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ABSTRACT

This paper presents a framework for shared, human-machine
control of a prosthetic arm. The method employs electromyogram
and peripheral neural signals to decode motor intent, and incorpo-
rates a higher-level goal in the controller to augment human effort.
The controller derivation employs Markov Decision Processes. The
system is trained using a gradient ascent approach in which the pol-
icy is parameterized using a Kalman Filter and the goal is incorpo-
rated by adapting the Kalman filter output online. Results of exper-
imental performance analysis of the shared controller when the goal
information is imperfect are presented in the paper. These results,
obtained from an amputee subject and a subject with intact arms,
demonstrate that a system controlled by the human user and the ma-
chine together exhibit better performance than systems employing
machine-only or human-only control.

Index Terms— Kalman Filter, Markov decision processes, self-
aware systems, movement intent decoder

1. INTRODUCTION

Self-aware systems are capable of extracting high-level goals from
data available to them, and automatically adapting their behavior to
achieve the extracted goals. Such systems are also able to learn their
environment and use this information to achieve the goals. Prosthetic
limbs have progressed in the last few decades from cable-driven
prostheses controlled by shoulder movements, to systems that use
natural control signals to command their movements [1]. Further-
more, highly dexterous robotic arm and hand prostheses have been
sensorized to evoke meaningful artificial percepts for closed-loop
control of their movements [2–4], and such systems satisfy many
characteristics of self-aware systems. In this paper, we consider how
shared control of a prosthetic arm between a machine-learning sys-
tem that has an imperfect understanding of the higher-level goals and
the human user of the system improves the overall performance of
the prosthetic arm over the machine-only control and human-only
control of such devices.

Motor intent decoding with Kalman filters (KF) [5–12], multi-
layer perceptron [13] networks, recurrent neural networks [14] and
extreme machine learning [15] have became popular due to their
performance and generalization capabilities. These methods per-
form incremental predictions of the movements, but do not utilize
a higher-level goal (e.g., ultimate location the prosthetic limb aims
at moving to). Mulliken et al. [16] incorporated goal information in
the KF framework by incorporating the goal as KF states. Hotson, et
al. [17] suggested using cameras to detect objects and their positions

and used the position to estimate the higher-level goals with a hidden
Markov model.

This paper describes a control system for a high degree-of-
freedom (DoF) forearm prosthesis based on electromyogram (EMG)
signals and peripheral nerve signals (PNS) acquired from the resid-
ual arm. We present a Markov Decision Process (MDP) [18] based
method that uses the goal information, EMG and PNS signals, and
the states of the prosthetic system to determine the moment-to-
moment control inputs to the system. In this paper, we assume that
the high-level goal is known or has been estimated, and experimen-
tal work is based on this premise. Although, goal estimation is not
part of this paper, it is an important component of the system, and
we are currently pursuing approaches for estimating the higher-level
goals from auxiliary signals acquired by additional sensors placed
on or near the prosthetic system. The performance of the shared
controller is experimentally validated on a volunteer with intact
hands and an amputee volunteer. To model the most likely case
where aspects of the goal are not fully understood (e.g., touching
versus grasping an object), we assume that the controller only has
an imperfect (noisy) estimate of the goal. We present experimental
results that demonstrate that a shared human-machine controller that
combines the biological information provided by the human and
goal information provided by the machine outperforms a controller
that uses only the biological information and another that uses only
the machine-generated (imprecise) goal information.

2. PROSTHETIC CONTROLLER DESIGN

Broadly, the function of our controller is to interpret the action from
biological and other auxiliary signals related to movements and de-
cide the best movement for the prosthetic limb. Similar to the deriva-
tion in [13], we use an MDP to model the decision making process.
The objective is to estimate a policy πθ(uk|sk, gk), where sk is the
state for the kth time step, uk and gk are the action and the high level
goal for the kth time step. The policy, πθ(uk|sk, gk), can be inter-
preted as the probability of the system taking the action uk, given
that the system is in the state sk and has the goal gk. The policy
provides the next estimated action of the controller, by choosing uk
that maximizes πθ(uk|sk, gk).

