

Implementing and evaluating a Gaussian mixture framework for identifying gene function

from TnSeq data

Kevin Li

Department of Mathematics, Columbia University, New York, NY 10027, USA

Email: kl2918@columbia.edu

Rachel Chen

Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA

Email: rschen@ncsu.edu

William Lindsey

Department of Mathematics and Statistics, Dordt College, Sioux Center, IA 51250, USA

Email: William.Lindsey@dordt.edu

Aaron Best

Department of Biology, Hope College, Holland, MI 49423, USA

Email: best@hope.edu

Matthew DeJongh

Department of Computer Science, Hope College, Holland, MI 49423, USA

Email: dejongh@hope.edu

Christopher Henry

Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

Email: chrisshenry@gmail.com

Nathan Tintle

Department of Mathematics and Statistics, Dordt College, Sioux Center, IA 51250, USA

Email: Nathan.Tintle@dordt.edu

The rapid acceleration of microbial genome sequencing increases opportunities to understand

bacterial gene function. Unfortunately, only a small proportion of genes have been studied. Recently,

TnSeq has been proposed as a cost-effective, highly reliable approach to predict gene functions as a

response to changes in a cell’s fitness before-after genomic changes. However, major questions

remain about how to best determine whether an observed quantitative change in fitness represents a

meaningful change. To address the limitation, we develop a Gaussian mixture model framework for

classifying gene function from TnSeq experiments. In order to implement the mixture model, we

present the Expectation-Maximization algorithm and a hierarchical Bayesian model sampled using

Stan’s Hamiltonian Monte-Carlo sampler. We compare these implementations against the frequentist

method used in current TnSeq literature. From simulations and real data produced by E.coli TnSeq

experiments, we show that the Bayesian implementation of the Gaussian mixture framework

provides the most consistent classification results.

Keywords: Bayesian; bacteria; genetics.

1. Introduction

1.1. TnSeq Motivation and Background

Understanding of bacterial gene function has not kept pace with the rapid acceleration of microbial

genome sequencing. Only a small proportion of genes have had their functions experimentally

examined and function estimates for unexamined genes have proven inaccurate.1 Transposon

mutagenesis with next generation Sequencing (TnSeq) is a recent method that alleviates this

shortcoming in the study of gene function by allowing the simultaneous examination of a wide array

of microbial genes.

In TnSeq, a transposon inserts itself into bacterial genes, creating mutants and potentially

disrupting bacterial functions. In a library of mutants, DNA is isolated from a section of the bacterial

pool as a control group. The remaining section can then be subjected to a test condition. Bacteria

whose disrupted genes are essential for growth should decrease in frequency after exposure to the

condition. PCR amplifies the DNA sequences bordering the insertions, which are then sequenced

and map back to the genome. The change in a gene's fitness can be quantified by comparing the

abundance of mutants before and after the test condition. Based on this change, we can then examine

the effect of the disrupted genes in specific test conditions.2 The test conditions under which the

mutants suffer fitness penalties are then used to infer gene function.

1.2. Motivation and New Methods

The data produced by TnSeq poses classic statistical challenges. First, TnSeq allows researchers to

produce fitness measurements for thousands of poorly understood genes across hundreds of

experimental conditions.3 This increase in scale from traditional experimental methods complicates

attempts to create a universal decision rule for identifying a gene insertion’s fitness condition. The

inflated number of experiments also increases the frequency of outliers and edge cases. Furthermore,

the magnitude of fitness change varies between gene insertions and experimental noise can be

unpredictable. Current practice implements a frequentist statistical significance framework that does

not incorporate assumptions inherent in TnSeq and ignores inter-gene information for classification.

These shortcomings lead to overly conservative predictions due to overestimates of variance given

the unique nature of TnSeq data. The frequentist framework also requires tuning to control the false-

positive rate.1 Finally, the current frequentist framework does not produce an easily interpretable

uncertainty estimate for its classifications.

