
Semi-Supervised Adaptive Learning for Decoding Movement
Intent from Electromyograms

Henrique Dantas
School of Electrical Engineering

Oregon State University
Corvallis, OR, USA

dantash@oregonstate.edu

V John Mathews
School of Electrical Engineering

Oregon State University
Corvallis, OR, USA

mathews@oregonstate.edu

David Warren
Department of Biomedical Engineering

University of Utah
Salt Lake City, UT, USA
david.warren@utah.edu

Abstract—This paper presents an adaptive learning algorithm for
predicting movement intent using electromyogram (EMG) signals and
controlling a prosthetic arm. The adaptive decoder enables use of the
prosthetic systems for long periods of time without the necessity to retrain
them. The method of this paper employs a neural network-based decoder
and we present a method to update its parameters during the operation
phase. Initially, the decoder parameters are estimated during a training
phase. During the normal operation, the parameters of the algorithm are
updated in a semi-supervised manner based on a movement model. The
results presented here, obtained from a single amputee subject, suggest
that the approach of this paper improves long-term performance of the
decoders over the current state-of-the-art with statistical significance.

Index Terms—Kalman Filter, Neural Networks, Markov Decision
Processes, Movement Intent Decoder, Semi-supervised Learning, Online
Learning

I. INTRODUCTION

In past the few years, prosthetic devices have progressed from
cable-driven systems controlled by shoulder movements to systems
that can interpret biological signals such as electromyograms (EMG)
to determine the intended movement. Further, highly-enabled pros-
thetic arms have been sensorized to provide the amputee sensory
stimulation, such as those involving tactile sensation, for closed-
loop control of the artificial limb [1]. Advanced prostheses rely on
human movement intent decoders to interpret the biological signals
and estimate the desired movement. In current practice [2]–[5], the
decoder parameters are estimated during a training phase and kept
frozen during the operational phase. The human body is a time-
varying system, and consequently the movement decoders must be
retrained frequently. This paper presents a new approach to update the
decoder parameters by adapting them during the operational phase.

Motor intent decoders based on Kalman filters (KF) [2], [4], [6]–
[12] have become very popular due to its simplicity and relative
low computational costs. In recent years, machine learning-based
approaches [3], [13]–[17] have shown substantially improved per-
formance over Kalman decoders. Dantas et. al. [3] have shown
that multi-layer perceptron networks (MLP) trained using dataset
aggregation (DAgger) [18] produce smooth, natural, and precise
output trajectories. Sussillo et al. [13] proposed the use of a recurrent
neural network as a neural decoder. Radial basis networks have also
been used for this purpose [14]. Chen et al. [19] presented a prac-
tical implementation of neural decoders based on extreme machine
learning. Further, some studies have shown that the incorporation of
a higher-level goal to the decoder can yield a more natural trajectory
and assist the people with limb loss with movements of the prosthetic
hands [5], [20], [21].

Although these methods have shown performance improvement
immediately after training, they all suffer from performance degra-
dation over the course of time due to the dynamic nature of the

human body. Consequently, frequent retraining is needed to overcome
this degradation. Retraining such systems, in an online manner, is
challenging, mostly because of the absence of knowledge about the
movement intent in real time. If movement intent were known, online
learning algorithms could be used to adapt the system parameters. A
possible solution this is to check most recent decoded movements
against known movement patterns. If a movement pattern is found,
such information may be used to retrain the decoder. Tadipatri et. al.
[22] used similar idea to retrain relevance vector machines (RVM)
assuming that the decoder output follows a straight line on 2-D center-
out tasks. This approach might not be realistic for highly enabled
prostheses, which can have complex movements and a high number
of degrees of freedom (DoF) to control.

In this work, we use a Markov decision process (MDP)-based
framework similar to the one used in Dantas et. al. [3], [23] to train an
MLP-based decoder using the DAgger algorithm to produce precise
decoders. During the operational phase, we assume a movement
model for each degree of freedom of the limb. We use such movement
models to recreate a desired trajectory, which is then used to update
the decoders parameters based on the difference between the actual
trajectory and the estimated desired trajectory in a semi-supervised
manner. We present a gradient approach that can be used to update
the parameters of any neural network-based decoder including deep
networks. We use EMG signals recorded from one amputee over 11
months to show that our algorithm reduces the long-term performance
degradation of the decoder. These results demonstrate the ability of
the method to accurately decode EMG signals and keep acceptable
performance levels at all times.

II. PROSTHETIC CONTROLLER DESIGN

Broadly, the function of any decoder is to interpret the biological
signals and decide the best movement for the prosthetic limb. We wish
to estimate a probabilistic description πθ(uk|sk) of the control signal
uk at the kth time step, given sk, the system state and the biological
signals at time step k. We follow steps similar to those described by
Dantas et. al. [3], [23] to derive this recursive prediction problem.
We present the framework to estimate the decoder parameters first
in an offline manner and then describe the algorithm used to update
these parameters online during the operational phase.

