be subtracted from
the original cellular network demand. Hence, the latter is
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Fig. 3. LD function example. The two APs “compete” for serving the same
demand.
written:
Qb(mapa) =K - Z Qn(mapa) ) (5
nENm
where, for simplicity, @we have assumed that

ZneNm Qn(z,pa) < K.

A feature of the CED model is that the demands of APs
are separable, i.e., changes in the demand of an AP have no
effect on the demand of the rest APs (cf. Eq. (4)). Thus, this
model is appropriate when the deployment of APs is sparse
and each user is in range with at most one AP. In dense AP
deployments, however, the users will be in range with multiple
APs meaning that there will be dependencies of the demand
across them. To capture such dependencies, we will also study
the following (more complicated, yet more accurate) demand
model.

iii. Logit demand (LD). The LD model is common in
the economic literature, and it has been recently used in
Internet transit [17] and residential broadband [18] studies.
The demand is probabilistically determined based on a set of
surplus values associated to the AP sites. Namely, the surplus
of the AP at site n is defined as the difference between the
utility value v,, and the payment p,. The probability that a
user will be assigned to the AP at site n is given by:

e'Un —Pa

— 1 . N
TS, o e pe Hen)

Sn (mvpa) (6)
i.e., the demand depends both on the surplus of the assigned
AP and the other deployed APs. Figure 3 presents an example
of the LD function for two APs where we fix the price p, to 5
and the valuation coefficient v; to 5, but we vary vs between
0 and 10. We observe that increasing the value of vy causes
more demand to be served by AP 2, while at the same time the
demand of AP 1 is reduced. In other words, as AP 2 becomes
more valuable for users, they shift their traffic from AP 1 to
AP 2. These dynamics cannot be captured by the CED model,
which assumes that the demands of the APs are separable.

The probability of assigning traffic to the cellular BSs will
be:

sp(x,pe) = 1— Z sn(T,pa) =

neNg

1
1 + ZnENw evnPa

)
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Therefore, the demand that will be offloaded to the AP at site
n is given by:

Qn(ﬂ%Pa) = Sn(mapa) K. ®)

Similarly, Qp(x, ps) = sp(x, ps) - K denotes the user demand
served by the cellular network.

LD requires the estimation of only NV values (the v,, values),
one for each possible AP site. Thus, similarly to CED, LD is
more suitable for large user populations than the MSD model.

C. WiFi AP Deployment and Pricing Problem

For any of the demand models, the carrier profit will be the
difference between revenue (payments) and costs:

H(w7pa) = Z ((pa - Ca)Qn(xapa) - dn)
nENg
+ (o — ) Qp(T, pa) - )

Since ¢, < c¢yp, the cost savings increase with the volume of
traffic offloaded to the WiFi APs. On the other hand, shifting
traffic to APs causes a revenue loss when p, < pp. Therefore,
the cost savings and revenue loss need to be balanced.

The Joint WiFi Deployment and Pricing (JWDP) problem
asks for jointly determining the values in  and p, in a way
that maximizes the carrier’s profit:®

matq.p, (x, pg) (10)
s.t.py >0, (11)
an € 10,1}, Yn e N . (12)

The solution will reveal how a carrier should deploy APs
and decide prices, and which parameters will affect the of-
floading benefits. This is a challenging optimization problem
that includes both discrete (x) and continuous (p,) variables.
Moreover, the objective function is in general non-linear due
to the presence of the demand functions in Eq. (9).

III. AP DEPLOYMENT AND PRICING POLICIES

In this section, we address the JWDP problem for each of
the demand models.

A. Approximate solution under MSD model

In this subsection, we present an approximate solution to
the JWDP problem under the MSD model. By approximate we
mean that there is a bound on the worst case performance of
the solution. We first need to formulate the problem in a mathe-
matical form that is amenable to efficient solution. To this end,
we introduce the auxiliary variable yy,, which depends on p,
and x and indicates whether user k& will offload her data to
WiFi AP n (yi, = 1) or not (yx, = 0). Similarly, y;, indicates
the decision for the cellular network. The respective vector of
variables is given by y = (ygn, : Vk € K, n € N U {b}).
Then, we obtain the following formulation.

