
  

 

Abstract— Working towards improved neuromyoelectric 
control of dexterous prosthetic hands, we explored how 
differences in training paradigms affect the subsequent online 
performance of two different motor-decode algorithms. 
Participants included two intact subjects and one participant 
who had undergone a recent transradial amputation after 
complex regional pain syndrome (CRPS) and multi-year disuse 
of the affected hand. During algorithm training sessions, 
participants actively mimicked hand movements appearing on a 
computer monitor. We varied both the duration of the hold-time 
(0.1 s or 5 s) at the end-point of each of six different digit and 
wrist movements, and the order in which the training 
movements were presented (random or sequential). We 
quantified the impact of these variations on two different motor-
decode algorithms, both having proportional, six-degree-of-
freedom (DOF) control: a modified Kalman filter (MKF) 
previously reported by this group, and a new approach – a 
convolutional neural network (CNN). Results showed that 
increasing the hold-time in the training set improved run-time 
performance. By contrast, presenting training movements in 
either random or sequential order had a variable and relatively 
modest effect on performance. The relative performance of the 
two decode algorithms varied according to the performance 
metric. This work represents the first-ever amputee use of a 
CNN for real-time, proportional six-DOF control of a prosthetic 
hand. Also novel was the testing of implanted high-channel-
count devices for neuromyoelectric control shortly after 
amputation, following CRPS and long-term hand disuse. This 
work identifies key factors in the training of decode algorithms 
that improve their subsequent run-time performance. 

I. INTRODUCTION 

In the United States alone, 1.6 million individuals have lost 
a limb due to either dysvascular diseases like diabetes (54%) 
or to trauma (45%) [1]. For nearly one in every 200 
individuals, limb-loss is a life-long struggle with chronic pain, 
depression, and functional disability [1]–[3]. The current 
standard-of-care for upper-limb amputees is unsatisfactory, 
and as a result, up to 50% of upper-limb amputees abandon 
their prostheses [4], citing ineffective control as a primary 
reason [5]. 

Even though the physical hand is missing after an 
amputation, most transradial amputees still retain the neural 
circuits and forearm musculature that are used to control the 
hand. These residual biopotentials can be recorded using 
peripheral nerve interfaces or electromyographic (EMG) 
implants and can then be used to estimate an amputee’s motor 
intent. In this work, we use a modified Kalman filter (MKF) 
[6] and a convolutional neural network (CNN) to extract motor 
intent from the neural and EMG signals that still exist after 
long-term amputation of the hand. We then explore how 

variations in the initial training data impact run-time 
performance for these two motor-decode algorithms. 

A variety of different algorithms exist for translating neural 
and EMG signals into motor intent. They generally fall into the 
broad categories of Wiener filters, population vectors, 
probabilistic methods, and recursive Bayesian decoders [7]. 
One of the more widely used motor-decode algorithms is the 
Kalman filter (KF), which is linear in nature, and as a result, is 
somewhat limited in its ability to accurately predict motor 
intent based off highly non-linear neural and EMG signals. 
Decoding algorithms capable of capturing these non-
linearities, like neural networks, have primarily been used to 
predict hand grasps (i.e., pattern recognition) as opposed to 
continuously predicting the location of each individual degree 
of freedom (DOF) on the hand (i.e., regression). Recent work 
has begun exploring the capabilities of more advanced neural 
networks in providing independent and proportional control 
over each DOF in the hand [8], [9], and some offline analyses 
suggests that neural networks, with the proper training, can 
exceed the performance of a standard KF [9]. However, it is 
unclear how the performance of neural networks compares 
with the performance of modified KFs, particularly during 
online tasks when there is a participant in the loop, actively 
controlling the prosthesis. 

We therefore sought to compare the performance of a MKF 
and CNN algorithm directly and to explore how variations in 
training paradigms affect their subsequent online performance. 
An additional question is the extent to which these algorithms 
might provide effective control for an individual with a recent 
transradial amputation after complex regional pain syndrome 
(CRPS) and long-term hand disuse. 