In this paper, we propose modeling the fitness measurements for gene insertions as two-

component Gaussian mixture models. We use simulations to show that this framework increases

sensitivity to fitness changes while controlling the false discovery rate at acceptable levels. We also

provide two distinct methods for fitting these mixture models. The Expectation-Maximization

algorithm is a widely accepted method for fitting such models. We also propose a hierarchical

Bayesian approach in which we model the parameters of our Gaussian mixture as random variables

with prior distributions. This strategy allows us to incorporate inter-gene information and prior

knowledge of the TnSeq method as soft constraints on our estimates. We will ultimately compare

the performance of these methods against the current frequentist framework.

2. Methods

2.1. TnSeq Experimental Data

We present a model of transposon sequencing in which only one strain of each gene insertion is

counted. A control count is first obtained for each gene insertion by examining its growth under a

condition known to have no effect on bacterial survival. Given n insertions, and m experimental

conditions, TnSeq then produces an n x m matrix where each row represents an insertion, and each

column contains fitness counts for an experimental condition. Thus if we denote this matrix 𝑪, the

matrix element 𝐶𝑖,𝑗 represents the fitness counts for gene insertion i under experimental condition j.

The final fitness measurement for each insertion under each experimental condition is calculated

via the equation:

 𝑓 = log⁡(𝑛1 + 1) ⁡− log⁡(𝑛0 + 1)1 (1)

where 𝑛1 is the cell is count under the experimental condition and 𝑛0 is the cell count under the

control condition. The total variance of the gene’s fitness value is calculated via:

 𝑉 = ⁡

1

1+𝑛1
+⁡

1

1+𝑛0

ln⁡(2)2
 (2)

This variance assumes Poisson noise and is later used for calculating a t-like statistic for the

frequentist method.3

2.2. Mixture framework

We apply our novel Gaussian mixture framework to the n x m matrix representing the fitness

measurements of each insertion. We denote this matrix 𝐸. The matrix element 𝐸𝑖,𝑗 represents the

fitness measurement of the ith insertion under the jth experimental condition. We wish to identify

each 𝐸𝑖,𝑗 as the result of a neutral or deleterious experimental condition. Fitness measurements under

deleterious experiments indicate that the mutant’s disrupted gene is relevant to some function. Note

that whether an experiment is neutral or deleterious depends on the mutant. To evaluate the

likelihood of our label estimate, we propose modeling each row of 𝐸 as a two-component Gaussian

mixture. We would like the first mixture component to capture experiments in which fitness is

unaffected such that⁡𝐸𝑖,𝑗|⁡𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑⁡~⁡N(𝜇𝑖,0, 𝜎𝑖). The second component captures experiments

in which fitness is affected such that⁡𝐸𝑖,𝑗|⁡𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑⁡~⁡N(𝜇𝑖,1, 𝜎𝑖). Due to the nature of TnSeq data,

we expect 𝜇𝑖,0 to be close to 0 and 𝜇𝑖,1 to be negative. This second component mixture exists because

groups of experiments deliberately test similar bacterial functions and therefore produce similar

fitness changes. This aspect of TnSeq also allows us to assume variances for the mixtures. We

therefore define the likelihood of row i of the matrix as:

 𝐸𝑗 ⁡~⁡𝜃𝜙(𝜇𝑖,0, 𝜎𝑖) + (1 − 𝜃)𝜙(𝜇𝑖,1, 𝜎𝑖) (3)

where ϕ is the pdf of a normal distribution, and θ is the proportion of experiments in which the

mutant is unaffected.

This framework can generate a probability that any fitness measurement is the product of a

deleterious experiment. This probability that fitness measurement 𝐸𝑖,𝑗 is produced by a deleterious

experiment is defined as:

 (4)

This value is simply the density of the fitness-affected mixture divided by the total density. We

classify the 𝐸𝑖,𝑗 as the result of a deleterious experiment if 𝑎𝑖,𝑗 is greater than .5.