A. Offline Training

The state sk is defined as the union of the most recent H1

instances of the measured EMG signals Zk = [z1,k, ..., zN,k]
T

and the most recent H2 instances of the position of the prosthetic
hand Xk = [x1,k, ..., xM,k]

T . Here zi,k is the kth measurement
from the ith measurement channel, N is the number of EMG
channels, xj,k is the hand position at time k corresponding to the



jth DoF, and M is the number of DoFs of the hand. That is,
sk = [Zk, ..., Zk−H1−1

⋃
Xk, ..., Xk−H2−1]. The control signal is

defined by uk = [Xk+1].
We assume that the system evolves according to the Markov

assumption, where the next state of the hand, sk+1, only depends
on the current state sk, i.e., p(sk+1|sk, ..., s1) = p(sk+1|sk). For
a desired trajectory τ =

⋃H−1
i=1 (si, ui)

⋃
sH , where H is the

number of samples in the trajectory and H > 1, it is possible
to write p(τ), the probability of the system following the desired
trajectory, in a parameterized form pθ(τ) in the following manner
pθ(τ) = p(s1)

∏H−1
i=1 p(si+1|si, ui)πθ(ui|si).

As described in [3], if we assume πθ(ui|si) to be a Gaussian
distribution, we can write the cost function as

∇θJ(θ) =
2

H − 1

H−1∑
i=1

[
[ui − φθ(si)][∇θφθ(si)]T

]T (1)

where φθ represents a possibly-nonlinear model of the control signal
(i.e., the decoder output) and is completely specified by the vector of
parameters θ. The parameter vector θ that maximizes the probability
of the system following a trajectory τ can be estimated using a
gradient ascent framework for the jth iteration as

θj+1 = θj + α1∇θjJ(θj) (2)

where α1 is a positive constant and controls the learning rate during
the training phase and ∇θ represents the gradient with respect θ.
During the training phase, for a given trajectory τ , the decoder φθ
can be trained using (1) and (2) using the DAgger algorithm described
in [3]. During the training phase, uk corresponds the next kinematic
position in the training data. During operation phase, this data is
replaced by estimates of hand kinematics produced by the decoder,
ûi.

In the experiments and analyses described in Section III, we
assumed that the decoder is parameterized as a MLP, however, the
derivation is equally applicable to convolutional neural networks
(CNN) and long short-term memory (LSTM)-based decoders.

B. Online Adaptation

A block diagram of the adaptive learning algorithm is shown in
Figure 1. In order to update the parameters of the decoder model
during normal operation, we assume a specific movement model for
each DoF of the hand. The system also assumes a memory buffer for
the last H3 kinematic samples and, another buffer containing the last
H3 EMG data samples. At each time sample, the system first looks
for specific movement patterns in the kinematic memory buffer. If
a movement pattern is found for a DoF, the kinematic for that DoF
are estimated and used as the desired movements by the parameter
update algorithm. Using similar steps as described earlier, we can
derive the gradient to update the parameter vector θ as follows:

∇θJonline(θ) =
2

H3

H3∑
i=1

[
[u′k − ûi][∇θφθ(si)]T

]T (3)

In this equation u′k is the estimated kinematic of the hand computed
using the movement model. Finally we update the decoder parameters
in the jth iteration using the following equation:

θj+1 = θj + α2∇θjJonline(θj) (4)

Here α2 is a positive constant and controls the adaptive learning rate.
Algorithm 1 describes the operation of the adaptive decoder,

assuming that the system was initially trained. This approach assumes
a movement model that can be completely specified by a finite

Fig. 1. Block diagram of the semi-supervised adaptive controller.

Initialize X1 at the desired position
foreach time sample i do

Create ŝi = [Zi, ..., Zi−H1

⋃
X̂i, ..., X̂i−H2 ]

Run the decoder φθ(·) to estimate control signal:
ûi = φθ(ŝi)

Update the state of the arm X̂i+1 based on the estimated
control signal ûi. In this case, X̂i+1 = ûi

Update the kinematic and EMG memory buffers with X̂i
and Zi

Check if a known movement pattern is present in the
kinematic buffer

if Movement Pattern Found, then
Update the parameters θ using equations (3) and (4)

end
Algorithm 1: Pseudo-code for adapting the parameters of the
movement intent decoder

number of parameters, the parameters θ of the decoders are adapted
according to the movement model. It is important to notice that the
above derivation can be used for adapt any decoder using a variety of
movement models. In Section III-B, we detail the movement model
used in this work.

