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Introduction

Manual interactions with objects involve not only precise 
control of the fingers and wrist but also a continuous bar
rage of somatosensory signals from the hand (Johansson and 
Flanagan 2009). These signals convey information about hand 

movements and postures, about physical interactions with 
the object—contact location, contact timing, contact pres
sure, slip, and about the object itself—its size, shape, and tex
ture. Some of these signals, particularly those related to hand 
proprioception, are carried by nerve fibers that innervate the 
muscles and tendons. Others, those related to object contact in 
particular, are carried by thousands of tactile nerve fibers that 
innervate the palmar surface of the hand. The different classes 
of nerve fibers differ in their response properties: slowly 
adapting type 1 fibers (SA1) respond best to skin indenta
tions, slowly adapting type 2 fibers (SA2) to skin stretch, rap
idly adapting (RA) fibers and Pacinian corpuscle (PC) fibers 
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Abstract
Objective. Hand function can be restored in upperlimb amputees by equipping them with 
anthropomorphic prostheses controlled with signals from residual muscles. The dexterity of 
these bionic hands is severely limited in large part by the absence of tactile feedback about 
interactions with objects. We propose that, to the extent that artificial touch mimics its natural 
counterpart, these sensory signals will be more easily integrated into the motor plan for 
object manipulation. Approach. We describe an approach to convey tactile feedback through 
electrical stimulation of the residual somatosensory nerves that mimics the aggregate activity 
of tactile fibers that would be produced in the nerve of a native hand during object interactions. 
Specifically, we build a parsimonious model that maps the stimulus—described as time
varying indentation depth, indentation rate, and acceleration—into continuous estimates of the 
timevarying population firing rate and of the size of the recruited afferent population.  
Main results. The simple model can reconstruct aggregate afferent responses to a wide range 
of stimuli, including those experienced during activities of daily living. Significance. We 
discuss how the proposed model can be implemented with a peripheral nerve interface and 
anticipate it will lead to improved dexterity for prosthetic hands.
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to low and high frequency vibrations, respectively (Saal and 
Bensmaia 2015). Without these tactile signals, dexterity is 
severely compromised (Augurelle 2002, Witney et al 2004).

Much of what is known about neural coding in the periph
eral nerve stems from recordings from individual nerve 
fibers in anesthetized monkeys or awake humans (Talbot and 
Mountcastle 1968, Vallbo and Hagbarth 1968). Attempts to 
reconstruct the responses of afferent populations based on single 
afferent recordings typically involve estimating time averaged 
firing rates across afferent populations. The prevailing conclu
sion from this body of work is that individual tactile fibers carry 
ambiguous information about a contacted object and that tactile 
information is distributed over populations of fibers (Johnson 
2001, Muniak et al 2007, Saal and Bensmaia 2014).

We have recently developed a computational model—
dubbed TouchSim—that simulates the responses of all tactile 
fibers to any spatiotemporal deformation of the skin of the 
hand (Saal et al 2017). With this model, we can characterize 
with unprecedented spatial and temporal precision how tactile 
information is distributed across afferent populations. In addi
tion to its potential to address basic questions about sensory 
coding in the somatosensory nerves, this newfound capability 
can inform precisely how to restore the sense of touch in bionic 
hands through electrical activation of tactile nerve fibers (Kim 
et al 2009, Saal and Bensmaia 2015, Delhaye et al 2016).

