
MNRAS 472, 1315–1323 (2017) doi:10.1093/mnras/stx1812

Advance Access publication 2017 July 19

A transient search using combined human and machine classifications

Darryl E. Wright,1‹ Chris J. Lintott,1 Stephen J. Smartt,2 Ken W. Smith,2

Lucy Fortson,3,4 Laura Trouille,5,6 Campbell R. Allen,1 Melanie Beck,3

Mark C. Bouslog,6 Amy Boyer,6 K. C. Chambers,7 Heather Flewelling,7

Will Granger,6 Eugene A. Magnier,7 Adam McMaster,1 Grant R. M. Miller,1

James E. O’Donnell,1 Brooke Simmons,8† Helen Spiers,1 John L. Tonry,7

Marten Veldthuis,1 Richard J. Wainscoat,7 Chris Waters,7 Mark Willman,7

Zach Wolfenbarger6 and Dave R. Young2

1Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
2Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
3Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55454, USA
4School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
5Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University,

Evanston, IL 60208, USA
6Citizen Science Department, The Adler Planetarium, Chicago, IL 60605, USA
7Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
8Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093, USA

Accepted 2017 July 17. Received 2017 July 3; in original form 2016 December 16

ABSTRACT

Large modern surveys require efficient review of data in order to find transient sources such

as supernovae, and to distinguish such sources from artefacts and noise. Much effort has been

put into the development of automatic algorithms, but surveys still rely on human review

of targets. This paper presents an integrated system for the identification of supernovae in

data from Pan-STARRS1, combining classifications from volunteers participating in a citizen

science project with those from a convolutional neural network. The unique aspect of this

work is the deployment, in combination, of both human and machine classifications for near

real-time discovery in an astronomical project. We show that the combination of the two

methods outperforms either one used individually. This result has important implications for

the future development of transient searches, especially in the era of Large Synoptic Survey

Telescope and other large-throughput surveys.

Key words: methods: data analysis – methods: statistical – techniques: image processing –

surveys – supernovae: general.

1 IN T RO D U C T I O N

The detection and identification of transient sources has long been

an important part of astronomical observation. New surveys such

as LSST (Large Synoptic Survey Telescope; Ivezić et al. 2008)

will increase the number of transient candidates detected by many

orders of magnitude, leading to renewed attention being paid to

the methods used by transient searches. To extract the most scien-

tific value from surveys, we want to follow the entire evolution of

transients from the time of outburst to the point at which they fade

below the detection limit. This requires a rapid processing of data to

⋆ E-mail: darryl@zooniverse.org
† Einstein Fellow.

enable a fast decision on whether or not to expend valuable follow-

up resources for each potential candidate extracted by a transient

survey’s image processing pipeline. The first problem is deciding if

a source, flagged by the pipeline, is a detection with real astrophys-

ical significance or an artefact of the detector or image processing.

We want to promote the former for a decision on whether to fol-

low up and to reject the latter without further consideration. In

preparation for LSST and to deal with the data volumes of present

surveys, much effort has been invested in developing systems that

automatically reject false positives with supervised learning. Us-

ing large volumes of past observations that have been identified as

real or ‘bogus’, the aim is to train a machine to make predictions

about future observations (Romano, Aragon & Ding 2006; Bailey

et al. 2007; Donalek et al. 2008; Bloom et al. 2012; Brink et al. 2013;

du Buisson et al. 2015; Goldstein et al. 2015; Masci et al. 2017).
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1316 D. E. Wright et al.

Providing these data typically requires manual inspection of

individual detections by human experts to mitigate label contam-

ination that would confound the learning algorithm. This quickly

becomes unwieldy given that performance of a machine learning so-

lution has been shown to depend on the quantity of labelled training

data (Banko & Brill 2001).

The requirement for sufficiently large and representative train-

ing sets is prohibitive for the largest surveys or for small research

teams, and is particularly problematic for rarer classes of tran-

sients. An alternative to relying on expert labelled training sets

for machine learning is therefore to expand the population provid-

ing labels. For example, Melchior et al. (2016) describe a crowd

sourcing platform for vetting image quality from the Dark En-

ergy Survey (DES; Dark Energy Survey Collaboration 2005) re-

lying on the consensus of ∼100 volunteers from a team of pro-

fessional astronomers. For surveys of the future, a few hundred

volunteers will not be enough. Instead, we must cast our net wider

increasing the population of the crowd beyond those directly in-

volved in the survey. The obvious path is to engage citizen sci-

entists. Galaxy Zoo Supernovae (Smith et al. 2011) and Snapshot

Supernova (Campbell et al. 2015) are two projects to have taken

this approach for transient surveys, using data from the Palomar

Transient Factory (Law et al. 2009; Rau et al. 2009) and SkyMap-

per (Keller et al. 2007), respectively. Both projects were facilitated

through the Zooniverse citizen science platform (see description in

Marshall, Lintott & Fletcher 2015), and asked volunteers to assess

the target, reference and difference images for each detection and

answer a series of questions that led to a classification of real or

bogus.