2.3. Classification methods

2.3.1. Novel method – EM

An accepted statistical method for estimating unobserved labels under a Gaussian mixture likelihood

is the Expectation-Maximization (EM) algorithm.4 The EM algorithm iteratively fits a Gaussian

mixture model by constructing a monotonically increasing sequence of lower bounds for the log

likelihood function. We allow the mixture that is closest to zero represent the experiments that do

not affect mutant fitness. The selection of a two-component mixture model as opposed to classifying

all experiments as neutral is based upon the commonly used Bayesian Information Criterion (BIC).4

We fit a two-component mixture model if it has the lower BIC compared to a simple Gaussian

model. Otherwise we assume the insertion’s fitness values are all produced from neutral

experiments. We make this assumption as it is biologically improbable that all or even most

experiments will harm fitness. We implement the algorithm through the R package Mclust.5

2.3.2. Current method – t-statistic

The current method in TnSeq literature leverages the estimated variance of fitness measurements to

calculate the statistical significance of fitness changes.1,3 It calculates a t-like statistic:

 𝑡 = ⁡
𝑓

√.1+𝑉
 (5)

where .1 is a small regularizing constant, and 𝑉 is the variance estimate for the insertion’s fitness

measurements as described in section 2.1. An experiment is considered deleterious if |𝑡| >
4⁡and⁡|𝑓| > ⁡ .5. This statistic is assumed to have a standard normal distribution3.

The frequentist approach does not provide an easily interpretable probability for label estimates.

For the sake of comparison, we define 𝑎𝑖,𝑗 for the t-statistic classifier as:

 𝑎𝑖,𝑗 = 1 − ⁡𝜙(t) (6)

where 𝜙(t) represents a standard normal cdf. This expression is simply one minus the probability

that we obtain a statistic as extreme as 𝑡 under the assumption of no fitness change. This 𝑎𝑖,𝑗 can be

interpreted as the confidence of the classification.

2.3.3. Bayesian hierarchical model

We finally adopt a Bayesian hierarchical modeling framework for fitting a Gaussian mixture model.

The hierarchical approach assumes that model estimates for individual insertions are conditional on

some unobserved parameters shared across all insertions. We denote these parameters as hyper-

parameters. The hyper-parameters have their own hyper-prior distribution which are estimated from

all insertions in the data set. This strategy of conditioning estimates for individual genes on these

sample-wide hyper-priors achieves a pseudo pooling effect. The hyper-prior distributions leverage

across-gene information to weaken the influence of outliers and increase sensitivity to small mixture

probabilities.6

We fit our hierarchical Bayesian model in the R interface to the probabilistic programming

language, Stan.7 Stan allows fast, out-of-the-box fitting of Bayesian models without the computation

of the conditional parameter distributions or tuning variables.8 We later provide strategies for

partitioning our data set in order to speed computations and allow parallelization.

We use the following priors in our Bayesian model. We give prior distribution 𝑁(0, 𝛿). The

location of the prior is fixed at 0 to reflect the experiments’ null effect on fitness. The scale of the

prior is modeled by hyper-parameter δ with a 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(20,1) prior. The parameters of the

prior and hyper-prior reflect our strong belief that neutral experimental conditions should

consistently produce fitness measurement close to zero plus or minus some error common to the

mutants in the sample. The hierarchical structure on 𝛿 estimates this error from the mutants in

sample. We default to the Inverse Gamma distribution for its conjugacy properties.

We constrain to be negative by the assumptions of transposon sequencing3. We give ⁡𝜇𝑖,1⁡
prior distribution⁡𝑁(−3, 𝜆). The mean of the prior is fixed at a negative real to prevent degenerate

label switching with the first mixture. We choose –3 because it represents a moderate change in

fitness.3 The choice of –3 specifically as compared to any other reasonably small negative real is

unimportant due to the choice of the un-informative scale prior 𝜆, which has a prior distribution that

is uniform across all positive real numbers. The uninformative prior allows 𝜆⁡⁡to become arbitrarily

large as the data demands.6 The data dominates the value of 𝜆 in this the model and reflects our lack

of prior information of the true distribution of the fitness measurements. We model 𝜆⁡as a

hierarchical parameter to prevent outliers from overly affecting 𝜇𝑖,1 estimates and to increase

sensitivity to departures from zero. Although 𝜆′𝑠⁡prior is not a proper distribution, the joint

distribution of 𝜇𝑖,1 and 𝜆 is proportional to an inverse gamma distribution, which ensures that the

integral of the posterior distribution is finite.6

We give 𝜃𝑖 ⁡a beta prior with symmetric uniform hyper-priors for its flexibility over the [0,1]
interval as well as by the methods of Disselkoen 2016.10 The hierarchical structure on theta resists

outliers and prevents overfitting on single mutants.

