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Abstract— Working towards improved neuromyoelectric
control of dexterous prosthetic hands, we explored how
differences in training paradigms affect the subsequent online
performance of two different motor-decode algorithms.
Participants included two intact subjects and one participant
who had undergone a recent transradial amputation after
complex regional pain syndrome (CRPS) and multi-year disuse
of the affected hand. During algorithm training sessions,
participants actively mimicked hand movements appearing on a
computer monitor. We varied both the duration of the hold-time
(0.1 s or 5 s) at the end-point of each of six different digit and
wrist movements, and the order in which the training
movements were presented (random or sequential). We
quantified the impact of these variations on two different motor-
decode algorithms, both having proportional, six-degree-of-
freedom (DOF) control: a modified Kalman filter (MKF)
previously reported by this group, and a new approach — a
convolutional neural network (CNN). Results showed that
increasing the hold-time in the training set improved run-time
performance. By contrast, presenting training movements in
either random or sequential order had a variable and relatively
modest effect on performance. The relative performance of the
two decode algorithms varied according to the performance
metric. This work represents the first-ever amputee use of a
CNN for real-time, proportional six-DOF control of a prosthetic
hand. Also novel was the testing of implanted high-channel-
count devices for neuromyoelectric control shortly after
amputation, following CRPS and long-term hand disuse. This
work identifies key factors in the training of decode algorithms
that improve their subsequent run-time performance.

I. INTRODUCTION

In the United States alone, 1.6 million individuals have lost
a limb due to either dysvascular diseases like diabetes (54%)
or to trauma (45%) [1]. For nearly one in every 200
individuals, limb-loss is a life-long struggle with chronic pain,
depression, and functional disability [1]-[3]. The current
standard-of-care for upper-limb amputees is unsatisfactory,
and as a result, up to 50% of upper-limb amputees abandon
their prostheses [4], citing ineffective control as a primary
reason [5].

Even though the physical hand is missing after an
amputation, most transradial amputees still retain the neural
circuits and forearm musculature that are used to control the
hand. These residual biopotentials can be recorded using
peripheral nerve interfaces or electromyographic (EMG)
implants and can then be used to estimate an amputee’s motor
intent. In this work, we use a modified Kalman filter (MKF)
[6] and a convolutional neural network (CNN) to extract motor
intent from the neural and EMG signals that still exist after
long-term amputation of the hand. We then explore how

variations in the initial training data impact run-time
performance for these two motor-decode algorithms.

A variety of different algorithms exist for translating neural
and EMG signals into motor intent. They generally fall into the
broad categories of Wiener filters, population vectors,
probabilistic methods, and recursive Bayesian decoders [7].
One of the more widely used motor-decode algorithms is the
Kalman filter (KF), which is linear in nature, and as a result, is
somewhat limited in its ability to accurately predict motor
intent based off highly non-linear neural and EMG signals.
Decoding algorithms capable of capturing these non-
linearities, like neural networks, have primarily been used to
predict hand grasps (i.e., pattern recognition) as opposed to
continuously predicting the location of each individual degree
of freedom (DOF) on the hand (i.e., regression). Recent work
has begun exploring the capabilities of more advanced neural
networks in providing independent and proportional control
over each DOF in the hand [8], [9], and some offline analyses
suggests that neural networks, with the proper training, can
exceed the performance of a standard KF [9]. However, it is
unclear how the performance of neural networks compares
with the performance of modified KFs, particularly during
online tasks when there is a participant in the loop, actively
controlling the prosthesis.

We therefore sought to compare the performance of a MKF
and CNN algorithm directly and to explore how variations in
training paradigms affect their subsequent online performance.
An additional question is the extent to which these algorithms
might provide effective control for an individual with a recent
transradial amputation after complex regional pain syndrome
(CRPS) and long-term hand disuse.