For classification tasks, humans and machines have complemen-

tary strengths. Human classifiers are good at rapidly making abstract

judgements about data, allowing them to see only a small number of

examples before making decisions about novel images. Machines

can consume large quantities of data and make more systematic

judgements based on complex relationships between the features

provided. In the Space Warps citizen science project (Marshall

et al. 2016), all example gravitational lenses provided to volunteers

appeared blue, yet despite this, volunteers were able to identify a

gravitationally lensed hyperluminous infrared radio galaxy that ap-

peared red (Geach et al. 2015). In contrast, a machine would need to

be provided examples of these in the training data. On the other hand,

computer vision techniques allow images to be examined system-

atically, with relationships between different features used for clas-

sification. Combining machine classifications with those of experts

will trivially be expected to improve performance, but the situation

in which classifications from volunteer citizen scientists are used

is less clear. If the noisier data sets provided by citizen science are

combined with machines, is performance of the system improved?

If machines are included in classification, does it relieve some of the

burden on citizen scientists? Answering these questions is critically

important for surveys where even a substantial number of experts

will not be able to review all the data promoted by a machine

classifier.

In this paper, we report some initial findings from the Supernova

Hunters project,1 a new citizen science project similar in spirit to

those mentioned above but applied to the Pan-STARRS Survey for

Transients (PSST). In Section 2, we describe the Pan-STARRS1

telescope, PSST survey and the Supernova Hunters project and cit-

izen science platform. Section 3 shows the relative performance

1 https://www.zooniverse.org/projects/dwright04/supernova-hunters

of humans and machines on data uploaded to Supernova Hunters

during the first two months of the project. We also describe and mea-

sure the performance of a simple method for combining the classifi-

cations of citizen scientists and the current PSST machine classifier.

We further discuss a mechanism to take advantage of metadata as-

sociated with each detection to boost classification performance.

In Section 4, we conclude and discuss potential avenues for future

improvements. This paper therefore represents the first study of

combined citizen science and machine classifications within a live

astronomical survey.

2 M E T H O D

2.1 Pan-STARRS1

Pan-STARRS1 comprises a 1.8 m primary mirror (Kaiser

et al. 2010) and 60 detectors with 4800 pixels, constructed from

10 µm pixels subtending 0.258 arcsec (Magnier et al. 2013) and a

field of view of 3.3 deg. The filter set consists of gP1, rP1, iP1, zP1

(similar to SDSS griz; York et al. 2000), yP1 extending redwards of

zP1 and the ‘wide’ wP1-band filter extending over gP1 to iP1 (Tonry

et al. 2012). Between 2010 and 2014, Pan-STARRS1 was operated

by the PS1 Science Consortium performing two major surveys. The

Medium Deep Survey (MDS) was allocated 25 per cent of observing

time for high-cadence observations of the 10 Medium Deep fields

and the 3π survey allocated 56 per cent observing time to observe

the entire sky north of −30◦ declination with four exposures per

year in each of gP1, rP1, iP1, zP1 and yP1 for each pointing.

The 3π survey was completed in mid-2014 and since then the

telescope has been carrying out a NASA-funded wide-field survey

for near-Earth objects through the NEO Observation Program op-

erated by the Pan-STARRS Near Earth Object Science Consortium

(PSNSC). The NASA PSNSC survey is similar to the 3π survey

but optimized for NEO discoveries. Observations are in wP1 in dark

time and combinations of iP1, zP1 and yP1 during bright time. The

PSST survey (Inserra et al. 2013; Huber et al. 2015) searches the

data for static transients, releasing these publicly within 12–24 h.