Indeed, given the importance of touch to dexterity, to con
struct an agile bionic hand requires not only the ability to move 
the hand precisely but also the means to receive tactile signals 
about the consequences of these movements, particularly as 
they pertain to object interactions (Bensmaia and Miller 2014, 
Saal and Bensmaia 2015). In principle, TouchSim provides us 
with a precise blueprint of tactile restoration as it describes 
how each tactile nerve fiber will respond to object contact. 
However, manual interactions with objects evoke responses 
that differ across fibers depending on their type, their loca
tion with respect to the stimulus, and even idiosyncratic 
differences across nerve fibers of a given type (Vallbo and 
Hagbarth 1968, Johnson 2001, Johansson and Flanagan 2009, 
Dong et al 2013). Accordingly, to restore natural touch would 
require stimulating each fiber independently with its own idi
osyncratic stimulation pattern, a feat that current technologies 
are nowhere near ready to accomplish. Indeed, stateoftheart 
electrical interfaces with the nerve comprise tens or hundreds 
of channels, not the 12 or so thousand that would be required 
for fully biomimetic restoration of touch on the palmar sur
face of the hand. Furthermore, at typical stimulation levels, 
each channel activates tens or hundreds of fibers and evokes 
highly unnatural synchronous responses in these fibers. Until 
much denser and more selective neural interfaces become 
available, then, attempts to mimic nerve responses will have 
to settle for mimicking aggregate neural responses (Saal and 
Bensmaia 2015, Delhaye et al 2016).

TouchSim can be used to simulate the aggregate behavior 
of hundreds or thousands of fibers by pooling simulated 
responses across small afferent populations. From the per
spective of engineering a bionic hand, however, simulating 
tens of thousands of fibers to then collapse them into a small 
number of unidimensional signals is highly inefficient.

With this in mind, we have developed a new, intuitive, 
computationally inexpensive encoding algorithm, one that 
comprises only a handful of parameters but that reconstructs 
with high accuracy the aggregate response of the nerve to 
timevarying pressure applied to the fingertip. We examine 
the properties of this population signal and demonstrate that it 
far outperforms more traditional sensory encoding algorithms 
in reconstructing the nerve activity evoked during activities of 
daily living (Gurpreet Singh Dhillon and Horch 2005, Clark 
et al 2014, Raspopovic 2014, Tan et al 2014, Graczyk et al 
2016, Schiefer et al 2016). We propose that this simple model 
is precisely what is needed to convert the output of force or 
pressure sensors on bionic hands into biologically realistic 
patterns of electrical stimulation of the nerve. Bionic hands 
endowed with this algorithm will provide more realistic tactile 
feedback to the user thereby supporting dexterous interactions 
with objects. More naturalistic feedback may also improve the 
embodiment of bionic hands and the confidence of users in 
using them (Marasco et al 2011, Schiefer et al 2016).

Results

The proposed strategy to restore touch consists of converting 
the output of sensors on the prosthetic hand into patterns of 
electrical stimulation to evoke naturalistic patterns of aggre
gate activity in the residual nerve (figure 1). To this end, we 
simulate, using TouchSim (Saal et  al 2017), the spiking 
responses of a population of nerve fibers when a tactile stim
ulus is applied to a localized patch of skin. We then pool all 
the simulated responses to obtain the timevarying population 
firing rate (FRt). We also evaluate the timevarying surface of 
afferent activation by inscribing all active afferent locations in a 
polygon and computing its area (At). This latter quanti ty repre
sents the size of the activated population, which is related to but 
not identical with the population firing rate. Indeed, increasing 
stimulus intensity results not only in an increase in the firing 
rate of activated tactile fibers but also in the recruitment of addi
tional fibers with receptive fields away from the point of contact 
(Muniak et al 2007). As discussed below, these two aspects of 
the response—firing rate and activated area—are required to 
map neural response onto parameters of electrical stimulation. 
Next, we develop a simple mapping between the stimulus—
decomposed into its time varying indentation, indentation rate, 
and acceleration—and the aggregate response representations 
(firing rate, area of activation) to obviate the need for the com
putationally demanding and excessively detailed simulation of 
the entire nerve. Finally, we compare the resulting biomimetic 
encoding model to a more conventional encoding model that 
signals instantaneous pressure.

