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1 INTRODUCTION

ABSTRACT

Quantifying galaxy morphology is a challenging yet scientifically rewarding task. As the
scale of data continues to increase with upcoming surveys, traditional classification methods
will struggle to handle the load. We present a solution through an integration of visual and
automated classifications, preserving the best features of both human and machine. We demon-
strate the effectiveness of such a system through a re-analysis of visual galaxy morphology
classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level
question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed
SWAP, originally developed for the Space Warps gravitational lens project. Through a sim-
ple binary classification scheme, we increase the classification rate nearly 5-fold classifying
226 124 galaxies in 92d of GZ2 project time while reproducing labels derived from GZ2
classification data with 95.7 per cent accuracy. We next combine this with a Random Forest
machine learning algorithm that learns on a suite of non-parametric morphology indicators
widely used for automated morphologies. We develop a decision engine that delegates tasks
between human and machine and demonstrate that the combined system provides at least a
factor of 8 increase in the classification rate, classifying 210 803 galaxies in just 32 d of GZ2
project time with 93.1 per cent accuracy. As the Random Forest algorithm requires a minimal
amount of computational cost, this result has important implications for galaxy morphology
identification tasks in the era of Euclid and other large-scale surveys.

Key words: methods: data analysis—methods: statistical — galaxies: statistics — galaxies:
structure.

to environment, colour, and star formation history (e.g. Kormendy
1977; Dressler 1980; Strateva et al. 2001; Blanton et al. 2003;
Kauffmann et al. 2003; Nakamura et al. 2003; Shen et al. 2003;

Astronomers have made use of visual galaxy morphologies to un-
derstand the dynamical structure of these systems for nearly 90
years (e.g. Hubble 1936; de Vaucouleurs 1959; Sandage 1961; van
den Bergh 1976; Nair & Abraham 2010; Baillard et al. 2011). The
division between early-type and late-type systems corresponds, for
example, to a wide range of parameters from mass and luminosity,
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Peng et al. 2010), while detailed observations of morphological
features such as bars and bulges provide information about the his-
tory of their host systems (e.g. reviews by Kormendy & Kennicutt
2004; Elmegreen, Bournaud & Elmegreen 2008; Sheth et al. 2008;
Masters et al. 2011; Simmons et al. 2014). Modern studies of mor-
phology divide systems into broad classes (e.g. Conselice 2006;
Lintott et al. 2008; Kartaltepe et al. 2015; Peth et al. 2016), but a
wealth of information can be gained from identifying new and often
rare classes, such as low redshift clumpy galaxies (e.g. Elmegreen
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Figure 1. Schematic of our hybrid system. Humans provide classifications of galaxy images via a web interface. We simulate this with the Galaxy Zoo 2
classification data described in Section 2. Human classifications are processed with an algorithm described in Section 3. Subjects that pass a set of thresholds
are considered human-retired (fully classified) and provide the training sample for the machine classifier as described in Section 4. The trained machine is
applied to all subjects not yet retired. Those that pass an analogous set of machine-specific thresholds are considered machine-retired. The rest remain in the
system to be classified by either human or machine. This procedure is repeated nightly. Our results are reported in Section 5.

et al. 2013), polar-ring galaxies (e.g. Whitmore et al. 1990), and the
green peas (Cardamone et al. 2009).

While the Galaxy Zoo project has provided a solution that scales
visual classification for current surveys by harnessing the combined
power of thousands of volunteers (Lintott et al. 2008, 2011; Willett
etal. 2013, 2017; Simmons et al. 2017), producing a prolific amount
of scientific output (e.g. Land et al. 2008; Bamford et al. 2009; Darg
etal. 2010; Schawinski et al. 2014; Galloway et al. 2015; Smethurst
etal. 2016); upcoming surveys such as LSST and Euclid will require
a different approach, imaging more than a billion new galaxies
(LSST Science Collaboration et al. 2009; Laureijs et al. 2011). If
detailed morphologies can be extracted for just 0.1 per cent of this
imaging, we will have millions of images to contend with. A project
of this magnitude would take more than 60 yr to classify at Galaxy
Zoo’s current rate and configuration. Standard visual morphology
methods will thus be unable to cope with the scale of data.

Another approach has been the automated extraction of mor-
phologies with the development of parametric (Sersic 1968;
Odewahn et al. 2002; Peng et al. 2002) and non-parametric (Abra-
ham et al. 1994; Abraham, van den Bergh & Nair 2003; Conselice
2003; Lotz, Primack & Madau 2004; Freeman et al. 2013) structural
indicators. While these scale well to large samples (e.g. Simard et al.
2011; Griffith et al. 2012; Casteels et al. 2014; Holwerda et al. 2014;
Meert et al. 2016), they often fail to capture detailed structure and
can provide only statistical morphologies with large uncertainties
(e.g. Abraham et al. 1996; Bershady, Jangren & Conselice 2000).

Machine learning techniques are becoming increasingly popular
for classification and image processing tasks. Another automated
approach, these generally work by defining a set of features that de-
scribe the morphology in an N-dimensional space. The location in
this morphology space defines a morphological type for each galaxy.
Learning the morphology space can be achieved through algorithms
such as support vector machines (Huertas-Company et al. 2008)
or principal component analysis (Watanabe et al. 1985; Scarlata
et al. 2007). Another approach is through deep learning, a machine
learning technique that attempts to model high-level abstractions.
Algorithms like convolutional and artificial neural networks (CNNs,
ANNSs) have been used for galaxy morphology classification with
impressive accuracy (Ball et al. 2004; Banerji et al. 2010; Diele-
man, Willett & Dambre 2015; Huertas-Company et al. 2015). A
drawback to all machine learning classification techniques is the

need for standardized training data, with more complex algorithms
requiring more data. Furthermore, these data must be consistent
for each survey: differences in resolution and depth can be implic-
itly learned by the algorithm making their application to disparate
surveys challenging.

In this work we present a system that preserves the best features
of both visual and automatic classifications, developing for the first
time a framework that brings both human and machine intelligence
to the task of galaxy morphology to handle the scale and scope of
next-generation data. We demonstrate the effectiveness of such a
system through a re-analysis of visual galaxy morphology classi-
fications collected during the Galaxy Zoo 2 project, and combine
these with a Random Forest (RF) machine learning algorithm that
trains on a suite of non-parametric morphology indicators widely
used for automated morphologies. The primary goal of this paper
is to generalize how such a system would work in the context of
upcoming surveys like LSST and Euclid. As a proof of concept,
we focus on the first question of the Galaxy Zoo decision tree.
We demonstrate that our current implementation provides at least
a factor of 8 increase in the rate of galaxy morphology classifica-
tion while maintaining at least 93.5 per cent classification accuracy
as compared to Galaxy Zoo 2 published data. We first present an
overview of our framework, which also serves as a blueprint for this

paper.

1.1 Galaxy Zoo Express overview

The Galaxy Zoo Express (GZX) framework combines human and
machine to increase morphological classification efficiency, in terms
of both the classification rate and required human effort. Fig. 1
presents a schematic of GZX including section numbers as a shortcut
for the reader. We note that transparent portions of the schematic
represent areas of future work which we explore in Section 6. Any
system combining human and machine classifications will have a
set of generic features: a group of human classifiers, at least one
machine classifier, and a decision engine which determines how
these classifications should be combined.

In this work we demonstrate our system through a re-analysis
of Galaxy Zoo 2 (GZ2) crowd-sourced classifications as described
in Section 2. We compute ‘ground truth’ labels for each galaxy
in the GZ2 sample from the published GZ2 classification catalogue
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(Section 2.1). The GZ2 data allow us to create simulations of human
classifiers whose classifications are used most effectively when pro-
cessed with SWAP, a Bayesian code first developed for the Space
Warps gravitational lens discovery project (Marshall et al. 2016)
and described in Section 3 provide the machine’s training sample.
SWAP aggregates the crowd-sourced classifications of galaxy im-
ages (hereafter, subjects) producing a final label for each subject
(Section 3.3). We show that SWAP produces significant gains in
classification efficiency as well as a reduction of human effort in
Sections 3.4 and 3.5. In Section 3.6 we compare these labels to
the ‘ground truth’ labels computed from GZ2’s traditional crowd-
sourced classification method. Subjects classified by SWAP then
provide the machine’s training sample.

In Section 4, we incorporate a machine classifier. We develop an
RF algorithm that trains on measured morphology indicators such as
Concentration, Asymmetry, Gini coefficient, and M»y, well-suited
for the top-level question of the GZ2 decision tree, discussed below.
Section 4.4 discusses the decision engine we develop that delegates
tasks between human classification and the RF. After a sufficient
number of subjects have been classified by humans via SWAP, the
machine is trained and its performance assessed through cross-
validation. This procedure is repeated nightly and the machine’s
performance increases with the size of the training sample, albeit
with a performance limit. Once the machine reaches an acceptable
level of performance, it is applied to the remaining galaxy sample
as explored in Section 4.5.

The results of our combined GZX system are provided in Sec-
tion 5. Even with this simple description, one can see that the
classification process will progress in three phases. First, the ma-
chine will not yet have reached an acceptable level of performance;
only humans contribute to subject classification. Second, the ma-
chine’s performance will improve; both humans and machine will
be responsible for classification. Finally, machine performance will
slow; remaining images will likely need to be classified by humans.
This result is detailed in Section 5.1. Furthermore, in Section 5.2,
we find evidence that the RF may be capable of correctly identifying
subjects that humans miss providing a complimentary approach to
galaxy classification. This blueprint allows even modest machine
learning routines to make significant contributions alongside human
classifiers and removes the need for ever-increasing performance in
machine classification. Discussion and conclusions are presented in
Section 6.