II. METHODS 

A. Human Subjects 
A total of three human participants were used in this study: 

two intact subjects and one participant who had undergone a 
transradial amputation 5-6 months prior to the present 
experiments, after CRPS and multi-year disuse of the affected 
hand. All participants were male and between the ages of 24 
and 48. One of the intact participants was a co-author on this 
study. The two intact participants had 32 single-ended surface 
electrodes placed on their upper forearm for recording EMG 
signals from extrinsic hand muscles. The transradial amputee 
had three, 100-electrode Utah Slanted Electrode Arrays 
(USEAs; Blackrock Microsystems, Salt Lake City, UT, USA) 
implanted into his residual nerves; two in the median nerve and 
one in the ulnar nerve. Thirty-two intramuscular 
electromyographic recording electrodes (iEMGs; Ripple LLC, 
Salt Lake City, UT, USA) were also implanted in the residual 
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arm muscles of the amputee. Additional information regarding 
the devices and implantation procedure can be found in [6], 
[10]. 

Informed consent and experimental protocols were carried 
out in accordance with the University of Utah Institutional 
Review Board. 

B. Signal Acquisition 
Surface EMG from the two non-amputee subjects and 

iEMG from the transradial amputee were collected and 
processed in the same manner, as described in [6], [10]. 

Although a total of three USEAs were implanted into the 
residual nerves of the amputee, only two were used (both 
median USEAs) in this study due to software limitations. The 
neural signals recorded from these USEAs were processed 
approximately as described in [6], [10]. 

C. Initial Training Data 
In order to train the MKF and the CNN, recordings from 

sEMGs or iEMGs and USEAs were collected while the 
participant mimicked a set of preprogrammed hand 
movements performed by a virtual Modular Prosthetic Limb 
(MSMS; Johns Hopkins Applied Physics Lab, Baltimore, 
MD) with their own phantom hand (Fig. 1). These hand 
movements included individuated movements of each DOF of 
the virtual prosthetic hand (flexions/extensions of D1, D2, and 
D3; wrist flexion/extension; wrist pronation/supination; thumb 
abduction/adduction) as well as two combination movements 
(simultaneous flexion of D1, D2 and D3; simultaneous 
extension of D1 and D2), for a total of 14 movements. D4 and 
D5 were excluded in this task because most physical 
prostheses on the market couple these DOFs to D3. For 
example, the index finger on the prosthetic hand would flex, 
and the participant would actively attempt to flex their index 

finger simultaneously. The signals recorded during this task, 
as well as the kinematic position of each individual DOF of the 
prosthetic hand, served as the training data for the motor-
decode algorithm. To avoid complications due to the 
participant’s reaction time, we aligned the kinematic positions 
with the recorded signals by shifting the kinematic positions 
by a lag that was determined by cross-correlation. This 
alignment was performed uniformly across all trials of a given 
training condition. 

The initial training data included four trials for each 
individual movement. For the short-hold training dataset (our 
previous standard training condition), all four trials for each 
individual movement were performed sequentially, one after 
another, and the total duration of each individual movement 
was 1.5 s (made up of a 0.7 s flexion/extension away from the 
resting hand position, a 0.1 s hold-time at the maximum 
distance away from the rest position, and then another 0.7 s 
extension/flexion back to the rest position). 

To increase the duration of the hold-time at the end-point of 
each movement, we increased the total duration of each 
individual movement to 6.4 s (made up of a 0.7 s 
flexion/extension away from the resting hand position, a 5-s 
hold-time at the maximum distance away from the rest 
position, and then another 0.7 s extension/flexion back to the 
rest position).  

To vary the order in which movements occurred during 
training, we modified the training so that the individual hand 
movements appeared in either a sequential order (our previous 
standard training condition) or a random order. The participant 
was given brief, verbal notification of each upcoming 
movement to avoid an excessive delay between the motion of 
the virtual hand and the participants active movement. 

D. Motor-decode Algorithms 
Two motor-decode algorithms were implemented in 

MATLAB 2017B: the MKF previously outlined in [6], and a 
convolutional neural network that will be described in detail in 
this section. The MKF was trained using all of the acquired 
training signals described above. For the CNN, 50% of the data 
was used for training and the remaining 50% was used for 
validation. Training automatically terminated once the root-
mean-squared-error (RMSE) on the validation data increased 
(i.e., stopping early before the CNN overfit the training data). 
The CNN was trained using a Stochastic Gradient Descent 
with Momentum solver with an initial learning rate of 0.001. 