Typically, a single field is imaged four times in a night with

exposures separated by 10–20 min called transient time inter-

val (TTI) exposures to allow for the discovery of moving ob-

jects. The quads of exposures are not dithered or stacked, mean-

ing that cross-talk ghosts, readout artefacts and problems of

fill factor are inherent in the data (see Denneau et al. 2013

for some examples). Individual exposures are differenced (Alard

& Lupton 1998; Bramich 2008) with the 3π all-sky refer-

ence stack, and sources in the resulting difference images are

catalogued.

A series of pre-ingest cuts are performed before the catalogues

are ingested into a MySQL data base at Queen’s University Belfast

(QUB). These cuts are based on the detection of saturated, masked

or suspected defective pixels within the point spread function area

in addition to flag checks for ghost detections and rejecting detec-

tions within ±5◦ galactic latitude. Detections passing these cuts are

grouped into transient candidates if they are spatially coincident

within 0.5 arcsec and the rms scatter is <0.25 arcsec. Post-ingest

cuts are applied on detection quality, convolution checks and a check

for proximity to bright objects. Additional cross-talk rules have been

identified and implemented at QUB to reject ghosts not flagged at

the pre-ingest stage. Remaining detections are cross-matched with

the Minor Planet Center ephemeris data base to identify any aster-

oids not removed by the rms cut. Remaining transient candidates

are passed to our machine classifier described in the next section.

MNRAS 472, 1315–1323 (2017)
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Human and machine classifications 1317

Figure 1. The classification interface presented to citizen scientists. The leftmost image is the target image taken during the previous week. In the centre is

the equivalent 3π reference image and on the right is the difference image. Volunteers are asked to decide whether or not they think the detection in the green

cross hairs in the difference image is a detection of a real transient.

2.2 Convolutional neural network

In Wright et al. (2015), we developed a machine classifier for real–

bogus classification in the PS1 MDS. However, we found that this

approach performs poorly for PSST because of the greater variety

of artefacts in PSST data (a consequence of differencing individual

exposures) and the difficulty obtaining a representative labelled

training set at the beginning of a new survey. Instead, we turned to

convolutional neural networks (CNNs) that maintain the advantages

of operating solely on the pixel data but at a higher computational

cost in deployment.

The training set for this classifier was drawn from 3π survey

data between 2013 June 1 and 2014 June 20. The sample of real

detections are taken from spectroscopically confirmed transients or

detections of objects that have been labelled by experts as high-

probability real transients. Bogus detections are taken from a ran-

dom subsample of detections discarded by post-ingest cuts or hu-

man inspection. The training set consists of 6916 examples with an

additional 2303 detections held out for testing with both data sets

containing twice as many bogus detections to real. Each example

was manually inspected in order to limit label contamination; not all

detections associated with a spectroscopically confirmed transient

are necessarily real for example.

Given the small data set, to avoid overfitting we limit the CNN

to a single convolution layer with 400 kernels and a pooling layer

followed by a binary softmax classifier. We also perform unsuper-

vised pre-training with sparse filtering (Ngiam et al. 2011) using

unlabelled images from the STL-10 (Coates, Lee & Ng 2011) data

set. The classifier is applied to nightly PSST data producing a score

for each TTI exposure for every candidate passing the cuts in the

previous section. The score, or hypothesis, is a function h(x) of the

input feature representation, x (the output of the convolution and

pooling layers). For each candidate, we simply combine the TTI

exposure hypotheses by taking the median, resulting in a single

‘real–bogus factor’ for each transient candidate that we take as the

machine equivalent of P(real) below. To automatically reject can-

didates, we must choose a decision boundary on h(x) such that any

candidate with a hypothesis lying below the decision boundary is

considered a bogus detection and discarded. This inevitably leads

to a trade-off between false positives and false negatives (or missed

detections). If the decision boundary is set too high, we will discard

many real detections of supernovae; if it is too low and we will

be inundated with artefacts (see for example Fig. 2). We chose the

decision boundary based on the expected performance measured on

the test set. For example, using our CNN to generate hypotheses for

each detection in the test set, we can choose the decision bound-

ary that corresponds to a false positive rate (FPR) of 1 per cent at

h(x) = 0.842, where the FPR is the number of false positives divided

by the total number of bogus candidates in the sample. However,

although the number of artefacts promoted would be low, based on

the test set this decision boundary would be expected to result in

a missed detection rate (MDR) of ∼21 per cent for future data and

is therefore not a sensible choice. We instead opted for a decision

boundary at h(x) = 0.436 with expected FPR and MDR of 5 per cent

and ∼5.2 per cent, respectively. As detailed in Section 3.1, clearly

the decision boundary can be scaled to take advantage of available

human effort; lowering the decision boundary beyond 0.436 would

increase the FPR requiring more human screening but at the same

time reduce the MDR such that humans could recover real super-

nova detections with low h(x) that would otherwise be automatically

rejected.