5We note that we optimize only p, while treating p;, as constant and input
to our problem. This is because, p, typically depends on several different
factors that are our of scope of this paper such as the competition with other
carriers in the same market.

m}?ﬂ; Z ( Z(pa - Cu)ykn - dnxn) + Z(pb - Cb)ykb

neN kek keK
s.t. constraints: (11), (12)

yen = 0,Vk € K, n & Ny (13)
Ykn < Tn, Yk € K,n € N, (14)
Yn(lka = Pa) = Ykn Ik — pb), Yk € K,n € Ni (15)

S pm=1Vkek (16)
neN,U{b}
yen € {0,1},Vk € K,n € N U {b} (17)

Eq. (13) and (14) forbid users from offloading data to APs that
are out of communication range or APs that have not been
deployed. Eq. (15) ensures that a user will offload her data to
an AP n only if this yields higher surplus than the cellular
network. We emphasize that the offloading decision yg, is
made by the user not the carrier. Yet, the carrier can predict
this decision based on the MSD model which regards the
user as a self-interested entity who will pick the decision that
maximizes her own surplus. With recent technology advances,
the offloading decision can be coordinated by the carrier
which can assign the user to the AP having the currently best
available signal or the lowest load or based on other criteria
(e.g., see Google’s Project Fi service [6]). Finally, Eq. (16)
states that each user will be served once.

To solve this problem the following lemma is needed.
We defer the proofs to the Appendix that is available as a
supplementary material of this paper.

Lemma 1: In the optimal solution of the JWDP problem
under the MSD model it holds p, € {lga — (Ikp—ps) : €K}

Lemma 1 states that the optimal price p, belongs to a finite
set of values. Therefore, we can solve the JWDP problem by
computing for each of the K possibly optimal prices p, the
vectors (x, y) and then simply picking the price value that
yields the highest carrier profit. We note that if we pick a
price p, for which the difference p, — ¢, is lower than or
equal to p, — ¢, then the carrier will not be able to increase
its profit by offloading traffic from the cellular network to
the WiFi network. Hence, the optimal solution in this case
will be straightforward; simply deploy no APs and offload
no traffic (x, = 0, yrn, = 0 Vn, k), which yields carrier
profit equal to K(p, — ¢). For any other possibly optimal
price p, > pp — Cp + ¢4, computing the optimal values of
(x, y) is not straightforward. Interestingly, we can show that
this subproblem is equivalent to the following facility location-
type problem:

MAXUFLP [19]: We are given a set of potential facility
locations Z and a set of clients 7. Each client can be assigned
to at most one facility. A cost o; is associated with opening
a facility at location ¢ € Z and a revenue m,; is associated
with assigning client j to facility . The question is to find a
subset of facilities S C 7 to open and assign clients to open
facilities such that the total revenue minus cost is maximized.

Lemma 2: For a given pricing policy p, > py —cp 44, the
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Algorithm 1: Randomized Rounding for a given p,

1 if p, < pp — cp + ¢, then

2 Tn=0, Yyn =0Vn e N, ke K.
3 else
4 K= 0.
5 for k € K do
6 if lpq — Da > gy — pp then
7 \ K'=K' U{k}.
end

8 Let JWDP’ be the JWDP problem given p,
where we replaced K for K'.

9 | Let (xf,y") be the optimal solution to the linear
relaxation of JWDP',

10 For each AP n € N, set z,, = 1 with probability
1—2(v/2—1)(1 — ), otherwise z,, = 0.

11 For each user k € K', set yg,, = 1 for an AP

n € N with o, = 1 if it yields higher surplus
than the BSs, otherwise set yx, = 1.

end
12 return (x,y)

subproblem of computing the optimal values of (x, y) under
the MSD model can be reduced to the MAXUFLP.

The above lemma is important as it allows us to exploit
the approximation algorithms that have been proposed for
the MAXUFLP problem in order to solve our subproblem.
A linear relaxation and randomized rounding based algorithm
was shown to achieve an approximation ratio of 2(v/2 — 1) ~
0.828 for MAXUFLP in [19]. The approximation measure
used in this work is the ratio J}Z:: f”lz: where f?P% is the
objective value returned by the approximation algorithm, f°P?
is the optimal objective value and f™" is a lower bound
on the minimum objective value. In our problem, we can set
fmin = — > nen dn < 0, a case that appears when APs are
deployed to all the sites and no revenue is earned. Hence, we
obtain the following theorem.

Theorem 1: There is a solution to JWDP problem under the
MSD model with profit %% such that % > 2(v/2 -
1).

In the rest of this section, we describe the linear relaxation
and randomized rounding-based algorithm in the context of
our problem and present the pseudocode in Algorithm 1. This
algorithm will be executed K times, one time for each possible
optimal price p, (cf. Lemma 1). In the end, we simply pick
the price value that yields the highest carrier profit.

