
Context-Sensitive Fencing: Securing Speculative
Execution via Microcode Customization

Mohammadkazem Taram
University of California San Diego

mtaram@cs.ucsd.edu

Ashish Venkat
University of Virginia
venkat@virginia.edu

Dean Tullsen
University of California San Diego

tullsen@cs.ucsd.edu

Abstract
This paper describes context-sensitive fencing (CSF), a micro-
code-level defense against multiple variants of Spectre. CSF
leverages the ability to dynamically alter the decoding of
the instruction stream, to seamlessly inject new micro-ops,
including fences, only when dynamic conditions indicate
they are needed. This enables the processor to protect against
the attack, but with minimal impact on the efficacy of key
performance features such as speculative execution.
This research also examines several alternative fence im-

plementations, and introduces three new types of fences
which allow most dynamic reorderings of loads and stores,
but in a way that prevents speculative accesses from chang-
ing visible cache state. These optimizations reduce the per-
formance overhead of the defense mechanism, compared
to state-of-the-art software-based fencing mechanisms by a
factor of six.

CCS Concepts • Security and privacy→ Side-channel
analysis and countermeasures; Systems security; Informa-
tion flow control; • Computer systems organization →
Architectures.

Keywords secure architectures; side-channel attacks; Spec-
tre; speculative execution; microcode; taint tracking
ACM Reference Format:
Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019.
Context-Sensitive Fencing: Securing Speculative Execution via Mi-
crocode Customization. In Proceedings of 2019 Architectural Support
for Programming Languages and Operating Systems (ASPLOS’19).
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3297858.
3304060

1 Introduction
Maximizing performance has been a major driving force
in the economics of the microprocessor industry. Modern

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304060

processor architectures feature highly complex and sophis-
ticated performance optimizations. However, scaling per-
formance without considering security implications could
have serious negative consequences, as evidenced by the
recent pile of lawsuits [96] concerning the Meltdown [61]
and Spectre [57] class of microarchitectural attacks. These
events have highlighted the need to architect systems that
can not only run at high speed, but can also exhibit high
resilience against security attacks, not just one or the other.
The goal of this work is to secure a particular performance
optimization integral to modern processor architectures –
speculative execution – against the Spectre class of microar-
chitectural attacks, while maintaining acceptably high levels
of performance.

Modern processors employ branch speculation and out-of-
order execution to take advantage of the available instruction-
level parallelism beyond control-flow boundaries, thereby
improving the overall CPU resource utilization and sustain-
ing high throughput. Spectre attacks exploit speculative ex-
ecution by leaking secret information along misspeculated
paths via cache-based and other timing side channels. Owing
to their ability to mistrain the branch predictor to deliber-
ately steer execution to an attacker-intended control-flow
path [49, 58], these attacks have notably demonstrated the
potential to break all confidentiality and completely bypass
important hardware/software security mechanisms such as
ASLR, even via remotely accessed covert channels [76].

Mitigating Spectre is a particularly hard problem since
it could potentially cause highly intrusive changes to the
existing out-of-order processor design, severely limiting per-
formance. Although Intel has announced microcode update
patches to mitigate certain variants of the attack, a major-
ity of the high impact vulnerabilities still largely rely on
software patching [45, 72]. State-of-the-art software counter-
measures take advantage of fences that mute specific effects
of speculative execution by constraining the order of certain
memory operations, or in some cases by completely serial-
izing a portion of the dynamic instruction stream. Liberal
fence insertion (e.g., at every bounds check) can mitigate the
attacks, but doing so severely hurts performance; however,
spraying fences more strategically at appropriate locations
in the code requires extensive patching of software via re-
compilation or binary translation – resulting in significant
engineering effort and long delays to deployment. We need

https://doi.org/10.1145/3297858.3304060
https://doi.org/10.1145/3297858.3304060
https://doi.org/10.1145/3297858.3304060

hardware architectures that can more seamlessly react to
such attacks via unobtrusive field updates.

This work proposes context-sensitive fencing (CSF), a novel
microcode-level defense against Spectre. The key compo-
nents of the defense strategy include: (a) a microcode cus-
tomization mechanism that allows processors to surgically
insert fences into the dynamic instruction stream to miti-
gate undesirable side-effects of speculative execution, (b) a
decoder-level information flow tracking (DLIFT) framework
that identifies potentially unsafe execution patterns to trig-
ger microcode customization, and (c)mistraining mitigations
that secure the branch predictor and the return address stack.
To perform secure microcode customization with mini-

mal impact on performance, this work leverages context-
sensitive decoding (CSD) [80], a recently proposed extension
to Intel’s (and others’) micro-op translation mechanism that
enables on-demand and context-sensitive customization of
the dynamic micro-op instruction stream. In addition, this
work also takes advantage of the reconfiguration framework
offered by CSD, allowing the operating system and other
trusted entities to dynamically control the frequency, type,
and behavior of fences that are surgically inserted into the
micro-op stream to secure speculative execution.

Thiswork analyzes a significantly expanded suite of fences,
considering different possible enforcement stages and en-
forcement strategies. In particular, we introduce a new fence
that prevents speculative updates to cache state with mini-
mal interference in the dynamic scheduling of instructions.
Context-sensitive fencing has the ability to automatically

identify fence insertion points via a novel decoder-level infor-
mation flow tracking-based detection mechanism. Since the
processor front-end typically churns instructions at a much
higher rate than the rest of the pipeline, information-flow
tracking at the decoder-level is prone to frequent overtaint-
ing and undertainting scenarios. While overtainting could
hurt performance due to the increased frequency of fence
insertion, undertainting could undermine the security of
the system for a brief window. By solving these challenges
through an early and low-overhead mistaint detection and
recoverymechanism, this paper further establishes the viabil-
ity of decoder-level information flow tracking as an effective
attack detection mechanism.
This work further proposes novel micro-op flows that

protect the branch predictor, the branch target buffer, and
the return address stack against mistraining across different
protection domains. While similar in spirit to the proposed
Indirect Branch Predictor Barrier (IBPB) instruction by Intel,
these micro-op flows apply more generally to a broader class
of branch predictors and return address stacks, and offer
more fine-grained control.