2.3 Citizen science platform

Supernova Hunters was launched on 2016 July 12 (MJD 57581).

As of 6th December 2016, the project has accumulated 1082 170

classifications from 5845 citizen scientists with a few tens of vol-

unteers submitting thousands of classifications. Citizen scientists

are presented with the interface shown in Fig. 1 and asked to clas-

sify individual TTI observations (see Section 2.1). So far volunteers

have classified 117 693 individual images of 46 277 individual PS1

objects. As guidance, we provide a ‘Field Guide’ that provides a

description and examples of the different artefact types we expect.

Once a week ∼5800 new subjects are uploaded to the project con-

sisting of the previous week’s detections that pass our machine

cuts. The arrival of the data is announced to existing volunteers

via email.2 We require at least seven citizen scientist classifications

before a subject is considered classified and subsequently retired

from the project. The choice of seven classifications is simply moti-

vated by a trade-off between speed of data processing and accuracy,

and we did not see significant gains by requiring 10 classifications

during the beta test. Since launch the project averages ∼21 000

classifications in the first 24 h after the data are released and ∼8200

classifications in the following 24 h by which time all subjects are

normally retired.

2 Though enthusiasm for the project is such that traffic to the site now

increases significantly ahead of this email alert!

MNRAS 472, 1315–1323 (2017)
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1318 D. E. Wright et al.

Figure 2. The distribution of hypotheses, h(x), from the current 3π ma-

chine classifier for detected objects between MJD 57570 and MJD 57586.

The light green shows the distribution of objects with h(x) ≤ 0.436 that are

automatically rejected. The remaining objects promoted for human screen-

ing even at high values of h(x) contain many false positives. The first interval

has a frequency of 12 428, but the plot is truncated for clarity. Inset: zoom-in

of the region with h(x) > 0.8.

We calculate a ‘human score’ simply by taking the fraction of

all the volunteers who saw a detection and classified it was real.

High-confidence (typically P(real) > 0.8, see Section 3) supernova

candidates are screened by experts to remove a small number of

false positives (∼10 per cent) before the targets are submitted to

the Transient Name Server (TNS). To date, citizen scientists have

discovered over 450 supernova candidates that have been submitted

to the TNS and two confirmed supernovae including SN 2016els

(Mattila et al. 2016) and a superluminous supernova Type I. The

classification spectra were obtained by PESSTO (Smartt et al. 2015).

3 PE R F O R M A N C E

We present the results of our machine classifier (Section 2.2) in

Fig. 2 on PS1 data uploaded to Supernova Hunters between MJD

57570 and MJD 57586. This data set includes classifications from

an initial beta test of the project prior to launch on MJD 57581. A

major contaminant is the presence of asteroids. These appear in the

difference image as identical to supernovae, and are in that sense

‘correctly classified’ but are identified here via cross-matching with

the Minor Planet Center.

The results of the machine learning were additionally reviewed

by at least one expert member of the team (normally DEW or KWS)

to identify genuine supernovae. Candidates were divided into ‘real’

and ‘bogus’ categories based on these expert classifications. We note

that a future improvement to the project would be to inject fake real

and bogus detections into the data as a means to track performance.

The Andromeda Project (Johnson et al. 2015) and Space Warps are

examples of two citizen science projects to have taken this approach,

while Goldstein et al. (2015) used faked detections to augment DES

training data for their real–bogus classifier. With this approach we

would no longer be reliant on the assumption that every expert label

is correct, but we must be careful to ensure that injected fake sources

are truly representative of our observations.

Candidates with high scores as assigned by the machine are more

likely to be real. However, although the machine successfully re-

jects the majority of bogus candidates, the sample produced by the

Figure 3. The distribution of P(real) from Supernova Hunters for objects

detected between MJD 57570 and MJD 57586. Compared with the machine

h(x) in Fig. 2, the objects at the extremes are pure. There are no real detections

with P(real) < 0.04 and few bogus detections above 0.92.

simple cut on hypothesis is far from pure: 1403 real candidates

from 3384 in the sample. Higher cutoffs run the risk of rejecting

an increasing number of real candidates; requiring a 1 per cent FPR

will result in an MDR of 60.3 per cent. In order to improve this per-

formance, candidates that exceed the h(x) = 0.436 threshold (see

Section 2.2) were also classified by volunteers via the Supernova

Hunters project. The results of this analysis are shown in Fig. 3.

