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ABSTRACT

This paper presents a framework for modeling neural decod-
ing using electromyogram (EMG) and electrocorticogram
(ECoG) signals to interpret human intent and control pros-
thetic arms. Specifically, the method of this paper employs
Markov Decision Processes (MDP) for neural decoding, pa-
rameterizing the policy using an artificial neural network.
The system is trained using a modification of the Dataset
Aggregation (DAgger) algorithm. The results presented here
suggest that the approach of the paper performs better than
the state-of-the-art.

Index Terms— Neural Decoding, Markov Decision Pro-
cesses, Neural Network, Dataset Aggregation, Reinforcement
Learning

1. INTRODUCTION

Loss of limbs results in profound changes in one’s life. How-
ever the underlying neural circuitry and much of the ability to
sense and control movements of their missing limb is retained
even after limb loss. This means that amputee has the ability
to control artificial limbs in a similar way to how the limb was
controlled before the loss. This paper is concerned with de-
coding neural information for controlling prosthetic devices.

For a brief overview of motor system physiology in the
context of neural prostheses, the reader is referred to [1].
Electrocorticogram (ECoG) signals, recorded at the cortical
surface, strikes a balance between invasive measurement of
spike events recorded from implants in the cortex and elec-
troencephalogram (EEG), signals measured from the scalp,
in terms of invasiveness and spatial resolution. Technically
EMG is not a neural signal, but they are used in commer-
cially available, state-of-the-art myoelectric prostheses. We
limit the discussion in this paper to ECoG and EMG signals
only. However, the concepts are easily applied to other neural
signals also.

A number of methods are available in the literature for
neural decoding of human intent. Some of these methods
are nonlinear [1–6], but most are linear. Decoding algorithms
employing linear generative models relating neural signals to

the actual intended movements fall into broad categories of
Wiener filters [7, 8], population vectors [9, 10], probabilistic
methods [11, 12], and recursive Bayesian decoders such as
Kalman filters [13, 14].

Several works available in the literature use of Markov
Decision Processes (MDP) to apply reinforcement learning
based on policy gradient methods [15–17] to learn motor
tasks for robots. Such approaches have achieved state-of-the-
art results in a number of applications. In the neural decoding
field, a solution applying reinforcement learning based on
Q-learning to solve Bellman’s Equation in kernels domain
was presented in [18]. In general, such methods require con-
siderable tuning to achieve good performance, and this is not
easy depending on the problem.

This paper presents a framework for neural decoding
based on MDP. The initial training is performed using a su-
pervised algorithm. Then, the data set is expanded using the
outputs of the trained model and the system is trained further
using Dataset Aggregation (DAgger) [19] approach. Several
iterations of dagger may be performed. The framework pre-
sented here does not use rewards as the methods of [15–18].
In addition, the approach is capable of incorporating com-
plex environmental dynamics to the model. The framework
proposed here is tested for decoding electromyogram (EMG)
and electrocorticogram (ECoG) signals to interpret human
intent and control prosthetic arms. These results demonstrate
the ability of the method to accurately decode neural signals,
and suggest that our approach may be a better alternative to
many decoders currently in the literature.

The rest of this paper is organized as follows: The next
section describes the MDP framework for neural decoding.
Section 3 describes the system implementation and also how
DAgger was used to train the system. In Section 4, experi-
mental work on a human subject to validate the decoder al-
gorithm and assess its capabilities is described . Finally, the
concluding remarks are provided in Section 5.



2. MARKOV DECISION PROCESS FORMULATION

It is common to model motor tasks using a Markov decision
process [15, 16], where goal is to learn a policy πθ(uk|sk),
where sk is the kth state and uk is an action for the kth state,
the policy is responsible to generate the next action. Further-
more, πθ(uk|sk) can be interpreted as the probability of the
system taking an action uk give that the system state is sk,
and it is desirable that the action taken maximizes πθ(uk|sk).
The goal in this framework is to maximize the probability of
the system reproducing a desired trajectory.

In the prostheses control problems, signals such as EMG
contain incremental information about the movements, conse-
quently the state of the system should contain motor electrical
signals and arm kinematic state. We define the state (sk) as
the union of the most recent H1 instances of the measured
neural signals Zk = [z1,k, ..., zi,k]

T , where ZN,k is the k-th
measurement from the i-th neural channel, N is the number
of neural channels, and the most recent H2 instances of the
state of the hand Xk = [x1,k, ..., xM,k]

T , where xj,k is the
hand state value at time k corresponding to the j-th degree of
freedom, and M is the number of degree of freedom of the
hand. Thus, the state sk and the action uk are defined as

sk = [Zk, ..., Zk−H1

⋃
Xk, ..., Xk−H2

] (1)

and
uk = [Xk+1] (2)

respectively. Results show that such formulations provide
good results for EMG and ECoG signals.