We give 𝜎𝑖 a 𝐶𝑎𝑢𝑐ℎ𝑦(0,5) prior. The prior is weakly informative by allowing for large values

in the heavy tails of the distribution. This reflects our weak confidence that most variances should

be reasonably small with a few exceptions. We select the Cauchy distribution by recommendation

of Gelman 2006.6

2.3.4. Data partitioning for the Bayesian model

Markov Chain Monte Carlo sampling methods are computationally intensive for large data sets and

sensitive to the true parameter diversity of the data. Therefore, we propose fitting the Bayesian

model separately on partitions of the data that maximize within-partition similarity. Partitioning the

data speeds sampling and makes the computations easily parallelizable. To maximize the similarity

of genes within the partitions, we use the k-means clustering algorithm on the normalized log-fitness

vectors of the genes. This clustering is equivalent to clustering the gene insertions by angular

distance or correlation of their fitness measurement vectors.11 For computational considerations in

our simulation scenarios, we currently set the number of clusters such that there are on average 20

genes per partition.

2.4. Simulation

To evaluate the performance of our classifier, we simulate sets of insertions and fitness

measurements under a fixed number of experiments. We simulate different scenarios where we vary

the proportion of insertions that affect fitness under any experimental conditions. In this study we

simulate cases where 0%, 25%, 50%, 75%, and 100% of insertions affect fitness. Simulating these

distinct scenarios is important because the hierarchical Bayesian model estimates parameters of

individual insertions from a parameter distribution estimated over the entire data set. For each

scenario, we simulate 100 separate sets of 100 gene insertions to test the performance of the three

methods. We note that the Bayesian model is fit separately on each of these sets of 100.

We adopt the following algorithm for simulating bacterial counts and fitness measurements.

First, across all gene insertions in a set we define a probability δ that a gene insertion affects fitness

under any experimental conditions. We then proceed through the following steps to draw the mutant

counts.

For each gene insertion i:

 Draw parameter τ from gamma distribution⁡𝑔𝑎𝑚𝑚𝑎(𝛼̂, 𝛽̂), in which 𝛼̂ and 𝛽⁡̂are the gamma

parameter maximum likelihood estimates from the experimental control counts of E.coli mutants

provided by Price 2018.1 This distribution is not significantly different from the empirical

control count distribution by the Kolmogorov-Smirnov test (p > .3).

 Draw the simulated control count from⁡𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜏). Denote⁡𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜏) as the neutral

distribution.

 Choose a fitness factor, 𝐹 from⁡𝑢𝑛𝑖𝑓𝑜𝑟𝑚(.15, .95). We denote 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜏 ∗ ⁡𝐹) as the affected

distribution.

 With probability⁡𝛿, draw θ from⁡𝑢𝑛𝑖𝑓𝑜𝑟𝑚(.3, .95). Else set 𝜃⁡to be 1. θ is the probability that

an experiment does not affect mutant fitness.

 For every experiment, draw a count from the control distribution with probability θ. Otherwise

draw a count from the deleterious distribution.

Pre-fixed simulation distribution parameters were chosen to account for all reasonable biological

possibilities. Uniform distributions were chosen by the maximum entropy principle to reflect our

uncertainty surrounding the true distribution of real data sets.12 The fitness measurements and t-

statistics for each experiment can be calculated for each gene insertion using the control count and

Eq. (5) and (6).

2.5. Real data

We apply our methods to Escherichia coli BW25113 TnSeq data provided by Price 2018.1 They

examine the fitness of E.coli mutants produced by 3789 distinct gene insertions. They subjected

mutants to 162 experimental conditions. We apply the EM and Bayesian classifiers to the provided

3789 x 162 matrix of fitness measurements. We use the t-statistic classification results provided by

Price 2018.

3. Results

We evaluate the following performance metrics for each of the classification methods. We use the

mean of the posterior distribution draws of the Gaussian mixture parameters to define the Bayesian

model.6 We use the following metrics to evaluate the performance of the classifiers.