To start, for a given price p,, we check whether shifting
traffic from the cellular network to the WiFi APs can bring
benefit to the carrier (line 1). If not, the optimal solution
is simply to deploy no APs and offload no traffic (line 2).
Otherwise (line 3), we define with JWDP’ the instance of
the JWDP problem where we keep only the users whose
surplus is higher for the WiFi than the cellular network,
denoted by the K’ set (lines 4-8). Then, we introduce the linear
relaxation of the JWDP’ problem, which differs from JWDP’

#=22
sof  Pal
g% - P4
% 26+ : S T
£ .
! —ca=0.1
L r :
24 :é == =ca=1
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22 L

3 5 7 9
Price P, ($/GB)

Fig. 4. Profit for a single AP under the CED model.

in that the variables in « and y lie in [0, 1], i.e., constraints
(12) and (17) are replaced by z, € [0,1], Vn € N, and
Yrn € 10,1], Vk € K, n € N'U{b}. Having found an optimal
(fractional) solution to this problem, denoted by (', y") (line
9), we independently deploy an AP at each location n € N’
with probability 1 — 2(v/2 — 1)(1 — 2f) (line 10). Finally,
a user in K’ will be assigned to a deployed AP if it is in
communication range and yields higher surplus than the BSs
(line 11).

B. Optimal solution under CED model

We will show that the JWDP problem under the CED model
can be optimally solved in polynomial time.

Theorem 2: The optimal AP deployment and pricing policy
for the JWDP problem under the CED model can be found in
polynomial-time.

Proof: By substituting Eq. (4) and (5) into (9), the carrier
profit becomes:

II(x, pa) = n;;m ((pa —¢a) (Z:)T - dn)
+ (P — ) (K - ng\; (;:i)r) .

Then, we can differentiate Eq. (18) with respect to p, to find
the profit-maximizing price:

(18)

* r(pb —Cp + Ca)
Pa = r—1 '
Figure 4 illustrates the carrier profit for a single AP and
different prices p,. We set v1 = 1, d; = 1, r = 2, pp = 10,
¢y, =9 and K = 25. We compare three cases; the case when
the AP is not deployed (Baseline), and two more cases that
differ in the access cost ¢, of the AP. We find that when ¢, =
0.1 the profit-maximizing price p}, is 2.2, but increases to p} =
4 when ¢, = 1. This indicates that as the technology improves
the transmission capabilities and the cost falls, the operator
can offer lower prices, and we can quantify the exact prices.
We also find that lowering c, makes profit more sensitive to
the charged price, and hence the money loss due to possible
changes in the system parameter values will be greater.
By substituting p} into Eq. (18), the profit becomes:

19)
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H(“’:p:;) =
r—1

_(ree vt <7>
- r—1 Py b “ r(py — b + Ca)

- Z dn + (pp — cp) K .
neENg

.
> v

neNg
(20)

Here, deploying an AP at site n increases revenue by

rep—cptea) ey "v.” but incurs a
deployment cost d,,. In order to maximize profit, an AP should
be deployed at site n if and only if the increase in revenue is
higher than the deployment cost. Therefore, the optimal AP
deployment policy «* will be:

— Db+ Cb — Ca

1, ifv, > du .
r r(pp—cp+ca) —1
z) = (%*Pb“b*% Ty —cpFea)

0, otherwise

@n
|

Eq. (21) reveals how the deployment decisions depend on
the system parameters. It is not difficult to see that the right-
hand side of Eq. (21) increases monotonically with each one
of the terms d,,, pp — ¢p, ¢ and r. Therefore, we infer that the
optimal number of deployed APs is a decreasing function of
the deployment cost (d,,), the net profit for serving traffic by
the BS (py—cp), the WiFi link cost (c,) and the price sensitivity
(r).

Theorem 2 is important, since it states that the carrier can
optimally deploy APs by simply evaluating a condition for
each AP site. The overall complexity is O(N). Nevertheless,
as will show in the next subsection, the JWDP problem
becomes challenging under the LD model.