This research makes the following major contributions:

• It introduces context-sensitive fencing, a mechanism
that leverages a dynamic decoding architecture to in-
ject fences between control flow and loads, without
recompilation or binary translation.

• It examines several variants of existing fences, and
introduces three new fences, which allow aggressive
reordering of loads and stores without exposing any
microarchitectural evidence, in the cache, of specula-
tive accesses that cross the fence.

• It introduces a decoder-level dynamic information
flow tracker, DLIFT, which allows accurate tracking
of taints early in the pipeline, giving the pipeline the
ability to identify tainted accesses before the stages
that enable speculative execution.

• It introduces a simple dynamic mechanism that elimi-
nates redundant (per basic block) fences.

• The combination of optimizations introduced in this
paper reduce the cost of a fence-based Spectre mitiga-
tion technique from 48% overhead (for a conservative
scheme) to less than 8%.

• It also introduces a decode-level branch predictor iso-
lation technique that mitigates branch mis-training
variants of Spectre.

2 Background and Related Work
Speculative Execution. Dynamic control speculation is a
well-known instruction throughput optimization technique
used, especially in out-of-order processors, to predict the
branch outcome and execute instructions along the predicted
path, while waiting for the actual branch outcome to be eval-
uated at a later pipeline stage. In the event of a mispredic-
tion, the processor rolls back execution along the misspec-
ulated path and redirects control to the right branch tar-
get. Although speculative execution is largely programmer-
invisible in terms of committed architectural register and
memory state, in all known instances it leaves some mi-
croarchitectural side effects that can be observed through
well-established side channels.

Microarchitectural Attacks.Microarchitectural attacks
leak secret information of a victim process by observing mi-
croarchitectural effects of certain performance/power opti-
mizations such as caches, branch speculation, memory disam-
biguation, and even dynamic voltage and frequency scaling
(DVFS), through side-channels such as memory bus activ-
ity [3], power consumption characteristics [7], branch access
patterns [1, 30], faults [42, 51], acoustics [33, 34], electromag-
netic effects [31], functional unit timing characteristics [94],
and most notably cache access patterns [2, 32, 52, 62, 68, 97,
100, 101].

Cache-based side-channel attacks have been shown to
reveal secret information such as cryptographic keys [27,
38, 100], keystrokes [37], and browsing activity [70] by co-
locating a spy process alongside a victim in such a way that

Table 1. Speculative Attacks Variants
Variant Vulnerability Name
Spectre v1 [49, 57] Bounds Check Bypass (BCB)
Spectre v2 [49, 57] Branch Target Injection (BTI)
Spectre v3 [49, 61] Rogue Data Cache Load (RDCL)
Spectre v3a [6, 67] Rogue System Register Read (RSRD)
Spectre v4 [67] Speculative Store Bypass (SSB)
Spectre-NG [78] Lazy FP State Restore
Spectre v1.1 [54] Bounds Check Bypass Store (BCBS)
Spectre v1.2 [54] Read-only Protection Bypass
Spectre v5 [59, 66] Ret2Spec and SpecRSB
NetSpectre [76] Remote Bounds Check Bypass
Foreshadow [87, 95] L1 Terminal Fault

1 i f (x < a r r a y 1 _ s i z e)
2 y = a r r ay2 [a r r ay1 [x] ∗ 2 5 6] ;
Figure 1. Example Spectre Variant-1 Gadget

they share cache memory. The attack unfolds through a pre-
attack step in which a spy process fills/flushes specific cache
sets, so that the victim leaves observable side effects in terms
of its cache access patterns, that can be later inferred by the
spy process by timing the access to particular cache blocks.

Exploiting Speculative Execution. This work tackles
a highly evasive class of microarchitectural attacks called
Spectre [57] that leaks information by exploiting side effects
of speculative execution through cache-based side channels.
These attacks not only exploit unintended side effects due
to speculation, but have the ability to deliberately mislead
execution into attacker-intended paths by mistraining the
branch predictor and other associated structures. Several
variants of the attack have been described (shown in Table 1)
that can potentially bypass software security/integrity pro-
tection mechanisms such as bounds checking and ASLR [77].
Figure 1 shows a vulnerable code target for the variant-

1 attack. The code fragment is composed of a conditional
branch that performs a bounds check, and a Spectre gadget
that results in an observable microarchitectural side effect
upon execution. Upon misspeculation, the bounds check is
bypassed and the Spectre gadget executes, leaving an observ-
able cache footprint to the attacker, that remains even after
the processor detects the misprediction and rolls back execu-
tion. In the simplest variant of the attack where the attacker
controls both x and array2, the attacker can potentially leak
the entire address space of the victim.
The variant-2 Spectre attack further allows the attacker

to hijack speculative execution by mistraining the branch
predictor and associated structures, enabling a ROP-style
attack [75] that stitches together Spectre gadgets. To mount
such an attack, a co-located adversary process that shares
the branch predictor (e.g., a browser process with several
user threads) with the victim, first forces an artificial BTB
(Branch Target Buffer) entry collision using a carefully cho-
sen indirect branch address. The attacker next poisons the
value of the colliding BTB entry by repeatedly executing its

1 mov eax , a r r 1 _ s i z e
2 cmp edi , eax
3 jge END_LBL
4 mov eax , edi

6 mov eax , [eax+ a r r 1]
7 shl eax , 0 x8
8 mov eax , [eax+ a r r 2]
9 mov [y] , eax
10 END_LBL :

(a) Vulnerable gadget (x86)

mov eax , a r r 1 _ s i z e
cmp edi , eax
jge END_LBL
mov eax , edi
____FENCE____
mov eax , [eax+ a r r 1]
shl eax , 0 x8
mov eax , [eax+ a r r 2]
mov [y] , eax
END_LBL :

(b) Fenced gadget (x86)