The state, sk, is defined as the union of the most recent
H1 instances of the measured EMG and PNS signals Zk =
[z1,k, ..., zN,k]T and the most recent H2 instances of the posi-
tion of the prosthetic hand Xk = [x1,k, ..., xM,k]T . Here zi,k is
the kth measurement from the ith measurement channel, N is the
number of EMG and PNS channels, xj,k is the hand position at time
k corresponding to the jth degree of freedom, and M is the number



of degrees of freedom (DoF) of the hand. That is,

sk = [Zk, ..., Zk−H1

⋃
Xk, ..., Xk−H2 ] (1)

The actions are defined by uk = [Xk+1]. Finally, gk is the prosthetic
limb’s goal (desired limb position) at the k-th time slot.

We assume that the system evolves according to the Markov as-
sumption, where that the next state of the hand, sk+1, only depends
on the current state, sk, p(sk+1|sk, ..., s1) = p(sk+1|sk) . For a
given set of independent trajectories, τ =

⋃A
a=1 τa, where A is the

number of trajectories in a training set, the trajectory τa is given by
τa =

⋃Ha
i=1(sai , u

a
i ). Here, Ha is the number of samples in the de-

sired trajectory, and sai and uai represent the i-th state and action,
respectively, in the trajectory a. We also define a set of goals for
each trajectory given by Γa =

⋃Ha
i=1 g

a
i , where gai represents the

goal for the ith time bin and the ath trajectory. It is possible to write
p(τa|Γa) parameterized as pθ(τa|Γa) in the following manner:

pθ(τa|Γa) = p(sa1)p(ga1 )×
[Ha−1∏

i=1

p(sai+1|sai , uai )πθ(u
a
i |sai , gai )

]

×
[ Ha∏
i=2

p(gai |gai−1, ..., g
a
1 )

]
(2)

During the training phase, the objective is to learn the set of param-
eters θ which maximizes the following cost function:

J(θ) =
1

A

A∑
a=1

1

Ha − 1
log(pθ(τa|Γa)) (3)

Given that the log function is a monotonically increasing function,
maximizing the cost function in (3) is equivalent to maximizing∏A
a=1 pθ(τa|Γa). The gradient of J(θ) is given by

∇θJ(θ) =
1

A

A∑
a=1

1

Ha − 1

Ha−1∑
i=1

∇θ[log πθ(u
a
i |sai , gi)] (4)

During the normal operation of the system in real time, we employ a
two-step decision process for the controller at each time. In the first
step, the system uses the parameter vector θ estimated during the
training process to find a preliminary estimate of the control action,
ûi = φθ(si). In second step, the control signals are modified based
on the higher-level goal. We assume a Gaussian policy given by

πθ(ui|si, gi) =
1√

2πσ1

× e
−
||ui − (1− β)φθ(si)− βψ(gi)||2

2σ2
1

(5)
where ψ(·) is a function that approximates the prosthetic system dy-
namics and is assumed to be known. Similarly φθ(·) is the motor
intent decoder responsible for extracting the intent from the EMG
and PNS signals and it is specified by θ. During training phase, we
assumed ψ(gi) = ui, the gradient used in the training phase can be
written as

∇θJ(θ) =
1

A

A∑
a=1

1

Ha − 1

Ha−1∑
i=1

{[uai − φθ(sai )][∇θφθ(sai )]T }T

(6)
Therefore, the system parameters θ are updated as follows during
training

θ = θ + α∇θJ(θ) (7)

where α is the learning rate, which should be greater than zero.
Once the system is trained, the parameters θ are kept static while

operating the prosthetic system in real time. During the online phase
we wish to optimize the actions for the give trajectory in real time.
Therefore, we assume that the parameters Ha and A are equal to 2
and 1, respectively. In this situation, the gradient is given by

∇ua
i
J(θ) =∇ua

i
p(sai+1|sai , uai )

− [uai − (1− β)φθ(s
a
i )− βψ(gai )] = 0

(8)

and the control actions are updated as

uai = (1− β)φθ(si) + βψ(gi) +∇ua
i
p(sai+1|sai , uai ) (9)

where β belongs to the interval [0, 1]. The above equation requires
an implicit solution, but in many practical cases involving determin-
istic φ, it is possible to show that the ∇ua

i
p(sai+1|sai , uai ) = 0. The

parameter β can be interpreted as responsible for controlling the bal-
ance between decoded human intent and machine decision.

