
IEEE TRANS. BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, JANUARY 2019 1

Deep Learning Movement Intent Decoders
Trained with Dataset Aggregation for Prosthetic

Limb Control
Henrique Dantas, Student Member IEEE, David J. Warren, Senior Member IEEE, Suzanne M. Wendelken, Tyler

S. Davis, Gregory A. Clark, and V John Mathews, Fellow IEEE

Abstract—Significance: The performance of traditional ap-
proaches to decoding movement intent from electromyograms
(EMGs) and other biological signals commonly degrade over
time. Furthermore, conventional algorithms for training neural
network-based decoders may not perform well outside the
domain of the state transitions observed during training. The
work presented in this paper mitigates both these problems,
resulting in an approach that has the potential to substantially
improve the quality of life of people with limb loss.

Objective: This paper presents and evaluates the performance
of four decoding methods for volitional movement intent from
intramuscular EMG signals.

Methods: The decoders are trained using dataset aggregation
(DAgger) algorithm, in which the training data set is augmented
during each training iteration based on the decoded estimates
from previous iterations. Four competing decoding methods:
polynomial Kalman filters (KFs), multilayer perceptron (MLP)
networks, convolution neural networks (CNN), and Long-Short
Term Memory (LSTM) networks, were developed. The perfor-
mance of the four decoding methods was evaluated using EMG
data sets recorded from two human volunteers with transradial
amputation. Short-term analyses, in which the training and
cross-validation data came from the same data set, and long-
term analyses training and testing were done in different data
sets, were performed.

Results: Short-term analyses of the decoders demonstrated
that CNN and MLP decoders performed significantly better than
KF and LSTM decoders, showing an improvement of up to
60% in the normalized mean-square decoding error in cross-
validation tests. Long-term analysis indicated that the CNN,
MLP and LSTM decoders performed significantly better than KF-
based decoder at most analyzed cases of temporal separations
(0 to 150 days) between the acquisition of the training and
testing data sets.

Conclusion: The short-term and long-term performance of
MLP and CNN-based decoders trained with DAgger, demon-
strated their potential to provide more accurate and naturalistic
control of prosthetic hands than alternate approaches.

I. INTRODUCTION

Most people with limb loss retain the neural circuitry to
sense and control their missing limb. In this work, we take

H. Dantas and V J. Mathews are with the School of Electrical Engineering
and Computer Science, Oregon State University, Corvallis, OR 97331 USA
(e-mail: dantash@oregonstate.edu; mathews@oregonstate.edu).

D. J. Warren, S. M. Wendelken and G. A. Clark are with the Depart-
ment of Bioengineering, University of Utah, Salt Lake City, UT 84112-
9458 USA (e-mail: david.warren@utah.edu; suzanne.wendelken@utah.edu;
greg.clark@utah.edu).

T. S. Davis is with the Department of Neurosurgery, University of Utah,
Salt Lake City, UT 84132 USA (e-mail: tyler.davis@hsc.utah.edu).

Manuscript received January 26, 2019; revised 03.

advantage of this ability to investigate offline decoding of
the motor intent for the missing limb from intramuscular
electromyographic (EMG) signals recorded from the resid-
ual limb of individuals with transradial amputation.

The vast majority of current clinical practices in EMG-
controlled prostheses directly control one or two degrees of
freedom (DoFs) with the level of EMG activity from multiple
muscles measured on the surface of the skin overlying the
muscles. Commonly, activity from one group of muscles
is used to switch between which DoF is controlled (i.e., a
classifier) and another group of muscles is used to pro-
portionally control movements. Alternatively, the controller
switches between a proportional controller and a pattern
recognition algorithm that uses a classifier to select among
a set of desired hand positions [1]–[4].

A number of methods have been proposed for extracting
motor intent from neural and EMG signals and controlling
the prostheses in a more intuitive and naturalistic manner.
These decoding algorithms fall into broad categories of
Wiener filters [5], [6] population vectors [7], [8], probabilistic
methods [9], [10], and recursive Bayesian decoders such as
Kalman filters (KFs) [11]–[21]. There have been multiple
reports of both offline and online performance of KF-
based decoders applied to the control of a prosthetic arm
[17]–[22]. However, the KF framework assumes a linear
generative model, and nonlinear decoders have been shown
to perform better than linear decoders when applied to the
highly nonlinear biological control of arm movement [12],
[14], [15], [17], [18].

Deep learning and reinforcement learning algorithms
have become popular alternatives for processing biological
data [23]. There are reports of using deep architectures to
decode hand position using electroencephalogram (EEG)
and local field potentials (LFP) [24]. Sussillo et al. [25]
proposed the use of a recurrent neural network as a neural
decoder. Radial basis networks have also been used for
this purpose [26]. Chen et al. [27] presented a practi-
cal implementation of neural decoders based on extreme
learning machine. Deep architectures were used to process
EMG signals to decode speech [28]–[30] and classify hand
positions [31]–[33]. Bae et al. [34] employed reinforcement
learning using Q-learning via kernel temporal differences
to control a robotic arm. Wang et al. [35] used a variation
of this approach based on attention-gated reinforcement
learning to directly predict among seven possible actions

2 IEEE TRANS. BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, JANUARY 2019

in a center out task.
Although the methods cited above provide good results

for movement prediction in general for simple tasks, as
the tasks becomes more complex the performance of most
these methods deteriorates. A possible explanation for this
is that it is impractical to obtain training data from human
subjects which contain all possible state transitions. As a
result, the decoders are trained with a limited view of the
domain, and it may perform poorly outside the region for
which it was trained. Further, such systems are prone to
making mistakes that accumulate and increase with time
[36], implying the inability to use the trained parameters
even after a short period of time. Herein, we address these
problems using a dataset aggregation (DAgger) algorithm
[37].

The effects associated with limited training data is mit-
igated in DAgger using an iterative approach. In the first
iteration of DAgger, the decoder is trained using training
data with an appropriate learning algorithm. In subsequent
iterations, the visited states from the trained system are
aggregated into the training set. In this work, we use the
Markov Decision Process (MDP)-DAgger framework using
four nonlinear decoding methods which are polynomial
Kalman filters (KFs), multilayer perceptron (MLP) networks,
Long Short-term memory (LSTM), and convolutional neural
networks (CNN). We also offer a comprehensive set of
analyses for short-term decoding (training and testing done
during the same experimental session) and for up to five
months between the training and testing sessions (long-
term analyses). The results presented in this paper demon-
strate that (1) training using the DAgger approach improved
the performance of all three neural networks analyzed,
but not the Kalman decoder; and (2) the MLP network
and CNN-based decoders perform significantly better than
KF-based decoders. The LSTM-based decoder had similar
performance to the KF-based decoder in the short-term,
but outperformed the KF-based decoders in the long-term
analyses.

Preliminary results of this work were presented at a con-
ference, but the content of this paper differs substantively
from the conference proceedings paper [22]. In particular,
this work describes two additional decoding approaches
(LSTM and CNN-based decoders), increases the number of
subjects from 1 to 2, and increases the number of data
sets examined from 10 to 81. Additionally, we explore the
effect of hyperparameters such as the number of hidden
nodes per layer for the MLP, LSTM and CNN approaches,
the number of convolutional filters for the CNN approach,
and the nonlinearity order for the KF approach. Moreover,
this paper explores the robustness of the decoder perfor-
mance over time by evaluating the decoding errors of the
methods on data acquired few months after the system was
trained. Finally, this paper presents an empirical analysis
of the neural network-based decoders using a relevance
propagation methodology [38], [39].