C. Approximate solution under LD model

In this subsection, we present an approximate solution to the
JWDP problem under the LD model. Our methodology is to
express the problem as the maximization of a submodular set
function. Before that, we need to describe the optimal pricing
policy (p,) for a given AP deployment policy (x). Specifically,
we prove the following lemma:

Lemma 3: For a given AP deployment x, the optimal
pricing policy under the LD model is given by:

Do =Wg+1+ca+ps—cp (22)

where

Wy = W( Z eUn*Ca*PbJer*l)
NENg

and W is the Lambert function, i.e., for any nonnegative z,
W (z) is the solution w satisfying z = we®. Moreover, the
optimal profit is given by:

IT" = Kwy + K(py — ) — Z d,,
neENg

(23)

(24)

Figure 5 illustrates the carrier profit for different prices p,
under the LD model. We assume a setting with two APs and
two values for the valuation v,,; 2 and 5. We further set ¢, = 1,

80F pdzl::—‘é
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. : e
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3 5 7 9
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Fig. 5. Profit for two APs under the LD model.

di =dy =1, p, =10, ¢, = 9 and K = 25. We observe
that the profit and the optimal price increase with v,,. In the
figure, the optimal price is p; = 3.46 for v; = vo = 2,
but increases to p; = 5 for v; = v2 = 5. In other words,
as the users value more the APs, they are willing to offload
more data at higher prices and this increases the carrier profit.
Nevertheless, making the p, value very large can even result
in lower profit compared to the case that none of the APs is
deployed (Baseline). This is because the high price discourages
most users from offloading data. Hence, the AP deployment
costs (dy and ds) can not be justified by the offloading cost
savings.

Building on this lemma, we now present a class of approxi-
mation algorithms. We begin with the definition of submodular
set functions:

Definition 1: Let G be a finite set of elements, which we
refer to as ground set. A set function f : 2¢ — R is
submodular if for all subsets A,B C G with A C B and
every element i € G\ B we have:

fLAU{i}) = f(4) = f(BU{i}) — f(B)

In other words, the marginal value for adding an element 7 in
a set decreases as the respective set expands. In our problem,
we define the ground set G as follows:

G=(X,:neN)

(25)

(26)

where element X, denotes the AP deployment at site n and
it is the equivalent of deciding x,, = 1. A subset of elements
X C @ corresponds to a deployment policy x, such that z,, =
1 if and only if X,, € X.

Let xx be the binary representation of the set of elements
X. Then, the objective in (10) can be written as a set function:

f(X) =mazxy,>oll(zx, pa)- 27)

We can show the following lemma:

Lemma 4: The set function f(X) is submodular.

Based on Lemma 4, the joint AP deployment and pricing
problem is equivalent to maximizing a submodular set function
f. There exist various approximation algorithms for this type
of problems, especially when f is a monotone function.
However, in our case, f is not necessarily monotone, since
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Algorithm 2: Randomized Greedy

1 A< 0,B+ G

2 forn=1t N do

3 AA <+ g(AU{un}) — g(A)

s | AB < g(B\ {un}) - g(B)

5 AA <+ max(AA,0), AB < max(AB,0)

6 with probability AA/(AA + AB)* do:

7 | A+ AU{u,}

8 else (with probabilityAB/(AA + AB)) do:
9 B+ B\ {un}

end
o return A (or equivalently B)

—

*If AA=AB =0, then AA/(AA+ AB) =1.

adding an element to a set X increases wy, , but at the same
time yields a deployment cost (cf. Eq. (24)). The balance
between these two factors determines whether the f value will
increase or decrease. Even without the monotonicity property,
there exist several algorithms with provable approximation
guarantees for maximizing submodular functions requiring
only the function f to be nonnegative. For example, a ran-
domized greedy based algorithm was shown to achieve an 1/2
approximation bound in [20]. This means that the ratio of the
value of the approximate solution over the optimal solution
value is always at least 1/2, namely f®/fort > 1/2.

However, in our problem, f can take negative values. The
lowest value is f™" = — Y nen dn <0, a case that appears
when APs are deployed to all sites and no data is offloaded.
Hence, the above approximation bound does not hold. An
idea is to maximize a normalized (non-negative) submodular
function g where g(X) = f(X) + f™" instead of f. Then,
it is easy to show that the approximation bound holds for the
expression %

Theorem 3: There is a solution to JWDP problem under LD
model with profit % > %

As we summarize in Algorithm 2, the randomized greedy
based algorithm proceeds in NV iterations that correspond to
some arbitrary order uy,...uy of the ground set G. At each
iteration, it maintains two solutions A and B, which are
initialized to () and G respectively. At the n'" iteration, the
algorithm either adds u,, to A or removes u,, from B. This
decision is being made randomly based on the marginal gain
of each of the two options. Eventually, after NV iterations both
solutions coincide, and we get A = B; this is the output of
the algorithm.