Biomimetic encoding model

First, we simulated the responses to mechanical noise whose 
frequency composition matched that of natural interactions 
with objects and of indentations of varying durations and 
amplitudes as the latter are overrepresented during manual 
interactions with objects (during maintained grasp, for 
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example). Stimulus amplitudes spanned the range experi
enced during activities of daily living (0 to 3 mm). The training 
set was thus selected to yield a model that is well suited for 
common manual tasks (see below). Having simulated the 
aggregate response, we then regressed the timevarying firing 
rate (FRt) and timevarying area of activation (At) onto the 
indentation depth, rate, and acceleration of the stimulus. For 
area, this linear regression was the input to a sigmoidal func
tion to capture the levelingoff of activated area at high ampl
itudes (figure 1 and supplementary figure 1(C) (stacks.iop.org/
JNE/15/066033/mmedia)). Both models included several time 
points for all three variables to capture stimulus dynamics 

(five time points, spanning a total of 10 ms for each variable in 
firing rate model, two lags spanning a total of 20 ms for each 
variable in area model, see methods). The resulting models 
thus mapped the timevarying response onto the timevarying 
stimulus with up to 15 stimulusrelated parameters and an 
intercept (with three additional parameters for the area com
putation to capture saturation).

Model performance

Noise, sinusoids, and steps. First, we examined the ability 
of the model to account for responses to parametric stimuli 

Figure 1. Biomimetic tactile feedback in a bionic hand. Top flow: contact with an object produces temporal patterns of pressure on a 
sensor at the fingertip of the prosthetic hand. In principle, the sensor output could be used as input to TouchSim, which would simulate 
the responses of each afferent innervating the glabrous skin. Spikes could then be pooled across all afferents and binned to yield the firing 
rate of the whole nerve (FRt), as well as the recruitment of nerve fibers (At). These two metrics indicate how to modulate frequency and 
pulse charge to produce a biomimetic pattern of nerve activation. Bottom flow: the computationally demanding simulation of TouchSim 
can be replaced with a simpler model that comprises only a handful of parameters to predict aggregate nerve activity. To this end, we find 
a mapping between stimulus (pressure) and population activity (firing rate and recruitment) using a combination of linear and nonlinear 
filters.
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including sinusoids over a range of frequencies, pink noise 
with different bandpasses, and sustained indentations vary
ing in duration and amplitude (figure 2(A)). We found that 
model performance was high for these stimuli, accounting for 
the bulk of the variance in the simulated aggregate firing rate 
(R2  =  0.85, 0.87, 0.9 for noise, sinusoids and steps, respec
tively; figure  2(B)—red) and area of activation (R2  =  0.83, 
0.61, and 0.71; figure 2(B)—blue). Note that the model pre
cisely captured the hallmark response of the nerve to indenta
tions, which is dominated by onset and offset transients and is 

very weak during static indentation. This property of the nerve 
response is overlooked in standard encoding models that track 
timevarying pressure (Gurpreet Singh Dhillon and Horch 
2005, Clark et al 2014, Raspopovic 2014, Tan et al 2014, Grac
zyk et al 2016, Schiefer et al 2016). Testing the model across 
a wider range of frequencies, we found that performance dete
riorated for highfrequency stimuli, especially for sinusoidal 
stimuli (>60 Hz) (figure 2(C) and supplementary figure 2), a 
phenomenon that can be attributed to two causes. First, the 
nerve is differentially sensitive at different frequencies and the 

Figure 2. Model validation with parametric stimuli. (A) Inset: the index finger pad was stimulated with a set of tactile stimuli—noise, 
sinusoids and sustained indentations (steps). Main: examples of model fits. Top: timevarying stimulus trace. Middle: population firing rate 
(FRt) computed using the full afferent model (TouchSim, black) and using the simplified biomimetic model (red). Bottom: time varying 
area of activation computed using TouchSim (black) and using the biomimetic model (blue). R2 denotes the match between TouchSim 
and the simple model predictions for that trace. (B) Mean goodnessoffit for the firing rate and area models trained to reconstruct low
frequency stimuli (up to 10 Hz). The test sample consisted of noise filtered below 10 Hz (different seed), steps (of random amplitudes and 
durations), and sinusoids (from 1 to 10 Hz). The simple model captures most of the variance in both the aggregate firing rate and activated 
area over this range of frequencies. (C) Mean goodnessoffit of firing rate (red) and area (blue) predictions as a function of the lowpass 
cutoff frequency of the stimuli for noise, sinusoids, and steps. Forty models were trained with varying cutoff frequencies (5 Hz–200 
Hz) and tested on sinusoids and noise (comprising components with frequencies at or below the training cutoff) and steps of random 
amplitudes and duration. At high frequencies, the aggregate response becomes tonic rather than oscillatory so performance plummets for 
sinusoids and noise (see detailed fits in supplementary figure 2).
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model does not comprise a term that explicitly incorporates 
this frequency dependence (supplementary figure 1(C)). Sec
ond, although individual afferents—particularly RA and PC 
fibers—produce phaselocked responses to highfrequency 
vibrations (Talbot and Mountcastle 1968, Mackevicius et al 
2012), which in principle the model could follow, this signal 
vanishes when responses are pooled because different fibers 
spike at different phases within each cycle (Manfredi et  al 
2012).