Figure 2.Mitigating Spectre-v1 using a Fence Instruction

own branch whose target is the address of a Spectre gadget.
After successful mistraining of the branch predictor, the pro-
cessor now predicts the victim’s indirect branch that collides
in the BTB to be the attacker-chosen Spectre gadget and
starts speculatively executing it.
The variant-3 attack (a.k.a. Meltdown) exploits the fact

that most out-of-order processors that employ dynamic spec-
ulation supress loads with protection violation at instruction
retirement (i.e., commit stage), rather than during instruc-
tion execution. Therefore, a non-privileged memory access
can find its way to the cache and leave a footprint, allowing
an attacker to now effectively read arbitrary memory con-
tents of another process or even the kernel or the hypervisor,
through careful cache-based side channel analysis.
The literature describes multiple attacks that conform to

the above variants, but exploit different attack targets and/or
different side channels. These include SgxPectre [13] that by-
passes Intel’s SGX [44] security mechanisms to steal secrets
from SGX enclaves, the MeltdownPrime/SpectrePrime [82]
that leverage a PRIME+PROBE [62] cache attack instead of
FLUSH+RELOAD [100] by exploiting the side effects of cache
line invalidation mechanisms in modern cache coherence
protocols, and the NetSpectre attack that leaks information
across independent virtual machines on Google Cloud via
an AVX-based covert channel [76].
The variant-4 Spectre attack exploits microarchitectural

side effects of the memory disambiguation feature employed
by most out-of-order processors in order to allow loads to be
speculatively ordered and executed before any outstanding
store whose effective address has not been calculated yet.
Upon misspeculation, i.e, if the load address has a conflict
with the outstanding store, the processor flushes the pipeline
and triggers the re-execution of the load and all subsequent
instructions [48], while the microarchitectural side effects
of the misspeculation linger, resulting in memory disclo-
sures similar to variant 1 and 3. Similarly, the NG variant-3
attack [78] leverages the lazy x87 floating-point restore func-
tionality of Intel CPUs to read floating-point registers of a
victim process.

The Spectre variants 1.1 and 1.2, dubbed Speculative Buffer
Overflows [55], exploit the store-to-load forwarding opti-
mization to stitch together Spectre gadgets. More specifically,
these attacks bypass a stack buffer overflow check similar
to variant-1 and execute a Spectre gadget that speculatively
stores malicious content (the address of the next Spectre
gadget) into the return address on the stack. Store-to-load
forwarding combined with the fact that most modern pro-
cessors break down the return instruction into micro-ops
that load the return address from the stack before transfer-
ring control, then result in a ROP-style execution of Spectre
gadgets that leave a trail of microarchitectural state behind.
The variant-5 attack [58] achieves similar effect, by instead
mistraining the return address stack employed by most pro-
cessors to speculatively predict the target of a procedure
return.

Spectre Mitigations. The current set of mitigations for
Spectre range from simple coding guidelines[10] to propos-
als that advocate exposing microarchitectural details in the
ISA [64]. To mitigate Meltdown, Kernel Page Table Isolation
(KPTI) [17, 36] has been proposed and recently patched to the
Linux kernel, incurring about 6% in performance. To mitigate
Spectre v1, multiple chip manufacturers including Intel [45],
ARM [6], and AMD [4], have suggested instrumenting code
with serializing instructions or fences to inhibit speculation
at specific points in execution.

For example, consider Figure 2a that shows the assembly
code for the Spectre variant-1 gadget in Figure 1. Figure 2b
shows a software-patched version that employs a serializing
instruction or a fence to prevent the speculative execution of
the Spectre gadget (i.e., lines 6-9). In most implementations,
upon decoding the fence, the processor stops fetching new
instructions until the fence gets committed or squashed,
thereby serializing execution. In our example, if the attacker
calls the vulnerable gadget with out-of-bounds values in the
edi register, the processor front-end stalls until the fence is
committed, thereby disallowing the speculative execution of
the Spectre gadget and completely mitigating the attack.
The associated performance overhead with liberal fence

insertion, however, could be as high as 10x [69]. While it
is possible to perform compiler-directed code instrumen-
tation with fences at a lower performance overhead [72],
locating the potential Spectre targets using static analysis is
non-trivial and could therefore result in less than full cov-
erage [56]. Speculative Load Hardening [11, 12] and YSNB
(You Shall Not Bypass) [69] propose to use predicated execu-
tion [50, 65, 73] to alleviate the high overheads for fences by
injecting an artificial data dependency between the condi-
tional branch and the Spectre gadget. These proposals incur
36-60% overhead in performance.
To cope with variant-2, both Intel and AMD have an-

nounced microcode update patches that introduce new fence
instructions [4, 45] that prevent instructions preceding the
fence from controlling the indirect branch prediction of

branches that follow the fence. The fences also prevent soft-
ware with lower privileges from influencing the indirect
branch prediction of software with higher privileges. Fur-
thermore, these patches restrict indirect branch prediction
from being controlled by co-located threads via simultane-
ous multithreading [83, 84]. Furthermore, the use of retpo-
lines [45, 46, 85] have been advocated to replace indirect
jumps and calls with an equivalent push+ret instruction se-
quence, in order to bypass the indirect branch predictor.
However, they could further expand the attack surface in
the wake of v5 [58, 66], v1.1, and v1.2 attacks [54].

On the hardware front, SafeSpec [53] and InvisiSpec [99]
propose mitigating side effects of speculative execution by
adding new shadow user-invisible structures for caches and
TLBs that store transient results from speculative instruc-
tions, and committing them to main cache/TLB only if the
speculation was deemed correct and the corresponding in-
structions gracefully retire. Although these techniques make
disruptive changes to the processor/memory architecture
and consistency models, they make significant strides in se-
cure hardware design with minimal performance impact. Fi-
nally, Dong, et al. [28, 29] propose leveraging Virtual Ghost [22]
to protect applications running on a compromised OS kernel
from Spectre.