The CNN input was an Nx10 image consisting of N features 
(528 for sEMG data and 720 for iEMG + Neural data) sampled 
at the current time and nine previous time points (samples are 
acquired at 30 Hz). The CNN architecture (Fig. 2) consisted of 
a single convolutional layer, two fully-connected layers, ReLu 
activation between layers and a regression output. A 1x5 
kernel was used for convolution, such that the convolution was 
only across time and not across the feature set. A total of 10 
convolutional filters were used to produce a Nx6x10 output 
feature map. The output of the convolutional layer was then 
passed through a ReLu activation layer before being passed to 
the first fully-connected layer. The output of the first fully-
connected layer was also passed through a ReLu activation 
layer before being passed to the second fully-connected layer. 
Both fully-connected layers consisted of 2N neurons, and thus 
the total size of the network depended on the number of input 
features used. The output of the second fully-connected layer 

 
 

Figure 1: Training and testing of real-time proportional six-DOF motor-
decode algorithms for a virtual prosthetic hand. This participant had 
undergone a transradial amputation of his right hand 5-6 months prior to 
experimental sessions, due to long-term complex regional pain 
syndrome (CRPS) and disuse of the affected hand. At the time of 
surgery, the participant also received implants of three 100-electrode 
USEAs in his residual arm nerves proximal to the elbow, plus a 32-
channel assembly of electromyographic (EMG) electrodes in his residual 
extrinsic hand muscles in his forearm. The implanted devices allowed 
recordings of neuromyoelectric signals during subsequent experimental 
sessions. EMG recordings were obtained from the two intact subjects 
with temporary surface EMG electrodes. During training sessions, 
participants mimicked the movements of the virtual hand with their 
phantom hand (amputee participant) or intact hand (two intact 
participants). During subsequent testing sessions, participants attempted 
to reach and hold a target position (0.5 of full flexion) for a particular 
DOF while maintaining all other DOFs at their resting positions. 



  

was then fed into a final fully-connected layer that produced a 
total of 12 regression outputs, one for each possible DOF in 
the prosthetic hand. For this study, the output of only six of the 
12 possible DOFs were used. 

The final output of the CNN was modified using a 20% 
threshold, similar to what was used for the MKF in our 
previous work [6]. 

E. Real-time, Extended Hand-Matching Task 
To quantify the run-time performance of the motor-decode 

algorithms, the participants performed an extended hand-
matching “test” task, in which they actively controlled the 
virtual MSMS hand and attempted to move select DOF(s) to a 
target location. In contrast with the end-point positions used 
for training the algorithms (the maximum unidirectional range 
of the virtual prosthetic hand), the test target positions were 
located at 50% of the unidirectional maximum range in order 
to evaluate proportional control. The participant was instructed 
to hold the selected DOF(s) as close as possible to the target 
location for as long as possible. The subject had visual 
feedback confirming when each DOF was within ±5% of the 
full bidirectional movement range for the desired target 
position for the DOF(s) to be moved, and for the rest positions 
for the other DOFs to be held stationary. 

Each test trial lasted 7 s, and there was a 10-s wait time 
between trials to avoid fatigue for the amputee (1 s for intact 
individuals). A total of 17 movements were tested with this 
extended hand-matching task. These included the 14 
movements that were part of the original training dataset, and 
an additional three novel, untrained movements (simultaneous 
extension of D1, D2 and D3; simultaneous flexion of D1 and 
D2; and simultaneous flexion of D1, D2 and D3). 

For each participant, we performed three experiments on 
three separate datasets: 1) Extended-hold (5-s) vs. brief-hold 
(1-s) training for MKF vs. CNN; 2) Randomized vs. sequential 
training for MKF vs. CNN; and 3) Extended-hold and 
randomized training for MKF vs. CNN. Each of these datasets 
was collected in one or two experimental sessions. Collections 
of initial training data were performed first, followed by 
pseudorandom, counterbalanced testing of the different 
experimental conditions for both the MKF and CNN in order 
to avoid order effects. For each individual movement, a total 
of four trials were collected for the intact participant (two trials 
for the amputee participant to avoid excessive fatigue).  

F. Performance Metrics 
We measured the run-time performance of the motor-

decode algorithms using three metrics: 1) the mean longest 
continuous-hold duration within the desired 10%-error 
window around the target location; 2) RMSE of each DOF 
compared to the target position during intended movements; 
and 3) the RMSE of each DOF compared to the natural resting 
position during unintended movements (i.e., cross-talk). To 
calculate RMSE during intended and unintended movements, 
devoid of the participant’s reaction time, we aligned the 
kinematic output from the motor-decode algorithms with the 
desired target location by shifting the kinematic output by a 
lag that was determined by cross-correlation. This alignment 
was applied across all experimental conditions for a given 
session, so that there would be no bias affecting one 
experimental condition more than another. 