Volunteer classifications were combined using the simplest pos-

sible metric; the fraction of volunteers who identified a detection as

real is assumed to be an estimate of the probability of that candidate

being real, denoted by P(real). Despite this simple procedure, the

results show that volunteers could effectively distinguish between

real and bogus classifications. However, the structure of the resulting

distribution is strikingly different from that of the machine classifier.

Whereas for machine classification, a threshold could be chosen to

give a complete but not pure sample, with volunteer classifications

it is easier to construct a pure sample of candidates that are highly

likely to be supernovae, but this sample is far from complete. There

are candidates judged ‘real’ by experts even at low probabilities,

although there were no real candidates assigned P(real) < 0.04.

There are two routes that might be expected to improve this

performance. First, we could improve on the naive combination of

volunteer votes described above. To this end, citizen science projects

typically explore methods to weight volunteer contributions [see for

example, Schwamb et al. (2012), Willett et al. (2013) and Marshall

et al. (2016)]. Secondly, given that we have a human and machine

score for every detection, we could seek a combination of the two

in the hope of benefiting from the different capabilities of both.

3.1 Combining human and machines

In a companion paper analysing performance of Galaxy Zoo, Beck

et al. (2017) used a machine classifier running in parallel to a simu-

lation of the Galaxy Zoo 2 project (Willett et al. 2013). They showed

that the addition of such a classifier, which retired subjects classified

above a certain level of confidence at the end of each day, retraining

each time, can greatly accelerate the speed of classification in a data

set. In their work, images are retired by either machine or human,

whereas we set out in this section to use a combination. While they

MNRAS 472, 1315–1323 (2017)
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Human and machine classifications 1319

Figure 4. The P(real) from Supernova Hunters against the machine h(x)

for 3384 detected objects between MJD 57570 and MJD 57586. P(real) and

h(x) are combined by projecting the data on to the solid black line in the

Euclidean sense. A Spearman rank correlation test shows the correlation

between P(real) and h(x) to be 0.237.

retrain their machine with volunteer input as it accumulates, we use

a static training set derived from expert classifications.

Fig. 4 shows the combination of human and machine classifi-

cations. It is immediately apparent from the figure that no single

threshold on either machine or human classification can outperform

the combination of the two. This is an important result; it is the

first time that the benefits of combining classification from both

machines and volunteers have been clearly demonstrated using data

from a live astronomical survey.

How should the two independent classifications be combined?

We simply apply a decision boundary of the form τ = (x + y)/2

on the 2D surface, where 0 ≤ τ ≤ 1. For a constant value of τ ,

a candidate is classified as bogus if [h(x) + P(real)]/2 ≤ τ and

classified real otherwise. This is equivalent to projecting the data on

to P(real) = h(x), producing a new scalar score for each detection

and classifying candidates as bogus if the combined score is less

than or equal to τ .

As an independent test, we apply the same method to data be-

tween MJD 57587 and MJD 57627 in Fig. 5. For Figs 4 and 5, a

Spearman rank correlation test gives 0.237 and 0.122, respectively,

showing P(real) and h(x) to be only weakly correlated. Between

MJD 57609 and MJD 57615, we relaxed our cut on h(x) from

0.436 to 0.3 uploading any objects passing this cut to Supernova

Hunters. This allowed us to explore the subjects wrongly classi-

fied by the machine and resulted in the recovery of SN 2016fev, a

Type Ia supernova that would have been automatically rejected with

h(x) = 0.39, but which received a P(real) of 1.0 from Supernova

Hunters. The performance of the combination method on this data

set is shown in the receiver operator characteristic (ROC) curve and

purity–completeness (precision–recall) curves plotted in Fig. 6.

For any choice of FPR, the combination of classifications pro-

duced a lower MDR. Equally, for any required purity or complete-

ness, the combination provides a better trade-off.

Figure 5. The same as Fig. 4 but on a new sample of 10 908 objects detected

between MJD 57587 and MJD 57627. For one week during this period, we

relaxed our cut on h(x) to 0.3, which allowed us to recover a supernova with

h(x) = 0.39, but which achieved a P(real) = 1.0 from Supernova Hunters.