2 GALAXY ZOO 2 CLASSIFICATION DATA

Our simulations utilize original classifications made by volunteers
during the GZ2 project. These data' are described in detail in Willett
et al. (2013), though we provide a brief overview here. The GZ2
subject sample consists of 285 962 galaxies identified as the bright-
est 25 per cent (r-band magnitude <17) residing in the SDSS North
Galactic Cap region from Data Release 7 and included subjects
with both spectroscopic and photometric redshifts out to z < 0.25.
Subjects were shown as colour composite images via a web-based
interface” wherein volunteers answered a series of questions per-
taining to the morphology of the subject. With the exception of
the first question, subsequent queries were dependent on volunteer

! data.galaxyzoo.org
2 www.galaxyzoo.0rg
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responses from the previous task creating a complex decision tree.?
Using GZ2 nomenclature, a classification is the total amount of
information about a subject obtained by completing all tasks in the
decision tree. A subject is retired after it has achieved a sufficient
number of classifications.

For our current analysis, we choose the first task in the tree: ‘Is
the galaxy simply smooth and rounded, with no sign of a disc?’ to
which possible responses include ‘smooth’, ‘features or disc’, or
‘star or artefact’. This choice serves two purposes: (1) this is one
of only two questions in the GZ2 decision tree that is asked about
every subject, thus maximizing the amount of data we have to work
with, and (2) our analysis assumes a binary task and this question
is simple enough to cast as such. Specifically, we combine ‘star or
artefact’ responses with ‘features or disc’ responses.

2.1 ‘Ground truth’ labels

We assign each subject a descriptive label in order to validate our
classification output against that of GZ2. GZ2 classifications are
composed of volunteer vote fractions for each response to every
task in the decision tree, denoted as fresponse- The most basic of these
is computed simply as f; = n./n, that is, the number of votes of
response r divided by the total number of votes for task r. Vote
fractions are thus approximately continuous. A common technique
is to place a threshold on these vote fractions to select samples
with an emphasis on purity or completeness, depending on the
science case. For our current analysis, we choose a threshold of 0.5,
that is, if freawrea+fartitact™> fimoom» the galaxy is labelled ‘Featured’,
otherwise it is labelled ‘Not’. We note that only 512 subjects in the
GZ2 catalogue have a majority fiqifc, contributing less than half a
percent contamination when combining the ‘star or artefact” with
‘features or disc’ responses.

The GZ2 catalogue publishes three types of vote fractions for
each subject: raw, weighted, and debiased. Debiased vote fractions
are calculated to correct for redshift bias, a task that GZX does
not perform. The weighted vote fractions account for inconsis-
tent volunteers. The SWAP algorithm (described below) also has
a mechanism to weight volunteer votes; however, the two methods
are in stark contrast. For consistency, we thus derive labels from the
simple ‘raw’ vote fractions defined above, and designate the result-
ing labels as GZ2,,. In total, the data consist of over 14 million
classifications from 83 943 individual volunteers.

The GZ2,,,, labels we compute from GZ2 vote fractions are used
solely to validate our classification method and are thus considered
‘ground truth’, though this is, of course, subjective. Furthermore,
we envision our framework being applied to never-before-classified
image sets for which ‘ground truth’ labels would not yet exist.
Nevertheless, in Appendix A we show how different choices of
our descriptive GZ2 labels change the perceived quality of our
classification system and demonstrate that our method yields robust
galaxy classifications.

3 EFFICIENCY THROUGH INTELLIGENT
HUMAN-VOTE AGGREGATION

Galaxy Zoo 2 did not have a predictive retirement rule, rather each
galaxy received a median of 44 independent classifications. Once

3 A visualization of this decision tree can be found at https:/
data.galaxyzoo.org/gz_trees/gz_trees.html.
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the project reached completion, inconsistent volunteers were down-
weighted (Willett et al. 2013), a process that does not make efficient
use of those who are exceptionally skilled. To intelligently manage
subject retirement and increase classification efficiency, we adapt
an algorithm from the Zooniverse project Space Warps (Marshall
etal. 2016), which searched for and discovered several gravitational
lens candidates in the CFHT Legacy Survey (More et al. 2016).
Dubbed SWAP (Space Warps Analysis Pipeline), this algorithm
computed the probability that an image contained a gravitational
lens given volunteers’ classifications and experience after being
shown a training sample consisting of simulated lensing events. We
provide an overview here; interested readers are encouraged to refer
to Marshall et al. (2016) for additional details.

3.1 The SWAP algorithm

SWAP evaluates the accuracy of individual classifiers based on
their responses to subjects where the true classification is known,
and applies those evaluations to the consensus classifications of
subjects where the true classification is unknown in order to improve
classification efficiency and reduce the classification effort required
to complete a project. In order to achieve this, SWAP assigns each
volunteer an agent which interprets that volunteer’s classifications.
Each agent assigns a 2 x2 confusion matrix to their volunteer which
encodes that volunteer’s probability to correctly identify feature
A given that the subject exhibits feature A; and the probability to
correctly identify the absence of feature A (denoted N) given that
the subject does not exhibit that feature. The agent updates these
probabilities by estimating them as

Noyn

X

PX”|X,d) ~ ¢))
where X is the true classification of the subject and ‘X’ is the clas-
sification made by the volunteer upon viewing the subject. Thus
Ny is the number of classifications the volunteer labelled as type
X, Ny is the number of subjects the volunteer has seen that were
actually of type X, and d represents the history of the volunteer, i.e.
all subjects they have seen. Therefore the confusion matrix for a
single volunteer goes as

PCATIN, d) P(“A”[A, d)
M= @)
PENTIN,d) PONT|A, d)

where probabilities are normalized such that
P(“A”|A) =1 — P(“N”|A).

Each subject is assigned a prior probability that it exhibits feature
A: P(A) = po. When a volunteer makes a classification, Bayes’
theorem is used to compute how that subject’s prior probability
should be updated into a posterior using elements of the agent’s
confusion matrix. As the project progresses, each subject’s posterior
probability is updated after every volunteer classification, nudged
higher or lower depending on volunteer input. Upper and lower
probability thresholds can be set such that when a subject’s posterior
crosses the upper threshold it is highly likely to exhibit feature A;
while if it crosses the lower threshold it is highly likely that feature A
is absent. Subjects whose posteriors cross either of these thresholds
are considered retired.

3.2 Gold-standard sample

A key feature of the original Space Warps project was the training
of individual volunteers through the use of simulated images. These

5519

were interspersed with real imaging and were predominantly shown
at the beginning of a volunteer’s engagement with the project, al-
lowing that volunteer’s agent time to update before classifying real
data. Volunteers were provided feedback in the form of a pop-up
comment after classifying a training image. GZ2 did not train vol-
unteers in such a way, presenting a challenge when applying SWAP
to GZ2 classifications. Though we cannot retroactively train GZ2
volunteers, we develop a gold standard sample and arrange the order
of gold standard classifications in order to mimic the Space Warps
system.

We create a gold standard sample by selecting 3496 SDSS galax-
ies representative of the relative abundance of T-Types, a numerical
index of a galaxy’s stage along the Hubble sequence, at z ~ O by
considering galaxies that overlap with the Nair & Abraham (2010)
catalogue, a collection of ~14K galaxies classified by eye into
T-Types. We generate new expert labels for these galaxies that are
consistent with the labels we defined for GZ2 classifications. These
are provided by 15 professional astronomers, including members
of the Galaxy Zoo science team, through the Zooniverse platform.*
The question posed was identical to the original top-level GZ2
question and at least five experts classified each galaxy. Votes are
aggregated and a simple majority provides an expert label for each
subject. This ensures that our expert labels are defined in exactly
the same manner as the labels we assign the rest of the GZ2 sam-
ple. Our final data set consists of the GZ2 classifications made
by those volunteers who classify at least one of these gold stan-
dard subjects. We thus retain for our simulation 12686 170 clas-
sifications from 30894 unique volunteers. When running SWAP,
classifications of gold standard subjects are always processed
first.

3.3 Fiducial SWAP simulation

Before we run a simulation, a number of SWAP parameters must
be chosen: the initial confusion matrix for each volunteer’s agent,
(P(“F”|F), P(“N”|N)); the subject prior probability, py; and the
retirement thresholds, 7= and fy. For our fiducial simulation we
initialize all confusion matrices at (0.5, 0.5), and set the subject
prior probability, po=0.5. We set the ‘Featured’ threshold, #, i.e.
the minimum probability for a subject to be retired as ‘Featured’, to
0.99. Similarly, we set the ‘Not’threshold, ty=0.004. In Appendix B
we show that varying these parameters has only a small affect on
the SWAP output. To simulate a live project, we run SWAP on a
time step of Ar =1 d, during which SWAP processes all volunteer
classifications with timestamps within that range. This is performed
for three months worth of GZ2 classification data. Hereafter, we
refer to this as GZ2 project time where 0 marks the first day of the
original GZ2 project.

Fig. 2 (adapted from Fig. 4 of Marshall et al. 2016) demon-
strates the volunteer assessment we achieve at the end of our
simulation, and shows confusion matrices for 1000 randomly se-
lected volunteers. The circle size is proportional to the number
of gold standard subjects each volunteer classified. If we were
to examine this figure immediately prior to the start of classi-
fications, it would show all points as small circles stacked pre-
cisely at the centre of the figure since each volunteer is initially
assigned a confusion matrix of (0.5, 0.5). As the simulation pro-
gresses, each volunteer’s green circle is updated in both location and

4The Project Builder template facility can be found at http://
www.zooniverse.org/lab.
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Figure 2. Confusion matrices for 1000 randomly selected GZ2 volunteers
after fiducial SWAP assessment. Circle size is proportional to the number of
gold standard subjects each volunteer classified. The histograms on top and
right represent the distribution of each component of the confusion matrix
for all volunteers. A quarter of GZ2 volunteers are ‘Astute: they correctly
identify both ‘Featured’ and ‘Not’ subjects more than 50 per cent of the
time. The peaks at 0.5 in both distributions are due primarily to volunteers
who see only one training image: only half of their confusion matrix is
updated.

size according to their assessment of gold standard subjects until
arriving at the figure shown here. The histograms represent the
distribution of each component of the confusion matrix for all vol-
unteers. Nearly 25 percent of volunteers are considered ‘Astute’
indicating they correctly identify both ‘Featured’ and ‘Not’ sub-
jects more than 50 per cent of the time. Furthermore, as long as a
volunteer’s confusion matrix is different from a random classifier,
they provide useful information to the project. The spikes at 0.5 in
the histograms are due to volunteers who see only one gold stan-
dard subject (i.e. ‘Featured’), leaving their probability in the other
(‘Not’) unchanged. Additionally, 4 per cent of volunteers have a
confusion matrix of (0.5, 0.5) indicating these volunteers classified
two gold standard subjects of the same type, one correctly and one
incorrectly.