II. METHODS

A. Human Subjects

A total of three human participants were used in this study:
two intact subjects and one participant who had undergone a
transradial amputation 5-6 months prior to the present
experiments, after CRPS and multi-year disuse of the affected
hand. All participants were male and between the ages of 24
and 48. One of the intact participants was a co-author on this
study. The two intact participants had 32 single-ended surface
electrodes placed on their upper forearm for recording EMG
signals from extrinsic hand muscles. The transradial amputee
had three, 100-electrode Utah Slanted Electrode Arrays
(USEAs; Blackrock Microsystems, Salt Lake City, UT, USA)
implanted into his residual nerves; two in the median nerve and
one in the wulnar nerve. Thirty-two intramuscular
electromyographic recording electrodes (iIEMGs; Ripple LLC,
Salt Lake City, UT, USA) were also implanted in the residual



arm muscles of the amputee. Additional information regarding
the devices and implantation procedure can be found in [6],
[10].

Informed consent and experimental protocols were carried
out in accordance with the University of Utah Institutional
Review Board.

B. Signal Acquisition

Surface EMG from the two non-amputee subjects and
iIEMG from the transradial amputee were collected and
processed in the same manner, as described in [6], [10].

Although a total of three USEAs were implanted into the
residual nerves of the amputee, only two were used (both
median USEAS) in this study due to software limitations. The
neural signals recorded from these USEAs were processed
approximately as described in [6], [10].

C. Initial Training Data

In order to train the MKF and the CNN, recordings from
SEMGs or iEMGs and USEAs were collected while the
participant mimicked a set of preprogrammed hand
movements performed by a virtual Modular Prosthetic Limb
(MSMS; Johns Hopkins Applied Physics Lab, Baltimore,
MD) with their own phantom hand (Fig. 1). These hand
movements included individuated movements of each DOF of
the virtual prosthetic hand (flexions/extensions of D1, D2, and
D3; wrist flexion/extension; wrist pronation/supination; thumb
abduction/adduction) as well as two combination movements
(simultaneous flexion of D1, D2 and D3; simultaneous
extension of D1 and D2), for a total of 14 movements. D4 and
D5 were excluded in this task because most physical
prostheses on the market couple these DOFs to D3. For
example, the index finger on the prosthetic hand would flex,
and the participant would actively attempt to flex their index

Figure 1: Training and testing of real-time proportional six-DOF motor-
decode algorithms for a virtual prosthetic hand. This participant had
undergone a transradial amputation of his right hand 5-6 months prior to
experimental sessions, due to long-term complex regional pain
syndrome (CRPS) and disuse of the affected hand. At the time of
surgery, the participant also received implants of three 100-electrode
USEAs in his residual arm nerves proximal to the elbow, plus a 32-
channel assembly of electromyographic (EMG) electrodes in his residual
extrinsic hand muscles in his forearm. The implanted devices allowed
recordings of neuromyoelectric signals during subsequent experimental
sessions. EMG recordings were obtained from the two intact subjects
with temporary surface EMG electrodes. During training sessions,
participants mimicked the movements of the virtual hand with their
phantom hand (amputee participant) or intact hand (two intact
participants). During subsequent testing sessions, participants attempted
to reach and hold a target position (0.5 of full flexion) for a particular
DOF while maintaining all other DOFs at their resting positions.

finger simultaneously. The signals recorded during this task,
as well as the kinematic position of each individual DOF of the
prosthetic hand, served as the training data for the motor-
decode algorithm. To avoid complications due to the
participant’s reaction time, we aligned the kinematic positions
with the recorded signals by shifting the kinematic positions
by a lag that was determined by cross-correlation. This
alignment was performed uniformly across all trials of a given
training condition.

The initial training data included four trials for each
individual movement. For the short-hold training dataset (our
previous standard training condition), all four trials for each
individual movement were performed sequentially, one after
another, and the total duration of each individual movement
was 1.5 s (made up of a 0.7 s flexion/extension away from the
resting hand position, a 0.1 s hold-time at the maximum
distance away from the rest position, and then another 0.7 s
extension/flexion back to the rest position).

To increase the duration of the hold-time at the end-point of
each movement, we increased the total duration of each
individual movement to 6.4 s (made up of a 0.7 s
flexion/extension away from the resting hand position, a 5-s
hold-time at the maximum distance away from the rest
position, and then another 0.7 s extension/flexion back to the
rest position).

To vary the order in which movements occurred during
training, we modified the training so that the individual hand
movements appeared in either a sequential order (our previous
standard training condition) or a random order. The participant
was given brief, verbal notification of each upcoming
movement to avoid an excessive delay between the motion of
the virtual hand and the participants active movement.