The rest of this paper is organized as follows: Section
II describes the MDP framework for EMG decoding and
also how DAgger is used to train the system. Section III

describes the experiments and the four decoding algorithms
employed in this work. Experimental results are provided in
Section IV. A discussion of the experimental results and the
evaluated algorithms are presented in Section V. Finally, the
concluding remarks are made in Section VI.

II. METHODS

Broadly, the function of any decode algorithm is to decide
how to best command movement of the prosthesis given
the current state of the prosthesis and the biological signals
related to movement. Markov decision processes have been
used to model motor tasks [40], [41] and neural decoders
[34], where the goal is to learn a probabilistic description
πθ(uk |sk) of the control signal uk for the kth time step,
given sk , the system state and the biological signals at time
step k. In general, it is desirable that the chosen control
signal maximizes πθ(uk |sk), which maximizes the probabil-
ity of the system reproducing a desired trajectory. In this
section, we follow the steps similar to those described by
Peter and Schaal [41] to derive this recursive prediction
problem.

In prostheses control problems, EMG signals contain
incremental information about the movements. Conse-
quently, we design the prosthetic control system in such
way that the state of the system contains information
about EMG signals and the kinematic state of the limb.
We define zi ,k as the k-th measurement from the i -th EMG
channel and Zk as a vector of measurements from the EMG
channels at the kth time step, i.e, Zk = [z1,k , ..., zN ,k]T , where
N is the number of EMG channels. We also define x j ,k as
the limb kinematic state at time k corresponding to the j -
th DoF and Xk as a the vector of all M kinematic states
of the limb at the kth time step, i.e., Xk = [x1,k , ..., xM ,k]T .
Finally, the system state sk is defined as

sk = [Zk , ..., Zk−H1+1, Xk , ..., Xk−H2+1] (1)

where we have assumed that the system model remembers
the most recent H1 instances of features calculated based
on EMG signals and H2 instances of the limb kinematic
state vector. The control signal, uk , is the desired kinematic
state for the next time sample, i. e.,

uk = [Xk+1] (2)

To train the decoder, we start by assuming that the state
sk evolves according to the Markov property that the next
state is only dependent upon the current state, i.e.,

p(sk+1|sk , ..., s1) = p(sk+1|sk) (3)

For a given desired trajectory τ = ⋃H−1
i=1 (si ,ui)

⋃
sH , where

H is the number of samples in the trajectory and H > 1, it
is possible to write the probability of the system following
the desired trajectory, p(τ), in a parameterized form, pθ(τ),
in the following manner:

pθ(τ) = p(s1)
H−1∏
i=1

p(si+1|si ,ui)πθ(ui |si) (4)

DANTAS: DATASET AGGREGATION-BASED MOVEMENT DECODERS FOR A PROSTHETIC LIMB USING ELECTROMYOGRAPHIC SIGNALS 3

The parameters, θ, of the model are learned by maximizing
the objective function:

J (θ) = 1

H −1
log(pθ(τ)) (5)

Because the log function is a monotonically increasing
function, maximizing log(pθ(τ)) also implies maximization
of pθ(τ). Further, the application of the log function allows
replacing the product of terms with the sum of the log of
the terms. The gradient of J (θ) is given by

∇θ J (θ) = 1

H −1

H−1∑
i=1

∇θ[logπθ(ui |si)] (6)

where ∇θ[·] is the gradient of [·] with respect to θ. This
results means that no knowledge of the system dynamics
p(si+1|si ,ui) is needed to maximize pθ(τ). In particular, we
only need to know the parameterized model for πθ(ui |si)
to perform the optimization [41].

Similar to the method proposed by Peters and Schaal [41],
we assume that πθ(ui |si) is a Gaussian probability density
function as given by

πθ(ui |si) = 1p
2πσ2

e
−

[ui −φθ(si)][ui −φθ(si)]T

2σ2 (7)

where φθ represents a possibly-nonlinear model of the
control signal (i.e., the decoder) and is completely specified
by the vector of parameters θ. Since πθ(ui |si) is assumed
to be a Gaussian distribution, ∇θ J (θ) can be written as

∇θ J (θ) = 2

H −1

H−1∑
i=1

[
[ui −φθ(si)][∇θφθ(si)]T]T (8)

The decoder parameters are updated using a gradient
ascent approach for the j th iteration as

θ j+1 = θ j +α∇θ j J (θ j) (9)

where α is a positive constant and controls the learning
rate. During the training phase, for a given trajectory τ, the
decoder φθ can be trained using (9) and (8).

During training, the desired hand movements represent
the kinematic data. In the experiments done on amputee
subjects, the kinematic data was obtained from a virtual
hand during training. Details of the training process are
described in Section III. During normal operation of the
decoder as well as during testing, this data was replaced
by estimates of hand kinematics produced by the decoder,
ûi . Algorithm 1 describes the operation of the decoder,
assuming that the system is fully trained and its parameters
θ are not adapted after training. Here, H ′ is the number of
samples in the testing phase. The above derivation is quite
general, and can be applied to a variety of system models.
This work explores decoder architectures involving KF, MLP
networks, CNN and LSTM to learn the parameters of the
system model φθ(·).

In human studies, there is a limited amount of data
available for training, which makes effective training a
challenging task. It is also common for a neural network to
have a large number of parameters, and learning general

Initialize X1 at the desired position
for i = 1 to H ′ do

Create ŝi = [Zi , ..., Zi−H1 , X̂i , ..., X̂i−H2]
Run the decoder φθ(·) to estimate control signal.

ûi =φθ(si)
Update the state of the arm X̂i+1 based on the

estimated control signal ûi . In this case,
X̂i+1 = ûi

end
Algorithm 1: Pseudo-code for the movement intent
decoder post-training.

motor task models without over-fitting requires very large
training sets. The challenge becomes that of exploiting the
available training data to its maximum to yield the best de-
coders. Researchers have addressed this issue using regret-
based reinforcement learning techniques [40], [42] which
require a significant amount of data, and non-regret-based
reinforcement learning, in particular imitation learning [43],
[44], which provides a compromise between performance
and training data requirements.

In this work, we use the dataset aggregation algorithm
[37], an imitation learning approach, to improve the train-
ing efficacy of the neural network. In the DAgger algorithm,
the training data set is augmented in every DAgger iteration
with a mixture of the known correct control signal that
the prosthesis would take and the estimated control signal,
uk , by the decoder represented by the distribution π̂θ. The
DAgger algorithm used to train the decoder is described
using a pseudo-code in Algorithm 2. In our implementation,
the decoder is trained initially using the original EMG data
and the intended movements. In subsequent iterations,
the training data is augmented based on decisions ûi

made by the system and the known movement intent, ui .
For the experimental results presented in this paper, the
CNN and MLP-based decoders were trained using a back-
propagation algorithm. For the KF decoder, we used the
least-mean-square error algorithm described in [17], [18].
At each iteration, a zero-mean Gaussian pseudo-random
noise is added to the EMG signal to mitigate problems with
over-fitting the model. In summary, the DAgger algorithm
samples the states visited by the policy, which are close
to the desired trajectory, and augments such states to the
original dataset. This yields richer datasets, allowing the
system to follow trajectories more accurately.