Outliers in the performance metrics (more than 1.5 
interquartile ranges above the upper quartile or below the 
lower quartile) were removed from the data. Aggregate data 
were generated by pooling the results from the three 
participants. A three-way ANOVA (factors: training hold- 
time, movement order, and decode method) was performed for 
each participant individually for each of the three performance 
metrics (continuous-hold time, intended movement RMSE, 
and cross-talk RMSE), treating each subject as a separate case-
study. Subsequent pairwise comparisons were performed 
using a Holm-Šídák-Bonferroni correction for multiple 
comparisons. 

III. RESULTS 

A. Increasing Hold-time During Training Improved 
Performance for All Participants 

Increasing the duration of the hold-time significantly 
improved performance on each of the three performance 
metrics for each of the three participants individually (all nine 
p’s < 0.001, three-way ANOVAs; Fig. 3, pairwise 
comparisons after sequential training). 

B. Training Movement Order Had Only Modest and 
Variable Impacts on Performance 

The order of training movements (random or sequential) 
had only a relatively modest and variable impact on 
performance. With some exceptions in either direction, the 
pattern of results for the three performance metrics for 
individual subjects after random training was similar to that 
after sequential training. For example, increasing the training 
hold-time improved the MKF performance in nine of nine 
cases after sequential training (sign comparisons for the three 
performance metrics for the three participants), and in eight 
of nine cases after random training. Similarly, for the CNN 
decode, increasing the training hold-time improved 
performance in nine of nine cases after sequential training 
(sign comparisons for the three performance metrics for the 
three participants), and in eight of nine cases after random 
training. Finally, after extended-hold training, the effects of 
decode type (MKF or CNN) on performance were the same 
for random or sequential training in all nine possible cases 
(sign comparisons for the three performance metrics for the 

 
 

Figure 2: Architecture of CNN. For the two intact participants, the input 
features consisted of 528 myoelectric signals recorded via surface EMG 
electrodes. For the amputee participant, the input features consisted of 
528 myoelectric signals recorded via intramuscular EMG assemblies 
and 196 neural signals recorded from multiple, small sets of motor fibers 
with intrafascicular electrodes. See text for additional details. 



  

three participants). Given this similarity, analyses reported 
herein focus primarily on results from sequential training. 

C. MKF Outperformed CNN for Targeted Movements 
under Extended-hold Training Conditions, but CNN had 
Less Cross-talk 

For all three participants, the type of motor-decode 
algorithm (MKF or CNN) had a significant effect on all three 
performance metrics (all nine p’s <0.001, three-way 
ANOVAs), although the effect of decode type was different 
for the three performance metrics (Fig. 3). Additionally, the 
effect of motor-decode type was often significantly greater 
after training with extended hold-times than after training 
with brief hold-times (p < 0.05 in seven of nine cases for the 

three performance metrics for the three subjects, with similar 
but not significant trends for the other two instances; Fig. 3).  

For the continuous hold-time and intended movement 
RMSE metrics, increasing the training hold-time typically 
improved performance of the MKF algorithm preferentially, 
relative to effects on CNN performance. After training with 
brief hold-times (0.1 s), the MKF and CNN performed 
comparably overall both in the aggregate data and for all three 
participants for these two performance metrics (Fig. 3, top 
two rows; no significant differences in any of the eight 
pairwise comparisons between MKF and CNN after brief-
hold (0.1-s) training). In contrast, after training with extended 
hold-times (5 s), the MKF significantly outperformed the 
CNN overall for both performance metrics in the aggregate 

 
Figure 3: Mean (+ SEM) longest continuous-hold times (top row), RMSE for intended movements (middle row), and RMSE for unintended movements 
(i.e., crosstalk) (bottom row) for the modified Kalman filter (MKF) and convolutional neural network (CNN) under brief-hold (0.1-s) and extended-hold 
(5-s) training conditions. Results are presented separately for each of the three participants, and for aggregate data pooled across subjects (columns). 
Training with extended hold-times improved performance on all three metrics. After extended-hold but not brief-hold training, the MKF decode 
significantly outperformed the CNN decode on two performance metrics: continuous hold-time and RMSE for intended movements (Aggregate Data; 
similar patterns for individual participants). In contrast, for RMSE cross-talk, the CNN outperformed the MFK decode overall and for the two intact 
subjects, regardless of the training hold-time. Within each panel, * indicates a statistically significant performance difference between MFK and CNN 
performance for a particular training hold-time condition (using Holm-Šídák-Bonferroni corrections for the six possible multiple comparisons within each 
panel); # indicates significant performance difference for that experimental condition, compared with all three other training conditions; and ↔ indicates 
a significant performance difference between 0.1-s and 5-s training condition for that decode type. 



