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Abstract—The proliferation of innovative mobile services such

as augmented reality, networked gaming, and autonomous driv-

ing has spurred a growing need for low-latency access to comput-

ing resources that cannot be met solely by existing centralized

cloud systems. Mobile Edge Computing (MEC) is expected to

be an effective solution to meet the demand for low-latency

services by enabling the execution of computing tasks at the

network-periphery, in proximity to end-users. While a number

of recent studies have addressed the problem of determining

the execution of service tasks and the routing of user requests

to corresponding edge servers, the focus has primarily been

on the efficient utilization of computing resources, neglecting

the fact that non-trivial amounts of data need to be stored to

enable service execution, and that many emerging services exhibit

asymmetric bandwidth requirements. To fill this gap, we study

the joint optimization of service placement and request rout-

ing in MEC-enabled multi-cell networks with multidimensional

(storage-computation-communication) constraints. We show that

this problem generalizes several problems in literature and

propose an algorithm that achieves close-to-optimal performance

using randomized rounding. Evaluation results demonstrate that

our approach can effectively utilize the available resources to

maximize the number of requests served by low-latency edge

cloud servers.

I. INTRODUCTION

A. Motivation

Emerging distributed cloud architectures, such as Fog and
Mobile Edge Computing (MEC), push substantial amounts
of computing functionality to the edge of the network, in
proximity to end-users, thereby allowing to bypass fundamen-
tal latency limitations of today’s prominent centralized cloud
systems [1]. This trend is expected to continue unabated and
play an important role in next-generation 5G networks for
supporting both computation-intensive and latency-sensitive
services [2].

With MEC, services can be housed in wireless base stations
(BSs) endowed with computing capabilities (or edge servers
close to BSs) that can be used to accommodate service requests
from users lying in their coverage regions. The computation
capacity of BSs, however, is much more limited than that
of centralized clouds, and may not suffice to satisfy all user
requests. This naturally raises the question of where to execute
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Fig. 1: An example MEC system. Service placement and
request routing are constrained by the storage, computation
and bandwidth resources of BSs.

each service so as to better reap the benefits of available
computation resources to serve as many requests as possible.

While there have been several interesting approaches to
determine the execution (or offloading) of services in MEC,
e.g., [3] and [4], to cite two of the most recent, an impor-
tant aspect has been hitherto overlooked. Specifically, many
services today require not only the allocation of computation
resources, but also a non-trivial amount of data that needs
to be pre-stored (or pre-placed) at the BS. In an Augmented
Reality (AR) service, for example, the placement of the object
database and the visual recognition models is needed in order
to run classification or object recognition before delivering
the augmented information to the user [5]. Yet, the storage
capacity of BSs may be not large enough to support all offered
services.

The above issue is further complicated by the communi-
cation requirements of the services. Many modern services
require uploading data from the user to be used as input for
service execution, whose output must then be downloaded for
consumption by the user. Such bidirectional communication
may be asymmetric in general, taking up different portions of
BSs’ uplink and downlink bandwidth capacities [6].

In addition, the density of BSs has been increasing and is
expected to reach up to 50 BSs per km2 in future 5G deploy-
ments [7]. This will create a complex multi-cell environment
where users are concurrently in range of multiple BSs with
overlapping coverage regions, and hence the operator can use
multiple paths to route services to them. Figure 1 illustrates
an example of such a system.

Evidently, in this context, MEC operators have a large
repertoire of service placement and request routing alternatives



for satisfying the user requests. In order to serve as many
requests as possible from the BSs, the operator has to jointly
optimize these decisions while simultaneously satisfying stor-
age, computation, and communication constraints. Clearly,
this is an important problem that differs substantially from
previous related studies (e.g., see [3], [4] and the survey
in [1]) that did not consider storage-constrained BSs and
asymmetric communication requirements. While a few recent
works [8], [9], [10] studied the impact of storage in MEC, they
neither considered all the features of these systems discussed
above nor provided optimal or approximate solutions for the
joint service placement and request routing problem.

Given the above issues, the key open questions are:
• Which services to place in each BS to better utilize its

available storage capacity?
• How to route user requests to BSs without overwhelming

their available computation and (uplink/downlink) band-
width capacities?

• How the above decisions can be optimized in a joint
manner to offload the centralized cloud as much as
possible?

B. Methodology and Contributions
In this paper, we follow a systematic methodology in order

to answer the above questions, summarized as follows.
1) We formulate the joint service placement and request

routing problem (JSPRR) in multi-cell MEC networks
aiming to minimize the load of the centralized cloud.
We consider practical features of these systems such
as overlapping coverage regions of BSs and multidi-
mensional (storage, computation, and communication)
resource constraints.

2) We identify several placement and routing problems
in literature that are special cases of JSPRR, gaining
insights into the complexity of the original problem.

3) Using randomized rounding techniques [11], we develop
a bi-criteria algorithm that provably achieves approxima-
tion guarantees while violating the resource constraints
in a bounded way. To the best of our knowledge, this is
the first approximation algorithm for this problem.

4) We extend the results for dynamic scenarios where the
user demand profiles change with time, and show how
to adapt the solution accordingly.