Secure Instruction StreamCustomization. Prior work
has established that instruction customization is an effective
means to instrument the dynamic execution stream with se-
curity checks, and therebymitigate several attack vectors at a
relatively low performance overhead. Instruction stream cus-
tomization has been proposed and evaluated in various forms
and levels, ranging from secure virtual architectures at the
ISA and compiler level [23, 88, 90] to full-blown processor bi-
nary translation at the microcode level [9, 25, 71, 89]. Corliss,
et al. [18–20] propose dynamic instruction stream editing
(DISE), a macro-engine that customizes the dynamic instruc-
tion stream at the decoder level, by pattern-matching user-
defined production rules pushed into the decoder. Taram, et
al. [80] propose context-sensitive decoding that leverages the
CISC to RISC translation feature of modern instruction set
decoders to dynamically alter the behavior of programmer-
visible instructions without recompilation or binary trans-
lation [26, 91]. While we leverage these approaches in this
research, this work targets a different class of emerging at-
tacks, and proposes several additional techniques beyond
microcode customization.

Information Flow Tracking. Suh, et al [79] first pro-
posed the idea of dynamic information flow tracking (DIFT)
that tags data from untrusted channels as spurious, and fur-
ther tracks the information flow of spurious data, flagging
any violation of an enforced security policy. Multiple hard-
ware information flow tracking techniques have been de-
scribed at various levels of the hardware [14–16, 21, 24, 81,

86, 92] as a detection mechanism to circumvent code injec-
tion [98], cross-site scripting attacks [24, 93], buffer over-
flows [24, 98], and SQL injection [24, 39, 40, 60, 102]. This
work proposes decoder-level information-flow tracking as
a detection mechanism for Spectre, and addresses several
associated challenges.

3 Assumptions and Threat Model
Among the Spectre variants, the Bounds Check Bypass (variant-
1) is the one which has had the highest impact in terms of
affected platforms and devices. Therefore, the main focus of
this work is to mitigate the variant-1 attack at an acceptable
level of performance. However, owing to the flexibility ad-
vantages of microcode customization, we also propose new
mitigations against other Spectre variants documented in
Table 1.

We assume that the goal of the attacker is to read arbi-
trary memory contents by exploiting a Spectre gadget. Also,
without loss of generality, in this work we defend against a
Spectre attacker that targets the most obvious and the most
important victim, i.e., the OS kernel, but our framework
allows us to extend the proposed techniques to mitigate dif-
ferent targets such as virtual machines and browsers. Our
attack model assumes an adversary with the following capa-
bilities.

• Information Leakage. We assume that the adver-
sary has the ability and privilege to probe, flush, or
evict any cache line including that of the kernel at any
particular time. Also, they can make precise timing
measurements using instructions such as rdtsc and
rdtscp.

• Co-location. We assume that the adversary is colo-
cated with the victim, and can not only leak informa-
tion through cache-based side channels, but can also
mistrain shared branch predictor structures including
branch target buffers and return address stacks, and
can further influence the branch outcome of the victim,
as described in the variant-2 attack.

• User-Mode Access. We assume that the adversary
has standard user-mode access, and can invoke any
system call with arbitrary and carefully chosen ar-
guments, and can further access devices such as the
keyboard or network to feed the kernel/driver code
with carefully chosen data.

Moreover, we assume that the only communication chan-
nel between the attacker and the kernel code is through
micro-architectural side channels and the attacker does not
have any other channel, direct or indirect, to leak data. Among
all the micro-architectural side-channels, data caches are the
ones that are predominantly used and are the easiest to ex-
ploit. Thus, the mitigation strategies described in this work
primarily focus on those variants of the attack that use the
data cache as their covert channel to leak information. Again,

Configuration
Registers (MSRs)

M
ac

ro
-o

p
qu

eu
e

µop-Queue

Scratchpad Regs.

Runtime
System

DLIFT
Macro-op Stream

Macro-to-µop
Translation Unit

CSD-Enabled Decoder

INC [0x802ac] FENCE
LD t0,[0x802ac]
ADD t0, t0, 1
ST [0x802ac], t0 Di

sp
at

ch
er Mistaint

Detection
and Recovery

Figure 3. Architectural Overview

due to the flexiblity and programmability of the proposed
strategy, it is possible to easily extend the approach to miti-
gate other side-channels such as functional unit contention
and AVX timing channels [76].

4 Architectural Overview
Figure 3 gives the architectural overview of our defense
strategy – context-sensitive fencing. The central piece of the
proposed architecture is an x86 microcode engine that has
context-sensitive decoding (CSD) capabilities [80], allow-
ing it to optionally translate a native x86 instruction into a
customizable, alternate set of micro-ops. In this work, we
leverage this capability to perform the surgical insertion of
speculation fences (some existing and some newly proposed)
at potentially vulnerable Spectre code targets. To this end, we
introduce new custommicro-op flows and new configuration
mechanisms that trigger such micro-op flows.
The CSD-enabled microcode engine is provisioned with

fine-grained reconfiguration capabilities via a set of model-
specific registers (MSRs) that can control the frequency, type,
and enforcement criteria of speculation fences inserted into
the dynamic instruction stream. Such a fine-grained recon-
figuration capability is especially important to this work
because speculation fences are particularly expensive, allow-
ing us to surgically insert fences that impose varying degrees
of restrictions on speculative execution, depending upon the
runtime conditions, current level of threat, and the nature of
the code being executed.
Moreover, the context-sensitive fencing framework also

benefits from a novel decoder-level information flow track-
ing (DLIFT) engine that has the ability to identify untrusted
instructions that are potentially in Spectre gadgets and trig-
ger alternate micro-op flows that insert speculation fences.
Owing to its decoder-level and inherently speculative imple-
mentation, DLIFT relies on a mistaint detection and recovery
hardware implemented in the execute stage, to avoid over-
tainting and undertainting scenarios. Finally, the proposed
defense framework also includes hardware and microcode-
level mechanisms to achieve branch predictor state isola-
tion across protection domains to mitigate the variant-2 and
variant-4 attacks.

Table 2. List of Intel’s Serializing Instructions
Type Instr. Desc.