3.1. Metrics

Define the true label for fitness measurement 𝐸𝑖,𝑗 as ⁡𝑙𝑖,𝑗,⁡taking value 0 if 𝐸𝑖,𝑗 is the result of a neutral

experiment and value 1 if 𝐸𝑖,𝑗 is the result of a deleterious experiment. Let the predicted label for

𝐸𝑖,𝑗 be 𝑙𝑖,𝑗⁡̂ . Similarly 𝑙𝑖,𝑗⁡̂ is 0 if the classifier labels the fitness measurement as a neutral result and

1 if the classifier labels the measurements as a deleterious result.

3.1.1. Classification rate

The classification rate is the raw percentage of experiments that the model classifies correctly.

Therefore the Classification Rate for the ith insertion would be:

 (7)

where 𝐼{𝑙𝑖,𝑗⁡=⁡𝑙𝑖,𝑗̂⁡}⁡is an indicator function that takes value one if 𝑙𝑖,𝑗 ⁡= ⁡ 𝑙𝑖,𝑗̂ and zero otherwise.

3.1.2. False positive rate

The false positive rate is the Type I error. It is the percentage of neutral experiments that the model

incorrectly classifies as deleterious. In ideal scenarios, this value should be low. The False Positive

Rate for the ith mutant is therefore:

 (8)

where 𝐼{𝑙𝑖,𝑗⁡̂ =1⁡^⁡𝑙𝑖,𝑗⁡=0⁡}⁡
 is an indicator function that takes value one if 𝑙𝑖,𝑗⁡⁡̂ = 1 and 𝑙𝑖,𝑗 = 0.

3.1.3. Positive classification rate

The positive classification rate is the percentage of deleterious experiments that the model correctly

classifies as deleterious. In ideal scenarios, this value should be low. The positive classification rate

for the ith insertion is therefore:

 (9)

where 𝐼{𝑙𝑖,𝑗⁡̂ =1⁡⁡^⁡𝑙𝑖,𝑗⁡=1⁡}⁡
 is an indicator function that takes value one if 𝑙𝑖,𝑗̂ ⁡= 1 and 𝑙𝑖,𝑗 = 1.

Otherwise the function takes value 0.

3.1.4. Cross entropy

We measure the accuracy of our probabilistic estimates using cross-entropy. The cross entropy for

the classification of the ith insertion is defined as:

 (10)

Cross entropy is a common loss function for evaluating classifiers that produce probability

estimates ranging from 0 to 1.4 The greater the difference between the true and model classifications,

the higher the cross entropy will be. For example, if the true label is 1 and 𝑎𝑖,𝑗 is 0, then the classifier

performs badly and the cross entropy will be high. However, a better probability estimate of .49 will

correspond to a lower cross entropy value.

3.2. Simulation Results

We simulate the scenarios in which 0%, 25%, 50%, 75%, and 100% of gene insertions are affected

by experimental conditions. For each scenario, we simulate one hundred sets of one hundred

insertions. On each set, we separately fit the Bayesian model on a single Markov chain with 1000

warm-up iterations and 1000 sampling iterations. We take the posterior means of the Gaussian

mixture parameters to define our Bayesian classification model.

The simulation results demonstrate that the three methods provide identical classifications for

64% of the 50,000 simulated genes. These classifications produced models with over a 98%

classification rate. This is expected as the simulated fitness values for many gene insertions are

either obviously unimodal or clearly clustered into two groups. In an additional 10% of cases, all

the classifiers achieved at least a 90% classification rate. Thus, the entire simulation population does

not tell us much about the relative performance of the classifiers on difficult classification problems.

We proceed to examine only the 26% of the cases where the t-statistic, EM algorithm, and

Bayesian classifier do not provide identical classifications and at least one of the classifiers fails to

achieve an 90% classification rate. We call this the difficult subset.

We see in Figure 1 and Table 1, Column 3 that the t-statistic performs relatively well when the

proportion of affected mutants is small (0%, 25%). For higher proportions, we see that the t-

statistic's performance deteriorates in the second and third classification quantiles relative to the

other methods. On the other hand, the EM algorithm performs well when the proportion of affected

mutants is large (75%, 100%). The EM algorithm suffers in performance for the first and second

and third quantiles, especially for lower proportion (0%, 25%, 50%). Only the Bayesian model

demonstrates consistent behavior across proportions and quantiles, outperforming both the other

methods except when the proportion of affected mutants is 0%.