5) We carry out evaluations to demonstrate the performance
of the proposed algorithm. We show that, in many
practical scenarios, our algorithm performs close-to-
optimal and far better than a state-of-the-art method
which neglects computation and bandwidth constraints.

The rest of the paper is organized as follows. Section II
describes the system model and defines the JSPRR problem
formally. We analyze the complexity of this problem and
present algorithms with approximation guarantees in Section
III and IV, respectively. Section V discusses extensions of
our results and practical cases, while Section VI presents our
evaluation results. We conclude our work in Section VII.

II. MODEL AND PROBLEM DEFINITION

We consider a MEC system consisting of a set N of N

BSs equipped with storage and computation capabilities and a

set U of U mobile users, subscribers of the MEC operator, as
depicted in Figure 1. The users can be arbitrarily distributed
over the coverage regions of BSs, while the coverage regions
may be overlapping in dense BS deployments. We denote by
N

u

✓ N the set of BSs covering user u.
We consider multiple types of resources for BSs. First, each

BS n has storage capacity R

n

(hard disk) that can be used
to pre-store data associated with services. Second, BS n has a
CPU of computation capacity (i.e., maximum frequency) C

n

that can be used to execute services in an on-demand manner.
Third, BS n has uplink (downlink) bandwidth capacity B

"
n

(B#
n

) that can be used to upload (download) data from (to)
mobile users requesting services.

The system offers a library S of S services to the mobile
users. Examples include video streaming, augmented reality
and networked gaming. Services may have different require-
ments in terms of the amount of storage, CPU cycles, and
uplink/downlink bandwidth. We denote by r

s

the storage
space occupied by the data associated with service s. The
notation c

s

indicates the required computation, while b

"
s

and
b

#
s

indicate the uplink and downlink bandwidth required to
satisfy a request for service s, respectively.

The system receives service requests from users in a
stochastic manner. Without loss of generality, we assume that
each user u performs one request for a service denoted by
s

u

1. User requests can be predicted for a certain time period
(e.g., a few hours) by using well-studied learning techniques
(e.g., auto-regression analysis) [8]. Yet, the user demand can
change after that period as the users may gain or lose interest
in some services. We provide more details about this issue in
Section V.

The request of user u can be routed to a nearby BS in
N

u

provided that service s

u

is locally stored and the BS has
enough computation and bandwidth resources. If there is no
such BS, we assume that the user can access the centralized
cloud, which serves as a last resort for all users. Accessing the
cloud, however, may cause high delay due to its long distance
from the users, and therefore should be avoided.

The network operator needs to decide in which BSs to
place the services and how to route user requests to them. To
model these decisions, we introduce two sets of optimization
variables: (i) x

ns

2 {0, 1} which indicates whether service
s is placed in BS n (x

ns

= 1) or not (x
ns

= 0), and (ii)
y

nu

2 {0, 1} which indicates whether the request of user u

is routed to BS n (y
nu

= 1) or not (y
nu

= 0). Similarly, we
denote by y

lu

the routing decision for the cloud. We refer by
service placement and request routing policies to the respective
vectors:

x = (x

ns

2 {0, 1} : n 2 N , s 2 S) (1)
y = (y

nu

2 {0, 1} : n 2 N [ {l}, u 2 U) (2)

The service placement and request routing policies need to
satisfy several constraints. First, each user request needs to be
routed to exactly one of the nearby BSs, or the cloud:

X

n2Nu[{l}

y

nu

= 1, 8u 2 U (3)

1If a user performs multiple requests, we can split it into multiple users.



Second, in order for the request of user u to be routed to a
BS n, the service s

u

needs to be placed in the latter:

y

nu

 x

nsu , 8n 2 N , u 2 U (4)

Third, the total amount of data of services placed in a BS must
not exceed its storage capacity:

X

s2S
x

ns

r

s

 R

n

, 8n 2 N (5)

Fourth, the total computation load of user requests routed to
BS n must not exceed its computation capacity:

X

u2U
y

nu

c

su  C

n

, 8n 2 N (6)

Fifth, the total bandwidth load of user requests routed to BS n

must not exceed its uplink and downlink bandwidth capacity:
X

u2U
y

nu

b

"
su

 B

"
n

, 8n 2 N (7)

X

u2U
y

nu

b

#
su

 B

#
n

, 8n 2 N (8)

The goal of the network operator is to find the joint
service placement and request routing policy that maximizes
the number of requests served by the BSs, or, equivalently,
minimizes the load of the cloud:

min

x,y

P
u2U y

lu

(9)

s.t. constraints: (1) � (8)

We refer by JSPRR to the above problem. This is an in-
teger optimization problem and such problems are typically
challenging to solve. In the next two sections, we analyze
the complexity of this problem and propose approximation
algorithms.

III. COMPLEXITY ANALYSIS

The JSPRR problem is NP-Hard since it generalizes the
knapsack problem [12] by comprising multiple packing con-
straints (inequalities (5)-(8)). The problem remains challenging
even when simplified by the assumption of homogeneous (unit-
sized) service requirements, i.e., r

s

= c

s

= b

"
s

= b

#
s

= 1

8s. This simplified problem includes as special cases several
well-studied placement and routing problems in literature,
which shows the universality of our model. Subsequently, we
describe several such special cases. We begin with the (rather
trivial) special case of non-overlapping BS coverage regions
before diving into more challenging special cases.