Pr
iv
ile
ge
d
Se
ria

liz
in
g
In
st
ru
ct
io
ns INVD Invalidate Internal Caches

INVEPT Invalidate Translations from EPT
INVLPG Invalidate TLB Entries
INVVPID Invalidate Translations Based on VPID
LIDT Load Interrupt Descriptor Table Register
LGDT Load Global Descriptor Table Register
LLDT Load Local Descriptor Table Register
LTR Load Task Register
MOV Move to Control Register
MOV Move to Debug Register

WBINVD Write Back and Invalidate Cache
WRMSR Write to Model Specific Register

N
on

Pr
iv
. CPUID CPU Identification

IRET Interrupt Return
RSM Resume from System Management Mode

M
em

.O
rd
er
in
g SFENCE Store Fence

LFENCE Load Fence

MFENCE Memory Fence

5 Design and Implementation
In this section, we describe in greater detail the architectural
techniques and building blocks that together constitute the
proposed defense strategy – context-sensitive fencing. First,
we describe a microcode customization framework that en-
ables the surgical insertion of fences to secure speculative
execution with minimal performance impact. Second, we ex-
amine the full design space of fences to provide the isolation
properties we need without undue obstruction of existing
pipeline performance features. Third, we propose a decoder-
level information flow tracking (DLIFT) technique to follow
potentially malicious execution patterns and trigger secure
microcode customization. Finally, we propose protection
mechanisms that circumvent the mistraining of the branch
predictor and associated structures.

5.1 Microcode Customization
Speculation fences are a processor’s primary mechanism to
override speculative execution. For Spectre variant-1, context-
sensitive fencing works with CSD by providing alternate de-
codings of all load instructions, with the alternate decoding
always including a fence micro-op that appears before the
load micro-op. The alternate decoding will then be triggered
or not based on runtime conditions. The first consideration,
then, is what fence instruction to incorporate. Most pro-
cessors already provide a variety of fences and serializing
instructions. We first study the performance and security
impact of the existing suite of fences and serializing instruc-
tions, and then explore and propose new speculation fences
and context-sensitive fencing techniques that manage the
impact on performance. For Spectre variant-2, CSF works

µ-
op

 Q
ue

ue

Macro-op
Stream Macro-to-µop

Translation
Unit

CSD-Enabled Decoder

FENCE
Injection

Point

µ-
op

 D
is

pa
tc

he
r

Load Store-Queue

FU1 FU2

RS
RS

RS
RS
RS

Cache

C
ac

he

C
on

tro
lle

r

Mem

M
em

C

on
tro

lle
r

✖

✖

✖

✖

✖

✖ Fence Enforcement Point

Figure 4. Fence Enforcement Points

with CSD by providing alternate decodings of some con-
trol flow, and possibly insert fences and/or branch predictor
resetting micro-ops – more detail is in Section 5.3.

5.1.1 Serializing Instructions and Memory Fences.
Serializing instructions are the strictest amongst all specula-
tion fences and completely override speculative execution.
Upon decoding a serializing instruction, the processor stalls
fetching any subsequent instruction until all instructions
preceding the serializing instruction retire. Due to the high
pipeline depth and issue width of modern out-of-order su-
perscalars, the usage of serializing instructions could result
in long delays and considerable throughput loss. Memory
fences, on the other hand, enforce a memory serialization
point in the program instruction stream. More specifically,
these fences ensure that memory operations that appear in
execution after the fence are stalled until all the outstanding
memory requests (including the fence) complete execution.
Table 2 shows a complete list of Intel’s existing serializ-

ing instructions and fences [48]. Most of the serializing in-
structions need to be run in privileged mode which restricts
their usage in defenses for victims that lack sufficient privi-
leges (e.g., browsers). Moreover, a majority of them modify
the state or contents of architectural registers, the program
counter, cache, TLB, etc. and only serialize execution as a
side effect, thereby requiring an additional backup/restore
step when used for the sole purpose of serializing execution.
An exception to this is the MOV to debug register instruction
that does not corrupt any architectural state, if not actually
in debug mode.
The SFENCE instruction does not allow stores to pass

through it, but does not affect loads. That is, it enforces that
all stores that precede the SFENCE are executed to comple-
tion before any store that succeeds the SFENCE is fetched.
The MFENCE instruction restricts all memory operations
from passing through it. Unlike SFENCE and MFENCE that
are memory ordering operations, LFENCE performs a seri-
alizing operation. In particular, LFENCE does not stop the

processor from fetching and decoding instructions that ap-
pear after the LFENCE, but it restricts the dispatch of such
instructions, until the instructions preceding the LFENCE
complete execution. Since LFENCE serializes execution and
yet makes some progress in the front-end, it has been recom-
mended by Intel as a low-overhead fence that can be inserted
at vulnerable points in execution to defend against Spec-
tre [45]. In other words, while serializing instructions such
as CPUID are enforced at Fetch, LFENCE is enforced at the
instruction queue level. Therefore, in this work, we start with
the LFENCE, and propose new fences that come with fewer
restrictions, different enforcement policies, and/or sport ad-
ditional optimizations.

5.1.2 Fence Enforcement Policies
It is important to note that none of the existing instructions
that provide fence support were actually created for the pur-
pose we (or the whole industry) need for Spectre mitigation.
Thus, this work will examine existing fences, variants of
existing fences, and also introduce a new fence primitive. To
better understand the design landscape, we examine several
possible properties of fences in this section.

Early vs. Late Enforcement.We first categorize fences
into early-enforced and late-enforced fences, based on the
pipeline stage at which they are enforced. In particular, we
refer to any serializing instruction, such as an LFENCE, that
is enforced at the instruction queue or earlier in the pipeline
as early-enforced. If the fence is enforced at a later stage such
as the reservation station, the load/store queue, or the cache
controller, we refer to it as a late-enforced fence. Late enforce-
ment, in essence, shifts the fence enforcement point towards
the leaking structure (e.g., the cache), reducing the impact
on instructions that do not access that structure, and allow-
ing for the enforcement of more fine-grained serialization
rules (e.g., allow cache hits but not misses). Figure 4 shows
potential fence enforcement points at various stages in the
processor pipeline.
It is important to note that the later a fence is enforced,

the fewer the side channels it protects against. For example,
Intel’s LFENCE prevents information leakage through all mi-
croarchitectural structures that appear after the instruction
queue. However, to prevent information leakage through the
instruction cache side channel, we would have to resort to
a regular serializing instruction or an MFENCE, resulting
in prohibitively high performance overheads. Similarly, a
fence enforced at the data cache controller level would only
mitigate data cache-based side channels and will not protect
against an FPU-based side-channel. Instead, the FPU-based
side-channel may be mitigated using a different fence that
is appropriately configured and enforced at the reservation
station or the FPU.