Fig. 3 (adapted from fig. 5 of Marshall et al. 2016) demonstrates
how subject posterior probabilities are updated with each classi-
fication. The arrow in the top panel denotes the prior probability,
po=0.5. With each classification, that prior is updated into a poste-
rior probability creating a trajectory through probability space for
each subject. The blue and orange lines show the trajectories of a
random sample of ‘Featured’ and ‘Not’subjects from our gold stan-
dard sample, while the black lines show the trajectories of a random
sample of GZ2 subjects that were not part of the gold standard sam-
ple. The blue and orange dashed lines correspond to the retirement
thresholds, #rand #y. The lower panel shows the full distribution
of GZ2 subject posteriors at the end of our simulation, where the
y-axis has been truncated to show detail. An overwhelming ma-
jority of subjects cross one of these retirement thresholds: of all
subjects that SWAP ‘sees’, i.e. processes at least one classification,

MNRAS 476, 5516-5534 (2018)
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Figure 3. Posterior probabilities for GZ2 subjects. The top panel depicts the
probability trajectories of 200 randomly selected GZ2 subjects. All subjects
begin with a prior of 0.5 denoted by the arrow. Each subject’s probability
is nudged back and forth with each volunteer classification. From left to
right the dotted vertical lines show the ‘Not’threshold, prior probability, and
‘Featured” threshold. Different colours denote different types of subjects.
The bottom panel shows the distribution in probability for all GZ2 subjects
by the end of our simulation, where the y-axis is truncated to show detail.

only eight per cent have not reached retirement by the end of our
simulation.

Our goal is to increase the efficiency of galaxy classification. We
therefore use as a metric the cumulative number of retired subjects
as a function of GZ2 project time. We define a subject as GZ2-
retired once it achieves at least 30 volunteer votes, encompassing
98.6 per cent of GZ2 subjects (this definition is quantified and its
implications are explored in Section 3.4). In contrast, a subject
is considered SWAP-retired once its posterior probability crosses
either of the retirement thresholds defined above.

However, it is important not to prioritize efficiency at the expense
of quality. Because we have a binary classification, we can construct
a confusion matrix from which we can compute the quality metrics
of accuracy, completeness, and purity as a function of GZ2 project
time by comparing our predicted labels to the GZ2,,,1abels. Fig. 4
graphically ascribes semantic interpretations for the elements of this
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Figure 4. Confusion matrix for comparing our method to GZ2 which we
consider to be ‘ground truth’ as discussed in Section 2.1. True positives
(TP) and true negatives (TN) indicate that the predictions from our method
agree with GZ2 for subjects labelled ‘Featured’ and ‘Not’, respectively.
When the two classification methods disagree, the result is a sample of false
negatives (FN) and false positives (FP). This allows us to easily compute
quality metrics like accuracy, completeness, and purity with respect to GZ2
as shown in equations (3).

confusion matrix. From these we compute:

TP+TN
accuracy =
TP+ FP+TN+FN
TP
completeness = ———
TP+ FN
o TP 3)
urity = —————
P = 7P Fp

Thus a 100 per cent complete sample recovers all subjects la-
belled ‘Featured’ by GZ2, whereas a 100 per cent pure sample re-
covers only subjects labelled ‘Featured” by GZ2. For example, by
Day 20, SWAP retires 120K subjects with 96 per cent accuracy,
99.7 per cent completeness, and 92 per cent purity.

Fig. 5 and Table 1 detail the results of our fiducial SWAP sim-
ulation (‘SWAP only’) compared to the original GZ2 project. The
bottom panel shows the cumulative number of retired subjects as a
function of GZ2 project time. By the end of our simulation, GZ2
(dashed dark blue) retires ~50K subjects while SWAP (solid light
blue) retires 226 124 subjects. We thus classify 80 per cent of the
entire GZ2 sample in three months. Processing volunteer classi-
fications through SWAP presents nearly a factor of 5 increase in
classification efficiency. The top panel of Fig. 5 demonstrates the
quality of those classifications as a function of time and estab-
lishes that our full SWAP-retired sample is 95.7 per cent accurate,
99 per cent complete, and 86.7 per cent pure. We discuss these small
discrepancies in Section 3.6.

3.4 Intelligent subject retirement

That SWAP achieves a classification rate nearly 5 times faster than
GZ2 comes with a caveat: we consider only the top-level question
of the GZ2 decision tree. It can be argued that GZ2 did not need
~40 votes per subject to achieve exquisite sampling for the top-level
question but rather adequate sampling for the subqueries. It might
therefore be the case that the top-level question could be accurately
resolved with far fewer classifications. In order to put SWAP and
GZ2 on equal footing, we determine the minimum number of votes,
N, that the GZ2 project would need in order to replicate the original
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Figure 5. Fiducial SWAP simulation demonstrates a factor of 4.7 increase
in the rate of subject retirement as a function of GZ2 project time (bottom
panel, light blue) compared with the original GZ2 project (dashed dark blue).
After 92 d, SWAP retires over 226K subjects, while GZ2 retires ~48K. The
top panel displays the quality metrics (greys). These are calculated by com-
paring labels predicted by SWAP to GZ2,,,, labels (Section 2) for the subject
sample retired by that day of the simulation. Thus, on the final day, SWAP
retires 226 124 subjects with 95.7 per cent accuracy, and with completeness
and purity of ‘Featured’ subjects at 99 per cent and 86.7 per cent, respec-
tively. The decrease in purity as a function of time is due, in part, to the fact
that more difficult to classify subjects are retired later in the simulation (see
Section 3.4).

GZ2 outcome for the top-level classification task for a canonical
95 per cent of its sample.

We compute the raw vote fractions (fieuwreds fsmooth, aNd furifact)
for every subject in the GZ2 sample using only the first N classi-
fications for N € [10, 15, 20, 25, 30, 35]. From this, we compute
descriptive labels as described in Section 2.1. Our SWAP simulation
did not retire every subject in the GZ2 sample. We therefore select
100 random subsamples each consisting of 226 124 subjects, and
compute the accuracy and the total number of GZ2 classifications
necessary to retire each subsample. These results are shown in the
bottom panel of Fig. 6 for each value of N along with the accuracy
and total classifications for our SWAP simulation. We see that GZ2
needs at least 35 votes per subject in order to achieve consistent
class labels 95 per cent of the time, a full 3.5 times more classifica-
tions than SWAP needs to achieve the same accuracy. Furthermore,
this justifies our choice of defining a subject as GZ2-retired once it
reaches at least 30 classifications.
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Table 1. Summary of key quantities for GZ2 and our various simulations. All quality metrics are calculated using GZ2,,y, labels.

Days Subjects retired Human effort Accuracy Purity Completeness
(classifications) ( per cent) ( per cent) (per cent)
Galaxy Zoo 2 430 285962 14 144 142 - - -
SWAP only 92 226 124 2298772 95.7 86.7 99.0
SWAP+RF 32 210803 936 887 93.1 83.2 94.0
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Figure 6. SWAP’s intelligent retirement mechanism requires only 30 per cent of the classifications that GZ2 needs for the top-level question due to SWAP’s
ability to retire easier subjects quickly, while more difficult subjects remain in the system to accrue additional classifications. Top panels: The top left-hand
panel shows fymooth for the entire GZ2 sample (orange), the subjects retired by SWAP (blue), and subjects that SWAP has not yet retired by the end of our
simulation (red). The latter distribution peaks at fymooth ~0.6, which can intuitively be understood as the most difficult to classify subjects: those with fimeoth <0.5
are easily identified as ‘Featured’, while those with fimeotn>0.8 are more obviously ‘Not’. The top right-hand panel provides additional evidence showing
the number of votes at retirement for both the original GZ2 project (solid lines) and our SWAP simulation (dashed blue). The left-skew inherent in the red
SWAP-not-yet-retired sample is due to difficult-to-classify subjects that received only 30—40 classifications during the GZ2 project. Even after processing all
available classifications, SWAP cannot retire these subjects without additional volunteer input. Bottom panel: Here we compare SWAP to results of simulations
of GZ2 run with a lower retirement limit in order to evaluate whether or not GZ2’s considerable number of votes per subject are necessary solely to populate
subqueries. Solid bars show the number of classifications required to retire the same number of galaxies as SWAP (dark grey) for different fixed retirement
limits in GZ2 (light grey). The height of the bars is normalized to show the counts relative to the highest simulated GZ2 retirement limit we test (N = 35,
right vertical axis). The accuracy of the classifications for these simulated GZ2 runs against the full GZ2 project is shown as red points (left vertical axis).
If GZ2 retirement were set at a level (N = 10) that reproduces the total number of classifications logged by SWAP, the accuracy would be below 90 per cent
(versus SWAP’s 96 per cent). Instead, GZ2 requires, at minimum, 3.5 times as many votes to approach the same accuracy (95 per cent) as SWAP. Simulated
GZ2 sessions were run 100 times, randomly selecting subsamples with the same number of galaxies as were retired during our fiducial SWAP simulation.
Quantities shown are averages of these trials; statistical error bars are too small to be seen.