A. Special case 1: Non-overlapping BS coverage regions
In the first special case, we make the simplifying assumption

(in addition to the homogeneity of service requirements) that
the coverage regions of the BSs do not overlap with each other.
This particularly applies to sparse BS deployments where the
BSs are located far away one from the other. It follows that
the JSPRR problem can be decomposed into N independent
subproblems, one per BS n. The objective of subproblem n is
to maximize the number of requests served by BS n.

It is not difficult to show that there is always an optimal
solution to subproblem n that places in BS n the R

n

most
locally popular services, i.e., the services requested by most
users inside the coverage region of BS n. Then, BS n will
admit as many requests for the placed services as its compu-
tation and bandwidth capacities C

n

, B"
n

and B

#
n

can handle,
i.e., min{C

n

, B

"
n

, B

#
n

} requests at most. Indeed, consider a
solution that places in BS n a service s1 requested by fewer
users inside the respective coverage region than another service
s2. Then, one could swap the two services in the placement
solution and route the same number of requests to BS n

without changing the objective function value. Therefore, the
JSPRR problem is trivial to solve in this special case.

B. Special case 2: Data placement/caching problem
In the second special case, we allow the coverage regions of

BSs to overlap, but we make the simplifying assumption that
the computation and bandwidth resources are non-congestible,
i.e., they always suffice to route all user requests to BSs. In
other words, we assume that the capacities C

n

, B"
n

and B

#
n

are greater than or equal to the demand of users, so that we
can remove constraints (6)-(8) from the problem formulation
without affecting the optimal solution.

Without the computation and bandwidth constraints, the
placement and routing problem becomes much simpler. For
a given service placement solution x, finding the optimal
request routing policy y is straightforward; simply route each
user request to a nearby BS having stored the requested
service, if any, otherwise to the cloud. This special case has
been extensively studied in literature under the title ‘data
placement’ [13] or ‘caching’ problem [14]. This problem
asks to place data items (services) to caches (BSs) with the
objective of maximizing the total number of requests served
by the caches.

While the data placement problem is NP-Hard, several
approximation algorithms are known in literature. The main
method used to derive such approximations is based on show-
ing the submodularity property of the optimization problem.
That is, to show that the marginal value of the objective
function never increases as more data items are placed in
the caches. Having shown the submodularity property, several
‘classic’ algorithms can be applied, with the most known being
greedy, local search, and pipage rounding [14]. Among the
three algorithms, the greedy is the simplest and fastest, and,
hence, the most practical.

C. Special case 3: Middlebox placement problem
In the third special case, we allow the coverage regions of

BSs to overlap and the computation and bandwidth resources
to be congestible, but we make the simplifying assumption
that the storage capacities are unit-sized (R

n

= 1 8n). That
is, we assume that only one service can be stored per BS.

Under this special case, the JSPRR problem can be reduced
to the ‘middlebox placement’ problem [15], [16]. While there
exist many different variants of the middlebox placement
problem in literature, typically, this problem asks to pick l

out of m nodes in a network to deploy middleboxes. The goal
is to maximize the total number of source-destination flows



(out of f flows) that can be routed through network paths
containing at least one middlebox, subject to a constraint that
limits the number of flows per middlebox.

Although the reduction is not so straightforward, the main
idea is to create: (i) a distinct node for each pair of a BS and
a service (m = NS) and (ii) a distinct flow for each user
(f = U ). Each flow can be routed through any node whose
BS-service pair satisfies that the BS covers the respective user
and the service is the requested by the user. The question is
which l = N out of the m = NS nodes to pick to deploy
middleboxes, with an additional constraint per BS that only 1

our of the S nodes corresponding to that BS can be picked.
The picked node will determine which of the S services is
placed at that BS.

Recent works have shown that the maximum flow objective
of the middlebox problem is a submodular function [15], [16].
Therefore, this problem can be solved by using the same
approximation algorithms mentioned in special case 2.

D. General case: Non-submodular
Although it would be tempting to conjecture that our JSPRR

problem is submodular in its general form (with overlapping
coverage regions, congestible bandwidth and computation and
large storage capacities), we can construct counter-examples
where this property does not hold. First, we introduce the
definition of submodular functions.

Definition 1. Given a finite set of elements G (ground set), a
function f : 2

G ! R is submodular if for any sets A ✓ B ✓ G
and every element g /2 B, it holds that:

f(A [ {g})� f(A) � f(B [ {g})� f(B) (10)

Next, we introduce the element e

ns

to denote the place-
ment of service s in BS n. The ground set is given by
{e11, . . . , eNS

}. Every possible service placement policy can
be expressed by a subset E ✓ G of elements, where the
elements included in E correspond to the service placement.
Given a service placement E , we denote by f(E) the maximum
number of user requests that can be satisfied by the BSs.