III. EXPERIMENTS

A. Experimental Setup

The results presented here are from two amputee sub-
jects, described as HS1 and HS2. After approvals from the
University of Utah and Department of the Navy Human
Research Protection Program Institutional Review Boards,
and receiving informed consent from the subjects, they
were implanted with 32 EMG electrodes to acquire intra-
muscular EMG data. The subjects were also implanted with
two 96-electrode Utah Slanted Electrode Arrays [45] in the
ulnar and median nerves of their residual arm but these

4 IEEE TRANS. BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, JANUARY 2019

Initialize D1 as the original training set,

D1 ←
H−1⋃
i=1

(sl
i ,ul

i)

Estimate parameters θ from D1

for l = 1 to NBR DAgger Iterations do
Estimate X̂ l

k by decoding the EMG training
sequence, Z l

i using Algorithm 1
Generate all visited states,ŝl

i , as
[Z l

i +noi se, ..., Z l
i−H1

+noi se, X̂ l
i , ..., X̂ l

i−H2
]

Generate all chosen control signals, ûl
i , as

ûi = X l
i+1

Make D ′
l =

H−1⋃
i=1

(ŝl
i , ûl

i)

Aggregate datasets Dl+1 ← Dl
⋃

D ′
l

Estimate parameters, θ from Dl+1
end

Algorithm 2: Pseudo-code for the DAgger algorithm

devices were not used in this analysis. The thirty two single-
ended EMG signals were acquired at 1 KHz sampling rate
by a Grapevine NIP system (Ripple, Salt Lake City, UT)
using proprietary front-end hardware. These signals were
filtered with a 6th-order Butterworth high-pass filter with
3 dB cut-off frequency at 15 Hz, a 2nd-order Butterworth
low pass filter with 3 dB cut-off frequency at 375 Hz, and
60, 120, and 180 Hz notch filters. More information about
the implants can be found in Page et. al. [46]. Differential
EMG signals for all 496 possible combinations of the 32
single-ended channels were calculated in software. For
each of the single ended and differential EMG channels,
the mean absolute value was calculated over a 33.3-ms
window of time and subsequently smoothed with a 300-
ms rectangular window. To reduce the dimensionality and
the computational complexity of the decoder, principal
component analysis was performed on the EMG-based
features in the training data set [18]. The first sixteen
principal components (PCs) were used as decoding features
to the MLP and CNN-based decoders, and the first 64 PCs
were used as decoding features for the KF-based decoder.
We analyzed the performance of a range of larger and
smaller number of PCs and, for each decoding method, the
number of PCs used herein resulted in the smallest mean
normalized mean-square-error (NMSE, Eq. 11) during the
testing, averaged across all datasets. We also considered
different features including slope change in a window of
time, signal change in a window of time, and wave length
in a window of time as described by Hudgins et. al. [47].
However, decoders trained with MAV feature alone had the
best performance. Similar results have been reported by
Malesevic et. al. [48] and Phinyomark et al. [49]. Therefore,
we present only results using MAV features.

We trained the algorithms using a virtual environment
(Musculoskeletal Modeling Software [50]). This environment
modeled a virtual hand with the following 12 DoFs: flexion
and extension of each digit, adduction and abduction of
all digits except for the third digit, and wrist roll, pitch and
yaw. For the decoding results described herein, we collected

data for 5 to 8 DoFs depending on the session, but for the
analyses we used only the data of the 5 DoFs corresponding
to flexion and extension movements of the 5 digits in this
analysis, given that some of the datasets had only these
5 DoF. Further, the chosen DoFs are directly responsible
for grasp actions and thus are useful for dexterous highly-
enabled prosthetics devices.

Fig. 1. Experimental setup used in this work. The study volunteer (HS2)
had intramuscular EMG electrodes implanted in his arm and was asked
to follow the the movements shown on the screen using his phantom
limb. The screen on the left was used to show the movements during the
training phase. The screen on the right showed the decoder results during
a possible online phase.

Figure 1 displays the training and testing set-up used in
this work. During training, the subject was instructed to
mimic the movement of a hand displayed in the virtual
reality environment with his phantom limb while the EMG
signals were recorded. The instructed movement followed
a semi-sinusoidal path at a velocity deemed comfortable
by the subject. Only movements of a single DoF were
instructed during each training trial, and 10 training trials of
each movement were performed. The single DoF movement
trials within the same session were concatenated and used
to train and test the decoder. In this paper, the collected
data was used for the offline analyses and no online
experiments were performed.

Typically, subjects participated in multiple experimental
sessions for the duration of their implantation, with each
session resulting in a single data set. Typically the sessions
were separated by a few days, but, in a small number
of cases, two session occurred on the same day. We as-
sessed the decoder performance within an experimental
session (both training and testing were performed on non-
overlapped data acquired during the same session to per-
form short-term analyses) or between sessions (data from
one session used for training and data from a different
session used for testing, to perform long-term analyses).
Twenty three datasets from HS1 over four months (first
four months post-implant) and fifty seven datasets from
HS2 obtained over eleven months (first eleven months post-
implant) were used in this work. The short-term analyses
explored how the hyperparameters (i.e. number of hidden
nodes, number of convolutional layers, convolutional filter
size, polynomial order) impact the performance of each de-
coder. In the short-term analyses, 70% of the per-movement
data in a dataset was used for training, the remaining 30%
was "held out" to use for testing. For each subject, the first
14 datasets (total of 28 datasets) were used for the short-
term analyses. The best performing set of hyperparameters
found with the short-term analysis was used in the long-
term analyses. In the long-term analyses, the robustness

DANTAS: DATASET AGGREGATION-BASED MOVEMENT DECODERS FOR A PROSTHETIC LIMB USING ELECTROMYOGRAPHIC SIGNALS 5

of the decoder to variations occurring over L days was
evaluated by assessing the decoder performance using a
data set acquired on day n when the decoder was trained
with a data set acquired on day n-L. For the long-term
analyses, the systems were retrained, and the data used to
train the systems were never identical to those used in the
training process for the short-term analyses. For this study,
L was in the range of 0 to 150 days. This time span was
selected because HS1 was implanted for a little more than
4 months, including data over 5 months excludes HS1 data
from parts of the analyses. The long-term analyses used all
ten trials from a session for training and all ten trials from
a different session for testing.

The global delay between the EMG activity and the kine-
matic movement was estimated during training and was
incorporated into the decoder. For each method analyzed,
the delays were estimated by finding the time lags between
the EMG signals and the desired kinematic information that
resulted in the best overall performance. This approach is
similar to what was done in [17] for Kalman filter-based
decoders. In our experiments, the 30-samples memory used
by the MLP and the CNN-based decoders was enough
to incorporate the time lag into the system, while the 5
samples memory used by the KF-based decoder required
the addition of a 5-sample delay (167 ms) to accommodate
the time lag between the EMG signals and the kinematic
activity. We experimented with a large set of memory and
delay parameters for all three systems. The above choices
of the hyperparameters of the decoders resulted in the
smallest NMSE for each type of decoder.

The methods presented in the subsection were imple-
mented in a central processing unit (CPU) and a graphical
processing unit (GPU) in Python. For the CPU version
we used the Theano [51] branch optimized by Intel. This
implementation improved the execution time by more than
one order of magnitude over the standard branch. For the
GPU version, we used the standard Theano [51] library
optimized by the NVIDIA CUDA Deep Neural Network
(cuDNN) package. This implementation made a time effi-
cient performance of the methods described here possible
on an NVIDIA Tesla K40 GPU and a Intel Xeon E3-1231
CPU.