SWAP’s performance can be explained through its retirement subject’s posterior across a retirement threshold). Evidence for this
mechanism. GZ2 did not have a predictive retirement rule, rather can be seen in the top two panels of Fig. 6. The top left-hand panel
the project was declared complete when the median classification shows the distribution of f;,.nfor the entire GZ2 sample (orange),
count for the ensemble reached a value that was deemed to be suffi- the SWAP-retired sample (blue), and the sample of subjects which
cient for accurate characterization of the classification. In contrast, SWAP has not yet retired, of which there are ~19K at the end
SWAP retires ‘easier’ subjects first while harder subjects remain of our simulation. The SWAP-retired sample generally follows the
in the system for longer (requiring many more votes to nudge that same distribution as GZ2-full except for the noticeable dip around
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Jfimooth=0.6. In contrast, the SWAP-not-yet-retired sample peaks at
fimooth=0.6. These subjects can be interpreted as being the most dif-
ficult to classify which can be understood intuitively: galaxies with
Jfimootn <0.5 are easily identified as having features, while galaxies
with fimootn =0.8 are more obviously elliptical.

This is further corroborated in the top right-hand panel of Fig. 6,
which shows the distribution of the number of classifications a
subject had at the time of retirement. The solid lines show this
distribution from the original GZ2 project for the same subsam-
ples as the top left-hand panel. For comparison, the dashed line
shows the number of classifications at retirement realized during
our SWAP simulation. Again, we see that the SWAP-retired sam-
ple is representative of GZ2 as a whole. However, the distribution
for the SWAP-not-yet-retired sample is skewed towards fewer total
classifications.

To understand this, consider the following: GZ2 served subject
images at random with the exception that, towards the end of the
project, subjects with low numbers of classifications were shown at
a higher rate (Willett et al. 2013). The median number of classifi-
cations was 44 with the full distribution shown in orange in the top
right-hand panel of Fig. 6. Our SWAP simulation processes these
classifications in the same order as the original project (with the
exception that gold-standard subject classifications are processed
first as described in Section 3.2). Because our simulations cycle
through only 92 d of GZ2 data, there are three general scenarios for
why a subject has not yet been retired through SWAP: (1) SWAP
has seen only a few of the many classifications for a given subject
and it is not yet enough to retire it, (2) SWAP has seen many of
the classifications for a subject but that subject is difficult; if we ran
the simulation longer to process the remaining GZ2 classifications,
SWAP would eventually retire it, and (3) SWAP has seen most or all
of the classifications for a subject but it is difficult and there are few
or no remaining GZ2 classifications; without additional volunteer
input, these subjects will never be retired by SWAP.

It is this third category that skews the red distribution towards
fewer GZ2 votes. These are difficult-to-classify subjects that have
only 3040 GZ2 classifications, all of which are processed by
SWAP, but these subjects remain unretired. This is an indication
that such subjects should have continued to accrue classifications in
order to reach strong consensus.

We have demonstrated that SWAP retires subjects intelligently:
quickly retiring easy-to-classify subjects while allowing those that
are more difficult to collect additional classifications. SWAP thus
requires only 30 per cent of the votes that GZ2 needs and retires
nearly 5 times as many subjects during the three months of GZ2
project time that we include in our simulation.

3.5 Reducing human effort

SWAP’s intelligent retirement mechanism is characterized, in large
part, by the way SWAP estimates volunteer classification ability.
This in turn allows for a dramatic reduction in the amount of human
effort (votes) required. To see this more clearly, we consider a toy
model wherein we simulate volunteers with fixed confusion matri-
ces. We simulate 1000 ‘Featured’subjects and 1000 ‘Not’subjects
each with prior, pp=0.5. We simulate 100 volunteer agents all with
the same fixed confusion matrix of (0.63, 0.65), where these values
are computed as the average P(“F”’|F)and P(“N’|N)from our assess-
ment of real volunteers, excluding the spikes at 0.5. We generate
volunteer classifications based on this confusion matrix (i.e. volun-
teers will correctly identify ‘Featured’ subjects 63 per cent of the
time) and update the subject’s posterior probability with each clas-

0.12 All Retired
'Not'
0.10 'Featured'
Fixed M: 'Not'
20.08 Fixed M: 'Featured'
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)
g" 0.06
g0
[
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Classifications till retirement

Figure 7. SWAP’s volunteer-weighting mechanism provides a factor of 3
reduction in the human effort required to retire GZ2 subjects. The filled his-
tograms show the number of volunteer classifications per subject achieved
during our SWAP simulation broken down by class label, where the solid
black line is the total. The dashed histograms are results from our toy model
in which we simulate volunteers with fixed confusion matrices, effectively
disengaging SWAP’s volunteer-weighting mechanism. These broad distri-
butions require ~3 times more classifications per subject to reach the same
retirement thresholds.

sification. We track how many classifications are required for each
subject’s posterior to cross either the ‘Featured’ or ‘Not’ retirement
thresholds.

The results are presented in Fig. 7. The filled blue and orange
histograms show the number of classifications per subject achieved
from our SWAP simulation, where volunteer agent confusion matri-
ces are those from Fig. 2. The dashed blue and orange distributions
are the results from our toy model. When SWAP accounts for vol-
unteer ability, most subjects are retired with between 6 and 15 votes,
with a median of 9 votes. In contrast, when every volunteer is given
equal weighting, subjects require 16—45 votes with a median of 30
votes before crossing one of the retirement thresholds. Thus the
volunteer weighting scheme embedded in SWAP can reduce the
amount of human effort required to retire subjects by a factor of 3.

This reduction will be, in part, a function of the number of gold
standard subjects each volunteer sees. Our gold standard sample
was chosen to be representative of morphology rather than evenly
distributed among GZ2 volunteers. We thus find that half of our
volunteers classify only one or two gold standard subjects. That
we achieve a factor of 3 reduction when only half of our volunteer
pool has seen >2 gold standard subjects suggests that an additional
reduction of human effort is possible with more extensive volunteer
training.

3.6 Disagreements between SWAP and GZ2

Galaxy Zoo’s strength comes from the consensus of dozens of vol-
unteers voting on each subject. Processing votes with SWAP reduces
the number of classifications to reach consensus. Though we typ-
ically recover the GZ2,,, label, SWAP disagrees about 5 per cent
of the time. We thus examine the false positives (subjects SWAP
labels as ‘Featured” but GZ2,,,, labels as ‘Not’) and false negatives
(subjects SWAP labels as ‘Not’but GZ2,,,, labels as ‘Featured’).
We explore these subjects in redshift, magnitude, physical size,
and concentration but find no correlation with any of these vari-
ables, suggesting that, at least for this galaxy sample, the reliability
of morphology depends on factors that are not captured by these
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Figure 8. Distribution of GZ2 freatured+HfartifactVOte fractions for subjects
correctly identified by SWAP (dotted grey), along with those identified
as false positives (solid purple) and false negatives (dashed teal). The false
positives and false negatives are scaled by factors of 10 and 100, respectively
for easier comparison. From Section 2, subjects with values >0.5 are defined
as ‘Featured’, however, the teal distribution indicates that SWAP labels them
as ‘Not’. This is not necessarily a flaw of SWAP: 68.9 per cent of incorrectly
identified subjects have 0.4 < freatured+fartifact <0.6, nearly the same range as
a 68 per cent confidence interval around our choosen threshold. The overlap
between the false positives and false negatives is due to subjects that are
exactly 50-50; by default these are labelled ‘Not’.

coarse measurements. This is perhaps unsurprising since GZ2 sub-
jects were selected from the larger GZ1 sample to be the brightest,
largest, and nearest galaxies: precisely those subjects most accessi-
ble for visual classification.

Instead we consider the stochastic nature of GZ2 vote fractions,
which can be estimated as binomial. Let success be a response of
‘smooth’ and failure be any other response. The 68 per cent con-
fidence interval on a subject with fi00=0.5 is then (0.42, 0.57)
assuming 40 classifications, each with a probability of 0.5. Fig. 8
shows the distribution of fieaurea+faritace for the false positives (solid
purple) and the false negatives (dashed teal) compared to the sub-
jects where SWAP and GZ2 agree (dotted grey). Recall that if this
value is greater than 0.5, the subject is labelled ‘Featured’. The
majority of disagreements between SWAP and GZ2 are for sub-
jects that have 0.4 < freawred+Hfartitact <0.6. It is thus unsurprising that
SWAP and GZ2 disagree most within the approximate confidence
interval of our selected GZ2 threshold. We note that the distribution
overlap between false positives and false negatives is due to subjects
that do not have a majority; these are labelled ‘Not’by default.

Two other effects contribute to the disagreement between SWAP
and GZ2. First, as the number of classifications used to retire a
galaxy decreases, the likelihood of misclassification by random
chance increases. Second, disagreement arises due to expert-level
volunteers whose confusion matrices are close to 1.0. These volun-
teers are essentially more strongly weighted, allowing that subject’s
posterior to cross a retirement threshold in as few as two classifica-
tions. In rare cases, despite training, some expert-level volunteers
get it wrong compared to the gold-standard labels. These issues can
be mitigated by requiring each subject reach a minimum number
of classifications in addition to its posterior probability crossing a
retirement threshold, thus combining the best qualities of GZ2 and
SWAP.
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3.7 Summary

We demonstrate nearly a factor of 5 increase in the classification
rate, a reduction of at least a factor of 3 in the human effort necessary
to maintain that increased rate, all while maintaining 95 per cent ac-
curacy, nearly perfect completeness of ‘Featured’ subjects, and with
a purity that can be controlled by careful selection of input parame-
ters to be better than 90 per cent (see Appendix B). Exploring those
subjects wherein SWAP and GZ2 disagree, we conclude that the
majority of this disagreement stems from the stochastic nature of
GZ2,,, labels. We now turn our focus towards incorporating a ma-
chine classifier utilizing these SWAP-retired subjects as a training
sample.