We will construct a counter-example where the function
f(E) is not submodular. Specifically, we consider a system of
N = 2 BSs and U = 2 users located in the intersection of the
two coverage regions. The users request two different services
denoted by s1 and s2. We set the computation capacities
to C1 = C2 = 1 (i.e., at most one service request can
be satisfied by each BS), while the storage and bandwidth
capacities are abundant. The two placement sets we consider
are A = {e11} and B = {e11, e21}, where A ✓ B. We note
that f(A) = f(B) = 1 since in both cases only one of the
two services is stored (s1), and hence only one of the two
requests can be served. Besides, f(A [ {e12}) = 1 since
the computation constraint prevents the BS 1 from serving
both user requests. However, f(B [ {e12}) = 2 since now
each BS can serve one user request. Therefore, the marginal
performance is larger for the set B than the A, which means
that f is not submodular.

We note that similar counter-examples can be identified
when the bandwidth (instead of computation) capacity is
congestible, provided that storage capacity is greater than 1.

P SUB APX-SUB NP-Hard

JSPRR
(general case)

Middlebox placement 
(special case 3)

Data placement 
(special case 2)

JSPRR – Non overlapping 
BS coverage regions 
(special case 1)

Fig. 2: Complexity of special cases of JSPRR: Polynomial-
time solvable (P), Submodular (SUB) and Approximately
submodular (APX-SUB) classes.

E. General case: Approximately-submodular

Although our JSPRR problem does not fall into the class
of submodular problems, we can show that it belongs to the
wider class of approximately submodular problems [17]. The
complexity of JSPRR for the general and special cases is
illustrated in Figure 2.

Definition 2. A function f : 2

G ! R is �-approximately
submodular if there exists a submodular function F : 2

G ! R
such that for any E ✓ G:

(1� �)F (E)  f(E)  (1 + �)F (E) (11)

We define by F (E) the maximum number of user requests
that can be satisfied by the BSs given the service placement
set E in the special case that the bandwidth and computation
resources are non-congestible (special case 2). Since there are
fewer constraints in this special case than in the general case, it
holds that f(E)  F (E). Therefore, for any � 2 [0, 1], we have
f(E)  (1 + �)F (E). What remains to find is a � value that
satisfies the first inequality in (11), i.e., (1� �)F (E)  f(E).

We note that when computing the value of F (E), the BS n is
allowed to satisfy all the requests for stored services generated
by users in its coverage region. We denote by �

n

the number
of these requests. In case that it happens �

n

 C

n

, �

n


B

"
n

and �

n

 B

#
n

8n, then the computation and bandwidth
resources are non-congestible and we have f(E) = F (E). In
the other case that, for some n, it happens �

n

> C

n

or �
n

>

B

"
n

or �
n

> B

#
n

, then the BS n can process up to �

n

/C

n

times
more requests, compared to f(E). Similarly, the BS n can
receive (deliver) data from (to) up to �

n

/B

"
n

(�
n

/B

#
n

) times
more users. Therefore, the total number of satisfied requests
is upper bounded by:

F (E)  max

n2N
{�n

C

n

,

�

n

B

"
n

,

�

n

B

#
n

, 1}f(E) (12)

where the value 1 inside the max operator ensures that F (E)
will never be lower than f(E). We thus can ensure that (1�
�)F (E)  f(E) by picking:

� = 1� 1

max

n2N {�n
Cn

,

�n

B

"
n
,

�n

B

#
n
, 1}

(13)

The problem of maximizing a �-approximately submodular
function has been studied in the past [17]. Based on the results
in [17], we can use a simple greedy algorithm to achieve the
approximation ratio described in the following proposition.



Proposition 1. The Greedy algorithm returns a solution set
E⇤ such that:

f(E⇤
) � 1

2

⇣
1� �

1 + �

⌘
1

1 +

P
n2N Rn�

1��

max

E
f(E) (14)

Consider for example the case that the demand exceeds the
available resources by up to 50%, i.e., there exists a BS n for
which �

n

= 1.5C

n

or �

n

= 1.5B

"
n

or �

n

= 1.5B

#
n

. Then,
� = 1/3, and the approximation factor becomes:

f(E⇤
) � 1

4

1

1 +

P
n2N Rn

2

max

E
f(E) (15)

The above approximation ratio worsens as the network be-
comes more congested (� increases) and the storage capacities
increase (R

n

). This suggests that the JSPRR problem is
substantially harder than the placement and routing problems
described above, and thus a method of different philosophy is
needed to find a tight approximation ratio. In the next section,
we present such a method that goes beyond submodularity and
achieves a solution with better approximation guarantees.

IV. APPROXIMATION ALGORITHM

In this section, we present one of the main contributions
of this work; a novel approximation algorithm for the JSPRR
problem. Our algorithm leverages a Randomized Rounding
technique, from which it takes its name. The algorithm is
described in detail below and summarized in Algorithm 1.