B. Decoders Architecture

The MLP network used in this work had four layers as
shown in Figure 2 and had two inputs: the EMG input
belonging to RH1×N and a kinematic input belonging to
RH2×M . This inputs were transformed into a flat vector
in R1×H1N+H2M . The second and third layers had Nhn

nodes and employed a rectifier linear unit (ReLU) activation
function defined as

f (x) = max(x,0) (10)

The final layer was the output layer belonging to R1×M . The
output, ûk = X̂k+1, of the network is the prediction of the
next kinematic state of the arm X̂k+1.

Fig. 2. A schematic diagram of the MLP network-based decoder.

The decoder based on CNN [52] is shown in Figure 3
and had two inputs: the EMG input belonging to RH1×N

and a kinematic input belonging to RH2×M . The EMG input
was processed by 2 consecutive blocks consisting of a 1-
D convolutional layer with Lc f -coefficient finite impulse
response (FIR) filters processing the input signal along the
temporal axis, Nc f filters per layer with ReLU activation,
and a 1-D maxpooling layer. The maxpooling operation par-
titioned the input matrix into a set of non-overlapping 1×2-
element vectors and, for each such sub-region, presented
the maximum value in the vector at the output. The output
of the last convolutional layer was processed by a fully
connected MLP layer. The kinematic signals were reshaped
into a vector of M H2 elements and processed with a fully-
connected hidden layer with ReLU activation functions. The
addition of convolutional layers to process the kinematic
data did not result in performance improvements, and
therefore only one fully-connected MLP layer was employed
to process the kinematic data. The output of the hidden
layer for the kinematic data and the last hidden layer for
the EMG data were merged and then used as the input to
another fully connected layer as shown in Figure 3. The
output of this final layer belonged to R1×M and was ûk , the
prediction of the kinematic state of the arm X̂k+1.

Similar to the CNN-basde decoder, the LSTM-based de-
coder had two main dataflows. The first one processed the
EMG data using four stacked LSTM [53] layers with a fully
connected layer in the end. The second flow, processed the
Kinematic data with a single fully connected layer. The two
branches were merged and the data was finally processed
by two other fully connected layers. All fully connected
layers, with the exception of the very last layer, in this
decoder used Relu activation functions.

Multiple combinations of learning rates and momentums
were tested for all CNN, MLP and LSTM-base decoders.
The best results were obtained when the networks were
trained with a learning rate of 0.01 and momentum of 0.4
momentum. Additional considerations on choosing these
parameters can be found in [54], [55].

The MLP, CNN and LSTM-based decoders had memory

6 IEEE TRANS. BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, JANUARY 2019

Fig. 3. A schematic diagram of the convolutional neural network-based
decoder.

of the preceding 1 second of EMG state data (H1 = 30
samples) and 0.166 seconds (H2 = 5 samples) of prosthesis
state data. We analyzed the performance of the system with
a range of larger and smaller values of these parameters.
The parameters used herein resulted in the smallest mean
NMSE during the testing, averaged across all datasets. We
used a convolutional kernels size (N br f) of 5 samples. For
the polynomial KF-based decoder [17], the EMG states were
an (N L)th order polynomial expansion of the previously
described EMG states as in (1). We examined different
combinations of H1 and H2, the amount of memory in the
state vector, but only report the performance results when
H1 and H2 were 5 samples (0.166 seconds). This choice of
parameters resulted in the smallest mean NMSE during the
testing, averaged across all datasets.

C. Performance Analyses

The experiments described in this manuscript were per-
formed in an offline fashion, the measure of performance
used in this work is the normalized mean-square error
defined as:

MSEnor mali zed =

H∑
k=1

||Xk − X̂k ||2

H∑
k=1

||Xk ||2
(11)

where || · ||2 denotes the Euclidean norm of (·), Xk is the
desired kinematic state, X̂k is the decoded kinematic state,
and H is the number of samples in the testing dataset. This
performance metric averages the errors across DoFs and
time samples and can clearly report the distance between
the predicted movement and the desired movement.

To establish the statistical significance of the relative
performance of each decoding approach and the set of
hyperparameters for the short-time analysis, we used Fried-
man’s test followed by, if statistically significant, a multiple
comparisons post hoc test using Tukey’s honest significant
difference correction [56]. Principally, we compared the
decoder performance as a within subject effect and treated
each participant as an independent subject (unexamined
between subject effects), and each of the data sets as a
repeated observation within a cell. We selected this non-
parametric test as it readily and effectively provides a way to
manage "multiple observations within a cell" in a repeated
measures design [56]. To establish the statistical significance
of the relative performance of each decoding approach
for the long-time analysis, we used a two-factor, repeated
measures analysis of variance test (ANOVA), followed by,
if statistically significant, a multiple comparisons post hoc
test using Tukey’s honest significant difference correction.
The two factors were the decoding method and the time
between the dates of training and testing sessions. All
statistical analyses were performed in MATLAB with the
functions friedman, multcompare, anova, manova,
and ranova. Whenever data are presented in the text as
X X ±Y Y , X X is the arithmetic mean and Y Y is the sample
standard deviation. In all graphics, error bars represent
standard deviation of the particular configuration over all
datasets used in the analysis from both subjects. Finally,
the graphs presented herein show results from the testing
data.

Finally, we used layer-wise relevance propagation (LRP)
[38], [39] to investigate the impact of each EMG principal
component to the DoF movement. LRP was first proposed
by Bach et. al. [39], to show the contribution of the input
features to outputs of a machine learning system. LRP
transforms the output of the neural network into a heatmap,
where high values associated with any input feature indicate
more contribution from that input feature to the output.
To find the relevance map, the neural network makes a
prediction and then LRP propagates the output all the way
to the input. Sturm et. al. [38] have used such an approach
to explain the most relevant patterns in the input for a
movement classification based on electroencephalogram
signals.

IV. RESULTS

A. Short-Term Analyses

We analyzed the performance of the polynomial Kalman
filter-based decoder for polynomial orders 1 to 5 for multi-
ple iterations of the DAgger algorithm. Here, a polynomial
order of 1 corresponds to the standard linear Kalman filter.
Consistent with earlier work [17], polynomial orders above 3
resulted in no better decoding performance, and we provide
results only for orders 1 to 3. Figure 4 displays the NMSE
of the polynomial KF-based decoders of order 1, 2 and 3
for the first ten DAgger iterations on testing data. The per-
formance of the polynomial KF-based decoders appear to
degrade for all three orders with increasing order of DAgger

DANTAS: DATASET AGGREGATION-BASED MOVEMENT DECODERS FOR A PROSTHETIC LIMB USING ELECTROMYOGRAPHIC SIGNALS 7

iteration. This result was found to be statistically significant
using the Friedman test (p < 10−10 for all three orders of
nonlinearities). There was no statistical evidence indicating
different performance among the three polynomial orders
for either the first or the tenth iteration (Friedman’s test,
p = 0.8 and 0.6 for the first and tenth iterations, respec-
tively). Across all polynomial orders and DAgger iterations,
the best performance, averaged across the 28 datasets, was
the second-order polynomial for the first DAgger iteration,
and this set of hyperparameters resulted in an NMSE of
0.099±0.033.

Fig. 4. Normalized MSE as a function of the number of iterations in DAgger
for EMG signals using Kalman filter-based decoders on testing data.