Natural stimuli. Next, we tested the model’s ability to account 
for responses evoked during manual interactions with objects. 
Specifically, we measured the timevarying pressure at the fin
gertips and palm as a subject performed a series of activities 
of daily living (ADL), including grasping a cup, writing with 
a pen, typing, using a computer mouse, and opening a door. 
The pressure traces evoked during ADLs are dominated by 

low frequencies and informed the selection of training stimuli 
to fit the model. Timevarying skin deformations at each skin 
location were estimated from the pressure output of the sensor 
and were used as input to the model. We then compared model 
predictions to aggregate responses simulated using TouchSim 
and found that the linear model accounted for a large propor
tion of the variance in the ADLevoked responses (figures 
3(A) and (B), R2  =  0.84).

Next, we compared the performance of the biomimetic 
encoding model to that of the standard encoding model, which 
simply tracks pressure. We found that the biomimetic model 
massively outperformed the standard model on the ADL
evoked responses (∆R2  =  0.6, paired ttest: t(15)  =  17.86, 
p  =  1.6  ×  10−11). As a further test of the model, we simu
lated the responses to 200 stimuli designed to mimic ADLs 
(see methods) and found that the biomimetic model far out
performed the standard algorithm for these stimuli as well 

Figure 3. Model validation with natural stimuli. (A) Sample traces from pressure sensors on the fingertips and the palm along with the 
firing rate (FRt) estimated using TouchSim or the biomimetic model for four activities of daily living: opening a door, typing on a keyboard, 
using a mouse, and picking up a cup. Top: each trace denotes the stimulus, color coded by location (see inset). Bottom traces: population 
firing rate (black) versus predicted firing rate computed for each task and each projection field (same color as the corresponding stimulus). 
R2 denotes match between TouchSim and simple model predictions for that trace. (B) Model performance, averaged across all sessions 
and hand locations with significant sensor output. The green and orange bars denote the performance of the conventional and biomimetic 
encoding models, respectively. Error bars show standard errors in each sample. (C) Performance of the two models for simulated tactile 
stimuli mimicking natural stimuli (n  =  200).
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(∆R2  =  0.57, paired ttest: t(199)  =  159, p  =  9.8  ×  10−212, 
figure 3(C)). The biomimetic encoding model outperforms the 
standard one primarily because it takes into account the fact 
that the nerve is much more responsive to contact transients—
by including velocity and acceleration terms—and responds 
only weakly to sustained pressure (figures 2(A) and 3(A)).

Discussion

Stimulation strategy

The proposed biomimetic model provides a faithful estimate 
of the response that one would wish to elicit in populations of 
tactile fibers. The overall firing rate (FRt) evoked in the nerve, 
given the spatially restricted stimulus, is likely confined to a 
single fascicle. The firing rate is determined by the activation 
charge rate, essentially the amount of suprathreshold current 
delivered to the fascicle (Graczyk et al 2016). However, stan
dard electrical pulse trains comprise two parameters—pulse 
charge and frequency—and population firing rate can be con
trolled by modulating either parameter. In contrast, area of 
activation is a proxy for the crosssection of the fascicle that is 
activated at any given time, a quantity that can be controlled by 
modulating pulse charge. The ratio of firing rate to area con
stitutes an estimate of the mean firing rate of activated neu
rons, a quantity that can be controlled by modulating pulse 
frequency. We find that the ratio (of population firing rate to 
number of activated fibers) estimated using our model accu
rately reproduces the ratio derived from simulated responses 
with TouchSim (supplementary figure  3). The simple model 
proposed here can then be used to specify the values of these 
two parameters of electrical stimulation as a function of time 
to produce naturalistic patterns of nerve activation based on the 
timevarying output of pressure sensors on a prosthetic hand.