The Randomized Rounding algorithm starts by solving the
linear relaxation of the JSPRR problem (line 1). That is, it
relaxes the variables {x

ns

} and {y
nu

} to be fractional, rather
than integer. The Linear Relaxation of JSPRR problem, LR-
JSPRR for short, can be expressed as follows:

min

x,y

P
u2U y

lu

(16)

s.t. constraints: (3) � (8)

x

ns

2 [0, 1], 8n 2 N , s 2 S (17)
y

nu

2 [0, 1], 8n 2 N [ {l}, u 2 U (18)

where we have replaced equations (1)-(2) with (17)-(18). Since
the objective and the constraints of the above problem are
linear, it can be optimally solved in polynomial time using
a linear program solver. We denote by {x†

ns

} and {y†
nu

}
the optimal solution values. The next step is to round these
values to obtain an integer solution, denoted by {bx

ns

} and
{by

nu

}. For each pair of node n and service s, the algorithm
rounds variable bx

ns

to 1 with probability x

†
ns

(lines 2-3). Each
rounding decision is taken independently from each other.

Finally, the algorithm uses the rounded placement variables
{bx

ns

} to decide the rounding of the routing variables (lines 4-
9). For each user u, it defines the set of nearby BSs that have
stored the requested service s

u

by N 0
u

= (n 2 N
u

: bx
nsu >

0) and uses this to distinguish between two cases: (i) if user u
cannot find service s

u

in any of the nearby BSs (N 0
u

= ;), then
the user is served by the cloud (lines 6-7), (ii) otherwise, the
user is randomly routed to one of the BSs in N 0

u

or the cloud
(lines 8-9). The routing probabilities depend on the fractional
values {x†

ns

} and {y†
nu

}. Higher probability is given to BSs
with larger y†

nu

values.

Algorithm 1: Randomized Rounding algorithm

1 Solve the linear relaxation of JSPRR problem to obtain
(x

†
,y

†
) optimal solution

2 for n 2 N , s 2 S do

3 Set bx
ns

= 1 with probability x

†
ns

end

4 for u 2 U do

5 Define N 0
u

= (n 2 N
u

: bx
nsu > 0) and

6 if N 0
u

= ; then

7 set by
lu

= 1 and by
nu

= 0 8n 2 N
else

8 set by
nu

= 1, n 2 N 0
u

, with probability y

†
nu

x

†
nsu

, or
9 set by

lu

= 1 with probability
y

†
lu�

Q
n2N 0

u
(1�x

†
nsu

)

1�
Q

n2N 0
u
(1�x

†
nsu )

�

+
end

end

10 Output b
x,

b
y

Subsequently, we provide guarantees on the quality of the
solution returned by the Randomized Rounding algorithm. We
begin with the following lemma.

Lemma 1. The Randomized Rounding algorithm routes all
user requests with high probability.

Proof. For a given user u, there are two cases when rounding
the fractional variable y

†
nu

to by
nu

: (i) there is no nearby BS
having stored the requested service (N 0

u

= ;) and (ii) there
is at least one such BS (N 0

u

6= ;). The probability that the
request of user u is routed to the cloud is given by:

Pr[by
lu

= 1] = Pr

h
by
lu

= 1 | N 0
u

= ;
i
Pr

h
N 0

u

= ;
i

+ Pr

h
by
lu

= 1 | N 0
u

6= ;
i
Pr

h
N 0

u

6= ;
i

= 1

Y

n2N 0
u

(1� x

†
nsu

)

+

y

†
lu

�
Q

n2N 0
u
(1� x

†
nsu

)

1�
Q

n2N 0
u
(1� x

†
nsu)

(1�
Y

n2N 0
u

(1� x

†
nsu

))

= y

†
lu

(19)

The first equation is by the definition of conditional proba-
bility. The second equation is because the request of user u

will be routed with probability 1 to the cloud if N 0
u

= ;, and
the {x†

ns

} variables are rounded independently of one another
(hence, Pr[N 0

u

= ;] =
Q

n2N 0
u
(1 � x

†
nsu

)). To simplify the
analysis, we have assumed that y†

lu

�
Q

n2N 0
u
(1� x

†
nsu

) and,
thus, removed the [.]+ operator from the respective probability.
This condition is expected to hold in practice as the BS
deployment becomes more and more dense (larger N 0

u

sets)
and the BS storage capacities increase (larger x†

nsu
values).



Similarly, the probability that user u is routed to BS n is:

Pr[by
nu

= 1] = Pr

h
by
nu

= 1 | bx
nsu = 1

i
Pr

h
bx
nsu = 1

i

+ Pr

h
by
nu
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(20)

The sum of probabilities of routing the request of user u to
the cloud or the BSs is:

X

n2Nu[{l}

Pr[by
nu

= 1] =

X

n2Nu[{l}

y

†
nu

= 1 (21)

where the last equation holds due to (3). The above is very
close to the probability of routing the request of user u except
for an additive gap that converges to zero as the number of
BSs covering user u increases.

By construction, Randomized Rounding routes requests
only to BSs that have stored the respective service (in N 0

u

set in line 5) or to the cloud. Therefore, constraint (4) is also
satisfied. Next, we study whether the remaining constraints in
(5), (6), (7) and (8) are satisfied.

Lemma 2. The solution returned by the Randomized Rounding
algorithm satisfies in expectation the storage, computation and
bandwidth capacity constraints in (5), (6), (7), and (8).