We assume that the state sk evolves according to a Markov
property such that

p(sk+1|sk, ..., s1) = p(sk+1|sk) (3)

For a given trajectory τ =
⋃H
i=1(si, ui), where H is the num-

ber of samples in the desired trajectory, it is possible to write
p(τ) parameterized as pθ(τ) in the following manner:

pθ(τ) = p(s1)
H−1∏
i=1

p(si+1|si, ui)πθ(ui|si) (4)

Unlikely many prior works this formulation allows the pros-
thetic system to be treated as a stochastic system.

For a given model, with parameter θ, the model is learned
by optimizing the cost function:

J(θ) =
1

H − 1
log(pθ(τ)) (5)

Since the log function is a monotonically increasing function,
by maximizing the log(pθ(τ)), pθ(τ) is also maximized. The
gradient of J(θ) is given by

∇θJ(θ) =
1

H − 1

H−1∑
i=1

∇θ[log πθ(ui|si)] (6)

where ∇θ(.) is the gradient with respect to θ. This re-
sults means that, no knowledge of the system dynamic
p(si+1|si, ui) is needed to maximize the p(τ). In particu-
lar, we only need the policy πθ(ui|si) [16].

In the rest of this paper, we assume πθ(ui|si) is Gaussian
function as give by Equation 7.

πθ(ui|si) =
1√
2πσ2

e
−
[ui − φθ(si)][ui − φθ(si)]T

2σ2 (7)

∇θJ(θ) can then be written as

∇θJ(θ) =
1

H − 1

H−1∑
i=1

{[ui − φθ(si)][∇θφθ(si)]T }T (8)

The system parameters can be updated using Equation 9,
where α is a positive constant in the interval ]0, 1] and controls
the learning rate.

θ = θ + α∇θJ(θ) (9)

The above derivation is quite general, and can be applied
to a varieity of system models. Consequently, architectures
such as multilayer perceptron (MLP) networks, convolutional
neural networks and many more can be trained to learn the
parameters of the system model φθ(·). In this work, we deal
primarily with MLPs.

3. SYSTEM

The system deployed in this work is a simple multilayer per-
ceptron (MLP) network. The MLP for the decoder employs
four layers: the first layer transforms si into a flat vector in
R1,(H1N+H2M). The second and third layers have 16 nodes
and employs a rectifier linear unit (Relu) activation function.
The final layer is the output layer belonging to R1,M .

During training, the kinematic data represents the desired
hand movements. In the experiments done on an amputee
subject, the kinematic data was obtained from a virtual hand
during training. During testing, this data was replaced by es-
timates of hand kinematics by the system model.

The neural network often has a large number of param-
eters, and learning a general model without over-fitting re-
quires very large training sets. This is especially so for regret-
based reinforcement learning [15,20], [21] and to a lesser ex-
tent, for non-regret-based reinforcement learning, in special
imitation learning [22, 23].

In this work, we use a modified version of the Dataset Ag-
gregation (DAgger) approach [19] to train the neural network.
DAgger provides a compromise between the complexity of
training and the overall performance. In the first iteration the
system is trained using back propagation using the neural data
and the intended movement prior to training. In subsequent
iterations, the training data is augmented based on the deci-
sions made by the system and the known intended movement.



The modified DAgger approach is described using a pseudo-
code in Algorithm 1. During each iteration, a small amount of
pseudo-random noise is added to the neural signal to mitigate
problems with over-fitting the model. DAgger is known for
its ability to correct training errors during early iterations.

Initialize D ← (S,U);
Train policy (πθ) with D
for i = 1 to L do

Get x̂k from performing sequence with Zk
Make Ŝ = [Zk + noise, ..., Zk−H1

+
noise

⋃
X̂k, ..., X̂k−H2

]
Make Û = U
Agregate datasets = D ← D

⋃
(Ŝ, Û)

Train the Policy (πθ) with D
end

Algorithm 1: Modified DAgger Algorithm

4. EXPERIMENTAL RESULTS

In this section the experiments and the corresponding results
are presented for both EMG and ECoG signals.

4.1. Experiment Setup

4.1.1. EMG Signals

The results presented here are for a single amputee sub-
ject. After receiving approvals from the Institutional Review
Board and informed consent, the subject was implanted with
32 EMG electrodes to acquire intra-muscular EMG data.
Originally the signals were recorded at sampling rate of 1
kHz. The tasks were performed in a virtual environment
(Musculoskeletal Modeling Software [24]). The program
modeled a virtual hand with 12 degrees of freedom (DoF)
divided as follows: flexion and extension of each digit (5
DoFs), adduction and abduction of all except for the third
digit (4 DoF), and wrist roll, pitch and yaw (3 DoF).