D. Motor-decode Algorithms

Two motor-decode algorithms were implemented in
MATLAB 2017B: the MKF previously outlined in [6], and a
convolutional neural network that will be described in detail in
this section. The MKF was trained using all of the acquired
training signals described above. For the CNN, 50% of the data
was used for training and the remaining 50% was used for
validation. Training automatically terminated once the root-
mean-squared-error (RMSE) on the validation data increased
(i.e., stopping early before the CNN overfit the training data).
The CNN was trained using a Stochastic Gradient Descent
with Momentum solver with an initial learning rate of 0.001.

The CNN input was an Nx10 image consisting of N features
(528 for sEMG data and 720 for iEMG + Neural data) sampled
at the current time and nine previous time points (samples are
acquired at 30 Hz). The CNN architecture (Fig. 2) consisted of
a single convolutional layer, two fully-connected layers, ReLu
activation between layers and a regression output. A 1x5
kernel was used for convolution, such that the convolution was
only across time and not across the feature set. A total of 10
convolutional filters were used to produce a Nx6x10 output
feature map. The output of the convolutional layer was then
passed through a ReLu activation layer before being passed to
the first fully-connected layer. The output of the first fully-
connected layer was also passed through a ReLu activation
layer before being passed to the second fully-connected layer.
Both fully-connected layers consisted of 2N neurons, and thus
the total size of the network depended on the number of input
features used. The output of the second fully-connected layer
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Figure 2: Architecture of CNN. For the two intact participants, the input
features consisted of 528 myoelectric signals recorded via surface EMG
electrodes. For the amputee participant, the input features consisted of
528 myoelectric signals recorded via intramuscular EMG assemblies
and 196 neural signals recorded from multiple, small sets of motor fibers
with intrafascicular electrodes. See text for additional details.

was then fed into a final fully-connected layer that produced a
total of 12 regression outputs, one for each possible DOF in
the prosthetic hand. For this study, the output of only six of the
12 possible DOFs were used.

The final output of the CNN was modified using a 20%
threshold, similar to what was used for the MKF in our
previous work [6].

E. Real-time, Extended Hand-Matching Task

To quantify the run-time performance of the motor-decode
algorithms, the participants performed an extended hand-
matching “test” task, in which they actively controlled the
virtual MSMS hand and attempted to move select DOF(s) to a
target location. In contrast with the end-point positions used
for training the algorithms (the maximum unidirectional range
of the virtual prosthetic hand), the test target positions were
located at 50% of the unidirectional maximum range in order
to evaluate proportional control. The participant was instructed
to hold the selected DOF(s) as close as possible to the target
location for as long as possible. The subject had visual
feedback confirming when each DOF was within £5% of the
full bidirectional movement range for the desired target
position for the DOF(s) to be moved, and for the rest positions
for the other DOFs to be held stationary.

Each test trial lasted 7 s, and there was a 10-s wait time
between trials to avoid fatigue for the amputee (1 s for intact
individuals). A total of 17 movements were tested with this
extended hand-matching task. These included the 14
movements that were part of the original training dataset, and
an additional three novel, untrained movements (simultaneous
extension of D1, D2 and D3; simultaneous flexion of D1 and
D2; and simultaneous flexion of D1, D2 and D3).

For each participant, we performed three experiments on
three separate datasets: 1) Extended-hold (5-s) vs. brief-hold
(1-s) training for MKF vs. CNN; 2) Randomized vs. sequential
training for MKF vs. CNN; and 3) Extended-hold and
randomized training for MKF vs. CNN. Each of these datasets
was collected in one or two experimental sessions. Collections
of initial training data were performed first, followed by
pseudorandom, counterbalanced testing of the different
experimental conditions for both the MKF and CNN in order
to avoid order effects. For each individual movement, a total
of four trials were collected for the intact participant (two trials
for the amputee participant to avoid excessive fatigue).