In this case, the Spearman rank correlation is found to be 0.122.

We have chosen to implement one of the simplest methods for

combining human and machine classifications to demonstrate how

they complement one another, but it is easy to think of more com-

plex combination methods. For example, we trained a linear support

vector machine (SVM) on the data presented in Fig. 4 and found,

unsurprisingly, that the performance measured on the data in Fig. 5

was typically within 1 per cent of the values reported in Tables 1

and 2. Although the gains in this example are negligible, if we wish

to incorporate additional information from an ensemble of machine

classifiers for example, and the input space becomes higher di-

mensional, such methods become important. It is unlikely that the

combination method presented here will work for higher dimen-

sional data, but we can expect that an SVM may take advantage of

the additional information.

3.2 Improving P(real) with SWAP

We also expect to gain from improving P(real). To demonstrate

this, we implemented the Space Warps Analysis Pipeline (SWAP;

Marshall et al. 2016), an algorithm designed to improve the sam-

ple of good gravitational lens candidates from the Space Warps3

citizen science project in images from the Canada–France–Hawaii

Telescope Legacy Survey (Gwyn 2012). SWAP does not treat all

classifiers equally, but quantifies the value of their contribution in

terms of the information gained. SWAP assigns a software agent

to individual citizen scientists. Classifications are weighted accord-

ing to the agent’s estimate of likely performance based on each

volunteer’s past performance measured on gold standard data. The

agent maintains a confusion matrix that monitors the fraction of

gold standard data correctly or incorrectly classified by a volunteer

for each class (‘LENS’ or ‘NOT’ in the case of Space Warps). We

3 https://spacewarps.org
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1320 D. E. Wright et al.

Figure 6. Left: ROC curve showing performance measured on data in Fig. 5 for human (red), machine (yellow) and the combination of human and machine

classifications (blue). Right: the equivalent purity–completeness curve. Both plots show that the combination always outperforms humans and the machine

individually.

Table 1. MDR recorded for a choice of FPR, based on expert classifications.

SWAP SWAP Combined Combined Combined

FPR Human Machine Combined SWAP (mag.) (seeing) SWAP SWAP (mag.) SWAP (seeing)

1 per cent 73.9 per cent 90.1 per cent 58.7 per cent 66.6 per cent 64.5 per cent 64.2 per cent 54.5 per cent 54.1 per cent 53.5 per cent

5 per cent 56.3 per cent 69.7 per cent 35.8 per cent 41.0 per cent 39.7 per cent 40.3 per cent 30.2 per cent 29.7 per cent 28.8 per cent

10 per cent 45.6 per cent 46.7 per cent 23.8 per cent 31.2 per cent 30.0 per cent 30.5 per cent 20.5 per cent 18.9 per cent 20.1 per cent

Table 2. FPR recorded for a selection of MDR, based on expert classifications.

SWAP SWAP Combined Combined Combined

MDR Human Machine Combined SWAP (mag.) (seeing) SWAP SWAP (mag.) SWAP (seeing)

1 per cent 92.5 per cent 85.9 per cent 69.3 per cent 100.0 per cent 100.0 per cent 100.0 per cent 66.2 per cent 68.7 per cent 71.2 per cent

5 per cent 75.1 per cent 52.8 per cent 41.8 per cent 100.0 per cent 100.0 per cent 100.0 per cent 29.6 per cent 31.0 per cent 31.7 per cent

10 per cent 53.8 per cent 39.1 per cent 26.5 per cent 49.9 per cent 47.9 per cent 49.1 per cent 20.6 per cent 19.6 per cent 20.2 per cent

use the online implementation of SWAP considering each classifi-

cation in turn. We make several small adjustments to the original

SWAP implementation. First, our gold standard labels are ‘real’ and

‘bogus’ rather than ‘LENS’ or ‘NOT’. Secondly, we set the prior

probability that each detection is a real supernova ρ0 to be 0.01,

roughly the expected ratio between real and bogus detections each

night determined by expert classifications. Finally, in our analysis,

we do not set rejection and detection thresholds, instead we con-

tinue to require that at least seven volunteers classify each subject.

As in Marshall et al. (2016), we set the initial confusion matrix for

the ith volunteer to

M i =

[

0.5 0.5

0.5 0.5

]

.