We analyzed the performance of the MLP network-based
decoders for multiple numbers of hidden nodes for multiple
iterations of the DAgger algorithm. As can be seen in Figure
5, applying the DAgger algorithm to MLP networks-based
decoder resulted in substantive performance improvement
for all decoder parameterizations. This result was found
to be statistically significant via Friedman test (p < 10−5

for the cases of 10, 32, 128 and 256 hidden nodes per
layer), and a multiple comparison test indicated that the
tenth DAgger iteration is statistically-significantly different
from the first iteration (p < 10−8 for all four cases). Fur-
thermore, no statistical evidence indicating performance
improvement after two DAgger iterations was found for
any of the competing configurations (p > 0.5 for all four
cases). The MLP networks-based decoders with 128 and 256
hidden nodes per layer were found to perform statistically-
significantly better than the MLP network-based decoders
with 32 hidden nodes for ten DAgger iterations (Fried-
man’s test p < 10−8, followed by a multiple comparison
test p < 10−5 for both cases). The MLP-based decoder
with 128 hidden nodes per layer performed statistically-
significantly better than the MLP-based decoder with 256
hidden nodes per layer for the first iteration via Friedman’s
test (p < 10−10). However, there was no statistical evidence
of performance difference between 256 and 128 hidden
nodes per layer after two or more DAgger iterations (Fried-
man’s test p > 0.4). Across all four competing MLP-based
decoder parameterizations and DAgger iterations, the best
performance, averaged across all the 28 datasets, was for
the system with 256 hidden nodes for the tenth DAgger
iteration, and this set of hyperparameters resulted in an
NMSE of 0.039±0.017.

We analyzed the performance of the CNN-based de-

Fig. 5. Normalized MSE as a function of the number of iterations in
DAgger for EMG signals using MLP network-based decoders.

coders for multiple numbers of hidden nodes, convolu-
tional filters and iterations of the DAgger algorithm. As
can be seen in Figure 6, applying the DAgger iterations
to a CNN-based decoder improves its performance in all
three cases presented. This result was found statistically
significant via Friedman test (p < 0.002 for all 3 cases), and
multiple comparison tests indicated that the tenth DAgger
iteration is statistically-significantly different from the first
(p < 10−10 for all three competing hyperparameter settings).
Furthermore, no statistical evidence indicating performance
improvement after four DAgger iterations was found for
each competing configurations (p > 0.4 for all pairwise
comparisons). The CNN-based decoders with 64 and 128
hidden nodes were found to perform significantly better
than the CNN-based decoders with 32 hidden nodes after
two or more DAgger iterations (Friedman’s test p < 0.02 for
2 to 10 DAgger iterations). The CNN-based decoder with 64
hidden nodes per layer performed statistically-significantly
better than the CNN-based decoder with 128 hidden nodes
per layer for the first iteration (Friedman’s test p < 10−10).
However, there was no statistically-significant evidence of
performance difference between 128 hidden nodes per
layer and 64 hidden nodes per layer after four or more
DAgger iterations (Friedman’s test p > 0.4). Furthermore, as
shown in Table I, the number of filters per convolutional
layer did not substantively change the CNN-based decoder
performance for the 4 presented cases (4, 8, 16 and 32
filters). There was no statistical evidence indicating different
performance for the number of convolutional filters per
layer after two or more DAgger iterations via Friedman
test (p > 0.4 for 2 to 10 iterations). Therefore, we selected
four convolutional filters per layer to keep the complexity
low. Across all competing CNN-based decoders parame-
terizations and DAgger iterations, the best performance,
averaged across all the 28 datasets, was provided by the
system with the 64 hidden nodes and four convolutional
filters per layer for the 10th DAgger iteration, and this set
of hyperparameters resulted in an NMSE of 0.033±0.017.

We analyzed the performance of the LSTM network-
based decoders for multiple numbers of hidden nodes for
multiple iterations of the DAgger algorithm. As shown in
Figure 7, applying the DAgger algorithm to LSTM network-
based decoders resulted in increased performance improve-
ment for all decoder parameterizations. This result was

8 IEEE TRANS. BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, JANUARY 2019

Fig. 6. Normalized MSE as a function of the number of iterations in
DAgger for EMG signals using CNN-based decoders.

Fig. 7. Normalized MSE as a function of the number of iterations in
DAgger for EMG signals using LSTM network-based decoders.

found to be statistically significant via a Friedman test
(p < 10−5 for the cases of 32, 64 and 128 hidden nodes
per layer), and a multiple comparison test indicated that
the second DAgger iteration was statistically-significantly
different from the first iteration (p < 10−8 for all four cases).
No statistical evidence indicating performance improve-
ment after two DAgger iterations was found for any of
the competing configurations (p > 0.5 for all four cases).
There was no evidence via Friedman test that the three
decoders performed statistically different from each other
(p > 0.1). Across all three competing LSTM network-based
decoder parameterizations and DAgger iterations, the best
performance, averaged across all the 28 datasets, was for
the system with 32 hidden nodes for the second DAgger
iteration, and this set of hyperparameters resulted in an
NMSE of 0.096±0.013.

The improvements for the MLP and the CNN-based
decoders over the KF-based and LSTM network-based de-
coders observed in the short-term analysis are summarized
in Figure 8 and in Table I, where the performance of multi-
ple configurations of each decoder are shown. The best per-
formance of each decoding method is indicated by bold text
in the table. Figure 8 shows the variability of the data across
multiple datasets and DoFs. A Friedman’s test was applied
to the four competing methods resulting in p < 10−10,
indicating that at least one of the decoders is different from
the others. Post-hoc multiple comparison tests indicated
that the CNN and MLP network-based decoders performed
significantly differently than the KF and LSTM-based de-
coder (p < 10−4). There was no statistical evidence that the

Fig. 8. Normalized MSE performance for the best decoder configurations.
The red lines represent the median, the black dashed lines represent
the amplitude of maximum and minimum NMSE not considered to be
outlier values, the blue boxes display the interquartile ranges, the magenta
dots represent the means and the magenta bars represent the standard
deviations.

TABLE I
PERFORMANCE OF THE MOVEMENT INTENT DECODERS WITH
DIFFERENT HYPERPARAMETER CONFIGURATIONS. THE BEST

PERFORMANCE FOR EACH METHOD IS IN BOLD.

Methods NMSE

Kalman Filter NL 1 0.099±0.032
Kalman Filter NL 2 0.099±0.032
Kalman Filter NL 3 0.101±0.032
MLP 64 Nodes 0.051±0.017
MLP 128 Nodes 0.041±0.017
MLP 256 Nodes 0.039±0.017
CNN 32 Nodes and 4 Filters 0.040±0.017
CNN 64 Nodes and 4 Filters 0.033±0.017
CNN 128 Nodes and 4 Filters 0.041±0.017
CNN 64 Nodes and 8 Filters 0.040±0.017
CNN 64 Nodes and 16 Filters 0.041±0.017
CNN 64 Nodes and 32 Filters 0.040±0.017
LSTM 32 Nodes 0.096 ±0.013
LSTM 64 Nodes 0.100±0.013
LSTM 128 Nodes 0.121±0.013

CNN-based decoder performed differently than the MLP
network-based decoder (p > 0.6). In addition, there was no
statistical evidence that the KF and LSTM-based decoder
performed differently. Given the relationships of the CNN,
MLP, KF and LSTM decoding performance illustrated in
Figure 8, we conclude that the MLP network and the CNN-
based decoders performed better than the KF and LSTM-
based decoder. The better performance is also easily seen
in representative time traces of the four decoding methods
(Figure 9), although the following observations were not
all formally analyzed statistically. The KF and LSTM-based
decoders exhibited jitter in the estimated intent and had
difficulty tracking the desired hand movements. The KF
and LSTM-based decoders also appeared to have difficulty
in returning to the rest position. Observationally, the MLP
networks and the CNN-based decoders did not appear to
have this problem. All methods exhibited some degree of
cross-movements (movement of a stationary DoF while a
different DoF is commanded to move). Generally, the KF

DANTAS: DATASET AGGREGATION-BASED MOVEMENT DECODERS FOR A PROSTHETIC LIMB USING ELECTROMYOGRAPHIC SIGNALS 9

Fig. 9. Representative samples of the decoder output for the four methods for HS1 and HS2.

and LSTM network-based decoders exhibited more jitter
and cross-movement compared with the MLP and the CNN-
based decoders. The decoders based on MLP networks and
CNN-based decoders yielded smoother and more accurate
decoded trajectories.