Strict vs. Relaxed Enforcement. Depending upon how
prohibitive they are, we next classify fences into strict and
relaxed. Strict fences are highly prohibitive and do not allow

Table 3. Characteristics of Different Fence Types

Fence Name Enforcement
Point

Strict/
Relaxed

Instructions
not Allowed

Mitigates
Variants

Existing/
New?

Intel’s SIs (CPUID) Fetch Strict All All Existing
LFENCE IQ Strict All All Existing

LSQ-LFENCE LSQ Relaxed Ld v1 New
LSQ-MFENCE LSQ Relaxed Ld&St v1,v1.1,v1.2 New

CFENCE CC* Relaxed None v1 New
* CC: Cache Controller, RS: Reservation Station

any instructions to pass through them until the fence retires,
whereas relaxed fences allow certain types of instructions
to pass through them. For example, an SFENCE that is en-
forced at the load/store queue and allows all instructions to
pass except stores that have a greater sequence number than
itself, is a late-enforced and relaxed fence. On the other hand,
all x86 serializing instructions including LFENCE are early-
enforced and strict. Customizing the micro-op stream with
early-enforced and strict fences typically results in slower ex-
ecution when compared to customization with late-enforced
and relaxed fences. However, with carefully enforced con-
straints, the late-enforced and relaxed fences could offer sim-
ilar, if not better security guarantees.

Early vs. Late Commit. A fence typically remains ef-
fective until it gets committed or squashed. Based on Intel’s
manual [47], a serializing instruction is only allowed to be
committed if there is no preceding outstanding store that
is waiting to be written back. While this behavior might be
necessary for device synchronization or memory ordering
enforcement, for the purpose of securing speculative exe-
cution against Spectre attacks, there is no need to wait for
stores to be written back. This is because write buffers aren’t
committed to the cache until the store reaches retirement,
and therefore the fact that a store is waiting for an outstand-
ing writeback request to complete is enough evidence that it
did not occur along a misspeculated path. Allowing a fence
to commit early without waiting for preceding outstanding
stores to write back can considerably improve performance
because as soon as a fence gets committed, a stream of in-
structions can advance further in the pipeline. Therefore, in
this work, we propose and study the effects of a late-commit
version of each fence that does not wait for stores to be writ-
ten back. However, we note that these versions should only
be limited to the security use case we describe and should
not be used for synchronization.

Newly Proposed Fences. Table 3 summarizes the char-
acteristics of different existing and newly proposed fences.
Although the existing set of fences defend against all vari-
ants, they incur prohibitively high costs on performance, due
to their strict enforcement constraints. To better understand
the potential for fences beyond those that already exist, we
propose and evaluate three new types of fences. In an attack
scenario, we typically insert one of these fences between a
branch instruction and a load instruction that potentially
leaks sensitive information via a cache side-channel. The
proposed fences more effectively and efficiently mitigate the

high impact variant-1 attacks, by preventing information
leaks along misspeculated paths through cache-based side
channels. We describe each of them in greater detail below.

The LSQ-LFENCE and the LSQ-MFENCE are relaxed fences
enforced at the load/store queue. While LSQ-LFENCE fence
is in effect, it does not allow any subsequent load instruction
to be issued out of the load/store queue, thereby preventing
the cache state from being changed by load instructions on
misspeculated paths. Thus, the LSQ-LFENCE mitigates the
Spectre variant-1 attack. On the other hand, the more restric-
tive LSQ-MFENCE does not allow any subsequent memory
instruction (both loads and stores) to be issued out of the
load/store queue, until the fence commits. In addition to
mitigating the variant-1 attack that the LSQ-LFENCE pro-
tects against, the LSQ-MFENCE mitigates the variant-1.1
and variant-1.2 attacks that exploit store-to-load forwarding
between speculative loads and stores.

The CFENCE is a relaxed fence and is enforced at the cache
controller level using the following set of rules. First, like any
other fence, it allows all preceding instructions to proceed.
Second, since store instructions do not commit the contents
of the write buffer until the instruction retires, they are unaf-
fected by the CFENCE. Finally, it labels any subsequent load
as a non-modifying load and allows it to pass through the
fence, but the load is restricted from modifying the cache
state. In particular, a non-modifying load that results in a
cache hit is allowed to read the contents of the cache, but is
restricted from changing the LRU and other metadata bits.
A non-modifying load that results in a cache miss is marked
as uncacheable, allowing the memory read request to com-
plete without altering the cache state. In this way, we avoid
updating the cache state upon encountering a speculative
load and don’t leave any observable cache footprints along
misspeculated paths, thereby mitigating the variant Spectre
variant-1 attack. In addition, due to locality of references,
the miss rate of a reasonable program is typically very low,
and therefore, using CFENCE results in considerably lower
performance overhead than other types of fences.
Note that this can be applied recursively at each cache

level. For example, an L2 hit (L1 miss) will bypass the L1
cache and not initiate a fill, then read from the L2 cache
without altering the LRU bits.