The accuracy of our modeling approach places greater 
emphasis on understanding precisely how stimulation 
regime—pulse charge, pulse frequency, and pulse wave
form—maps onto evoked afferent activation. To predict the 
neuronal response evoked by a pattern of electrical stimula
tion requires a realistic biophysical model of somatosensory 
nerves. Recently, singlecell and populationlevel models 
have been developed to describe the response of the nerve to 
different patterns of injected current (O’Brien 2016). These 
models, however, are specific to the neural interface used for 
stimulation. Indeed, intrafascicular and extrafascicular inter
faces imply different tissue conductivities and electric field 
distributions and, thus, different patterns of afferent recruit
ment with the changes in injected current (Veltink et al 1988, 
Grinberg et  al 2008). Intraneural interfaces consist of elec
trodes that penetrate the epineurium and make direct contact 
with nerve fibers (TIME—Dhillon et al 2004, LIFE—Boretius 
et  al 2010, USEA—Ledbetter et  al 2013). For these inter
faces, modeling electrically evoked spiking activity typically 
involves the implementation of a model of spike generation at 
the Nodes of Ranvier, a model of myelinated internodes, and 
a description of the extracellular space (O’Brien 2016). For 
extrafascicular interfaces (Tyler and Durand 2002, FINE—
Leventhal and Durand 2004), however, the stimulating 

electrodes do not directly contact their neuronal targets and 
neuronal activation also depends on spatial factors, such as 
electrode configuration (Miller et  al 2003), pulse polarity 
(Rattay 1989), electrodefiber distance (Mino et al 2004), and 
nerve fiber geometry (Woo et al 2010). In many cases, spatial 
factors are idiosyncratic and must be assessed on a subject by 
subject basis, for example, the distribution of nerve fascicles at 
the current injection site and the geometry of the channel rela
tive to the nerve fibers (Gustafson et al 2009, Brill and Tyler 
2011, 2017). Furthermore, stimulation regimes must be evalu
ated for their potential to cause damage to the neural tissue 
with chronic deployment (Briaire and Frijns 2006). While a 
detailed discussion of how to design a precise and accurate 
mapping between electrical stimulation and neuronal activa
tion falls outside the scope of the present paper, the proposed 
encoding model establishes a need for such a mapping, which 
would make possible the elicitation of neuronal patterns of 
activation whose naturalism is limited only by the capabilities 
of the neural interface.

Submodality-specific models

Some evidence suggests that tactile nerve fibers are clustered 
according to their modalities (Hallin et  al 1991, Niu et  al 
2013). That is, handfuls of fibers of a single class (SA1, RA, 
PC) are grouped together, and these bundles are interleaved 
seemingly randomly throughout the fascicle. However, the 
spatial scale over which this clustering occurs is too small and 
its distribution over the fascicle too idiosyncratic to be reli
ably exploited by a neural interface. Nevertheless, once spa
tial selectivity of stimulation is improved, the present model 
can be used to stimulate each tactile submodality appropri
ately (supplementary figure 4). For lowfrequency stimuli, the 
submodalityspecific models are accurate for SA1 and RA 
responses (supplementary figure 4(C)). As might be expected, 
however, the reconstruction of PC responses is poor because 
this class of fibers responds poorly at low frequencies (supple
mentary figures 4(A) and (B)).

Implementation notes

The sampling rate of sensors on the bionic hand is a key design 
specification for the proposed biomimetic model. Indeed, 
afferent responses cannot be accurately estimated if the tem
poral resolution of the input is too coarse (less than 10 ms, 
figure  4(D)). If a sufficient resolution cannot be achieved, 
model performance can be rescued to an extent by resampling 
the sensor values through interpolation.