F. Performance Metrics

We measured the run-time performance of the motor-
decode algorithms using three metrics: 1) the mean longest
continuous-hold duration within the desired 10%-error
window around the target location; 2) RMSE of each DOF
compared to the target position during intended movements;
and 3) the RMSE of each DOF compared to the natural resting
position during unintended movements (i.e., cross-talk). To
calculate RMSE during intended and unintended movements,
devoid of the participant’s reaction time, we aligned the
kinematic output from the motor-decode algorithms with the
desired target location by shifting the kinematic output by a
lag that was determined by cross-correlation. This alignment
was applied across all experimental conditions for a given
session, so that there would be no bias affecting one
experimental condition more than another.

Outliers in the performance metrics (more than 1.5
interquartile ranges above the upper quartile or below the
lower quartile) were removed from the data. Aggregate data
were generated by pooling the results from the three
participants. A three-way ANOVA (factors: training hold-
time, movement order, and decode method) was performed for
each participant individually for each of the three performance
metrics (continuous-hold time, intended movement RMSE,
and cross-talk RMSE)), treating each subject as a separate case-
study. Subsequent pairwise comparisons were performed
using a Holm-Sidak-Bonferroni correction for multiple
comparisons.

III. RESULTS

A. Increasing Hold-time During Training Improved
Performance for All Participants
Increasing the duration of the hold-time significantly
improved performance on each of the three performance
metrics for each of the three participants individually (all nine
p’s < 0.001, three-way ANOVAs; Fig. 3, pairwise
comparisons after sequential training).

B. Training Movement Order Had Only Modest and
Variable Impacts on Performance

The order of training movements (random or sequential)
had only a relatively modest and variable impact on
performance. With some exceptions in either direction, the
pattern of results for the three performance metrics for
individual subjects after random training was similar to that
after sequential training. For example, increasing the training
hold-time improved the MKF performance in nine of nine
cases after sequential training (sign comparisons for the three
performance metrics for the three participants), and in eight
of nine cases after random training. Similarly, for the CNN
decode, increasing the training hold-time improved
performance in nine of nine cases after sequential training
(sign comparisons for the three performance metrics for the
three participants), and in eight of nine cases after random
training. Finally, after extended-hold training, the effects of
decode type (MKF or CNN) on performance were the same
for random or sequential training in all nine possible cases
(sign comparisons for the three performance metrics for the



three participants). Given this similarity, analyses reported
herein focus primarily on results from sequential training.

C. MKF Outperformed CNN for Targeted Movements
under Extended-hold Training Conditions, but CNN had
Less Cross-talk

For all three participants, the type of motor-decode
algorithm (MKF or CNN) had a significant effect on all three
performance metrics (all nine p’s <0.001, three-way
ANOV As), although the effect of decode type was different
for the three performance metrics (Fig. 3). Additionally, the
effect of motor-decode type was often significantly greater
after training with extended hold-times than after training
with brief hold-times (p < 0.05 in seven of nine cases for the

Intact 1 Intact 2

three performance metrics for the three subjects, with similar
but not significant trends for the other two instances; Fig. 3).

For the continuous hold-time and intended movement
RMSE metrics, increasing the training hold-time typically
improved performance of the MKF algorithm preferentially,
relative to effects on CNN performance. After training with
brief hold-times (0.1 s), the MKF and CNN performed
comparably overall both in the aggregate data and for all three
participants for these two performance metrics (Fig. 3, top
two rows; no significant differences in any of the eight
pairwise comparisons between MKF and CNN after brief-
hold (0.1-s) training). In contrast, after training with extended
hold-times (5 s), the MKF significantly outperformed the
CNN overall for both performance metrics in the aggregate
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Figure 3: Mean (+ SEM) longest continuous-hold times (top row), RMSE for intended movements (middle row), and RMSE for unintended movements
(i.e., crosstalk) (bottom row) for the modified Kalman filter (MKF) and convolutional neural network (CNN) under brief-hold (0.1-s) and extended-hold
(5-s) training conditions. Results are presented separately for each of the three participants, and for aggregate data pooled across subjects (columns).
Training with extended hold-times improved performance on all three metrics. After extended-hold but not brief-hold training, the MKF decode
significantly outperformed the CNN decode on two performance metrics: continuous hold-time and RMSE for intended movements (Aggregate Data;
similar patterns for individual participants). In contrast, for RMSE cross-talk, the CNN outperformed the MFK decode overall and for the two intact
subjects, regardless of the training hold-time. Within each panel, * indicates a statistically significant performance difference between MFK and CNN
performance for a particular training hold-time condition (using Holm-Sidék-Bonferroni corrections for the six possible multiple comparisons within each
panel); # indicates significant performance difference for that experimental condition, compared with all three other training conditions; and < indicates
a significant performance difference between 0.1-s and 5-s training condition for that decode type.