4 EFFICIENCY THROUGH INCORPORATION
OF MACHINE CLASSIFIERS

We construct the full Galaxy Zoo Express by incorporating super-
vised learning, the machine learning task of inference from labelled
training data. The training data consist of a set of training examples,
and must include an input feature vector and a desired output label.
Generally speaking, a supervised learning algorithm analyses the
training data and produces a function that can be mapped to new
examples. A properly optimized algorithm will correctly determine
class labels for unseen data. By processing human classifications
through SWAP, we obtain a set of binary labels by which we can
train a machine classifier. We briefly outline the technical details of
our machine below, turning towards the decision engine we develop
in Section 4.4.

4.1 Random Forests

We use an RF algorithm (Breiman 2001), an ensemble classifier
that operates by bootstrapping the training data and constructing a
multitude of individual decision tree algorithms, one for each sub-
sample. An individual decision tree works by deciding which of the
input features best separates the classes. It does this by performing
splits on the values of the input feature that minimize the clas-
sification error. These feature splits proceed recursively. Decision
trees alone are prone to overfitting, precluding them from general-
izing well to new data. RFs mitigate this effect by combining the
output labels from a multitude of decision trees. Specifically, we
use the RandomForestClassifier from the Python module
scikit-learn (Pedregosa et al. 2011).

4.2 Grid search and cross-validation

Of fundamental importance is the task of choosing an algorithm’s
hyperparameters, values which determine how the machine learns.
For an RF, key quantities include the maximum depth of indi-
vidual trees (max_depth), the number of trees in the forest
(n_estimators), and the number of features to consider when
looking for the best split (max_features). The goal is to deter-
mine which values will optimize the machine’s performance and
thus these values cannot be chosen a priori. We perform a grid
search with k-fold cross-validation whereby the training sample is
split into k subsamples. One subsample is withheld to estimate the
machine’s performance while the remaining data are used to train
the machine. This is performed k times and the average perfor-
mance value is recorded. The entire process is repeated for every
combination of the hyperparameters in the grid space and values
that optimize the output are chosen. In this work we let k = 10,
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however, we leave this as an adjustable input parameter. In the in-
terest of computational speed, we set n_estimators =30 and
perform the grid search for max_depth over the range [5, 16], and
max_features over the range [@, D], where D is the number
of features in the feature vector, described below.

4.3 Feature representation and pre-processing

The feature vector on which the machine learns is composed of D in-
dividual numeric quantities associated with the subject that the ma-
chine uses to discern that subject from others in the training sample.
To segregate ‘Featured’ from ‘Not’, we draw on ZEST (Scarlata
et al. 2007) and compute concentration, asymmetry, Gini coeffi-
cient, and My, the second-order moment of light for the brightest
20 per cent of galaxy pixels, as measured from SDSS DR12 i-band
imaging (see Appendix C). Coupled with SEXTRACTOR’S measure-
ment of ellipticity (Bertin & Arnouts 1996), we provide the machine
with a D = 5 dimensional morphology parameter space. These
non-parametric diagnostics have long been used to distinguish be-
tween early- and late-type galaxies in an automated fashion (e.g.
Abraham et al. 1996; Bershady, Jangren & Conselice 2000; Con-
selice, Bershady & Jangren 2000; Abraham, van den Bergh & Nair
2003; Conselice 2003; Lotz, Primack & Madau 2004; Snyder et al.
2015). Because the RF algorithm handles a variety of input formats,
the only pre-processing step we perform is the removal of poorly
measured morphological indicators, i.e. catastrophic failures.

4.4 Decision engine

A number of decisions must be addressed before attempting to train
the machine. In particular, which subjects should be designated
as the training sample? When should the machine attempt its first
training session? When has the machine’s performance been opti-
mized such that it will successfully generalize to unseen subjects?
The field of machine learning provides few hard rules for answering
these questions, only guidelines, and best practices. Here we briefly
discuss our approach for the development of our decision engine.

As discussed in detail in Section 3, SWAP yields a probability
that a subject exhibits the feature of interest. While some machine
algorithms can accept continuous input labels, the RF requires dis-
tinct classes. We thus use only those subjects which have crossed
either of the retirement thresholds. Though we find that SWAP con-
sistently retires 35—40 percent ‘Featured’ subjects on any given
day of the simulation, a balanced ratio of ‘Featured’ to ‘Not’isn’t
guaranteed. Highly unbalanced training samples should be resam-
pled to correct the imbalance; however, as we exhibit only a mild
lopsidedness, we allow the machine to train on all SWAP-retired
subjects.

SWAP retires a few hundred subjects during the first days of the
simulation. In principle, a machine can be trained with such a small
sample, but will be unable to generalize to unseen data. We estimate
a minimum number of training samples and the machine’s ability
to generalize by considering a learning curve, an illustration of a
machine’s performance with an increasing sample size for fixed
hyperparameters. Fig. 9 demonstrates such a curve wherein we plot
the accuracy from both the 10-fold cross-validation, and the trained
machine applied to its own training sample for a random sample of
GZ2 subjects required to be balanced between ‘Featured’ and ‘Not’.
We fix the RF’s hyperparameters as follows: max_depth =8,
n_estimators =30, and max_features =2. When the sam-
ple size is small, the cross-validation score is low and the training
score is high, a clear sign of overfitting. However, as the training
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0.95
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3
3
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0.80 //’_—7
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Training sample size [103]

Figure 9. Learning curve for an RF with fixed hyperparameters. These
curves show the mean accuracy computed during cross-validation and on
the training sample, where the shaded regions denote the standard deviation.
When the training sample size is small, the machine accurately identifies
its own training sample but is unable to generalize to unseen data as evi-
denced by a low cross-validation score. This score increases with the size
of the training sample but eventually plateaus indicating that larger training
samples provide little in additional performance.

sample size increases, the cross-validation score increases and even-
tually plateaus, indicating that larger training sets will yield little
additional gain.

We estimate this plateau begins when the training sample reaches
10000 subjects and require SWAP retire at least this many before
the machine attempts its first training. We estimate the machine
has trained sufficiently if the cross-validation score fluctuates by
less than 1 percent for three consecutive nights of training to en-
sure we have reached the plateau. This requires that we record the
machine’s training performance each night, including how well it
scores on the training sample, the cross-validation score, and the
best hyperparameters.

4.5 The machine shop

We can now describe a full GZX simulation, which begins with
human classifications processed through SWAP for several days.
Once at least 10K subjects have been retired, their feature vec-
tors are passed to the machine for its inaugural training. A suite
of performance metrics are recorded by a machine agent, similar
in construction to SWAP’s agents. This agent determines when the
machine has trained sufficiently by assessing the variation in perfor-
mance metrics for all previous nights of training. Once the machine
has been optimized, the agent introduces it to the test sample con-
sisting of any subject that has not yet reached retirement through
SWAP and is not part of the gold standard sample.

Analogous to SWAP, we generate a retirement rule for machine-
classified subjects. In addition to the class prediction, the RF algo-
rithm computes the probability for each subject to belong to each
class. This probability is simply the average of the probabilities
of each individual decision tree, where the probability of a single
tree is determined as the fraction of subjects of class X on a leaf
node. Only subjects that receive a class prediction of ‘Featured’

MNRAS 476, 5516-5534 (2018)

6102 4890100 ¥} Uo 150nB AQ 080EZ6+/91SS/7/9.¥/19EISqe-0[0IE/SEIUL/WOY dNO"0IWSpPE.//:Sd)Y WO} PAPEOjUMOQ



5526 M. R. Beck et al.

2301 Machine starts training

2001

150+

Cumulative retired subjects [10%]

= (GZ Express
= SWAP-only

- (GZ2
100+
50' L
-
—”’
} _”_”’
0 -._—------_—_-_’_—
0 20 40 60 80

Days in GZ2 Project

Figure 10. By incorporating a machine classifier, GZX (red) increases the classification rate by an order of magnitude compared to GZ2 (dashed dark blue)
and outperforms the SWAP-only run (light blue), retiring more than 200K subjects in just 27 d of GZ2 project time. The dashed black line marks the first night
the machine trains. After several additional nights of training, it is deemed optimized and allowed to retire subjects. Both humans and machine then contribute
to retirement. We end the simulation after 32 d having retired over 210K galaxies. See Table 1 for details.

With prachine = 0.9 (Pmachine < 0.1 for ‘Not’) are considered retired.
The remaining subjects have the possibility of being classified by
humans or the machine on a future night of the simulation. This con-
stitutes the core of our passive feedback mechanism. Subjects that
are not retired by the machine can instead be retired by humans, thus
providing the machine a more fully sampled morphology parameter
space on future training sessions.

5 RESULTS

We perform a full GZX simulation incorporating our RF with the
fiducial SWAP run discussed in Section 3.3. The machine attempts
its first training on Day 8 with an initial training sample of ~20K
subjects. It undergoes several additional nights of training, each
time with a larger training sample. By Day 12, SWAP has provided
over 40K subjects for training and the machine’s agent has deemed
the machine optimized. The machine predicts class labels for the
remaining 230K GZ2 subjects. Of those, the machine retires over
70K, dramatically increasing the subset of retired subjects. We end
the simulation after 32 d, having retired ~210K subjects as detailed
in Table 1.

We present these results in Fig. 10, where subject retirement with
GZX (red) is compared to our fiducial SWAP-only run (light blue)
and GZ2 (dashed dark blue). Using the GZ2,,,, labels as before, we
compute our usual quality metrics on the full sample of GZX-retired
subjects, as reported in Table 1. Accuracy and purity remain within a
few percent of the SWAP-only run at 93.1 per cent and 83.2 per cent,
respectively. Instead we see a 5 percent decline in the complete-
ness. While the SWAP-only run identified 99 per cent of ‘Featured’
subjects, incorporation of the machine seems to miss a significant
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portion, thus dropping GZX completeness to 94.0 per cent. We dis-
cuss this behaviour below.