Another important consideration relates to the size and loca
tion of the projection field as the model parameters depend on 
the size of the estimated afferent population and the location of 
their receptive fields. Indeed, the number of tactile fibers and 
the relative proportions of afferents of each type depend on 
both of these factors. We designed the model for a contact area 
with a diameter of 6 mm on the fingertip, thus corresponding 
to a projection field of equivalent size. However, this specific 
model breaks down when the contact area is much smaller 
or much bigger (see figure 4(E)), because of the concomitant 
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changes in the sizes and composition of the activated nerve 
fibers. In light of this, successful deployment of the model 
requires that the projection field of each electrode be mapped 
precisely, for example by having the subject report the location 
and spatial extent of electrically evoked sensations (see Clark 
et al (2014) and Tan et al (2014), e.g.). The idea is to design 
the model for each electrode such that the contact area matches 
the spatial extent of the projection field. As a result, stimulation 
will produce a sensation whose spatial extent is commensurate 
with that of a stimulus of equivalent contact area. Otherwise, 
a mismatch between the size of the projection field and the 
resulting sensations might occur. Regarding location, models 
designed for one digit can be applied to other digits. However, 
the distal fingertips and the rest of the hand yield different 
models given the pronounced differences in innervation densi
ties of the three classes of tactile nerve fibers across these skin 
locations (see figures 4(A)–(C)). Be that as it may, the model 
for each electrode can readily be designed for the location and 
spatial extent of its projection field to optim ize naturalness.

Limitations of the approach

As discussed above, the ideal somatosensory prosthesis 
would stimulate each nerve fiber independently with a pulse 
train designed to mimic that fiber’s idiosyncratic response. 
However, given the limitations of current neural interfaces, 
we developed a linear model to describe the relationship 
between the timevarying stimulus and the pooled responses 
of nerve fibers that are liable to be activated by a given stimu
lating electrode. While the relationship between pooled firing 
rates and indentation depth is approximately linear at low 
frequencies, which dominate during activities of daily living, 
this linearity breaks down at high frequencies (supplementary 
figure 1(C)). Another source of lack of fit, described above, 
is the frequencydependence of the afferent response, par
ticularly at high frequencies, which is not explicitly taken into 
consideration in the model. These nonlinearities result in a 
reduction in the prediction accuracy of the model, which is 
based on a linear mapping, particularly at the higher frequen
cies. Even at the low frequencies, the proposed model does not 
capture all of the variance in the neuronal response, as might 
be expected given the complex nonlinearities between the 
stimulus and the responses of individual afferents. However, 
in the frequency range relevant for daily interactions with 
objects, model predictions of aggregate afferent activity are 
substantially more faithful to the natural neural response than 
are predictions from the standard model.

The critical bottleneck for the proposed approach, however, 
is not the failure of the linear modeling approach to capture the 
fine spatiotemporal structure of the neural response but rather 
the limited selectivity of current stimulation technologies. 
Indeed, synchronous stimulation of many afferents limits the 
spatial resolution of the sensory feedback, obscuring spatial 
patterning in the stimulus that falls within the aggregate recep
tive field of the stimulated afferents. Furthermore, while the 
aggregate response of the stimulated afferents will be approxi
mately biomimetic, the response of individual afferents will 
not, a feature that is likely to compromise the naturalness of 

the resulting percept. However, the model provides a close 
approximation of the response at the level that can be manipu
lated with existing technologies, so paves the way for the most 
biomimetic response that can be achieved given technological 
limitations. To the extent that the spatiotemporal dynamics of 
the aggregate nerve response matter, and given that afferent 
signals converge as they ascend the somatosensory neuraxis, 
the proposed sensory encoding algorithm is likely to improve 
the intuitiveness and utility of the resulting sensory feedback.