 We see from the positive classification rate in Figure 1 and Column 4 in Table 1 that the t-statistic

is by far the least sensitive to changes in fitness and therefore has the lowest positive classification

rate. The Bayesian algorithm provides a vast improvement on the positive classification rate. But

the EM algorithm overall provides the most sensitive classification results, especially true at lower

proportions. The EM algorithm achieves this sensitivity by incurring higher false positive rates. The

Bayesian algorithm does not suffer from as high false positive rates. The t-statistic expectedly

maintains the lowest false positive rate. Therefore, we see that the Bayesian algorithm achieves

higher and consistent classification by compromising between sensitivity of the EM algorithm and

the conservatism of the t-statistic.

Fig. 1. Cumulative distributions of classification, false positive and positive classification rates on the

difficult subset of simulated gene insertions. Columns indicate the metric displayed, and rows indicate the

proportion of mutants affected in each mutant set.

Table 1. Mean Classification Rate, Positive Classification Rate, False Positive Rate and Cross Entropy for Classifiers
2. % Affected 3. Mean CR 4. Mean PCR 5. Mean FPR 6. Mean CE

Bayesian 0 .90 NA .08 65.13

 25 .75 .57 .07 242.27

 50 .72 .60 .06 279.49

 75 .73 .61 .05 301.30

 100 .73 .64 .05 288.97

EM 0 .40 NA .33 305.95

 25 .58 .65 .20 313.95

 50 .63 .64 .14 320.05

 75 .66 .63 .10 334.89
100 .68 .63 .09 334.79

T 0 .95 NA .05 171.68

 25 .72 .22 .03 267.99

 50 .62 .21 .02 308.60

 75 .59 .22 .02 339.06

 100 .57 .21 .02 343.20

From Figure 2 and Column 6 in Table 1, we see that the Bayesian and EM method produce

smaller cross entropy losses for most classifications compared to the t-statistic. However, we also

see that the Bayesian and EM methods have fatter tails, indicating a significant subset of cases where

the two methods provide poor probability estimates. From Table 1 Column 6, we see that from an

entropy standpoint, the Bayesian algorithm outperforms the EM algorithm and t-statistic on average

in every scenario. Therefore, we can see that the Bayesian algorithm provides accurate probabilistic

estimates more consistently.

Fig. 2. Cumulative distribution of Cross Entropy Distributions. Cross entropy values near zero indicate

accurate probability estimates of classification confidence.

3.3. Comparisons on real data

We apply the EM and Bayesian methods to the fitness measurements from the real E.coli data (see

section 2.5 for details). For the t-statistic, we use the classifications produced by the work of Price

20181. The t-statistic is by far the most conservative, identifying 496 genes as important to some

examined bacterial function. The EM algorithm identifies 1322 genes and the Bayesian method

identifies 1786 genes. Of the 496 genes identifies by the t-statistic, the EM algorithm shares 137

identifications. The Bayesian algorithm shares 455 gene identifications with the t-statistic. In Figure

3 we present three examples where each of the three classifiers fails to identify a gene’s function

where the other two are successful.

The mutant from the insertion into gene b0002 is an instance where the t-statistic does not

identify a gene where the Bayesian model and EM algorithm do. The EM algorithm and Bayesian

model provide the same classifications for b0002, while we see that the t-statistic fails to identify

any changes in fitness. This failure of the t-statistic behavior can be attributed to the clear existence

of two separate mixture components with separate variances. The t-statistic calculates the variance

from both mixtures and therefore underestimate significance.

We next give an example where the EM algorithm does not identify a gene (b0008) that the t-

statistic and Bayesian model identify. In this case in Figure 3, we see that the BIC does not detect

the presence of two mixtures and our implementation of the EM algorithm and therefore assumes

no changes in fitness. We have considered changing the BIC threshold for two-mixture selection,

but any changes resulted in much worse simulation results.