IV. IMPACT OF AP CONGESTION

So far, we employed a practical model that is accurate when
the demand is lower than the available capacity, as in (sub)
urban areas where the APs are supported by high-bandwidth
backhaul lines’. This model can be easily augmented with

7A typical carrier-grade AP has several tens of Mbps of wireless capacity
and is supported by a backhaul of similar capacity [24].

T}

SetL SetR

Fig. 6. Finding the optimal offloading policy y under the MSD model is
equivalent to a maximum bipartite matching with node sets L and R. The
node set L consists of the users whose surplus for WiFi is higher than cellular
data (i.e., lxq — Pa > lgp — Pp). The node set R contains B, nodes for each
deployed AP (i.e., x, = 1). Each user-node is connected to the AP-nodes
that are in communication range (i.e., n € N3).

additional components to account for practical constraints. For
example, an AP may not be capable to serve all the user traffic
in its neighborhood and have risk to become congested. To
handle such cases, a bandwidth capacity bound B,, can be
applied on the traffic offloaded to each AP n € N This should
be incorporated into the definition of the demand models and
the problem formulation. Below, we describe how this can be
accomplished for the MSD model.

Formally, the set of constraints in (11)-(17) is expanded to
include the following bandwidth capacity constraint.

Zyknan, YneN

ke

(28)

The above constraint makes the JWDP problem more complex.
On the positive side, Lemma 1 still holds as its proof depends
only on constraint (15). Hence, as we explained in Subsection
III-A, in order to solve it suffices to compute for each possibly
optimal price p, the vectors («,vy). This subproblem will be
again a facility location type problem like MAXUFLP. The
only difference is that each facility can serve up to a number
of clients, corresponding to the capacity of the respective AP.

The capacitated facility location problem has been exten-
sively studied in the literature (e.g., see [25]). Interestingly,
recent studies have shown that this problem can be casted
as the maximization of a submodular function [26], [27].
Therefore, it can be solved by running the same randomized
greedy algorithm used for the LD model (Algorithm 2). The
only difference is that f(X) will be the carrier profit under
the MSD model, rather than the one given by Eq. (24).

To understand this, note that for a given pricing p, and
AP deployment x, the optimal offloading policy y can be
computed in polynomial time by solving a bipartite matching
problem, as it is depicted in Figure 6. Therefore, we can
express the carrier profit under the MSD model as a function
of the deployment policy only:

J(X) = maz(y.a3)-am),esnl(xx,pe,y)  (29)
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Fig. 7. A 500mx500m area with 15 WiFi APs [28].

This can be shown to be a submodular function using the
same arguments used in [26], [27]. Therefore, we obtain the
following proposition.
Proposition 1: There is a solution to the capacitated version
of the JWDP problem under the MSD model with profit
1

fap:cifrn'.in 1
foptifnwn - 92 . . .

In the next section, we will evaluate the impact of AP
capacities on the efficiency of the deployment and pricing

decisions.

V. DATASET-DRIVEN EVALUATION

We evaluate the impact of the proposed methods using
a dataset of WiFi access patterns collected from real users.
The evaluations cover a number of deployment cost and
population density scenarios, which lead to an understanding
of how the impact varies in different regions. We find that
in mature wireless Internet markets deploying APs can be an
effective mechanism for carriers to reduce their costs. Some
virtual carriers can even halve their payments for using other
carriers’ cellular infrastructure, while charging users about
50% lower than the cellular service. However, deploying APs
in a heuristic (ad-hoc) manner can actually lead to a net loss
for the carrier, especially in less mature markets where the
AP deployment or access costs are higher. In the rest of
this section, we discuss these results in detail; we begin by
describing the setup used in the later evaluations.

A. Evaluation setup

Since we do not know the valuation coefficient values Iy,
{1y and v,,, which are introduced in Section II, we will extract
them from the public WiFi access dataset in [28]. This dataset
contains information from approximately 275 mobile users for
an 11 week period. Specifically, each active user records every
20 seconds all the WiFi APs that are detected by her device.
In total, more than 400 APs are detected. For each AP, its
geographical location, described by a pair of (X,Y) values
(measured in meters), is also recorded. For our evaluation, we
consider a certain subarea in [28] with dense AP deployment
depicted in Figure 7. To facilitate presentation, we shifted the
point (X,Y)=(1698270,259950) to the zero coordinates. For
each AP, we consider a candidate site for AP deployment,
which yields N = 15 sites. We keep the data of the busiest

0.8f

0.6f

CDF

0.47

0.2

0 5 10 15 20
Temporal coverage (minutes)

Fig. 8. The cumulative distribution function (CDF) of the temporal coverage
in [28].

day, namely the day of 16 October, and during peak-time,
i.e., between 18pm and 23pm. We focus on this subset of the
dataset for two reasons; (i) it represents a scenario with high
user activity for which WiFi data offloading is needed most,
and (ii) by limiting the number of AP sites we can apply
exhaustive search to find the optimal solution in reasonable
time. This is important, since it allows us to measure the
optimality gap of the proposed algorithms.