Methods

Computing population firing rate and activated area  
from TouchSim simulations

TouchSim simulates afferent responses in two steps. First, 
the stresses resulting from a stimulus applied at the surface 
of the skin are estimated as two distinct components, one 
quasistatic, the other dynamic. The quasistatic component 
confers to tactile fibers response properties resulting from 
contact mechanics, such as edge enhancement and surround 
suppression. The dynamic component propagates through 
the skin surface as a wave and confers to afferents the ability 
to respond to vibration at a distance from contact. Second, 
TouchSim computes the spiking responses of SA1, RA and 
PC nerve fibers5—which tile the hand at their known densi
ties (Johansson and Westling 1984)—based on these two 
stress components using an integrateandfire mechanism. 
Responses simulated by TouchSim have been shown to match 
their measured counter parts closely—with singledigit milli
second precision—across a wide range of experimental condi
tions (Saal et al 2017).

Simulated responses of all afferents with receptive fields 
on the palmar surface of the hand were pooled to obtain the 
timevarying population firing rate of the nerve (FRt) in time 
increments of 2 ms (figure 1 and supplementary figure 2(B)).

To estimate area of activation, we pooled the coordinates 
of all the SA1 and RA fibers that were activated within each 
10 ms bin and inscribed them in a polygon of minimum area, 
At  (figure 1 and supplementary figure 1(B)). We excluded PC 
fibers in this computation because their receptive fields are 
so large as to span most of the hand, and a given PC fiber is 
activated by touch almost anywhere on the hand.

Training stimulus

The firing rate of populations of afferents has been shown 
to be approximately linear (Muniak et al 2007) (supplemen
tary figure 1(C)), but the slope of this function is dependent 
on stimulus frequency. To keep the model simple, we did not 
incorporate any frequencydependent terms. As a result, the 
parameters of the model were dependent on the (training) 
stimulus used to obtain them. Indeed, the frequency composi
tion of the training stimulus will determine the degree to which 

5 SA2 fibers are not included in TouchSim because these fibers are absent in 
the glabrous skin of monkeys (from whose afferent responses TouchSim was 
developed).
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different frequency components are weighted in the determi
nation of these parameters. Second, sustained indentations of 
the skin are common during natural interactions with objects—
during maintained grasp, for instance—but absent in a stimulus 
consisting entirely of noise. With this in mind, we designed 
a training stimulus that comprises both aspects observed in 
natural scenes. The stimulus comprised a mechanical noise 
component with power spectrum that decreases with frequency 
proportional to 1/f (pink noise)−. The noise was lowpass fil
tered to truncate high frequency components (see results sec
tion  on performance dependence on cutoff frequency) and 
the resulting stimulus was scaled to a maximum indentation 
amplitude of 3 mm (supplementary figure 1(A)). The training 
stimulus also contained skin indentations of varying dura
tion—ranging from 1 to 5 s—and varying amplitude—ranging 
from 0 to 3 mm. We verified that the indentation rates of the 
resulting stimulus fell within a physiologically plausible range 

and did not exceed 80–90 cm s−1, the maximum indentation 
rate observed during object interactions (Säfström and Edin 
2008). A stimulus as short as 100 s was sufficient to train both 
the firing rate and the area models.

Biomimetic encoding model

We estimate timevarying firing rate (F̂Rt) and dynamic area 
of activation ( Ât) using the following models (see figure 1):

®
F̂Rt = hFR(WFRSt)
Ât = hA (b, WASt)

.

St = [1st, st−1, . . . , st−k, |ṡt| , |ṡt−1| , . . . , |ṡt−k| , |̈st| , |̈st−1| , . . . , |̈st−k|] 
is a vector of stimulus features including indentation depth 
(s), rate (ṡ), and acceleration (s̈), with k denoting the number 
of time lags.