During training, the subject was instructed to track the
movement of a simulated hand with his phantom limb while
the EMG signals were recorded. The instructed movement
followed a semi-sinusoidal path at a velocity deemed com-
fortable by the subject. Only movements of a single DoF
was instructed during each training trial and multiple (≥6 and
≤11) training trials of each movement were performed. To
train multi-DoF decoding methods, movement trials for dif-
ferent DoF were concatenated.

Ten segments from the same patient were used here. Each
segment contained ten trials for each DoF. In each segment,
70% of the available data was used for training and 30% for
testing. The results presented here are the averages of the
performance over the test data in the 10 segments.

4.1.2. ECoG Signals

After receiving approval from the institutional review board
and informed consent from the patient, two 16-channels non-
penetrating arrays (PMT Corporation, Chanhassen, MN)
were implanted in a patient undergoing surgery to treat
epilepsy. The arrays were implanted underneath a standard
clinical electrocorticographic (ECoG) grid. The electrodes
were placed in the arm and hand areas of the motor cortex.
The patient was instructed to perform simple tasks such as
reaching using a mouse on a tablet (20 cm x 20 cm). The
patient moved the mouse from the bottom center of the tablet
to the upper left or upper right corner of the table. All neural
channels and the 2 position data (x and y coordinates) were
recorded at a sampling rate of 30 kHz.

In this experiment, the data was divided into 7 segments.
The system was trained on the first segment and tested on
the remaining 6 segments. The results shown for ECoG are
the averages of the decoder performance across the 6 testing
segments.

4.2. Results and Discussion

The measure of performance used in this work is the normal-
ized mean-square error. The normalized error is defined as:

MSEnormalized =

H∑
k=1

(Xk − X̂k)
2

H∑
k=1

X2
k

(10)

where Xk is the desired kinematic state, X̂k is the estimated
kinematic state, and H is the number of samples in the test
data set.

The first set of results presented here aims to show the
improvement of the decoder performance when DAgger al-
gorithm is applied. These results also show the convergence
behaviour of normalized decoding error when DAgger is ap-
plied. Finally, they also explore the decoder performance for
different sizes of the MLP network. Figure 1 shows the ef-
fect of applying the DAgger algorithm for different sizes of
multilayer perceptron network for EMG signals. We observe
that, for all sizes of MLP the normalized MSE converges in
a few number of iterations of DAgger. Furthermore, DAg-
ger improves the MLP performance substantially over a sin-
gle iteration of backpropagation. Augmenting the training set
each iteration of DAgger allows the learning process to cor-
rect mistakes made in previous iterations. If the system de-
viates from the optimiumal trajectory τ it will attempt to get
back to the trajactory by considering the errors that have ac-
cumulated in the augmented training set. In this particular
example, the optimum size of MLP employed 16 nodes in the
second and third layers. As the size of MLP increased, the
system tends to overfit, causing larger errors with the test data



set. Once the system performance converged, states visited in
earlier DAgger iterations were discarded as new ones were ag-
gregated. Similar results as described for EMG signals were
observed for the ECoG signals.

Fig. 1. Error evolution as a function of the number of itera-
tions in DAgger for EMG signals.

Finally, we compared the performance of the system pre-
sented here with a Kalman decoder. This system was pre-
sented in [6], makes use of a polynomial nonlinear transfor-
mation of the observation vector used in the linear model orig-
inally reported in [13]. Figures 2 and 3 display the output of
the MLP decoder trained with the method of this paper and
the Kalman Filter with quadratic nonlinearities as proposed
in [6] for EMG and ECoG signals, respectively. For the EMG
signals, the normalized MSE between the desired signal and
estimated movements was 0.09 for the system of this paper
and 0.17 for the system in [6]. For the ECoG signals, system
of this paper resulted in a MSE of 0.11 while the system in [6]
with a normalized MSE of 0.18. This suggests that training
the system with DAgger can enhance the system’s ability to
learn models under conditions of uncertainty.

Fig. 2. Comparison of decoder performance for 5 DoF for
EMG signals.

Fig. 3. Comparison of decoder performance for x and y co-
ordinates for ECoG signals.

In general, for the EMG decoders, the results are better
for movements of the thumb, the index finger and the middle
finger, at least in part because of the better access to the mus-
cles controlling these fingers in the amputee subject’s arm,
and partly because it very hard to control the ring and little
fingers separately from each other. For the ECoG data, the
system of this paper appear to decoded outputs with a small
jitter. This can be addressed by processing the decoder out-
put with a low pass filter and using the output of this filter for
prosthetic control.

5. CONCLUSION

The preliminary results presented in this paper suggest that
taking into account system dynamics and using DAgger to
train a neural network improves the neural decoding perfor-
mance. Experiments to validate the decoder performance on
additional humans subjects are currently underway. Further
studies on using deep architecture models and how to update
the systems parameters online could enhance the decoder per-
formance.
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