We refer to the average time duration within which a user
is covered by the WiFi AP at a site n in the dataset as
the temporal coverage of this site, denoted by tc,, (minutes).
Intuitively, the offloading benefits of deploying an AP at site
n increase with tc,,, since users can offload data more often.
Therefore, it is important to quantify this metric. Figure 8
shows the cumulative distribution function (CDF) of it for
the considered 5-hour peak-time period. We observe a high
disparity of the temporal coverage across the APs; for the less
contacted AP tc,, is less than 1 minute, whereas on the upper
extreme it is 20 minutes.

We will use the tc,, collected values to set up our evalua-
tions. Since the dataset does not contain information about the
data volumes of the users we will generate them artificially.
Specifically, to model a realistic dense city scenario, we
consider a population density equal to 12,000 mobile users
per square mile, as in [29]. This results in K = 1158 mobile
users in the 500mx500m area of the dataset. As a canonical
scenario, we set the peak-time data traffic of each mobile
user to 1GB/month [2]. We then randomly place the mobile
users within the coverage regions of the APs following the ¢,
values (and this way we form the respective N}, sets).

To find the valuation coefficient values of the demand
models, we follow a similar method to [17]. First, we assume
that the carrier charges p, = 5 $/GB and p, = 10 $/GB
for downloading data from the WiFi and cellular network
respectively. These prices are consistent with the current prices
of small virtual carriers in the US market ([7], [8]). In response
to the above prices, we assume that 80% of the traffic is
directed to the WiFi network. This number is inline with recent
reports about the WiFi traffic volume of virtual carriers [30].
To determine the volume of offloaded traffic by each AP n,
we make the reasonable assumption that this is proportional
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Fig. 9. Results for the CED model. (a) The impact of varying deployment cost on carrier profit. The distribution of demand over cellular
and WiFi networks for (b) different servicing costs and (c) different price sensitivity parameters.

to its tc, value. For the CED model we obtain (cf. Eq. (4)):

(

tcy,
= -0.80-1158
ZnEN ten )
Unless otherwise specified, the price sensitivity parameter 7 is
set to 2. Similarly, for the LD model we obtain (cf. Eq. (6)):

te, - 0.80 - 1158
ZnEN ten

Finally, for the MSD model, the Iy, value is picked ran-
domly between $5 and $10 for 80% of the users, while for
the rest 20% it is picked between $0 and $5. The Iy is always
10 $/GB.

The cellular network access cost ¢y, is set to 8.0$/GB which
is reasonable considering a 20% profit margin. The AP access
cost ¢, and the deployment costs d,, are varied throughout the
evaluation. Unless otherwise specified, we set ¢, = 0.1¢;, and
d,, = 120$/month (amortized) [29].

We will evaluate the following AP deployment and pricing
algorithms:

1) Baseline: None WiFi AP is deployed. All users are
served by the cellular network.
Randomized-rounding: Applies only to the MSD model.
The joint AP deployment and pricing policy is found by
running Algorithm 1, described in Section III-A.
Randomized-greedy: Applies only to the LD model and
the capacitated case of the MSD model. The joint
AP deployment and pricing policy is set by running
Algorithm 2, described in Section III-C.
Optimal: The optimal solution to the JWDP problem.
For the CED model, this is found based on the procedure
in Theorem 1. For the rest models, Optimal is found
through exhaustive search of the solution space. Since
the required running time is exponential to the number
of AP sites, Optimal is only used as a benchmark for
gauging the performance of the proposed solutions and
determining if there is still room for improvement.
5) Ad-hoc: This algorithm is used for comparison with the
above proposed algorithms. The WiFi APs are deployed

ced __

1
= T
n

v “Pa - (30)

vl = pg + log( ) —log(0.20 - 1158) . (31)

2)

3)

4)

uniformly at random across the candidate sites, while
the optimal price is selected.

6) High-density: This algorithm deploys the same number
of WiFi APs with the Ad-hoc algorithm but picks the
sites with the highest user demand instead of random
sites. The optimal price is selected.