5.1.3 Fence Frequency Optimization
The most naïve yet secure way to insert fences is to liberally
instrument every instruction of a vulnerable type (e.g., load
instructions in the case of cache side-channels) in the pro-
gram and add the fence micro-op to all of them. In fact not
every instance of a vulnerable instruction type is necessarily
vulnerable; for example, all the loads in the program aren’t
vulnerable to speculative attacks via cache side-channels.
Therefore, we can reduce the number of fences inserted.
However, since failing to insert fences, even in one scenario,
would enable a Spectre attacker to read the whole victim’s

memory space, it is of crucial importance that fence fre-
quency optimizations be conducted meticulously. In the fol-
lowing, we introduce two secure optimizations for reducing
the number of fences.
Basic Block-Level Fence Insertion.The source of the Spec-
tre attack is dynamic control speculation, which implies that
the speculation begins with a branch prediction and the
processor starts speculatively executing along the predicted
path. To fully mitigate this attack, we want a fence between
each branch and subsequent loads; but if one branch is fol-
lowed by four loads, we only need one fence to protect all
four. Thus, in this optimization, we propose to only instru-
ment (provide the alternate decoding for) the first instance
of a vulnerable instruction type (e.g., first load) of each ba-
sic block, and it is safe to leave the rest of the instructions
uninstrumented. This is simply implemented by setting a
flag in hardware whenever a branch is decoded, then insert
a micro-op in the alternative load decoding that, along with
the fence, also resets the flag. When the flag is not set, the
original decoding is used.
Taint-Based Fence Insertion. However, even one load per
basic block is likely still too conservative. In all known in-
stances of the attacks, the attacker performs some operations
(mostly memory read) based on untrusted data that leads
to the information leak. For example, in Spectre variant-1
the attacker provides an untrusted out-of-bound index to an
array. In this work, we assume any information that comes
from the user address space and input devices (e.g., via the
x86 IN instruction) as untrusted. In addition, we also con-
sider DMA’d pages as untrusted, for which we rely on the
IOMMU [5] to mark DMA’d pages as tainted in the page
table. For the taint-based fence insertion optimization, we
propose the insertion of fences for only vulnerable/tainted
loads that operate on untrusted data, by leveraging a novel
decoder-level information flow tracking (DLIFT) strategy
described in the following section.

5.2 Decoder-Level Information Flow Tracking
As its name indicates, the distinguishing feature that makes
Decoder-Level Information Flow Tracking (DLIFT) unique
from typical hardware taint tracking systems is that it can
provide the taint information at the decoder stage of the
pipeline rather than at commit stage. This is a critical distinc-
tion for two reasons. First, of course, our solution is decoder-
based. Second, and perhaps more important, execute- or
commit-based taint tracking comes too late in the pipeline
for any speculation-based attack, and is of little use.
However, commit is still the only stage where taint in-

formation is guaranteed to be correct, so the design of a
decode-based taint tracker is challenging. In particular, since
the front-end of the pipeline typically runs far ahead in ex-
ecution than the rest of the pipeline, reading actual taints
from register files at the decode stage will read inaccurate
values. Therefore, in the proposed DLIFT framework, we

Macro-to-µop
Translation

Unit

CSD-Enabled Decoder

D
is

pa
tc

he
r

Fetch
Taint

Evaluator

Load Store Queue

2

Reg.
File

Ac
tu

al
 T

ai
nt

 B
its

3

4

5

TLB

Ta
in

t B
itm

ap1

ADD %rax, %rbx

%rax.SpecTaint |=
%rbx.SpecTaint

Mistaint Recovery:
 -Flushing the pipeline
 -Restarting translation and execution
 -Recovering speculative taint map

EA
 T

ai
nt

Commit
Unit

Fetch/Decode Execute

Speculative
Taint Map

~Spec_Taint
&&

Evaluated_Taint

True

Commit

Arch.
Taint
Map

Arch.
RF

Figure 5. DLIFT integration with a CSD-enabled pipeline

separate the taint information into four taint structures – (a)
a decoder-level taint map that tracks and maintains the taint
information for architectural registers, (b) the physical reg-
ister file augmented with taint information that maintains
dynamically computed taint information at execute, (c) the
TLB and page tables augmented with a taint bitmap to track
cache block-level taint information, and (d) a commit-level
taint map that maintains verified architectural register taint
information. While the latter three structures are typical of
any standard DIFT implementation [79], the first structure
is a new addition proposed by this work. Instruction trans-
lation thus depends on some speculative taint tracking that
might not be exact, potentially leaving vulnerable instruc-
tions unfenced (i.e., translating to non-secure micro-ops). For
this reason, DLIFT relies on a mistaint recovery mechanism
that, upon detecting a mistaint at the execution stage, redi-
rects and restarts the execution from the incorrectly tainted
instruction.
Figure 5 shows the integration of DLIFT with a CSD-

enabled pipeline. The DLIFT engine maintains a taint map
that stores a speculative taint bit for each architectural reg-
ister. For each incoming instruction (•1), the DLIFT engine
evaluates the taint of the destination register(s), based on the
speculative taint bits of the source registers. Taint evaluation
follows the standard DIFT procedure [79]. If a source regis-
ter is marked as tainted in the speculative taint map, DLIFT
propagates this taint to the destination register and further
triggers context-sensitive translation (•2) of the instruction
(e.g., with speculative fence insertion), depending upon the
configured levels of performance and security.

Tracking taints at the decoder level is not always straight-
forward. First, during speculative execution, the DLIFT en-
gine continues to propagate taints along the misspeculated
path, potentially leaving the taint map in an inconsistent
state upon recovery from a branch misprediction. To this
end, the DLIFT engine rolls back the state of the taint map

to its commit-level counterpart, as part of the branch mis-
prediction recovery. Second, the effective addresses of load
instructions is usually not known at the decoder stage, due
to which the DLIFT engine cannot accurately compute and
propagate taint information. A conservative approach that
marks all loads with unknown effective addresses as tainted
could severely degrade performance since overtainting typi-
cally results in a high frequency of fence insertion. Therefore,
we take a more optimistic approach by assuming loads with
unknown effective addresses are untainted, and further rely
on our mistaint detection mechanism at the execute stage
to validate the predicted taints against the dynamically eval-
uated taints (•3 and•5). In the event a mistaint is detected,
we update the speculative taint map, flush the pipeline, and
restart the translation and execution of the mistainted in-
struction. Note that we only perform mistaint recovery for
the undertainting scenario, since it could potentially leave
vulnerable instructions unfenced.

Furthermore, the DLIFT engine is capable of following in-
struction sequences and execution patterns such as a tainted
load followed by a branch, allowing for the seamless de-
tection of different Spectre gadget variants. In this way, al-
though speculative, the DLIFT engine has the potential for
fast recovery from misspeculation, and further allows the
microcode customization framework to perform a more tar-
geted and surgical insertion of fences for particular vulnera-
ble targets.