  

data, and for most (four of six) cases for individual subjects. 
Further, in the aggregate data, the performance in the 
extended-hold, MKF-decode condition was significantly 
better than the performance in each of the other three 
experimental conditions for both the continuous hold-time 
and intended movement RMSE metrics (Fig. 3, multiple 
pairwise comparisons).  

In contrast, for the cross-talk RMSE performance metric, 
results for decodes were nearly the opposite: the CNN 
significantly outperformed the MKF (i.e., exhibited less 
cross-talk) after both brief- and extended-hold training, both 
for the aggregate data across all three subjects and for the two 
intact participants individually (Fig. 3, bottom row; six of six 
pairwise comparisons). Results for the amputee showed a 
strong similar trend that did not quite reach statistical 
significance after corrections for multiple comparisons (see 
Discussion).  

IV. DISCUSSION 

A. Primary Findings and Potential Mechanisms 
Increasing the hold-time during training improved 

performance across all three metrics for all three participants. 
For the CNN, we attribute this improvement in performance 
to the ability of the non-linear neural network to capture the 
temporal variation and non-linearities of EMG signals 
acquired during extended muscle contractions. We 
hypothesize that sampling the EMG signals across longer 
durations of contraction allows the CNN to attribute multiple, 
different signals to a single kinematic position.  

This same reasoning cannot be applied as readily to the 
improvements seen with the MKF, given that the MKF is built 
from a linear Kalman filter. Instead, we propose that the 
MKF’s improved performance stems from an overall 
reduction in Kalman gain, which, for all participants, was 
significantly less (all p’s < 0.05, paired t-tests) when trained 
on extended (5-s) hold-times, relative to brief (0.1-s) hold-
times. With a lower Kalman gain, the MKF puts more 
emphasis on the current state estimate relative to the new state 
predicted by the incoming EMG/neural feature data. We 
hypothesize that training on extended hold-times introduces 
temporal variation to the signals, making the features less 
reliable predictors of the kinematic state, which in turn results 
in a lower Kalman gain. The drop in Kalman gain then serves 
as a smoothing function, removing jitter from the EMG signal 
but reducing its overall temporal responsiveness. Additional 
tests that quantify speed and responsiveness against accuracy 
and reliability (Fitts’ Law) should be performed to evaluate 
this potential mechanism. 

The variable, participant-specific improvements associated 
with the order in which movements were presented during 
training might have arisen from the introduction of within-
sample variations. Randomizing the movement order may 
result in within-sample variations due to differences in neural 
activation patterns between initial motor planning and 
repeated motor action, or due to the hand posture changes 
after individual movements. In principle, the CNN could use 

this variation to improve its overall generalization and 
robustness. Similarly, the MKF could have seen improved 
performance if the introduction in within-sample variance 
resulted in a substantive reduction in Kalman gain. Additional 
analyses are needed to determine if the variance was 
consistently different between the random and sequential 
movement orders. 

Under the extended-hold training condition, the MFK 
outperformed the CNN for both the continuous hold-time and 
intended movement RMSE. However, the CNN had less 
cross-talk RMSE than did the MKF. Thus, what decode 
algorithm performs “best” depends in part on which 
performance metric is used for evaluation. Which is more 
important: accuracy of the intended movement, or less 
interference on other, unintended movements? Preferences 
may vary across tasks and individuals. Additionally, 
performance on other metrics not explicitly evaluated here 
(e.g., speed; cognitive effort; generalization to novel, 
untrained movements) may also influence individual 
preferences.  

Overall, this CNN resulted in a noisier motor decode than 
did the MKF. Although the CNN was better able to isolate 
individual DOFs, movement of the isolated DOFs was more 
jittery, resulting in higher RMSE and shorter continuous hold-
times. This factor, coupled with the smoothing capabilities of 
a decreased Kalman gain and the incorporation of thresholds 
into our MFK, may help explain why the MKF often 
outperformed the CNN in the present studies. 