The derivation provided above is very general. The decoder,
φθ(·) , can be parameterized using multilayer perceptron networks,
Kalman Filters, or a number of other methods. The framework of
this paper can be interpreted as a hybrid control system, where there
is an incremental decoder, φθ(·), and this decoder output is modified,
based on a higher-level goal. The hybrid framework is summarized
in Algorithm 1.

Training phase
Collect the training data
Train the policy offline using (6) and (7)
Online Phase
foreach time instant, i do

Estimate the goal, gai
Calculate uai using
uai = (1− β)φθ(si) + βψ(gi) +∇ua

i
p(sai+1|sai , uai )

Update the system state, sai+1, based on the just updated
action, uai

end
Algorithm 1: Prosthetic control Algorithm

3. PERFORMANCE EVALUATION

3.1. Experiment Setup

The results presented herein are for a single individual with an up-
per limb amputation and a single intact subject. After receiving ap-
provals from the University of Utah Institutional Review Board and
informed consent, the amputee subject was implanted with 32 EMG
electrodes to acquire intramuscular EMG data from the residual limb
and with Utah Slanted Electrode Arrays (USEA) in the median nerve
(2 USEAs) and ulnar nerve (1 USEA) proximal to the elbow to ac-
quire peripheral nerve signals [12, 19, 20]. For the intact subject, the
EMG signals were collected via up to 32 surface EMG electrodes
placed on the subject’s arm. Single-ended EMG signals were ac-
quired at 1 kHz and neural spike events (amputee subject only) at
30 kHz by a Grapevine System (Ripple LLC, Salt Lake City, Utah).
The EMG signals were bandpass filtered using a 6th-order, 15 Hz
Butterworth high pass filter, a 2nd-order, 375 Hz Butterworth low
pass filter, and 60, 120, and 180 Hz notch filters. The neural sig-
nals were bandpass filtered using a 4th-order, 250 Hz Butterworth



high pass filter and 3rd-order, 7500 Hz Butterworth low pass fil-
ter. Differential EMG signals were calculated for all pairwise EMG
combinations. The mean absolute values (MAV) were calculated for
the single-ended and differential EMG channels and the firing rates
were calculated for each neural channel, for both over a 33-1/3 ms
window, and subsequently smoothed with a 300 ms rectangular win-
dow.

The experiments were performed in a virtual environment (Mus-
culoskeletal Modeling Software [21]). This program can model a
virtual hand with multiple degrees of freedom (DoF). We only used
extension and flexion of the five fingers in these experiments for the
intact subject, and used thumb, index and little finger flexion, wrist
pronation, wrist flexion and thumb abduction for the amputee sub-
ject. For each DoF, the joint position was normalized to fall be-
tween -1 (maximum extension/supination/abduction) and +1 (max-
imum flexion/pronation/adduction). The resting joint position was
defined as zero (neither extending nor flexing). In our virtual envi-
ronment, ψ(.) was a identity matrix. In this case, we can show that
the last term on the right-hand side of (9) is zero, yielding uai =
(1 − β)φθ(si) + βgi. In our experiments, we assumed that the
goal had the only information about the final position of the hand,
i. e., gi = [Xd], where Xd is the desired final position of the hand.
Specifically, the goal information did not match the trajectory of the
hand.

During training, the subjects were instructed to track the move-
ment of the simulated hand with their phantom or intact limb while
the EMG and PNS signals were recorded. Each instructed movement
followed a semi-sinusoidal path at a velocity deemed comfortable by
the subject. In each training trial, either a single DoF or a combina-
tions of multiple DoFs were instructed to be moved. Five trials of
each unique movement type were recorded.