Finally, we used layer-wise relevance propagation (LRP)
to analyze the importance of the principal components of
the input features to the prediction of the movements by the
neural networks. A representative sample of these results is
shown in Figure 10. The first heatmap column represents
the PCs used in the decoding process, the other three
columns represent the LRP heatmap output for the MLP,
CNN and LSTM-based decoders as a function of time on
the x-axis, and the y-axis corresponds to input feature index
to the decoder output. In the LRP heatmaps, the intensity
of the pixel values is a measure of the contribution of the
input features to the final output prediction. A higher pixel
value associated with a specific feature can be interpreted
as the input having a high relevance to the final output.
High values of the pixels in the first column of Figure 11
indicates which PCs were prominent at any given time.
The LRP heat maps suggest that the same PCs had higher
relevance for the same movements for a given DoF. This is
shown with the overlaid circles in the figure. In addition,
within the same decoding method, we noticed that 13th

and 14th PCs had high relevance to the movements of the
middle and little fingers. The 12th-15th PCs were relevant
to the movements related to the thumb and index finger.
The 12th-15th PCs and the 8th PC were relevant to the
movements related to middle finger. Finally, in most of the
cases, the same PCs were the most relevant for the same
movement across decoders, although the relevance pattern
changed between the different decoders, probably, due to
the systems converging to different local minima of the
non-convex cost functions employed by the decoder.

B. Long-Term Analyses

To investigate the robustness of each method’s perfor-
mance over time, we examined the decoding performance

when the decoders were tested on data sets recorded up
to 150 days after the systems were trained. In this long-
term performance analysis, we used the best hyperparam-
eter configuration from the short-term analysis for each
decoder.

To establish statistical significance of the performance
differences among the methods and the variations in the
performance with changes in the time difference between
training and testing, we performed a two-factor repeated
measures ANOVA test, where the first factor was the decoder
method and the second factor was the time between train-
ing and testing. To have a similar number of samples per
time point, we partitioned the time between training and
testing into blocks of ten days. The class day zero represents
cases where there were more than one data set from the
same day. For this class, training was performed with one
data set and testing was performed with a different data set
from the same day that was acquired after the training data
set. For the long-term analysis we did not include the short-
term results, where the training and testing was performed
within the same data set.

In the first set of analyses, we determined if, on average
across all time classes, the performance of the four de-
coding methods were different in a statistically-significant
manner. The four decoding methods differed via repeated
measure ANOVA (p < 0.001) and the performance in time
also differed (p < 0.001). The system with the best perfor-
mance was the CNN decoder significantly outperforming
the other three competing methods (p < 10−8 via multi-
comparison tests). The MLP-based decoder had the second
best performance, significantly outperforming the KF and
LSTM-based decoder (p < 10−8 via multi-comparison tests).
Finally, the LSTM-based decoder significantly outperformed
the KF (p < 10−8 via multi-comparison tests).

We also analyzed the data to determine whether, on
average across all methods, the performance changed over
the time between training and testing. We performed a
two-piece-wise linear fit in the data, the first interval was
in the range of zero and 30 days, the second piece was

10 IEEE TRANS. BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, JANUARY 2019

Fig. 10. PCs and LRP amplitude across time for one the same session used in Figure 9 for HS2. The PCs and LRPs were rescaled to the interval [0,1]
in order to facilitate the comparison. The overlaid blue line represent the desired movement for the digit.

Fig. 11. Normalized MSE for CNN, MLP, KF and LSTM-based decoders
as a function of the days between training and testing. The solid lines
represents the mean of the NMSE for each decoder’s in a ten-days block,
while the dashed lines represents the linear fit performed in order to the
detect a trend.

between 31 and 150 days. For the first analyzed interval,
the decoders based on MLP, CNN and LSTM had slopes
of 0.003 NMSE/day, 0.003 NMSE/day, 0.004 NMSE/day
respectively. All three slopes were significantly different than
zero (p < 10−7). There was no statistical evidence that the
slope of the KF-base decoder method was different from
zero (p > 0.17). For the second investigated interval, there
was no statistical evidence that any of methods had a slope
different from zero (p > 0.07).

The subsequent post-hoc analyses indicated that each
method had a different change in performance across time.
The KF method showed no evidence of changing with
time. In contrast, the CNN, MLP and LSTM have a small
degradation during the first month, but that degradation
stopped in the next 4 months. Despite this degradation,
the CNN and MLP decoders had better performance at all
times analyzed, compared with the KF and LSTM decoder
(Figure 11).

V. DISCUSSION

The results presented in this paper demonstrated a
statistically-significant 60% improvement over the KF-based
decoder performance for MLP-based decoders from 0.099±
0.037 to 0.039 ± 0.017 in the NMSE sense and a 66%
improvement for the CNN-based decoders from 0.099±0.05
to 0.033±0.017 in the NMSE sense. In addition, LSTM and
KF-based decoders had similar performance when testing

with data recorded in the same session as the dataset
used for training. The long-term analysis indicated that the
CNN, MLP and LSTM-based decoders perform significantly
better than the KF decoders, even up to five months
separating the training and testing sessions. Furthermore,
only modest performance degradations were observed for
the CNN, MLP and LSTM networks-based decoders at the
one month point. No statistical evidence was found in the
following 4 months to support any degradation. CNN, MLP
and LSTM networks-based decoders outperformed the KF-
based decoder in the long-term analyses.

CNN, MLP and LSTM network-based decoders trained
with DAgger exhibited significant performance improve-
ments during the first few iterations of DAgger. By aug-
menting the training data in each iteration of DAgger, the
system trains on more possible scenarios that are likely to
happen during the normal operation of the decoder. The
performance of the KF-based decoders deteriorated with
DAgger iterations and additional investigations are needed
to better understand this phenomenon.

For decoders based on CNN, we experimented with
varying the numbers of hidden nodes in the fully connected
layers, as well as with different number of filters per con-
volutional layer. The convolutional neural network with 64
hidden nodes per layer had the best performance although
no statistically-significant difference was found between the
performances of the competing sets of hyperparameters
after four DAgger iterations. Increasing the number of filters
beyond 4 did not have statistically-significant impact on
the performance of the CNN-based decoder. Therefore we
chose to keep the complexity of the CNN-based decoders as
low as possible by employing four convolutional filters per
layer. There were no statistically-significant difference be-
tween the performances of the CNN and the MLP network-
based decoders. Both performed similarly in the short-
term. The CNN-based decoder has better performance than
the MLP networks-based decoder. Although a statistical
evidence was found to support this claim, the performance
gain was small, 0.02 in the NMSE sense. Therefore, the per-
formance improvements seen in the CNN-based decoder
may not be sufficient to justify the additional computational

DANTAS: DATASET AGGREGATION-BASED MOVEMENT DECODERS FOR A PROSTHETIC LIMB USING ELECTROMYOGRAPHIC SIGNALS 11

complexity associated with them.
For the LSTM-based decoders, we experimented with

the size of hidden nodes in the fully connected layers.
We noticed that the best decoders had 32 hidden nodes
in the hidden layers. We speculate that as the number of
hidden nodes increased overfitting occurred. In the short-
term analyses, the LSTM-based decoders had the same
performance level as the KF-based decoders. However, the
LSTM-decoders outperformed the KF-based decoders in the
long-term analyses.