We remark that our evaluation code is publicly available
online in [31] to facilitate future experimentation with WiFi
data offloading solutions.

B. Evaluation results

We will evaluate the carrier profit achieved by the above
algorithms under different demand models, while varying the
AP deployment and servicing costs, the population density and
the price sensitivity of users. The results will be presented
separately for each demand model. We begin with the CED
model.

Results for the CED model: Figure 9(a) depicts the carrier
profit for different AP deployment costs d,, € [0,200] $/month
Vn. We note that these d,, values are amortized and inline
with recent reports [29]. Higher d,, values typically refer to
less mature markets where the absence of extensive wireline
infrastructure may result in higher costs for the backhaul AP
deployment. As expected, increasing the deployment costs
reduces the carrier profit for all the algorithms, but the Base-
line. In mature markets (with low d,, values), deploying APs
via the Optimal algorithm can even double the carrier profit
compared to Baseline. Deploying APs in an ad-hoc manner
may yield up to 26% lower carrier profit than Optimal. In less
mature markets, ad-hoc AP deployment can even lead to a
net loss for the carrier (up to 11% lower profit compared to
Baseline). Deploying APs to the sites with high user density
achieves close to optimal carrier profit (up to 5% gap in
the considered scenario), showing that this can be a practical
deployment solution in certain cases. We need to emphasize,
however, that for the evaluation of the High-density and Ad-
hoc schemes we used the optimal price p, uncovered by our
analysis (equation (19)). The performance of these schemes
will worsen arbitrarily if suboptimal prices are picked.
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Fig. 10. Results for the LD model. (a) The impact of varying deployment cost on carrier profit. The distribution of demand over cellular

and WiFi networks for (b) different servicing costs and (c) different population density scenarios.

We next explore how the ratio ¢,/¢, of servicing costs
impacts the results (Figure 9(b)). Here, we keep ¢, = 8 $/GB
constant, but we vary ¢, within {0.1¢p,0.2¢4,0.3¢,}. The
vertical axis depicts the percentage of user data demand served
by the WiFi and cellular network in each case, corresponding
to Optimal algorithm. We observe that increasing the c, cost
reduces the percentage of demand served by the WiFi APs,
e.g., from 57.5% when ¢, = 0.1cy to 21.4% when ¢, = 0.3¢c,.
This can be explained by the fact that the carrier increases
the p, price by 3.2$/GB (from 5.6 to 8.8 $/GB) in response
to the increase in ¢, cost (cf. Eq. (19)). This will discourage
some users from offloading mobile data, which in turn causes
a reduction in the profit gains over Baseline (from 39.1% to
10.9%).

The CED model we use relies on the price sensitivity
parameter (7). Therefore, it is important to analyze how the
results are affected by varying this parameter. Towards this
goal, we repeat the experiments for r € {1.5,2.0,2.5} (Figure
9(c)). We observe that the optimal price p}, decreases with r
(cf. Eq. (19)), ranging from 8.4$/GB to 4.7$/GB, less than
half of the cellular network price. In other words, the more
sensitive the users are to changes in price, the lower the p},
price and the higher the portion of demand served by the APs
become.

Results for the LD model: We now repeat the experiments
for the LD model. We find that the curve of carrier profit
versus deployment costs is similar to the CED model (Figure
10(a)). A difference is that the benefits of the WiFi deployment
algorithms over Baseline are slightly higher in absolute value
for the LD model. The proposed algorithm (Randomized-
greedy) operates very close to Optimal (less than 1% gap) and
significantly better than Baseline (up to 96% gap). The gap
from the Ad-hoc and High-density schemes is also significant
(up to 21% for d,, = 200), showing the merits of the proposed
optimization approach. High-density performs better than Ad-
hoc for low deployment costs, yet these benefits vanish as
deployment costs increase.

Similar results about the impact of servicing costs are
observed in Figure 10(b). Again, the increase in WiFi servicing

cost will result in an increase in price p,. This increase in
Po is smoother (from 5.4$/GB to 6$/GB) than was under the
CED model. Therefore, the respective change in demand is
smoother as well.

The numerical results presented so far focused on a dense
city scenario with high population density. To analyze how
the results vary in different regions, we synthesize a second
scenario of a sparse city with population density equal to
5,000 (instead of 12, 000) people per square mile [29]. Figure
10(c) shows the distribution of demand over cellular and WiFi
networks achieved by Randomized-greedy algorithm in each
scenario. We observe that the profit gains over Baseline are
higher in the dense city than in the sparse, since the need for
offloading data in the former is greater. This observation is
consistent with the fact that offloading mechanisms have ex-
isted for a long time in densely populated areas. In particular,
the gains increase from 34.2% (sparse city) to 55.3% (dense
city).