This initialization of the confusion matrix corresponds to that of

a random classifier, but will be quickly modified as we observe

classifications of gold standard data by this volunteer. The results

of applying SWAP to the citizen scientist classifications on data

between MJD 57587 and MJD 57627 (Fig. 5) are shown as the

purple line in Fig. 7. Compared with the human performance in

Fig. 6, SWAP considerably improves P(real). By combining this

improved score from human classifications with the machine, using

the same method as above, we once again observe an improvement

in the measured performance (pink line from Fig. 6). In fact, apart

from a small exception at about 97 per cent purity and 25 per cent

completeness (likely an artefact of the specific data set), the com-

bination outperforms all previous methods for classifying this data

set, demonstrating that an improvement in either P(real) or h(x) can

lead to valuable performance gains when combined. SWAP com-

bined with the machine produces a few per cent improvement over

all the other methods tested so far for any figure of merit in Tables 1

and 2.

Considering the scenario where we are reliant on citizen scien-

tists to label training data for machine learning algorithms, it seems

prudent to consider how we might further improve P(real) in the

future. One observation we make is that citizen scientists perform

differently on detections with varying degrees of signal-to-noise. In

general, citizen scientists are very good at recovering bright super-

novae but find it more and more difficult as detections get closer

to the detection limit. Given the history of classifications of gold

MNRAS 472, 1315–1323 (2017)
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Figure 7. Left: ROC curve for different approaches to classification. Right: the corresponding purity–completeness curves. The blue lines are the same as in

Fig. 6 showing the simple combination of the machine with the basic human score described in Section 3. The green line shows the results of implementing

SWAP, which improves on the basic human score (red line in Fig. 6). Combining this improved score with the machine produces the pink line.

standard data a volunteer has submitted, we can calculate the prob-

ability the volunteer will classify a detection as real given that the

true label is real, P(‘real’|real), by simply taking the fraction of

the gold standard detections labelled ‘real’ the volunteer correctly

classified. We can similarly calculate P(‘bogus’|bogus). These are

the probabilities tracked by the SWAP agent confusion matrix and

that we have plotted on the unit plane for the 3158 volunteers par-

ticipating in the project at this time for different magnitude bins

in Figs 8 and 9. A volunteer who correctly classifies every gold

standard example they have seen is a perfect classifier and will lie

at (1,1) in the ‘astute’ quadrant of the plot. The size of the point

corresponds to the quantity of gold standard data classified by that

volunteer in a given magnitude bin. Most volunteers have submitted

only a few classifications and cannot be seen on the plot. Clearly,

volunteers are more ‘astute’ at classifying brighter sources, tending

to lie closer to the top right of the plot. This information is lost in

the basic SWAP implementation. A volunteer’s classification could

now be weighted according to the magnitude bin that a given de-

tection falls in. This results in a simple modification of the SWAP

calculation of P(real). In this case, we are taking advantage of addi-

tional ‘metadata’ that is available for each detection and assuming

that it has some effect on classifiers’ behaviour. We also expect

that humans and machines are good at classifying different types

of images. In our case, the CNN is good at classifying detections

around 20th magnitude, but often misclassifies detections brighter

than 17th magnitude. This is because the training set is dominated

by fainter detections. The machine has not been able to learn a func-

tion that accurately maps between the pixels and the classification

for bright examples because it has not ‘seen’ many during training.

In Tables 1 and 2, we include the results of running SWAP on the

magnitude spilts and the combination with the machine scores. We

find that, for the most part, this gives a ∼1 per cent improvement

in performance over not using metadata splits depending on the

figure of merit. There are other metadata parameters we could ex-

plore, both properties of the survey (seeing) and properties of the

detection (proximity to a galaxy). Tables 1 and 2 also show the ef-

fect of using seeing for the metadata splits, and we observe similar

performance to magnitude. Although the gains are small, this may

Figure 8. Confusion matrix elements for volunteers classifying detections

from Fig. 5 with apparent magnitude 13 ≤ m < 18. Each point represents an

individual volunteer, where the size of the point corresponds to the quantity

of gold standard data in this magnitude bin classified by the volunteer.