A disadvantage of the MLP network, CNN and LSTM-
based methods is their computational burden. We used
GPUs to train the methods, which reduced their run time,
but used only CPUs to test our models, which is repre-
sentative of our current subject-in-the-loop hardware. On
average, the KF decoder took 2 ms to make a prediction
of the next kinematic state of the prosthetic arm whereas
the MLP network-based decoder took 20 ms and the CNN
and LSTM-based decoder took 25 ms. On the basis of
these results, it is possible to conclude that despite of
the increase in computational cost, all three methods can
be implemented in our current, 33-1/3 ms per decoding
cycle configuration. Further, we anticipate substantive per-
formance increase when the framework is translated from
the present interpreter Python environment to compiled
code.

VI. CONCLUSION

This paper explored the use of DAgger to train EMG
decoders of movement intent for a high-degree-of-freedom
prosthetic limb. The MLP networks, the CNNs and the
LSTM networks were used to parameterize the decoder
output, and the performance of these algorithms were
compared with that of standard linear Kalman filters and
polynomial Kalman filters. Use of the DAgger algorithm
improved the decoding performance of both the MLP, the
CNN and the LSTM-based decoders, but not the KF-based
decoder, with just a few iterations. In comparison with the
best performing KF configuration, MLP and CNN-based
decoders reduced the normalized mean-square decoding
error by 60% and 66%, respectively for the short-term anal-
yses. There was no evidence that the KF and LSTM-based
decoder had different performance levels in the short-term
analyses. The performance of the MLP, CNN and LSTM-
based decoders had a small performance degradation in
the first 30 days after training. Such degradation was not
observed for the KF. After the first 30 days, no performance
degradation was observed in any of the decoders. The
results presented in this paper suggest that the MLP and
the CNN-based decoders are feasible decoding algorithms
with better near-term decoding performance, compared
with current practices. The methods presented in this paper
should be further investigated in a real-time setup with a
human subject in the loop. In the configuration reported
herein, the parameter of the decoding algorithm were set
by training alone and kept frozen during the testing phase.
The authors are currently working on extending the decoder
capabilities by updating their parameters online. Given

the high computational burden of the neural network-
based decoders, future work should also focus on more
computationally efficient implementations of the methods.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation (NSF) Grant No. 1533649 and in part by the
Hand Proprioception and Touch Interfaces (HAPTIX) pro-
gram administered by the Biological Technologies Office
(BTO) of the Defense Advanced Research Projects Agency
(DARPA), through the Space and Naval Warfare Systems
Center, Contract No. N66001-15-C-4017. We gratefully ac-
knowledge the support of NVIDIA Corporation for the
donation of the Tesla K40 GPU used in this research.

We thank our volunteer subjects who provided the data
that made this study possible. We thank the reviewers of this
paper for the very constructive comments and suggestions
which helped to substantially improve this paper.

REFERENCES

[1] L. H. Smith et al., “Real-time simultaneous and proportional myoelec-
tric control using intramuscular emg,” Journal of Neural Engineering,
vol. 11, no. 6, p. 066013, Dec. 2014.

[2] J. A. Birdwell et al., “Extrinsic finger and thumb muscles command a
virtual hand to allow individual finger and grasp control,” IEEE Trans.
on Biomedical Engineering, vol. 62, no. 1, pp. 218–226, Jan. 2015.

[3] E. Scheme et al., “Motion normalized proportional control for im-
proved pattern recognition-based myoelectric control,” IEEE Trans.
on Neural Systems and Rehabilitation Engineering, vol. 22, no. 1, pp.
149–157, Jan. 2014.

[4] S. Amsuess et al., “Context-dependent upper limb prosthesis control
for natural and robust use,” IEEE Trans. on Neural Systems and
Rehabilitation Engineering, vol. 24, no. 7, pp. 744–753, Jul. 2016.

[5] J. Wessberg et al., “Real-time prediction of hand trajectory by ensem-
bles of cortical neurons in primates,” Nature, vol. 408, pp. 361–365,
2000.

[6] L. R. Hochberg et al., “Neuronal ensemble control of prosthetic
devices by a human with tetraplegia,” Nature, vol. 442, no. 7099, pp.
164–171, Jul. 2006.

[7] A. P. Georgopoulos et al., “Primate motor cortex and free arm
movements to visual targets in three-dimensional space. II. Coding
of the direction of movement by a neuronal population,” The Journal
of Neuroscience, vol. 8, no. 8, pp. 2928–2937, Aug. 1988.

[8] D. Taylor et al., “Information conveyed through brain-control: cursor
versus robot,” IEEE Trans. Neural System Rehabilitation, vol. 11, no. 2,
pp. 195–199, Jun. 2003.

[9] W. Wu et al., “Modeling and decoding motor cortical activity using a
switching Kalman filter,” IEEE Trans. Biomedical Engineering, vol. 51,
pp. 933–942, Jun. 2004.

[10] Y. Gao et al., “Probabilistic inference of hand motion from neural
activity in motor cortex,” Advances in Neural Information Processing
Systems, pp. 213–220, Dec. 2002.

[11] S.-P. Kim et al., “Neural control of computer cursor velocity by
decoding motor cortical spiking activity in humans with tetraplegia,”
Journal of Neural Engineering, vol. 5, no. 4, pp. 455–476, Jul. 2008.

[12] W. Malik et al., “Efficient decoding with steady-state Kalman filter
in neural interface systems,” IEEE Trans. Neural Syst. Rehabil. Eng,
vol. 19, no. 1, pp. 25–34, Feb. 2011.

[13] V. Gilja et al., “A brain machine interface control algorithm designed
from a feedback control perspective,” in Annu. Int. Conf. of the IEEE
Engineering in Medicine and Biology Society, San Diego, CA, Aug.
2012, pp. 1318–1322.

[14] G. H. Mulliken et al., “Decoding trajectories from posterior parietal
cortex ensembles,” The Journal of Neuroscience, vol. 28, pp. 12 913–
12 926, Nov. 2008.

[15] Z. Li et al., “Unscented Kalman filter for brain-machine interfaces,”
PloS one, vol. 4, no. 7, pp. 1–18, Jul. 2009.

12 IEEE TRANS. BIOMEDICAL ENGINEERING, VOL. XX, NO. Y, JANUARY 2019

[16] G. Hotson et al., “High precision neural decoding of complex move-
ment trajectories using recursive bayesian estimation with dynamic
movement primitives,” IEEE Robotics and Automation Letters, vol. 1,
no. 2, pp. 676–683, Jul. 2016.

[17] H. Dantas et al., “Neural decoding using a nonlinear generative model
for brain-computer interface,” in IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, Florence, Italy, May 2014, pp. 4683–4687.

[18] D. J. Warren et al., “Recording and decoding for neural prostheses,”
Proceedings of the IEEE, vol. 104, no. 2, pp. 374–391, Feb. 2016.

[19] G. A. Clark et al., “Using multiple high-count electrode arrays in
human median and ulnar nerves to restore sensorimotor function
after previous transradial amputation of the hand,” in 2014 36th
Annual Int. Conf. of the IEEE Engineering in Medicine and Biology
Society, Aug. 2014, pp. 1977–1980.