data, and for most (four of six) cases for individual subjects.
Further, in the aggregate data, the performance in the
extended-hold, MKF-decode condition was significantly
better than the performance in each of the other three
experimental conditions for both the continuous hold-time
and intended movement RMSE metrics (Fig. 3, multiple
pairwise comparisons).

In contrast, for the cross-talk RMSE performance metric,
results for decodes were nearly the opposite: the CNN
significantly outperformed the MKF (i.e., exhibited less
cross-talk) after both brief- and extended-hold training, both
for the aggregate data across all three subjects and for the two
intact participants individually (Fig. 3, bottom row; six of six
pairwise comparisons). Results for the amputee showed a
strong similar trend that did not quite reach statistical
significance after corrections for multiple comparisons (see
Discussion).

IV. DIScUSSION

A. Primary Findings and Potential Mechanisms

Increasing the hold-time during training improved
performance across all three metrics for all three participants.
For the CNN, we attribute this improvement in performance
to the ability of the non-linear neural network to capture the
temporal variation and non-linearities of EMG signals
acquired during extended muscle contractions. We
hypothesize that sampling the EMG signals across longer
durations of contraction allows the CNN to attribute multiple,
different signals to a single kinematic position.

This same reasoning cannot be applied as readily to the
improvements seen with the MKF, given that the MKF is built
from a linear Kalman filter. Instead, we propose that the
MKEF’s improved performance stems from an overall
reduction in Kalman gain, which, for all participants, was
significantly less (all p’s < 0.05, paired t-tests) when trained
on extended (5-s) hold-times, relative to brief (0.1-s) hold-
times. With a lower Kalman gain, the MKF puts more
emphasis on the current state estimate relative to the new state
predicted by the incoming EMG/neural feature data. We
hypothesize that training on extended hold-times introduces
temporal variation to the signals, making the features less
reliable predictors of the kinematic state, which in turn results
in a lower Kalman gain. The drop in Kalman gain then serves
as a smoothing function, removing jitter from the EMG signal
but reducing its overall temporal responsiveness. Additional
tests that quantify speed and responsiveness against accuracy
and reliability (Fitts’ Law) should be performed to evaluate
this potential mechanism.

The variable, participant-specific improvements associated
with the order in which movements were presented during
training might have arisen from the introduction of within-
sample variations. Randomizing the movement order may
result in within-sample variations due to differences in neural
activation patterns between initial motor planning and
repeated motor action, or due to the hand posture changes
after individual movements. In principle, the CNN could use

this variation to improve its overall generalization and
robustness. Similarly, the MKF could have seen improved
performance if the introduction in within-sample variance
resulted in a substantive reduction in Kalman gain. Additional
analyses are needed to determine if the variance was
consistently different between the random and sequential
movement orders.

Under the extended-hold training condition, the MFK
outperformed the CNN for both the continuous hold-time and
intended movement RMSE. However, the CNN had less
cross-talk RMSE than did the MKF. Thus, what decode
algorithm performs “best” depends in part on which
performance metric is used for evaluation. Which is more
important: accuracy of the intended movement, or less
interference on other, unintended movements? Preferences
may vary across tasks and individuals. Additionally,
performance on other metrics not explicitly evaluated here
(e.g., speed; cognitive effort; generalization to novel,
untrained movements) may also influence individual
preferences.

Overall, this CNN resulted in a noisier motor decode than
did the MKF. Although the CNN was better able to isolate
individual DOFs, movement of the isolated DOFs was more
jittery, resulting in higher RMSE and shorter continuous hold-
times. This factor, coupled with the smoothing capabilities of
a decreased Kalman gain and the incorporation of thresholds
into our MFK, may help explain why the MKF often
outperformed the CNN in the present studies.