Larger points therefore correspond to more experienced classifiers. Many

volunteers tend to lie high in the top right of the ‘astute’ region; a perfect

classifier would lie at (1,1). This shows that citizen scientists can accurately

classify high signal-to-noise real and bogus detections.

indicate that a more thorough analysis of metadata is worth pursu-

ing. For instance, we could more carefully define where the splits

on metadata should be made and consider the effect of combining

multiple metadata parameters. In future, it would be interesting to

train an ensemble of machines with each only consuming retired

data from a single metadata split. When adequately trained, the re-

sulting machines would specialize in specific regions of parameter

MNRAS 472, 1315–1323 (2017)
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Figure 9. Similar to Fig. 8 but for detections with apparent magnitude 19

≤ m < 20. In this case, volunteers are further from the top right and tend

towards ‘pessimistic’ or ‘optimistic’ classifiers.

space and could eventually be folded back into the project. We could

also incorporate these machines into the SWAP analysis with their

classifications weighted just as for volunteers.

4 C O N C L U S I O N S

In this paper, we introduced a new citizen science project, Super-

nova Hunters, built entirely with the off-the-shelf Zooniverse Project

Builder4 requiring no custom features or additional development.

The project aims to classify detections of potential supernova can-

didates from the PSST survey either as real transients or bogus

detections of image processing or instrumentation artefacts. To be

uploaded to the Supernova Hunters project, a detection must first

pass a series of cuts based on catalogue information and secondly

be promoted by our machine learning algorithm, a CNN. With this

approach, we expect that only about 5 per cent of the false positives

passing the catalogue cuts make it into the project, greatly reducing

the number of objects we ask volunteers to screen. Citizen scientists

excel at mining these data for a very pure sample of high-P(real)

supernova candidates, typically those of higher signal-to-noise and

offset from a galaxy. But compared with expert labels, many less

obvious candidates are missed. Rather than immediately consider

methods of weighting classifications of individual citizen scientists,

we instead applied a simple combination of the scores provided by

humans and machines. We showed that the new combined score

achieved better performance than either individually for any choice

of purity or completeness.

We expect that there are many ways to improve. As an example,

we generalized the SWAP to Supernova Hunters and applied it to

the volunteer classifications and again combined the resulting scores

with those from the machine. We found that this resulted in a few per

cent performance gain compared to the next best method. To further

improve P(real), we could invest more effort into educating citizen

4 https://www.zooniverse.org/lab

scientists to identify more subtle artefact indicators. For example,

the Gravity Spy5 project has implemented a training regimen where

volunteers are provided with feedback on classifications of gold

standard data and can progress to more advanced levels performing

more complex tasks (Zevin et al. 2017). This could help address

the many bogus detections with P(real) > 0.5, but relatively few

real detections below 0.5 in Fig. 3. Another improvement could be

with our machine classifier, which was trained at the beginning of

the PSST survey and the algorithm was specifically chosen to learn

from the limited amount of training data available. Given the large

volume of data accumulated since, we could train more sophisti-

cated algorithms that can learn more complex relationships between

the features, though extracting robust labels for these additional data

is a challenge that still needs to be addressed.

This effort offers hope for dealing with the large data volumes

from all-sky surveys such as LSST, ZTF (Bellm 2014), ATLAS

(Tonry et al. 2016) and Pan-STARRS2. We used machines to reject

the vast majority of false positives and then combined the machine

hypotheses with classifications from a few thousand citizen scien-

tists for the remaining candidates. With Supernova Hunters we have

not actively sought additional citizen scientists, beyond the ∼30 000

volunteers on the Zooniverse beta testing e-mail list, who were asked

to review the project before launch. New volunteers must ‘discover’

the project on the Zooniverse projects page to participate. Given that

we could actively seek the participation of ∼106 registered Zooni-

verse volunteers and assuming that 10 per cent chose to participate,

with the current classification rate (21 000 in the first 24 h each

week from ∼6000 volunteers), we could achieve ∼350 000 classi-

fications per night. This provides 0.35 classifications for the ∼106

transient alerts expected from LSST at the beginning of the sur-

vey (Ridgway et al. 2014). If the FPR is an order of magnitude

more than the transient alert rate [perhaps overly pessimistic given

the expected ∼500–2200 false positives per field per visit (Becker

et al. 2013) with a 5σ detection threshold] and assuming that we can

discard 90 per cent of those with machine learning, we can expect

to achieve 0.175 citizen science classifications per promoted detec-

tion. Assuming that we will require roughly 10 classifications per

detection before considering it classified, we are roughly two orders

of magnitude short. Making up this deficit may be achievable with

continued improvements to difference imaging (Zackay, Ofek &

Gal-Yam 2016), automated real–bogus classification, encouraging

greater participation from a growing community of citizen scientists

and more efficient use of their classifications.
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