Results for the MSD model: Figure 11(a) shows the carrier
profit versus AP deployment cost curve for the MSD model.
The proposed Randomized-rounding algorithm achieves an
optimal or near-optimal solution for all the deployment costs
(less than 1% gap). Besides, it performs significantly better
than Baseline, Ad-hoc and High-density algorithms. The profit
gains are up to 45% for the Baseline and Ad-Hoc algorithms,
and up to 15% for the High-density algorithm.

At this point, we emphasize that the three considered
demand models take different information as input and, hence,
the respective proposed algorithms make different decisions.
Figure 11(b) shows the number of APs deployed for each
demand model. We observe that the CED-based algorithm
typically deploys more APs than the MSD-based algorithm,
while the LD-based algorithm deploys fewer APs. This is
an interesting result since it reveals that depending on the
demand model used, the solution tends to overprovision or
underprovision the WiFi network. Among the three demand
models, MSD requires the most fine-grained information as
input. The lack of complete information by the CED and LD
models results in up to 16% and 15% lower profit compared
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Fig. 11. Results for the MSD model. (a) Carrier profit for different deployment costs. (b) The number of deployed APs for different
demand models. (c) The impact of AP capacity (as a percentage of the total data demand in the network) on carrier profit.

to MSD in the above experiment.

Finally, we investigate the impact of AP capacities on the ef-
ficiency of AP deployment and pricing decisions. Figure 11(c)
compares the carrier profit achieved by the two approximation
algorithms we proposed for the MSD model; one that neglects
capacity constraints (capacity-agnostic) and one that considers
these constraints (capacity-aware). The labels along the curves
indicate the number of deployed APs in each case. When
the capacities are very low (< 20% of the total demand),
the deployment cost cannot be justified by the offloading
benefits, and hence none AP is deployed by the capacity-
aware algorithm. The number of deployed APs increases with
the capacities (from 0 to 9) up to a point where it starts to
decrease (from 9 to 6). Neglecting AP capacities can result in
underprovisioning or overpsosioning the WiFi network, which
can cause up to 18% profit loss.

VI. RELATED WORK

Existing measurement studies [32] have shown that in urban
areas WiFi can offload about 65% of mobile data, and have
quantified the performance benefits of this approach. Despite
this momentum, the AP deployment issue has received little
attention thus far. There are only few systematic studies
for sophisticated AP deployment. For example, the works
[33], [34], [35], [36] and [37] analyzed such network design
problems and proposed meaningful solutions. Nevertheless,
these works do not consider the economic aspects of WiFi
data offloading neglecting that the consensus of the end-users
is required to offload their data.

Recently, several works have studied the economic aspects
of WiFi data offloading. Schemes that lease third-party owned
WiFi APs have been proposed in [38], [39], [40], but again
neglecting end-user consensus. The works in [41] and [42]
proposed monetary compensations for the end-users so as to
delay their transmissions until they reach a WiFi AP, and hence
increase the offloading benefits for the operators. A queueing
analytic model for the performance of delayed mobile data of-
floading has been proposed in [43]. The economic interactions
among the WiFi AP owners, advertisers and end-users, when
the latter watch advertisements in exchange of the free usage of

WiFi, have been studied in [44]. The economic consequences
of opportunistic WiFi data offloading for both carriers and end-
users have been analyzed in [5]. Nevertheless, these works do
not consider jointly all the aspects that affect the end-users’
decisions, and most importantly do not correlate them with
the AP deployment strategies.

VII. CONCLUSION

This paper introduced a new methodology for designing
carrier-grade WiFi deployment and pricing policies. Despite
the importance and momentum of WiFi, the deployment issue
has received little attention by previous works. We addressed
this problem for general and diverse models of user demand
using both off-the-shelf (e.g., facility-location algorithms ap-
propriately tailored to our problem) and new optimization ap-
proaches. Some of the presented results might be of indepen-
dent interest. For example, the proof of submodularity under
the LD model may be exploited for other network design and
economic problems. Dataset-driven evaluations demonstrated
that deploying WiFi can be an effective mechanism for carriers
to reduce their costs. Some virtual carriers can even halve their
payments for using other carriers’ cellular infrastructure, while
charging users about 50% lower than the cellular service.
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