Direct comparisons among the motor-decode algorithms
used here and those reported in previous works is difficult due
to differences in the number of controllable DOFs and the
complexity of the task. In order to effectively compare the
performance across algorithms, clinical hand dexterity tasks
should be performed in the near future [11].

B. Caveats and Future Work

The present data set should be extended to confirm
generalizability and reproducibility of results across
participants, and across training sessions for individual
participants. The two intact participants were members of our
research laboratory (including one contributing author) and
may not be representative of a general population. Only one
person with an amputation was tested. Further, the aggregate
data were pooled across all three participants. That
aggregation approach allows for the evaluation of results
obtained with this subject pool, but precludes estimates of
effects across subjects and generalization to other individuals.

Although the present limited dataset did not demonstrate
powerful effects of training movement order (random or
sequential), further investigations may identify circumstances
in which one approach or the other would be advantageous.

The testing sessions used a target position different from
that used to train the algorithms. Nonetheless, proportional
control should be more fully explored by testing at a variety
of different target positions.

The RMSE values here reflect the error calculated after
temporal alignment of the decode output and the target



position, which was intended to reduce effects of factors such
as participants’ reaction times. RMSE values calculated
without this alignment would be slightly larger, but the same
correction was applied across the different experimental
conditions within a session to avoid biasing results.

The present results represent only an initial attempt to
implement a CNN in real time. This CNN differs from a
previously reported CNN [9] in terms of network architecture,
input features, number of training trials, use of thresholds,
testing metric (offline vs online), and training algorithm. In
future work, training algorithms that result in preferential
improvement to CNNs, such as Dataset Aggregation [9],
along with other possible modifications and more
sophisticated architectures [8], may yield improved
performance for CNNs relative to MKFs. Our MFK has been
improved over years of use and iterations, providing it
unequal advantages relative to this first iteration of a
relatively simple CNN. We do not conclude from our initial
comparisons examined here that in general MKFs will
necessarily continue to outperform improved CNNs (or other
decode algorithms).

C. Motor-decode Performance after Recent Hand
Amputation, Prior CRPS and Long-term Hand Disuse

Direct comparisons between the intact subjects and the
amputee are difficult due to multiple confounding factors. The
decodes for the amputee used two types of motor signals:
myoelectric signals recorded via intramuscular EMG
assemblies, and neural signals recorded from multiple, small
sets of motor fibers with intrafascicular electrodes. In
contrast, decodes for intact subjects used only signals
recorded with surface EMG electrodes, which typically have
greater crosstalk and lower quality than do signals recorded
from implanted devices, and also have less long-term stability
compared with signals from intramuscular EMG electrodes.
Nonetheless, performance of intact subjects was nearly
always better than performance of the amputee (23 of 24
direct comparisons for sequential training, p < 0.00001,
binomial test).

Several factors likely adversely affected the performance
of the amputee participant. Notably, prior to his amputation,
this participant had suffered from CRPS that led to long-term
disuse of his affected arm. Consequently, his arm muscles
were weak and fatigued readily, and his myoelectric signals
were relatively small, which decreased the signal-to-noise
ratio for EMG recordings. Residual pain from CRPS, post-
operative pain, and phantom pain may have further inhibited
his movements. Additionally, data collection sessions for this
participant involved half the trials per condition to avoid
muscle fatigue, reducing statistical power.

Nonetheless, even shortly after the amputation, and with
only modest training, the amputee participant was
successfully able to achieve real-time, proportional control of
a six-DOF hand. This high level of dexterous performance
exceeds the capabilities of current commercially available
myoelectric prostheses. His successes, despite multiple
challenges and adversities, provide a striking and poignant

demonstration of the practical benefits of the present
approaches, and suggest that these benefits may be extended
to a wider population of subjects, including those with recent
amputations and with prior CRPS.

V. CONCLUSION

This work highlights the importance of optimizing training
paradigms to yield online improvements in motor-decode
algorithms. In addition, this work demonstrates novel use of
a CNN by an amputee for real-time, proportional six-DOF
control of a prosthetic hand. Furthermore, it presents a unique
case-study in which an individual with CRPS and multi-year
disuse of their intact hand, underwent an amputation and
received neuromyoelectric implants simultaneously, and then
subsequently controlled an advanced prosthetic hand.
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