III. EXPERIMENTS

A. Experiment Setup

The results presented here are from a single amputee subject,
referred here as HS2. After approvals from the University of Utah
and Department of the Navy Human Research Protection Program
Institutional Review Boards, and receiving informed consent from
the subject, he was implanted with 32 EMG electrodes to acquire
intramuscular EMG data. The subject was also implanted with two
96-electrode Utah Slanted Electrode Arrays [24] in the ulnar and
median nerves of their residual arm, but these devices were not
used in this analysis. The thirty two single-ended EMG signals were
acquired at 1-KHz sampling rate by a Grapevine NIP system (Ripple,
Salt Lake City, UT) using proprietary front-end hardware. These
signals were filtered with a 6th-order Butterworth high-pass filter with
3 dB cut-off frequency at 15 Hz, a 2nd-order Butterworth low pass
filter with 3 dB cut-off frequency at 375 Hz, and 60, 120, and 180
Hz notch filters. More information about the implants can be found
in [25]. Differential EMG signals for all 496 possible combinations
of the 32 single-ended channels were calculated in software. For



each of the single ended and differential EMG channels, the mean
absolute value was calculated over a 33.3-ms window of time and
subsequently smoothed with a 300-ms rectangular window. To reduce
the dimensionality and the computational complexity of the decoder,
principal component analysis was performed on the EMG data in the
training data set [2]. The first sixteen principal components (PCs)
were used as decoding features to the MLP-based decoder with
and without adaptation. The first thirty two PCs were used as input
features to the KF-based decoder. These configurations yielded the
best decoding output for each method analyzed in this work.

The subject was instructed to track the movement of a simulated
hand with his phantom limb while the EMG signals were recorded.
The instructed movement followed a semi-sinusoidal path at a veloc-
ity deemed comfortable by the subject. Only movements of a single
DoF was instructed during the experimental sessions. For each DoF,
ten trials of each movement were performed, including flexion and
extension. The range of the DoFs movements is limited to between
[−1, 1], where −1 represents full extension and 1 represents full
flexion of a DoF. The resting position is represented by the zero
value. To train multi-DoF decoding methods, movement trials for
different DoFs were concatenated. Data from the five digits were
used in these analyses. Fifty-seven datasets from same subject HS2
were used here. We measured the decoder performance variations
over L days by evaluating the decoder performance on day n, when
the decoder was originally trained on day n − L. The maximum
separation between training and testing sessions used in this paper
was 45 days.

In this work, we used three distinct decoders: KF-based de-
coder, MLP network-based decoder without adaptation and an MLP
network-based decoder with adaptation. We selected the KF-based
decoder due to its popularity in the literature. The MLP-networks
without adaptation performs significantly better than the KF-based
decoder, and acts as a good baseline to demonstrate the effectiveness
of the adaptive decoder. For the MLP-based decoder with adaptation,
the parameters update were performed every time sample when a
movement pattern was detected. For the other decoders, no adaptation
was employed.

B. Movement Model

The movement model is an important part of the algorithm
presented in this paper. In the model used here, we assume that a
DoF movement contains five parts: (1) A initial resting phase where
the DoF is in the resting region defined by the interval [−0.1, 0.1]; (2)
A rising or falling phase, depending on if the movement is a flexion
or an extension, where the DoF is moving to its final position. This
phase starts at time T1 and ends at time T2; (3) A holding phase,
where the DoF is near the final target A. There may be some jitter
during the holding phase. This phase starts at time T2 and finishes at
time T3; (4) The falling or rising phase, depending if the movement
is a flexion or extension, where the DoF is moving back to the resting
zone. This phase starts at time T3 and end at time T4; and (5) The final
resting phase, when the DoF is back to the resting position. These
five phases in the movement along a DoF are depicted in Figure 2.

In order to use this movement model, the system must estimate
the transition points T1, T2, T3, and T4, and estimate the movement
amplitude A. We assumed that the desired movement follows a
piecewise-linear model as in Figure 2, and desired trajectory, in green,
was estimated using linear regression. The algorithm to estimate the
model parameters followed the steps: (1) The starting time T1 was
estimated as the time at which the decoded output took the closest
value to zero in the five time samples prior to when the decoded

output was grater than 0.1 for a flexion movement or less than 0.1
for an extension movement; (2) The transition time T2 was estimated
as the time when the second derivative of the decoder output was zero
or negative for 2 consecutive time steps for a flexion movement or
the second derivative was equal to zero or positive for 2 consecutive
time steps for a extension movement; (3) Check if the newest sample
in the buffer is in the resting zone, if the DoF is in the resting zone
we estimate time T4 as the time when the kinematic signal took
the closest value to zero in the five time samples after the decoded
output had values between [−0.1, 0.1]; (4) If T4 was successfully
estimated, we estimated the transition time T3 using the second
derivative test, by traversing from the newest samples to the oldest
samples. The transition time T3 was estimated as the time when
the second derivative of the decoder output was zero or negative
for 2 consecutive time steps for a flexion movement or the second
derivative was equal to zero or positive for 2 consecutive time steps
for a extension movement; (5) The movement amplitude, A, was
estimated as the average of the output decoder values between T2

and T3. (6) We checked if T1 < T2 < T3 < T4 to ensure the sanity
of the estimated parameters, and also assumed that no full movement
was performed at a faster rate than 2 Hz, implying that T4−T1 > 0.5
seconds. If such conditions were met the decoder was updated with
the estimated movement.