Once the training data was collected, we used a Kalman filter
(KF) decoder described in [5, 6]. We used the Kalman decoder
for simplicity; other choices involving nonlinear parameterizations
could also be used as a decoder [5,13]. During the subsequent online
testing phase, the desired hand position was shown on the computer
screen and the subject was instructed to move the virtual hand to that
position. In each testing trial, one or more DoFs were positioned
away from the resting position and all other DoFs were positioned
at the resting position. If the subject was able to move the virtual
hand to within ±0.15 normalized units of the desired position and
stay within this target region for 300 ms within 30 seconds of trial
start in a trial, that trial was considered successful. The position of
all DoFs, whether moving or stationary DoFs, had to be within their
respective target region over the same 300 ms duration for the trial
to be considered successful.

We tested three different controller conditions. In the first con-
dition, we only used the Kalman filter by setting β to zero, and we
collected data from 210 and 40 trials with the intact and amputee
subject, respectively. In the second condition, we used a hybrid
controller with β = 0.25 and assumed that the goal was perfectly
known. We collected data set from 210 and 40 trials for the in-
tact and amputee subject, respectively. We additionally performed a
number of pilot tests with the intact subject, and these collected data
suggested β = 0.25 was assistive but not overbearing. In the third
condition, we used a hybrid controller with β = 0.25 and assumed
that the goal was not perfectly known. In this condition, we dis-
placed the true goal to create a noisy goal by adding a randomly se-
lected, per-trail offset, where the offset was selected from a Gaussian
distribution with zero mean and 0.2 normalized units standard devi-
ation. For a trial to be successful in this condition, all DoFs had to be
within the target region of the true goal. We collected data from 108

and 40 trials for the intact and amputee subject, respectively. Dur-
ing the testing with the intact subject, the subject was aware of the
particular condition being tested. The amputee was not aware of the
particular condition being tested. We also introduced a hypothetical
4th condition based upon the third condition. In this condition, we
assumed that we had imperfect knowledge of the goal and the only
source of decoding information came from the goal based part of the
hybrid decoder. That is, effectively β was unity and the EMG-PNS-
based Kalman filter did not influence the decode. In this condition,
the system would be successful 55% of the trials based upon the size
of the target region and the distribution of the offset between the
actual goal and the noisy goal.

3.2. Results

We used four metrics to evaluate the performance, which are the suc-
cess rate, root-mean-squared error (RMSE) between the target and
moving DoFs, and RMSE between the target and stationary DoFs
and the trajectory length. Specifically, the moving RMSE is calcu-
lated as

DM =

√√√√ 1

HMm

H∑
i=1

Mm∑
j=1

(xMj,i − xDMj,i )2 (10)

where xMj,i and xDMj,i are the position and goal respectively, of the j-
th DoF instructed to move for the i-th time bin, there areMm moving
DoFs and H is the number of time bins in a trial. The stationary
RMSE (also called jitter herein) is calculated as

DS =

√√√√ 1

HMs

H∑
i=1

Ms∑
j=1

(xSj,i − xDSj,i )2 (11)

where xSj,i and xDSj,i are the positions and goals of the j-th stationary
DoF for the i-th time bin andMs represents the number of stationary
DoFs. The trajectory length was calculated as

DT =
1

Mm

H∑
i=2

Mm∑
j=1

|xMj,i − xMj,i−1| (12)

To evaluate the relative performance of the three controller condi-
tions, we compared each of the three performance metrics for pairs
of conditions with independent two-sample t tests (RMSE and tra-
jectory data) and the success rate using the Wilcoxon rank sum test
(per trial success(1) or failure(0) data). To handle the effect of mul-
tiple comparisons, we use a Bonferroni correction that reduced the
significance level to 0.0167 from 0.05. Finally, we used a binomial
test to compare the success rate of the condition of a hybrid decoder
with imperfect knowledge of the goal to the hypothetically derived
4th condition.