Proof. We begin with the storage capacity constraint. The
expected amount of data placed in BS n is given by:

E[
X

s2S
bx
ns

r

s

] =

X

s2S
Pr[bx

ns

= 1]r

s

=

X

s2S
x

†
ns

r

s

= R

n

(22)

where the second equation is because the {bx
ns

} variables are
binary, with success probabilities the fractional values {x†

ns

}.
The last equation is due to constraint (5) and the fact that it
would be wasteful to not use all the storage space.

Next, we consider the computation capacity constraint. The
expected computation load of BS n is given by:

E[
X

u2U

bynucsu ] =
X

u2U

Pr[bynu = 1]csu =

X

u2U

y†
nucsu  Cn (23)

where the second equation holds due to equation (20). The
inequality is by constraint (6). Similar inequalities can be
shown for the uplink/downlink bandwidth constraints:

E[
X

u2U

bynub
"
su ] =

X

u2U

Pr[bynu = 1]b"su =
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n (24)

E[
X

u2U

bynub
#
su ] =

X

u2U

Pr[bynu = 1]b#su =

X

u2U

y†
nub

#
su  B#

n (25)

where we have used equations (20), (7), and (8).

A similar result holds for the objective function value.

Lemma 3. The objective value returned by the Randomized
Rounding algorithm is in expectation equal to that of the
optimal fractional solution.

Proof. The expected number of user requests routed to the
cloud by Randomized Rounding is given by:

E[
X

u2U
by
lu

] =

X

u2U
Pr[by

lu

= 1] =

X

u2U
y

†
lu

(26)

where the second equation holds due to equation (19).

The above lemmas have shown that the Randomized Round-
ing algorithm satisfies in expectation all the constraints and
achieves the optimal objective function value. However, in
practice, the constraints may be violated. Therefore, it is
important to bound the factor by which this happens.

Theorem 1. The amount of data placed by the Randomized
Rounding algorithm in BS n will not exceed its storage capac-
ity by a factor larger than 3 ln(S)

Rn
+ 4 with high probability.

Proof. For a given BS n, the products bx
ns

r

s

8s 2 S
are independent random variables with expected total value
E[
P

s2S bx
ns

r

s

] = R

n

(cf. equation (22)). Moreover, by
appropriately normalizing the r

s

and R

n

values, we can ensure
that the bx

ns

r

s

variables take values within [0, 1]. Therefore,
we can apply the Chernoff Bound theorem [18] to show that
for any ✏ > 0:

Pr[

X

s2S
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r

s

� (1 + ✏)R

n

]  exp

�✏2Rn
2+✏ (27)

Next, we find an ✏ value for which the probability upper bound
above becomes very small. Specifically, we require that:

exp

�✏2Rn
2+✏  1

S

3
(28)

which means that the probability bound goes quickly (at a
cubic rate) to zero as the number of services increases. In
order for this to be true, the ✏ value must satisfy:

✏ � 3 ln(S)

2R

n

+

s
9 ln

2
(S)

4R

2
n

+

6 ln(S)

R

n

(29)

The above condition holds if we pick:

✏ =

3 ln(S)

R

n

+ 3 (30)

since, in practice, R
n

� ln(S). Finally, we upper bound the
probability that any of the BS storage capacities is violated:

Pr[
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where the first inequality is due to the Union Bound theorem.
The second inequality is due to inequality (28) and because
the number of BSs is N . The last inequality is because, in
practice, the service library size is larger than the number of
BSs (S > N ). Therefore, with high probability, the storage
capacity of any BS n will not be exceeded by more than a
factor of 1 + ✏ =

3 ln(S)
Rn

+ 4.



Theorem 2. The computation load of BS n returned by the
Randomized Rounding algorithm will not exceed its capacity
by a factor of 3 ln(S)

�

† + 4 with high probability, where �

†

is the minimum computation load among BSs in the optimal
fractional solution.

Proof. The proof is similar to Theorem 1. For a given BS n,
the variables by

nu

c

su 8u 2 U are independent with expected
total value E[

P
u2U by

nu

c

su ] =

P
u2U y

†
nu

c

su (cf. inequality
(23)). Moreover, they can be normalized to take values within
[0, 1]. Therefore, we can apply the Chernoff Bound theorem:
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u2U
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nucsu ]  exp

�✏2
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u2U y
†
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2+✏ (32)

Unlike storage, however, the expected computation load may
not be equal to the capacity, i.e.,

P
u2U y

†
nu

c

su 6= C

n

. There-
fore, we cannot replace it in the above inequality. To overcome
this obstacle, we use the fact that

P
u2U y

†
nu

c

su  C

n

(by
constraint (6)) and �

† 
P

u2U y

†
nu

c

su (by definition of �

†)
to show the following two inequalities:
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By combining inequalities (32), (33), and (34), we obtain:

Pr[
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su � (1 + ✏)C
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]  exp

�✏2�†
2+✏ (35)

To complete the proof, we will find an ✏ value for which the
probability upper bound above becomes very small, i.e., at
most 1/S3. Similarly to Theorem 1, we can set ✏ = 3 ln(S)

�

† +3.
Then, we can upper bound the probability that any of the
computation capacities is violated by:
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This means that, with high probability, the computation capac-
ity of any BS n will not be exceeded by more than a factor
of 1 + ✏ =

3 ln(S)
�

† + 4.