Now we examine the insertion on b1198. This insertion belongs to the 16 cases where the

Bayesian algorithm does not identify a gene that the EM algorithm and t-statistic both identify as

important to some function. In each of these cases the EM algorithm and t-statistic identify a positive

fitness change from a gene insertion. This is improbable, as a gene deletion should not increase

fitness. The Bayesian model's priors explicitly prevent this classification result.

Fig. 3. Classifications for mutants produced by insertions into genes b0002, b0008, and b1198. Bars

represent counts of fitness measures under various experimental conditions.

3.4. Software

R scripts for the implementation of the classification methods can be found at:

http://www.nathantintle.com/supplemental/TnSeqRFunctions.R

4. Discussion

We have presented a two-component Gaussian mixture framework for classifying experimental

effects on mutant fitness. This framework provides an alternative to the current frequentist

framework. We have shown how the frequentist approach produces conservative estimates due to

its estimation of a large variance encompassing all of mutant's fitness values despite the existence

of two smaller distributions. The mixture framework addresses this problem by estimating the

smaller variances of two smaller components.

Furthermore, simulations demonstrate that the Bayesian classifier generally outperforms the EM

algorithm. By incorporating reasonable priors and exploiting a hierarchical structure, the Bayesian

model leverages inter-gene information to provide a compromise between the sensitivity of the EM

algorithm and the conservatism of the t-statistic. The Bayesian model's performance is also nearly

invariant under the proportion of mutants affected. Given high uncertainty about the genes studied,

the Bayesian model should be the model of choice for classification.

On the real E.coli data, we see that the Bayesian classifier is able to identify all the genes with

negative fitness changes that the t-statistic identifies. The Bayesian classifier demonstrates

significantly more sensitivity to fitness changes while maintaining consistency with the t-statistic.

This behavior is distinct from the EM algorithm, which has significantly different identifications

and seems to be insensitive to lower mixing probabilities. Still, both mixture classifiers are able to

identify multi-functional genes at a much higher rate than the t-statistic.

Despite the promise of the methods proposed, further work is necessary to validate our approach

on additional datasets for which true fitness changes are known. We note that while the performance

of the Bayesian classifier is generally better than the EM algorithm, the computational time of the

Bayesian classifier may be prohibitive in some cases (e.g., it takes 30.8 hours with 5 cores to fit the

E.coli 3789 x 162 fitness measurement matrix). Further work will seek to enhance the computational

time of the Bayesian classifier, though we acknowledge that it may never by as ‘instantaneous’ as

the EM algorithm or t-statistic approaches.

The success of the Bayesian classifier encourages further expansion of the hierarchical model

structure. Hyper-prior distributions can be defined to account for multiple strains per mutant or

even genes across bacteria. Covariance priors can be added to leverage co-fitness information1 to

make more robust classifications. Further development of the hierarchical structure will allow rich

probabilistic models of gene function and fitness. In the meantime, we suggest use of the proposed

Bayesian classifier to improve classification accuracy of changes in mutant fitness.

Acknowledgments The authors of this project were partially supported by NSF-MCB-1715211.

References

1. M. N. Price et al., Nat. 557, 503—509 (2018).

2. T. van Opijnen, K. L. Bodi and A. Camilli, Nat. Methods 6, 767—772 (2009).

3. K. M. Wetmore et al., mBio 6, e00306-15 (2015).

4. T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning: data mining,

inference, and prediction (2nd ed.). New York, NY: Springer (2009).

5. L. Scrucca, M. Fop, T. B. Murphy and A. E. Raftery, The R Journal 8, 205—223 (2016).

6. A. Gelman, J. B. Carlin, H. S. Stern and D. B. Rubin, Bayesian data analysis (3rd ed.). Taylor

& Francis (2013).

7. Stan Development Team, RStan: the R interface to Stan 2.16.2 (2017).

8. B. Carpenter et al., Journal of Statistical Software 76, (2017).

9. A. Gelman, Bayesian Anal. 1, 515—534 (2006).

10. C. Disselkoen et al., Front. Microbiol. 7, 1191 (2016).

11. S. Zhong, International Joint Conference on Neural Networks 5, 3180—3185 (2005).

12. W. Boomsma, J. Ferkinghoff-Borg and K. Lindorff-Larsen, PLoS Comput. Biol. 10, e1003406

(2014).