Direct comparisons among the motor-decode algorithms 
used here and those reported in previous works is difficult due 
to differences in the number of controllable DOFs and the 
complexity of the task. In order to effectively compare the 
performance across algorithms, clinical hand dexterity tasks 
should be performed in the near future [11]. 

B. Caveats and Future Work 
The present data set should be extended to confirm 

generalizability and reproducibility of results across 
participants, and across training sessions for individual 
participants. The two intact participants were members of our 
research laboratory (including one contributing author) and 
may not be representative of a general population. Only one 
person with an amputation was tested. Further, the aggregate 
data were pooled across all three participants. That 
aggregation approach allows for the evaluation of results 
obtained with this subject pool, but precludes estimates of 
effects across subjects and generalization to other individuals. 

Although the present limited dataset did not demonstrate 
powerful effects of training movement order (random or 
sequential), further investigations may identify circumstances 
in which one approach or the other would be advantageous.  

The testing sessions used a target position different from 
that used to train the algorithms. Nonetheless, proportional 
control should be more fully explored by testing at a variety 
of different target positions. 

The RMSE values here reflect the error calculated after 
temporal alignment of the decode output and the target 



  

position, which was intended to reduce effects of factors such 
as participants’ reaction times. RMSE values calculated 
without this alignment would be slightly larger, but the same 
correction was applied across the different experimental 
conditions within a session to avoid biasing results. 

The present results represent only an initial attempt to 
implement a CNN in real time. This CNN differs from a 
previously reported CNN [9] in terms of network architecture, 
input features, number of training trials, use of thresholds, 
testing metric (offline vs online), and training algorithm.  In 
future work, training algorithms that result in preferential 
improvement to CNNs, such as Dataset Aggregation [9], 
along with other possible modifications and more 
sophisticated architectures [8], may yield improved 
performance for CNNs relative to MKFs. Our MFK has been 
improved over years of use and iterations, providing it 
unequal advantages relative to this first iteration of a 
relatively simple CNN. We do not conclude from our initial 
comparisons examined here that in general MKFs will 
necessarily continue to outperform improved CNNs (or other 
decode algorithms). 

C. Motor-decode Performance after Recent Hand 
Amputation, Prior CRPS and Long-term Hand Disuse 

Direct comparisons between the intact subjects and the 
amputee are difficult due to multiple confounding factors. The 
decodes for the amputee used two types of motor signals: 
myoelectric signals recorded via intramuscular EMG 
assemblies, and neural signals recorded from multiple, small 
sets of motor fibers with intrafascicular electrodes. In 
contrast, decodes for intact subjects used only signals 
recorded with surface EMG electrodes, which typically have 
greater crosstalk and lower quality than do signals recorded 
from implanted devices, and also have less long-term stability 
compared with signals from intramuscular EMG electrodes. 
Nonetheless, performance of intact subjects was nearly 
always better than performance of the amputee (23 of 24 
direct comparisons for sequential training, p < 0.00001, 
binomial test).  

Several factors likely adversely affected the performance 
of the amputee participant. Notably, prior to his amputation, 
this participant had suffered from CRPS that led to long-term 
disuse of his affected arm. Consequently, his arm muscles 
were weak and fatigued readily, and his myoelectric signals 
were relatively small, which decreased the signal-to-noise 
ratio for EMG recordings. Residual pain from CRPS, post-
operative pain, and phantom pain may have further inhibited 
his movements. Additionally, data collection sessions for this 
participant involved half the trials per condition to avoid 
muscle fatigue, reducing statistical power. 

Nonetheless, even shortly after the amputation, and with 
only modest training, the amputee participant was 
successfully able to achieve real-time, proportional control of 
a six-DOF hand. This high level of dexterous performance 
exceeds the capabilities of current commercially available 
myoelectric prostheses. His successes, despite multiple 
challenges and adversities, provide a striking and poignant 

demonstration of the practical benefits of the present 
approaches, and suggest that these benefits may be extended 
to a wider population of subjects, including those with recent 
amputations and with prior CRPS.  

V. CONCLUSION 
This work highlights the importance of optimizing training 

paradigms to yield online improvements in motor-decode 
algorithms. In addition, this work demonstrates novel use of 
a CNN by an amputee for real-time, proportional six-DOF 
control of a prosthetic hand. Furthermore, it presents a unique 
case-study in which an individual with CRPS and multi-year 
disuse of their intact hand, underwent an amputation and 
received neuromyoelectric implants simultaneously, and then 
subsequently controlled an advanced prosthetic hand. 
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