By dynamically generating a training sample through a more
sophisticated analysis of human classifications coupled with a ma-
chine classifier, we retire more than 200K GZ2 subjects in just 27 d.
Our GZX simulation processes a total of 936 887 visual classifica-
tions. As presented in Section 3.4, GZ2 requires at least 35 votes per
subject to obtain galaxy classifications that are consistent 95 per cent
of the time. At best, GZ2 could have retired 26 768 subjects with
the classifications we process during our GZX run. This implies
that we have increased the classification rate by at least a factor of
8, while requiring only 13 per cent as many human classifications.
We next explore the composition of those classifications.

5.1 Who retires what, when?

In the top panel of Fig. 11, we explore the individual contributions to
GZX subject retirement from the RF (dash-dotted teal) and SWAP
(dashed orange). The solid black line shows the total GZX retire-
ment (SWAP-+RF), while the dotted grey line depicts the fiducial
SWAP-only run from Section 3.3 for reference. Two things are im-
mediately obvious. First, each component shoulders approximately
half of the retirement burden with the machine and SWAP responsi-
ble for ~98K and ~112K subjects, respectively. Secondly, the rate
of retirement exhibited by the two components is in stark contrast.
SWAP retires at a relatively constant rate while the machine retires
dramatically at the beginning of its application, quickly surpassing
the human contribution, and plateaus thereafter. We thus clearly
see three epochs of subject retirement. In the first phase, humans
are the only contributors to subject retirement. Once the machine
is optimized, it immediately contributes more to retirement than
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Figure 11. Contributions to subject retirement by both classifying agents
of GZX: human (SWAP, orange) and machine (RF, teal). The top panel
shows cumulative subject retirement for GZX as a whole (solid black),
along with that attributed to the RF and SWAP. The dotted grey line shows
the fiducial SWAP-only run for comparison. Retirement totals for humans
and machine are nearly equal over the course of the simulation but display
different behaviours: SWAP’s retirement rate is almost constant while the
RF contributes substantially after its initial application and then plateaus.
The bottom panels show what fraction of GZ2 subjects are retired, separated
by class label. Overall, GZX retires 73.7 per cent of the entire GZ2 sample
in 32d, retiring the same proportion of ‘Featured” and ‘Not’ subjects as
indicated by the black lines. However, humans retire 30 per cent more ‘Fea-
tured’ subjects than the machine, while both components retire a similar
proportion of ‘Not’ subjects.

humans. However, the machine’s performance plateaus quickly;
the third phase is again dominated by human classifications.

In the bottom panels of Fig. 11, we consider the class composition
of subjects retired by SWAP and the RF. The left (right)-hand panel
shows the retired fraction of GZ2 subjects identified as ‘Featured’
(‘Not’) according to their GZ2,,1abels as a function of GZ2 project
time. Overall, GZX retires 73.7 per cent of the GZ2 subject sample
and this is evenly distributed between ‘Featured’ and ‘Not’subjects
as indicated by the solid black lines in both panels. However, SWAP
retires more than 50 percent of all ‘Featured’ subjects while the
machine retires only 20 per cent. This divergence does not exist for
‘Not’ subjects where each component contributes 33-34 per cent.

What is the source of this discrepancy? Each night the ma-
chine trains on a sample composed consistently of 30—40 per cent
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‘Featured’ subjects but does not retire a similar proportion, indi-
cating that the 30 per cent of non-retired ‘Featured’ subjects do not
receive high ppachine. In the following section we explore whether
this is an artefact of our choice in machine or in the human-machine
combination implemented here.

5.2 Machine performance

Throughout our analysis we have defined ‘Featured’ and ‘Not’ sub-
jects by their GZ2,,,, labels as this was the most compatible choice
for comparison with SWAP output. However, the machine does not
learn in the same way, nor is it presented with the same informa-
tion. Machine and human classifications each provide valuable and
complementary information for identifying ‘Featured’galaxies.

We isolate the 7060 subjects that were deemed false posi-
tives, i.e. galaxies retired by the machine as ‘Featured’ that have
‘Not’GZ2,,,labels, a sample that comprises only 7.2 per cent of all
subjects the machine retires. We visually examine several hundred
and assess that, to the expert eye, a majority are, in fact, ‘Featured’.
A random sample is shown in Fig. 12.

That the machine strongly identifies these galaxies as
‘Featured’ (pmachine=0.9) where humans instead classify them as
‘Not” (fiearea <0.5) has several contributing factors: (1) as discussed
in Section 3.6, the threshold we chose carries with it a confidence
interval such that subjects with 0.4 < fieauredfartitact <0.6 are most
likely to receive disagreeing labels from other classifying agents,
(2) the first task of the GZ2 decision tree asks a question that does
not necessarily correlate with a split between early- and late-type
galaxies, and (3) the machine learns on morphology diagnostics that
are very different from visual inspection.

We find that 40 percent of these false positives have 0.4 <
Sreatured Hfarifact <0.5, indicating that the disagreement between hu-
mans and machine is likely due to the labels we assign at our given
threshold. However, we also find that 45 per cent of false positives
have fieatureaHfarifact <0.35, and this discrepancy is not as easily ex-
plained. In Fig. 12 we examine a random sample of false positives
in this regime where, for clarity, we display only the fieaurea Value in
the lower left corner. The majority of these subjects are discs lack-
ing features such as spiral arms or strong bars. Whether this is the
reason the majority of volunteers classify these objects as ‘smooth’
is beyond the scope of this paper, however, this behaviour might be
modified by providing actual training images and live feedback as
performed in Marshall et al. (2016). We suggest that, at least for this
particular question, if either human or machine identifies a subject
as ‘Featured’, it is likely that the subject is discy and worth further
investigation.

Accordingly, this suggests that, in some cases, the morphology
indicators we measure are sufficient for the machine to recognize
‘Featured’ galaxies regardless of the labels humans provide. Fig. 13
shows the distribution of each morphology indicator for all sub-
jects the machine retires as ‘Featured’ (blue) and ‘Not’(orange)
compared to the full GZ2 subject set. The difference between ‘Fea-
tured’and ‘Not’ is stark in all but the M, distribution. This can be
seen explicitly in Fig. 14, in which we show the RF’s ranked feature
importances, where large values indicate higher importance. Fea-
ture importance is computed as how much each feature decreases
the impurity of a split in a tree. The impurity decrease from each
feature is then averaged over all trees and ranked. We show the fea-
ture importance averaged over all nights of training with black bars
indicating the standard deviation. The machine finds the Gini coef-
ficient most important for class prediction, placing little emphasis
on M. It is well known that the Gini coefficient is more sensitive
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Figure 12. A random subsample of subjects identified as false positives: labelled by machine as ‘Featured’ but as ‘Not’ according to GZ2,,y,. We display
Jreatred 1n the lower left corner, that is, the fraction of volunteers who classified the subject as ‘Featured’. Values are typically under 0.35 indicating that
GZ2 volunteers strongly believed these to be ‘smooth’ (‘Not”). Fortunately, the machine is able to identify these subjects as ‘Featured’ due to their measured
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Figure 13. The RF is trained on a 5-dimensional morphology parameter space. We show the distribution of each morphology indicator for machine-retired
‘Featured’ (blue) and ‘Not’(orange) subjects compared to the full GZ2 subject sample (black). The difference between ‘Featured’ and ‘Not’subjects is in stark

contrast for all distributions except, perhaps, M.

to noise than other diagnostics, however, we point out that when a
machine is faced with two or more correlated features any of them
can be used as the predictor. Once chosen, the importance of the
others is reduced. This explains why Concentration is ranked much
lower than Gini even though they are strongly correlated as seen in
Fig. B2. That the machine relies heavily on these two morphology
diagnostics is unsurprising as concentration has long been an au-
tomated predictor between early- and late-type galaxies (Abraham
et al. 1994, 1996; Shen et al. 2003).

The complementary nature of human and machine classification
can best be utilized by a feedback mechanism in which a por-
tion of machine-retired subjects are reviewed by humans. Subjects
that display excessive disagreement should be verified by an expert
(or expert-user). In the same way that humans increase the machine’s
training sample over time, subjects that the machine properly iden-
tifies can become part of the humans’ training sample.
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6 LOOKING FORWARD

We have demonstrated the first practical framework for combining
human and machine intelligence in galaxy morphology classifica-
tion tasks. While we focus below on a brief discussion of our next
steps and potential applications to large upcoming surveys, we note
that our results have implications for the future of citizen science
and Galaxy Zoo in particular.

GZX is perhaps one of the simplest ways to combine human and
machine intelligence and its impressive performance motivates a
higher level of sophistication. A first step will be an implementation
of SWAP that can handle a complex decision tree. In addition, we
envision multiple forms of active feedback in addition to our passive
feedback mechanism. SWAP allows us to leverage the most skilled
volunteers to review galaxies difficult for either human or machine
to classify. Additionally, machine-retired subjects should contribute
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Figure 14. The RF’s ranked feature importance averaged over all nights of
training with black bars indicating the standard deviation. A larger value cor-
responds to higher importance. The machine computes feature importance
according to how much each feature increases the purity of the resulting split
averaged over all trees in the forest. The RF places great importance in the
Gini coefficient though we note that it can underrepresent the importance of
highly correlated features such as concentration.

to the training sample for humans in an analogous fashion to what
we have already implemented.