Using similar arguments, the following two theorems can
be proved for the uplink and downlink bandwidth capacities.

Theorem 3. The uplink bandwidth load of BS n returned
by the Randomized Rounding algorithm will not exceed its
capacity by a factor of 3 ln(S)

µ

† +4 with high probability, where
µ

† is the minimum uplink bandwidth load among BSs in the
optimal fractional solution.

Theorem 4. The downlink bandwidth load of BS n returned
by the Randomized Rounding algorithm will not exceed its
capacity by a factor of 3 ln(S)

⌫

† +4 with high probability, where

⌫

† is the minimum downlink bandwidth load among BSs in the
optimal fractional solution.

What remains it to describe the worst case performance of
the (in expectation optimal) Randomized Rounding algorithm.

Theorem 5. The objective value returned by Randomized
Rounding algorithm is at most 2 ln(S)

⇠

† +3 times worse than the
optimal with high probability, where ⇠† is the optimal objective
value in the linear relaxed problem.

Proof. The proof is similar to the previous theorems, yet the
bound is tighter since we do not need to apply the Union
Bound theorem. We begin by showing that:

Pr[
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u2U
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� (1 + ✏)⇠
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]  exp
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2+✏ (37)

Since ⇠

†  b
⇠ where b

⇠ is the optimal integer solution value, it
also holds that:
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� (1 + ✏)

b
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�✏2⇠†
2+✏ (38)

Next, we upper bound the right hand side of the above
inequality by 1/S

2. In order for this to be true, the ✏ value
must satisfy the following condition:

✏ � ln(S)

⇠

† +

s
ln

2
(S)

⇠

†2
n

+

4 ln(S)

⇠

† (39)

The above condition holds if we pick:

✏ =

2 ln(S)

⇠

† + 2 (40)

since, in practice, the requests will be more than the services
(⇠† � ln(S)). Thus, with high probability, performance will
be at most 1 + ✏ =

2 ln(S)
⇠

† + 3 times worse than optimal.

The factors in Theorems 1-5 are bi-criteria approxima-
tions with respect to both the objective value and capacity
constraints. In many practical scenarios, these factors are
constant. For example, consider a system with thousands of
users generating requests for services in a library of size
S = 1, 000. Each BS can process up to a thousand requests
(C

n

= 1, 000) and the minimum computation capacity utiliza-
tion is 40% (�†

= 400). Then, the bi-criteria approximation
factor becomes 3 ln(1000)

400 + 4 ⇡ 4.05.

V. EXTENSION AND PRACTICAL CASES

In this section, we discuss how to handle changes in the
user demand. Besides, we describe how to make the solution
of the Randomized Rounding algorithm satisfy the capacity
constraints, thereby making the algorithm more practical.

A. Handling user demand changes
The service placement and request routing decisions are

taken for a certain time period during which the demand is
fixed and predicted. The demand, however, may change over
time, e.g., after a few hours or even at a faster timescale
depending on the scenario. The MEC operator will have to
repeatedly predict the new demand for the next time period



and adapt the service placement and request routing decisions
accordingly. For example, the MEC operator should replace
services that are no longer popular with other services that
recently gained popularity.

The adaptation of the service placement is not without
cost. In fact, replacing previously placed services with new
ones would require from the BSs to download non-trivial
amounts of data from the cloud through their backhaul links.
This operation creates overheads which, depending on the
timescale, can be significant and therefore should be avoided.

The Randomized Rounding algorithm can be extended to
become aware of the service placement adaptation costs. To
carry this out, we add a new constraint into the JSPRR
problem. This constraint upper bounds by a constant D the
total amount of data associated with the replaced services:

X

n2N

X

s2S
x

ns

(1� x

p

ns

)r

s

 D (41)

where x

p

ns

is the placement solution in the previous time
period. Here, placing a service s at a BS n (x

ns

= 1) adds
r

s

to the adaptation cost if and only if that service was not
placed in the previous time period (xp

ns

= 0).
We note that all the presented lemmas and theorems still

hold as they do not depend on the presence of constraint (41).
What remains to analyze is how likely is for the rounded
solution b

x returned by the algorithm to violate constraint (41).
This is described in the following theorem.

Theorem 6. The total amount of data associated with service
placement adaptation will not exceed the upper bound D by
a factor of 2 ln(S)

D

+ 3 with high probability.

Proof. The proof is similar to the previous theorems. The
Chernoff Bound is applied for the sum of random variables
{x

ns

(1�x

p

ns

)r

s

} the expected total value of which is D.

B. Constructing a feasible solution

As the Randomized Rounding algorith may violate the
storage capacities of the BSs by a factor of 3 ln(S)/R

n

+ 4,
the MEC operator may not be able to store all the services
required to ensure the performance guarantee of the algorithm.
Similarly, the service placement may violate the limit of allow-
able adaptations D, while the request routing may overwhelm
the computation and bandwidth capacities. To respond to such
cases, the operator needs to convert the bi-criteria solution into
a feasible solution, i.e., a solution that satisfies constraints (5),
(6), (7), (8) and (41).