Fig. 2. Sample movement of a full flexion. Desired movement based on the
movement model, in green, over the decoded position of a DoF, in blue.

IV. RESULTS

The adaptive decoder was implemented in an offline manner to
obtain the results presented here. The performance metric used in
the analyses was the normalized mean-square error (NMSE) defined
as MSEnormalized =

∑H
k=1 ||Xk−X̂k||2∑H

k=1
||Xk||2

, where || · ||2 denotes the

Euclidean norm of (·), Xk is the desired kinematic state, X̂k is the
decoded kinematic state, and H is the number of samples in the test
dataset.

To investigate the robustness of the three competing decoding
methods over long periods of time, we analyzed the decoding
performance up to 45 days separation between the training and testing
session. Figure 3 displays the normalized mean-square decoding error
for the three methods along with their standard deviations as a



function of the number of days between the acquisition of the training
and testing data.

Fig. 3. Normalized MSE for KF, MLP, and MLP with adaptation-based
decoders as a function of the days between training and testing. The solid
lines present the mean of the NMSE in a five-day block, and the dashed lines
represents the linear fit performed to detect the trend.

In order to investigate the statistical significance of the relative
performance of each decoder along time, we employed a two-factor,
repeated measures analysis of variance test (RANOVA). The two
factors were the decoding method and the time between the dates of
training and testing sessions. In addition, a multiple comparison post
hoc test using Tukey’s honest significant difference correction was
performed if the RANOVA test indicated with statistical significance
that at least one among the three systems compared were different
from the others.

Initially, we investigated if the three decoders had performances
that differ in a statistically significant manner. The three competing
decoding methods differed via a RANOVA within subject test (p <
0.001), The system with the best performance was the MLP network-
based decoder with adaptation, which significantly outperformed
the other methods (p < 0.001). The second best method was the
MLP network-based decoder without adaptation, which significantly
outperformed the KF-based decoder (p < 0.001). Using RANOVA
between subject test, the time categories significantly differed (p =
0.013) but no trend in performance was seen, when averaging across
all decode methods

We selected not to study the interaction term between decode
method and time category but instead studied the slopes of each
decode method across time to investigate how the performance
changed over time. We performed a linear fit in the data to analyze
the trend of the NMSE over time for each method. The MLP network-
based decoder without adaptation resulted in a slope in the NMSE
of 0.0014 normalized units per day, and this slope was found to be
statistically significantly from the zero slope (p < 0.03). The MLP
network-based decoder with adaptation had a slope in the NMSE
of 0.0006 normalized units per day, this slope was found to be
statistically significant different from zero slope (p < 0.03). Finally,
there was no statistical evidence that the slope associated with the
KF-based decoder was different from zero (p > 0.09).

The linear fitting analyses suggested that the performance of the
MLP-based decoder with adaptation and the MLP-based decoder
without adaptation changed in a different manner. The KF-based
decoder demonstrated no evidence of performance change across the
45 days between training and testing. The MLP network without
adaptation showed the largest performance degradation. Finally, the

results suggested that the adaptive decoder was able to reduce the
slope of the performance degradation by 57% over the MLP-based
decoders without adaptation. Despite the observed degradation, both
MLP networks with and without adaptation were able to outperform
the KF-based decoder throughout the time frame analyzed.

V. CONCLUSION

In this work, we investigated the feasibility of a semi-supervised
adaptation framework based on a piece-wise linear model that can be
used by neural networks-based decoder. We used a model of the DoFs
movements to provide feedback to the neural network during the
operational phase and based on this feedback we were able to adapt
the MLP network. The presented results showed that the adaptation
algorithm improved the decoder stability over long periods of time
for the MLP network-based decoder. Our results suggest that the
decoder was able to adapt to the changes in the EMG signals over
time to maintain an acceptable decoding performance over time. In
addition, our algorithm may not work for systems that present abrupt
changes, for example, changes due to broken wires or different sensor
placement for surface EMG signals. Finally, we anticipate that the
performance of the adaptation framework may degrade if the initial
decoder estimates an elevated number of undesired cross-movements,
because these cross-movements will be used to retraing the decoder
and this would encode wrong information in the decoder. A topic for
future work is to study cross-movement detection.

Experiments to validate the decoder performance on additional
humans subjects, for longer periods of time between the training
and testing sessions, and different movement models are currently
underway. Further studies using deep architecture models will be
also explored.
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