[20] T. S. Davis et al., “Restoring motor control and sensory feedback
in people with upper extremity amputations using arrays of 96
microelectrodes implanted in the median and ulnar nerves,” Journal
of Neural Engineering, vol. 13, no. 3, p. 036001, Jun. 2016.

[21] S. Wendelken et al., “Restoration of motor control and proprioceptive
and cutaneous sensation in humans with prior upper-limb amputa-
tion via multiple utah slanted electrode arrays (useas) implanted in
residual peripheral arm nerves,” J Neuroeng Rehabil, vol. 14, no. 1, p.
121, Nov. 2017.

[22] H. Dantas et al., “Neural decoding systems using Markov decision
processes,” in 2017 IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), New Orleans, USA, Mar. 2017, pp. 974–978.

[23] M. Mahmud et al., “Applications of deep learning and reinforcement
learning to biological data,” IEEE Trans. on Neural Networks and
Learning Systems, vol. 29, no. 6, pp. 2063–2079, June 2018.

[24] E. Nurse et al., “Decoding eeg and lfp signals using
deep learning: Heading truenorth,” in Proceedings of the
ACM Int. Conf. on Computing Frontiers, ser. CF ’16. New
York, NY, USA: ACM, 2016, pp. 259–266. [Online]. Available:
http://doi.acm.org/10.1145/2903150.2903159

[25] D. Sussillo et al., “A recurrent neural network for closed-loop intra-
cortical brain-machine interface decoders,” Journal of Neural Engi-
neering, vol. 9, no. 2, p. 026027, Mar. 2012.

[26] M. S. Islam et al., “Decoding movements from human deep brain
local field potentials using radial basis function neural network,” in
2014 IEEE 27th Int. Symposium on Computer-Based Medical Systems,
Washington, DC, USA, May 2014, pp. 105–108.

[27] Y. Chen et al., “A 128-channel extreme learning machine-based neural
decoder for brain machine interfaces,” IEEE Trans. on Biomedical
Circuits and Systems, vol. 10, no. 3, pp. 679–692, Jun. 2016.

[28] M. Wand and T. Schultz, “Pattern learning with deep neural networks
in emg-based speech recognition,” in 2014 36th Annual Int. Conf. of
the IEEE Engineering in Medicine and Biology Society, Aug 2014, pp.
4200–4203.

[29] L. Diener et al., “Direct conversion from facial myoelectric signals
to speech using deep neural networks,” in 2015 Int. Joint Conf. on
Neural Networks (IJCNN), July 2015, pp. 1–7.

[30] K. H. Park and S. W. Lee, “Movement intention decoding based on
deep learning for multiuser myoelectric interfaces,” in 2016 4th Int.
Winter Conf. on Brain-Computer Interface (BCI), Feb 2016, pp. 1–2.

[31] M. Atzori et al., “Deep learning with convolutional neural
networks applied to electromyography data: A resource for
the classification of movements for prosthetic hands,” Frontiers
in Neurorobotics, vol. 10, p. 9, 2016. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnbot.2016.00009

[32] J. He, et al., “User adaptation in long-term, open-loop myoelectric
training: implications for emg pattern recognition in prosthesis
control,” Journal of Neural Engineering, vol. 12, no. 4, p. 046005, 2015.
[Online]. Available: http://stacks.iop.org/1741-2552/12/i=4/a=046005

[33] D. Farina et al., “The extraction of neural information from the sur-
face emg for the control of upper-limb prostheses: Emerging avenues
and challenges,” IEEE Trans. on Neural Systems and Rehabilitation
Engineering, vol. 22, no. 4, pp. 797–809, July 2014.

[34] J. Bae et al., “Kernel temporal differences for neural decoding,” Intell.
Neuroscience, vol. 2015, no. 17, pp. 1–17, Jan. 2015.

[35] Y. Wang et al., “Neural control of a tracking task via attention-gated
reinforcement learning for brain-machine interfaces,” IEEE Trans. on
Neural Systems and Rehabilitation Engineering, vol. 23, no. 3, pp.
458–467, May 2015.

[36] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in Proceedings of the Thirteenth Int. Conf. on Artificial Intelligence
and Statistics, ser. Proceedings of Machine Learning Research, vol. 9,
Chia Laguna Resort, Sardinia, Italy, May 2010, pp. 661–668.

[37] S. Ross et al., “A reduction of imitation learning and structured pre-
diction to no-regret online learning,” in Proceedings of the Fourteenth
Int. Conf. on Artificial Intelligence and Statistics, ser. Proceedings of
Machine Learning Research, vol. 15, Fort Lauderdale, FL, USA, Apr.
2011, pp. 627–635.

[38] I. Sturm et al., “Interpretable deep neural networks for
single-trial eeg classification,” Journal of Neuroscience
Methods, vol. 274, pp. 141 – 145, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165027016302333

[39] S. Bach et al., “On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation,” PLOS
ONE, vol. 10, no. 7, pp. 1–46, 07 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0130140

[40] S. Levine et al., “Learning contact-rich manipulation skills with
guided policy search,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), Seattle, WA, May 2015, pp. 156–163.

[41] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682 – 697, May
2008.

[42] A. Y. Ng et al., “Autonomous inverted helicopter flight via reinforce-
ment learning,” in Experimental Robotics IX: The 9th Int. Symposium
on Experimental Robotics, Berlin, Heidelberg, Mar. 2006, pp. 363–372.

[43] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in ICML ’04: Proceedings of the twenty-first Int. Conf.
on Machine learning, New York, NY, USA, Jul. 2004, pp. 1–8.

[44] B. Scholkopf et al., Boosting Structured Prediction for Imitation
Learning. MIT Press, 2007, pp. 1153–1160.

[45] A. Branner et al., “Selective stimulation of cat sciatic nerve using an
array of varying-length microelectrodes,” Journal of Neurophysiology,
vol. 85, no. 4, pp. 1585–1594, May 2001.

[46] D. M. Page et al., “Motor control and sensory feedback
enhance prosthesis embodiment and reduce phantom pain
after long-term hand amputation,” Frontiers in Human
Neuroscience, vol. 12, p. 352, 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnhum.2018.00352

[47] K. Englehart and B. Hudgins, “A robust, real-time control scheme
for multifunction myoelectric control,” IEEE Trans. on Biomedical
Engineering, vol. 50, no. 7, pp. 848–854, July 2003.

[48] N. Malesevic et al., “Vector autoregressive hierarchical hidden markov
models for extracting finger movements using multichannel surface
emg signals,” vol. 2018, p. 12, 02 2018.

[49] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature reduc-
tion and selection for emg signal classification,” Expert Systems with
Applications, vol. 39, no. 8, pp. 7420 – 7431, 2012.

[50] R. Davoodi et al., “Model-based development of neural prostheses for
movement,” IEEE Trans. on Biomedical Engineering, vol. 54, no. 11,
pp. 1909–1918, Nov 2007.

[51] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016.

[52] Y. Lecun et al., “Gradient-based learning applied to document recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov.
1998.

[53] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online].
Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735

[54] I. Sutskever et al., “On the importance of initialization and mo-
mentum in deep learning,” in Proceedings of the 30th Int. Conf. on
Machine Learning, vol. 28, no. 3, Atlanta, Georgia, USA, Jun. 2013,
pp. 1139–1147.

[55] R. Rojas, Neural Networks: A Systematic Introduction. New York, NY,
USA: Springer-Verlag New York, Inc., 1996.

[56] J. Zar, Biostatistics, (4th Ed) ed. Upper Saddle River, NJ: Simon &
Schuster, 1999.