To obtain such a solution, we start with the service place-
ment b

x outputted by the Randomized Rounding algorithm.
Then, we iteratively perform the removal of a service from
a BS that yields the minimum cloud load increment. When
a service is removed from a BS, the user requests for that
service previously routed to that BS are now re-directed to
other nearby BSs with available bandwidth and computation
(if any), otherwise to the cloud. The procedure ends when
constraints (5) and (41) are satisfied. To satisfy the remaining
(computation and bandwidth) constraints we perform one more
step. That is, we iteratively re-direct a user request from an
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Fig. 3: Evaluation setup.

overloaded BS to another BS with available resources (if any)
or the cloud, until there are not any overloaded BSs.

We need to emphasize that the above process may de-
teriorate the quality of the solution. However, as we show
numerically in the next section, the obtained solution operates
very close to the optimal in realistic settings.

VI. EVALUATION RESULTS

In this section, we carry out evaluations to show the perfor-
mance of the proposed Randomized Rounding algorithm. We
consider a similar setup as in the previous work [8], depicted
in Figure 3. Here, N = 9 base stations (BSs) are regularly
deployed on a grid network inside a 500m⇥500m area.
U = 500 mobile users are distributed uniformly at random
over the BS coverage regions (each of 150m radius). Each
user requests one service drawn from a library of S = 100

services. The service popularity follows the Zipf distribution
with shape parameter 0.8, which is a common assumption for
several types of services such as video streaming.

For each BS n, we set the storage capacity to R

n

= 500

GBs, the computation capacity to C

n

= 10 GHz and the uplink
(downlink) bandwidth capacity to B

"
n

= 75 (B#
n

= 250) Mbps.
Yet, all these values are varied during the evaluations. For each
service s, we set the occupied storage r

s

randomly within
[20, 100] GBs. The required computation per request c

s

takes
value within [0.1, 0.5] GHz. The required uplink (downlink)
bandwidth per request b"

s

(b#
s

) takes value within [1, 5] ([1, 20])
Mbps. We compare our algorithm with two baseline methods.

1) Linear-Relaxation (LR): The optimal (fractional) solu-
tion to the linear relaxation of JSPRR problem. This
solution is found by running a linear solver and provides
a lower bound to the optimal integer solution value.

2) Greedy [14]: Iteratively, places a service to a BS cache
that reduces cloud load the most, until all caches are
filled. Each request is routed to the nearest BS with the
service, neglecting computation and bandwidth.

On the one hand, LR can be used as a benchmark to
gauge the performance gap of our algorithm from optimal.
On the other hand, it is well-known that Greedy algorithm
achieves near-optimal performance for the traditional data
placement (or caching) problem, leveraging its submodular
property [14]. Therefore, a natural question to ask is whether
the efficiency of Greedy is maintained or novel algorithms are
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Fig. 4: Cloud load for different (a) storage, (b) computation and (c) bandwidth capacities of BSs. (d) Utilization of resources.

needed when the placement of services with multidimensional
resource requirements is considered.

We first explore the impact of storage capacity R

n

8n on
the load of the centralized cloud. In Figure 4a, R

n

spans a
wide range of values, starting from 250GBs to 1250GBs. As
expected, increasing storage capacities reduces cloud load for
all the algorithms as more requests can be satisfied locally
(offloaded) by the BSs. The proposed Randomized Rounding
algorithm performs significantly better than Greedy with the
gains increasing as the storage capacity increases (up to 25%

for R

n

= 1250GBs). At the same time, the gap from LR,
and hence optimal, vanishes as R

n

increases (below 10% for
R

n

� 1000GBs), which is consistent with the approximation
factor expression in Theorem 1.

Next, we show the impact of computation capacity C

n

in Figure 4b. While the cloud load reduces with C

n

for all
the algorithms, Randomized Rounding performs consistently
better than Greedy and very close to LR. Especially when
C

n

is lower or equal to 3GHz, the gap from LR is less than
3%. Similarly, Figure 4c depicts the cloud load for different
combinations of uplink (B"

n

) and downlink (B#
n

) bandwidth
capacities. While the cloud load reduces with each of the B

"
n

and B

#
n

values, gains between 9% and 24% over Greedy are
achieved (as shown in the bar labels).

Finally, we take a closer look into the utilization of BS
resources when the Randomized Rounding and Greedy al-
gorithms are used. The four subplots in Figure 4d show
the resource utilization for each of the four resource types
(storage, computation, uplink and downlink bandwidth). We
observe that both algorithms utilize most of the available stor-
age resources (90% or more for most BSs). Yet, Randomized
Rounding manages to utilize more computation resources for
8 out of the 9 BSs. This in turn will facilitate the offloading
of more requests to the BSs while spending roughly the same
or even slightly less bandwidth resources than Greedy.

VII. CONCLUSION

In this paper, we studied joint service placement and
request routing in MEC-enabled multi-cell networks with
multidimensional (storage, computation and communication)
constraints. Using a randomized rounding technique, we pro-
posed an algorithm that achieves provably close-to-optimal
performance, which, to the best of our knowledge, is the first

approximation for this problem. This result can be of value
in other research areas (e.g., data and middlebox placement).
Interesting directions for future work include studying the
coordination between BSs through backhaul links as well
as the generalization of our model to services with multiple
(chained) functions [19].
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