The relative performance of the three controller conditions and
the hypothetical 4th condition are summarized in Tables 1 and 2.
The RMSE values and the trajectory lengths are the mean and stan-
dard deviation across all trials. As a baseline, the controller based
on Kalman filter only had a success rate of 58% for the intact subject
and 63% for the amputee subject. As would be expected, adding per-
fect goal information into the controller increased the performance,
with success rates of 92% for both the intact and amputee subjects.
When imperfect goal information was provided, the success rate de-
creased slightly to 88% for both the intact and amputee subjects.
Of the improvements found by adding goal information, statisti-
cally significant improvements to the success rate were observed for
both subjects (p < 10−15 for perfect goal information and p <



Table 1. Performance Metrics in Different Scenarios For the Intact
Subject.

Scenario Success DM DS DT
Rate

KF 58% 0.62±0.18 0.09±0.1 5.71± 5.69

KF + 92% 0.36±0.09 0.01±0.02 1.88± 2.86
Goal
KF + 88% 0.36±0.09 0.01±0.02 1.91± 2.94
Noisy Goal
Machine 55% N/A N/A N/A
Alone

Table 2. Performance Metrics in Different Scenarios For the Am-
putee Subject.

Scenario Success DM DS DT
Rate

KF 61% 0.38±0.04 0.040±0.05 4.94± 5.48

KF + 92% 0.21±0.03 0.003±0.01 1.52± 2.79
Goal
KF + 88% 0.25±0.07 0.002±0.01 1.44± 2.03
Noisy Goal
Machine 55% N/A N/A N/A
Alone

1.6× 10−8 for imperfect goal information for the intact subject and
p < 10−3 for perfect goal information and p < 9 × 10−3 for the
imperfect goal information for the amputee subject). Further, the ad-
dition of the subject-provided decoding information when the goal
was imperfectly known improved the success rate significantly when
compared to machine control alone (binomial test, probability of ob-
served success rate given hypothetical performance with only goal
driven controller, p < 0.0008 and 1.38 × 10−13 for the amputee
and intact subject, respectively). We interpret these results as the
a demonstration of human intent, guided by sensory (visual here)
feedback, being able to overcome the error in the estimated goal to
successfully complete the task.

The addition of goal information, even when imperfect, im-
proved the performance of the task as measured by two RMSE
metrics and the trajectory length as well. In the intact subject, we
observed a 42% reduction in the movement RMSE for both hybrid
systems, and this change was statistically significant (p < 10−24 for
both hybrid systems). The amputee subject had a 44% reduction in
for the case of perfect goal knowledge but only 34% reduction when
the goal information was imperfect. Both changes were statistically
significant (p < 10−5 for both hybrid systems). The reduction
in instructed to move DoF RMSE’s implies the subject moved to
the goal more effectively. Furthermore, the jitter RMSE decreased
89% for the intact subject and 95% for the amputee subject for both
hybrid systems. Again, these changes were statistically significant
(p < 3×10−6 for all cases). These effects can be easily observed in
Figure 1. Kalman-filter-alone controller manifested more movement
cross talk than either hybrid controller, and such cross movements
likely made it more difficult for the subjects to complete the tasks.
Finally, trajectory path decreased 67% for the intact subject and 70%
for the amputee subject for both hybrid controlled systems. These
changes are significant (p < 3 × 10−4 for all cases). These im-
provements can be interpreted as the subject being able to perform

the desired tasks more precisely.

Fig. 1. Representative examples of the performance for the three
controller conditions with the amputee subject. All cases represent
the testing phase, where the amputee’s EMG and PNS signals were
used to derive the movement action via a previously trained Kalman
filter and the subject could see both the goal and his performance in
achieving the goal. For each condition, the dashed line represents
the true goal and the solid line represents the controller’s real-time
prediction of the desired position. The color of each line represents
a particular joint.

4. CONCLUSION

The preliminary results presented in this paper suggest that incorpo-
rating goal information into the decision making process improves
the ability of the subject to control the prosthetics. Prosthetics with
shared control between humans and machines systems demonstrated
higher success rates, more precise control, and less cross movements
between DoFs. Additional experiments using an amputee subject as
well as in depth explorations of the effect of noise in the goal esti-
mates on the shared controller are also underway. Further studies on
how to update the parameters online based on the goal and the deci-
sions made by the decoder can be beneficial to the overall controller
performance.
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