Secondly, our RF can be improved by providing it information
equal to what humans receive: multiband morphology diagnostics
will be included in our future feature vector. However, the RF al-
gorithm is not easily adapted to handle measurement errors or class
labels with continuous distributions. A key feature of GZ2 vote frac-
tions is their use in determining the strength of a morphological fea-
ture. Although both SWAP and our RF provide class predictions that
are continuous, we apply thresholds to discretize the classification.
To fully utilize the information provided, sophisticated algorithms
should be considered such as deep convolutional neural networks
(CNNGs) or Latent Dirichlet allocation (LDA), an algorithm that is
frequently used in document processing. Furthermore, there is no
reason to limit to a single machine. As hinted at in Fig. 1, several
machines could train simultaneously, their predictions aggregated
through SWAP, creating an on-the-fly machine ensemble.

With the above upgrades implemented, we expect performance
of both the classification rate and quality to further increase.
However, even our current implementation can cope with upcoming
data volumes from large surveys. By some estimates, Euclid is ex-
pected to obtain measurable morphology with its visual instrument
for approximately 10° — 107 galaxies (Laureijs et al. 2011). Visual
classification at the rate achieved with Galaxy Zoo today would
require 12120 yr to classify. ° If the Euclid sample is on the high
end, GZX as currently implemented could classify the brightest
20 per cent during the 6 yr of its observing mission. As currently
implemented, we obtain accuracy around 95 percent potentially
leaving hundreds of thousands of galaxies with unreliable classi-
fications. In a companion paper that seeks to identify supernovae,
Wright et al. (2017) demonstrate a dramatic increase in accuracy
through an entirely different human—machine combination whereby
the scores from human and machine are averaged together with the
combined score yielding the most reliable classification. Again, a

3 We note that the classification rate of GZ2 was 4 times higher than GZ’s
current steady rate.
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combination of both approaches will allow us to take full advantage
of legacy output from large-scale surveys.

6.1 Conclusions

In this paper we design and test Galaxy Zoo Express, an innovative
system® for the efficient classification of galaxy morphology tasks
that integrates the native ability of the human mind to identify the
abstract and novel with machine learning algorithms that provide
speed and brute force. We demonstrate for the first time that the
SWAP algorithm, originally developed to identify rare gravitational
lenses in the Space Warps project, is robust for use in galaxy mor-
phology classification. We show that by implementing SWAP on
GZ2 classification data, we can increase the rate of classification by
a factor of 4-5, requiring only 90 d of GZ2 project time to classify
nearly 80 per cent of the entire galaxy sample.

Furthermore, we have implemented and tested an RF algorithm
and developed a decision engine that delegates tasks between human
and machine. We show that even this simple machine is capable of
providing significant gains in the classification rate when combined
with human classifiers: GZX retires over 70 per cent of GZ2 galax-
ies in just 32d of GZ2 project time. This represents a factor of at
least 8 increase in the classification rate as well as nearly an order of
magnitude reduction in human effort compared to the original GZ2
project. This is achieved without sacrificing the quality of classifica-
tions as we maintain ~94 per cent accuracy throughout our simula-
tions. Additionally, we have shown that training on a 5-dimensional
parameter space of traditional non-parametric morphology indi-
cators allows the machine to identify subjects that humans miss,
providing a complementary approach to visual classification. The
gain in classification speed allows us to tackle the massive amount
of data promised from large surveys like LSST and Euclid.
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APPENDIX A: EXPLORING THE QUALITY OF
GALAXY ZOO: EXPRESS

In this section we consider the robustness of GZX by computing
several sets of ‘ground truth’ labels from the GZ2 catalogue. Recall
in Section 2 we defined a subject as ‘Featured’ if freaturea+ fartitact™
Ssmootn, @ threshold, #, of 0.5. Here we compute new descriptive la-
bels by allowing that threshold to vary where 7 € [0.2, 0.3, 0.4, 0.5].
Any subject with fyured+Hfaritac >t 1 labelled ‘Featured’, otherwise
it is labelled ‘Not’. We recalculate the quality metrics of accuracy,
purity, and completeness on the sample of galaxies retired during
the full GZX simulation (SWAP+RF) for each threshold and each
type of GZ2 vote fraction: raw, weighted, and debiased. The results
are shown in Fig. A1. GZX classifications are quite robust, with ac-
curacy fluctuating by only a few percent for GZ2,,,, and GZ2.ighied
labels computed using a threshold between 0.3 and 0.5. Instead
we see a trade-off between purity and completeness. Decreasing
the threshold results in more subjects labelled as ‘Featured’, which
in turn increases sample purity while simultaneously decreasing
completeness.

That the GZ2 yepinsea labels perform poorly is not surprising. These
vote fractions are computed after considerable post-processing of
the raw volunteer votes in order to remove the effects of redshift
and surface brightness. As with any set of visual classifications,
these biases must be accounted for and this is traditionally done a
posteriori. It is also unsurprising that the GZ2,,, and GZ2.ighicd
classifications are in such tight agreement. GZ2,,¢ignicq VoOte fractions
are computed by down-weighting inconsistent volunteers of which
there are relatively few. These two sets of vote fractions are thus
very similar.

6102 1990J00 | U0 1saNnB Aq 080€Z61/915S/7/9. F/10BNSE-9]01LE/SEIUW/WOd"dNO"DIWSPED.//:SA)Y WO} PaPEOjuMOd



Human and machine morphology classifications 5531

Accuracy Purity Completeness

100 100 100

90 - 90 90

80 80 80
=

8 70 70 70
5

™~ 60 60 60

—— Gzzraw
30 30 Gzzweighted >0
40 40 | —— GZ2 gebiased 40
0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

Threshold

Figure A1. Quality metrics computed on the subjects retired during the GZX simulation for a range of thresholds and GZ2 vote fraction types.

When applying GZX to future imaging programs, there will
be no ‘ground truth’ labels for comparison. In some sense, these
thresholds can be interpreted as a prior for the SWAP p, value,
the initial probability for a subject to be ‘Featured’. As we show in
Appendix B, changing the prior has little effect on the retirement
rate but does result in considerable variability in the completeness
and purity of the resulting classifications. The choice of whether to
optimize SWAP to recover pure or complete samples is a decision
for a given science team.

APPENDIX B: EXPLORING SWAP’S
PARAMETER SPACE

In this Appendix we explore the SWAP parameter space and assess
the effects on subject retirement.

B1 Initial agent confusion matrix

In our fiducial simulation each volunteer was assigned an agent
whose confusion matrix was initialized at (0.5, 0.5), which presumes
that volunteers are no better than random classifiers. We perform
two simulations wherein we initialize agent confusion matrices as
(0.4, 0.4), slightly obtuse volunteers, and (0.6, 0.6), slightly astute
volunteers, with everything else remaining constant. Results of these
simulations compared to the fiducial run are shown in the left-hand
panel of Fig. B1. We find that SWAP is largely insensitive to the
initial confusion matrix in terms of both the subject retirement rate
and classification quality.

We retire ~225K+3.5 percent subjects as shown by the light
blue-shaded region in the bottom left-hand panel of Fig. B1, where
the dashed blue line denotes the fiducial run. Predictably, when the
confusion matrix probabilities are low, we retire fewer subjects than
when these probabilities are high for a given period of time. This
is easy to understand since it takes longer for volunteers to become
astute classifiers when they are initially given values denoting them
as obtuse. Regardless, most volunteers become astute classifiers by
the end of the simulation. The top left-hand panel demonstrates
our usual quality metrics as computed in Section 3.3. The dashed
lines again denote the fiducial run. We maintain ~95 per cent ac-
curacy, 99 per cent completeness, and ~84 per cent purity, and no
metric changes by > 2 per cent regardless of initial confusion matrix
values.

This spread is due to three effects: (1) subjects can receive an
alternate SWAP label in different simulations, (2) subjects can be
retired in a different order, and (3) the set of retired subjects is not
guaranteed to be common to all runs. We find SWAP to be highly
consistent: more than 99 per cent of retired subjects are the same
among all simulations, and, of these, 99 per cent receive the same
label. Instead we find that the order in which subjects are retired
changes between runs. When the confusion matrix is low, subjects
take longer to classify compared to the fiducial run (i.e. they retire
on a later date in GZ2 project time). Likewise, subjects retire sooner
when the confusion matrix is high. This can cause quality metrics to
vary since they are calculated on a day-to-day basis. These effects
each contribute less than one per cent variation and thus we see a
high level of consistency between simulations.

Of interest, perhaps, is that the quality metrics for these simu-
lations are not symmetric about the fiducial run. However, in the
Bayesian framework of SWAP, an agent with confusion matrix (0.4,
0.4) contributes as much information as an agent with confusion ma-
trix (0.6, 0.6). The quality metrics computed are thus within a per
cent of each other. In either case, we find that initializing agents at
(0.5, 0.5) provides optimal performance for the ‘training’ we simu-
late with our current approach. Further assessment would require a
live project with real-time training and feedback.

B2 Subject prior probability, p,

The prior probability assigned to each subject is an educated guess
of the frequency of that characteristic in the scope of the data at
hand. For galaxy morphologies, this number should be an estimate
of the probability of observing a desired feature (bar, disc, ring, etc.).
In our case, we desire simply to find galaxies that are ‘Featured’;
however, this is dependent on mass, redshift, physical size, etc.
The original GZ2 sample was selected primarily on magnitude and
redshift. As there was no cut on galaxy size (with the exception that
each galaxy be larger than the SDSS PSF), the sample includes a
large range of masses and sizes. Designating a single prior is not
clear-cut; we thus explore how various p, values affect the SWAP
outcome.

We run simulations allowing p, to take values 0.2, 0.35, and 0.8
and compare these to the fiducial run, with everything else remaining
constant. The results are shown in the right-hand panels of Fig. B1.
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Figure B1. SWAP performance does not dramatically change even with a range of input parameters (shaded regions) as compared to the fiducial run of
Section 3.3 (dashed lines). Left. The quality (top) and retirement rate (bottom) when the confusion matrix is initialized as (0.4, 0.4) and (0.6, 0.6), with all
other input parameters remaining constant. Right. Same as the left-hand panel but allowing the subject prior probability, pp=0.2, 0.35, and 0.8. Changing the
confusion matrix has little impact on the quality of the labels but varies the total number of subjects retired. In contrast, changing the subject prior is more
likely to affect the classification quality rather than the total number of subjects retired.