Figure 4. Model implementation details. Firing rate model performance depends on the location of the projection field, the sampling rate of 
the sensor, and the size of the contact area (corresponding to the size of the projection field). (A) Schematic of the hand used in the model 
with abbreviations of hand areas and locations of the centers of projection fields used for each area (black dots). (B) Firing rate traces 
(FRt) computed for three locations of the hand using the same timevarying noise stimulus. Responses from the distal digits (D1d and 
D2d) are similar to each other, but differ from responses from the palm (PW1). (C) R2 between FRt traces derived for different locations 
of the hand. (D) Mean performance as a function of sampling frequency. Model performance improves as temporal resolution of the sensor 
input improves. (E) Mean performance as a function of contact area size (diameter of the pin). The model was trained with a contact area 
of diameter of 2, 4, and 6 mm, respectively, then was tested with different smaller/larger contact areas with diameters ranging from 0.1 to 
7 mm. For all analyses, the model was trained using sustained indentations and pink noise filtered below 5 Hz. Test set consisted of steps of 
varying length and amplitude, noise of random seed and sinusoids of varying frequencies (<5 Hz). Model must be tailored to the size of the 
projection field.

J. Neural Eng. 15 (2018) 066033
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hFR(.)  is a nonlinearity of the form hFR (x) =

®
x, x > 0
0, x � 0 to 

guarantee that firing rate is always nonnegative; 
hA(.)  is a nonlinearity defined by a sigmoid function to cap

ture the observed saturation of activated area at high 
amplitudes:

hA(x, b) =
b0

1+ e−b1(x− b2)
.

We estimate parameters of the firing rate model (WFR) using 
least squares regression and parameters of the area model 
(WA, b) using nonlinear optimization with the Levenberg–
Marquardt algorithm. We optimized the number of lags k to 
achieve stable crossvalidation performance across all test 
stimuli with both models (k  =  5 for firing rate and k  =  2 for 
activation area).

Conventional encoding model

In the majority of sensory feedback algorithms implemented 
to date in experiments with human amputees (see Dhillon and 
Horch (2005), Clark et  al (2014), Raspopovic (2014), Tan 
et al (2014), Graczyk et al (2016) and Schiefer et al (2016)), 
the firing rate of the nerve F̂Rt  linearly tracks the timevarying 
stimulus st, such that

F̂Rt ∝ st.

We used this model as a baseline, linearly scaling it to best fit 
the simulated response.

Model validation

To test the model, we first assessed the degree to which it 
could reproduce the timevarying firing rate and activated area 
of afferent population simulated with TouchSim using a set of 
parametric stimuli. Specifically, we computed the output of 
the model to sinusoids varying in frequency and amplitude, 
noise stimuli with the same spectral profile used to obtain the 
parameters but with a different random seed, and step inden
tations varying in duration and amplitude. We then compared 
this output with the aggregate firing rate computed using 
TouchSim. The coefficient of determination (R2) was used to 
gauge model fit.

Next, we assessed the model performance on stimuli that 
reproduce those experienced during every day interactions with 
objects. To this end, we instrumented an adult male participant 
with a sensorized glove (FingerTPS, PPS, Inc., Los Angeles, 
CA) with six pressure sensors—one on each fingertip and 
one on the palm—and had him perform five standard manual 
tasks: grasping a cup, writing with a pen, typing, clicking a 
computer mouse and opening a door (for detailed description 
of the data collection, see Kim et al (2011)). The output of 
each sensor was converted to indentation depth by scaling it 
to a maximum of 3 mm. We resampled the pressure output 
from 64 Hz to 512 Hz using spline interpolation and filtered 

the resulting trace with a lowpass cutoff of 5 Hz to eliminate 
highfrequency noise. The resulting trace was used as input 
to TouchSim and to the biomimetic encoding model. Models 
were tailored to the location of the projection field, with dif
ferent sets of coefficients for different sensor locations.

To further test the biomimetic model, we generated a set 
of synthetic stimuli designed to mimic ADLs in terms of their 
spectral profile. Specifically, we pooled all ADL samples 
(n  =  23) with indentation depths greater than 1 mm and esti
mated their power spectrum using Multitaper Power Spectral 
Density estimate (Chronux, Matlab). We then generated 200 
white noise samples, each 10 s long, converted them to the 
frequency domain, adjusted their power spectrum to match 
that of ADLs, then converted the resulting spectra back to 
time domain. The code for computing parameters of the bio
mimetic model is available at http://bensmaialab.org/code/
touchmime/.
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