We again find that SWAP is consistent in terms of subject retirement
which varies by only 1 per cent. However, as can be seen in the top
panel, the variation in our quality metrics is more pronounced.
First, though we retire nearly the same number of subjects over the
course of each simulation, they are less consistent than our previous
runs. That is, only 95 per cent of retired subjects are common to all
simulations. Secondly, of those that are common, only 94 per cent
receive the same label from SWAP, indicating that changing the prior
is more likely to produce a different label for a given subject than
changing the initial agent confusion matrix. Finally, there is also a
larger spread for the day on which a subject is retired as compared
to the fiducial run. These trends all contribute to a broader spread
in accuracy, completeness, and purity as a function of project time.
We stress, however, that although more substantial than the previous
comparison, these variations are all within £5 per cent.

We can understand these variations more intuitively by consid-
ering the following. Recall that our retirement thresholds, 7= and
tn, have not changed in these simulations. When py is small, the
subject’s probability is already closer to #y in probability space, and
thus more subjects are classified as ‘Not” compared to the fiducial
run. Similarly, when p, is large, some of these same subjects can
instead be classified as ‘Featured’ because p, is already closer to
tr. Obviously, both outcomes cannot be correct. We find that the
simulation with pp= 0.8 performs the worst of any run; this is a
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direct reflection of the fact that this prior is not suitable for this
question or this data set. Indeed, the best performance is achieved
when po= 0.35. This reflects the distribution of ‘Featured’ subjects
as determined by GZ2,,, labels and is more characteristic of the
expected proportion of ‘Featured’ galaxies in the local universe. As
a value far from the correct value can have a significant impact on
the classification quality, it is important to choose a prior wisely.

B3 Retirement thresholds, 7= and #y

Retirement thresholds are directly related to the time that a subject
will spend in SWAP before retirement. If we lower fz(and/or raise
tn), more subjects will be retired compared to the fiducial run as
each subject will have a smaller swath of probability space in which
to fluctuate before crossing one of these thresholds. On the other
hand, if we raise 7 (and/or lower #y), it will take longer for subjects
to cross one of these thresholds. This also increases the likelihood
of some subjects never crossing either threshold, instead oscillating
indefinitely through probability space.

What thresholds should one choose? To answer this question, we
consider the left-hand panel of Fig. B2, which depicts the receiver
operating characteristic (ROC) curve for our fiducial simulation, an
illustration of performance as a function of a threshold for a bi-
nary classifier. ROC curves display the true-positive rate against the
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Figure B2. Left. Identifying ‘Featured’ subjects is independent of identifying ‘Not’ subjects. Both ROC curves use all subjects processed by SWAP where the
score used to create the ROC curve is simply each subject’s achieved posterior probability. The Featured curve demonstrates how well we identify ‘Featured’
subjects with a threshold of 0.99, while the Not Featured curve demonstrates how well we identify ‘Not’ subjects with a threshold of 0.004. Typically, best
performance is achieved by the score associated with the upper-left-most part of the curve. Our ‘Featured’ threshold is nearly optimal, while our ‘Not’ threshold
could be improved since the blue square is not as close to the upper left hand corner as other possible values of the subject posterior. Right. Relation between
measured morphology diagnostics for more than 280K SDSS galaxies. Most of these galaxies are processed through SWAP, receiving a posterior probability

that estimates how likely each is to be ‘Featured’ or ‘Not’.

false-positive rate for a discriminatory threshold or score with a
perfect classifier achieving 100 per cent true positives and no false
positives. The value of the threshold optimal for predicting class
labels would be that which allows the ROC curve to reach the upper-
left-most point in the diagram. We have two thresholds to consider
and thus we plot the curve twice: once under the assumption that
‘true positives’ denote correctly identified ‘Featured’subjects; and
again under the assumption that ‘true positives’ instead denote cor-
rectly identified ‘Not’ subjects. In both cases, the colour of the
line corresponds to the subject posterior probability. We mark the
location of #=0.99 and 7y=0.004 from our fiducial run with a
red triangle and blue square, respectively. We see that #is nearly
optimal but #y could be improved upon.

APPENDIX C: MEASURING NONPARAMETRIC
MORPHOLOGICAL DIAGNOSTICS ON SDSS
STAMPS

In order to train our RF machine learning algorithm, we measure
non-parametric morphology diagnostics for the GZ2 galaxy sam-
ple. SExTrACTOR and their pixels replaced with values that mimic
the background in that region. We obtain i-band imaging (with cen-
tral wavelength 7480 A) from SDSS Data Release 12 for 290 059
galaxies, representing 98.2 per cent of the GZ2 main galaxy sample.
Postage stamps of each galaxy are cut from these fields where the
dimensions of each cutout are 4 x Petrosian radius as measured by
the SDSS pipeline. Galaxies located within 4 Petrosian radii of the
edge of a field were excluded as image mosaicking was not per-
formed. This removed 7962 galaxies resulting in a final sample of
282 350 GZ2 galaxy postage stamps, or 95.6 per cent of the original
sample.

These postage stamps undergo a cleaning process in order to
remove the light from nearby sources so as not to contaminate
the light profile of the galaxy of interest. Each stamp is processed
through Source Extractor (SEXTRACTOR, version. 2.8.6; Bertin &
Arnouts 1996). Two sets of parameters are used as it is not feasible
to find a single set of parameters that properly identifies all 282K
galaxies. The first is designed to identify bright sources, while the
second is better optimized to detect fainter objects. SEXTRACTOR
segmentation maps are used to identify the boundaries of each
detected object in an image. By design, the galaxy of interest is
located at the centre of the cutout. Extraneous sources are then
identified from both the bright and faint segmentation maps and the
pixels corresponding to these sources are replaced with a random
value consistent with the background in that postage stamp.

We compute the following widely adopted nonparametric mea-
surements of the galaxy light distribution on the cleaned postage
stamps:

Concentration is computed as C = 5log (r5/720) (Bershady et al.
2000), where rgy and r, are the radii containing 80 percent and
20 percent of the galaxy light, respectively. We define the total
flux as that within 1.5 Petrosian radii, and the galaxy centre is that
determined by the asymmetry minimization (described below; Lotz
etal. 2004). Small values of this ratio tend to indicate discy galaxies,
while larger values correlate with early-type ellipticals.

Asymmetry quantifies the degree of rotational symmetry in the
galaxy light distribution (not necessarily the physical shape of the
galaxy as this parameter is not highly sensitive to low surface bright-
ness features). A correction for background noise is applied (as in
e.g. Conselice et al. (2000); Lotz et al. (2004)), i.e.

ZU [ — Iy

A=
251

Bigo (C1)
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Table C1. Summary of morphology measurements made on ~282K galaxies from the GZ2 sample.

Number % Success Notes

Full Galaxy Zoo 2 sample 295 305

Postage stamps 282 350 95.6 per cent of full sample
Concentration 281927 99.85 per cent of postage stamps
Asymmetry 282334 99.99 per cent of postage stamps
Gini coefficient 282323 99.99 per cent of postage stamps
Mo 282 194 99.94 per cent of postage stamps
Ellipticity (1 — b/a) 282 350 100.0 per cent of postage stamps
All morphologies successful 281 801 95.4 per cent of full sample

where [ is the galaxy flux in each pixel (x, y), I;30 is the image
rotated by 180 deg about the galaxy’s central pixel, and Bjg is
the average asymmetry of the background. A is summed over all
pixels within one Petrosian radius of the galaxy’s centre and then
normalized by a corresponding measure in the original image. The
centre is determined by minimizing A as described in Conselice
et al. (2000).

The Gini coefficient, G, (Glasser 1962; Abraham et al. 2003)
describes how uniformly distributed a galaxy’s flux is. If G is 0, the
flux is distributed homogeneously among all galaxy pixels; if G is
1, the light is contained within a single pixel. This term correlates
with C, however, G does not require that the flux be in the central
region of the galaxy. We follow Lotz et al. (2004) by first ordering
the pixels by increasing flux value, and then computing

1 n )
G = WZ(ZZ —n—1D|X;| (C2)

where 7 is the number of pixels assigned to the galaxy, and X is the
mean pixel value.

M> (Lotz et al. 2004) is the second-order moment of the brightest
20 per cent of the galaxy flux. We compute it as

My =Y fillxi = x4 (i = ye)'] (€3)

M; .
My, = log,, (%/1 ) ,whﬂez Fi <0.2f0 (C4)

tot
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where f; is the flux in pixel (x;, y;), and (x., y.) is the galaxy’s centre
which is determined by minimizing the total moment, M, in a
similar fashion as is done for the asymmetry. The galaxy pixels are
then ranked by flux in descending order and M; is summed over
the brightest pixels until that sum equals 20 percent of the total
galaxy flux within one Petrosian radius, f,, normalized by M,,.
For centrally concentrated objects, M, correlates with C but is also
sensitive to bright off-centre knots of light.

Finally, we use the ellipticity, € = 1 — b/a, of the light distribution
as measured by SExTracTOR Which computes the semi-major axis
a and semi-minor axis b from the second-order moments of the
galaxy light.

In total, we successfully measure all morphological indicators
for 281 801 SDSS galaxies. Some galaxies are lost at each stage
of the measurement process due to various failures. For exam-
ple, on rare occasions the minimization of the asymmetry centre
fails to converge. The number of galaxies with successful mea-
surements at each stage is listed in Table C1. The relation be-
tween these diagnostics for the full sample is shown in the right-
hand panel of Fig. B2. The code developed to clean and compute
these morphology indicators is open source and can be found at
https://github.com/melaniebeck/measure_morphology.
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