5.3 Mitigations for Control-flow Mistraining
Two Spectre variants (v2 and v5) rely on the mistraining
of the branch predictor and the return stack buffer to influ-
ence the victim’s branch outcome across different protec-
tion domains. To mitigate these attacks, we examine several
hardening mechanisms. In the simplest case, where we are
protecting kernel branches from getting influenced, we can
instrument syscall instructions to enforce branch predictor
state isolation. If we want to protect a wider range of domain
crossings, we could rely on a simple hardware mechanism
that identifies control transfer to a domain with a higher
privilege and then sets a flag. The first control flow instruc-
tion that decodes after that flag is set would then trigger
an alternate decoding and reset the flag. The alternate de-
coding would insert a fence (to protect against this branch
being mispredicted), then execute micro-ops that enforce
branch predictor state isolation, and subsequently resume
the original control flow.
This solution, then, is flexible enough that any region of

code could be protected in this way by configuringmodel spe-
cific range registers (MSRRs) to indicate a protected region
that would always reset the branch predictor upon entry;
this, then, even prevents mistraining of sensitive code of
different threads within the same process. To prevent the
MSRRs from being tampered by the attacker, we only allow

Table 4. Architecture Detail for the Baseline x86 Core
Baseline Processor

Frequency 3.3 GHz I cache 32 KB, 8 way
Fetch width 4 fused uops D cache 32 KB, 8 way
Issue width 6 unfused uops ROB size 168 entries
INT/FP Regfile 160/144 regs IQ 54 entries
RAS size 8,16, 32 entries BTB size 256, 512, 1024 entries
LQ/SQ size 64/36 entries Functional Int ALU(6), Mult(1),
Branch Predictor LTAGE Units FP ALU/Mult(2), SIMD(2)

the operating system to configure MSRRs, and we use specu-
lative fences to guard x86’sWRMSR instruction. Furthermore,
in the case of remapping via mmap(), the operating system
is also responsible for reconfiguring MSRRs.

The easiest and the most heavyweight way to isolate the
BP state is to clear all the states by a series of return/branch
micro-ops. However, such a hard reset of the BP can be more
quickly and efficiently performed using a special micro-op
that clears some or all state of the branch predictor, thereby
enabling custom solutions to reset different structures within
the prediction unit, if such a micro-op is available. In this
work, we assume a special micro-op to clear the branch target
buffer (BTB) and the return stack buffer (RSB), the primary
targets of the Spectre attack.
It should be noted that while resetting the BTB and the

RSB will induce more mispredictions (something the attacker
wants), it does the attacker no good with respect to these
Spectre variants because the attacker can no longer control
the target of the control flow misspeculation.

6 Methodology
This section details the experimental methodology for the
performance and security evaluation of the context-sensitive
fencing framework.
Our baseline processor is modeled after the Intel Sandy-

bridge microarchitecture [43]. Table 4 shows the architec-
tural configuration of our baseline processor in more detail.
Note that we evaluate against three different branch pre-
dictor configurations (with different BTB and RAS sizes) to
measure the performance impact of our micro-op flows that
perform branch predictor state isolation across protection do-
mains to defend against variant-2.Wemodel this architecture
using the gem5 [8] architectural simulator which already fea-
tures x86 micro-op translation. Furthermore, gem5 already
features a Spectre test infrastructure and a visualization tool
that allow us to validate our claims regarding the security
guarantees of context-sensitive fencing [63].
One of the primary goals of this work is to protect ker-

nel memory from being leaked along misspeculated paths.
Therefore, we use the full system simulation mode of gem5
which allows us to boot an Ubuntu 18.04 distribution of
Linux with a kernel version of 4.8.13. Furthermore, in order
to provide realistic estimates regarding attack coverage and
performance impact of our proposed techniques, we select
a good mix of benchmarks that spend different amounts of
execution time in kernel mode, touch different aspects of the

Table 5. Benchmarks Description
Benchmark Description Kernel-Time

nginx HTTP Web Server 66%
ps Process information query 75%
ping Sends ICMP ECHO_REQUEST to loopback 95%
ls Performs two level directory listing 79%
llu Linked list traversal micro-benchmark 7%

bzip2 Compression 34%
gcc C Language optimizing compiler 11%

omnetpp Discrete event simulation 15%

sjeng Artificial Intelligence (game tree search
and pattern recognition) 22%

operating system, and perform different number of system
calls during execution, as illustrated in Table 5. To this end,
we include four benchmarks, bzip2, gcc, sjeng, omnet, from
the SPEC CPU2006 suite [41] that exhibit varying degrees
of instruction-level parallelism. Furthermore, we use three
commonly used Unix tools that target different functional-
ities of the kernel and use different device drivers – (ping)
that sends and receives ICMP packets, (ps aux) that queries
process information, and (ls /*/*) that queries the filesystem
in order to list multi-level directory information. In addition,
we also add a memory-intensive program llu that allocates
a large amount of memory for a linked list and traverses
the list making random memory accesses [103]. Finally, we
also evaluate the impact of our fences on the nginx web
server [74] using the wrk [35] framework to generate HTTP
requests.

7 Evaluation
In this section, we evaluate both security and performance
impacts of the proposed strategy, starting first with security
assessment and following that with performance evaluation.

7.1 Security Discussion
The proposed defense strategy can mitigate five variants of
the Spectre attacks. We discuss these in detail below.

Variants 1, 1.1, and 1.2. The goal of these variants is to
leak memory contents of a victim along a misspseculated
path by bypassing a bounds check and/or further stitch to-
gether such Spectre gadgets via store-to-load forwarding.
All variants exploit a data cache-based side channel to leak
information. Context-Sensitive Fencing mitigates these vari-
ants primarily by preventing information from being leaked
along misspeculated paths via fences that are surgically in-
serted into the instruction stream and strategically placed
between the conditional branch that performs the bounds
check and the first load in the Spectre gadget. This work
proposes three new fences – LSQ-LFENCE, LSQ-MFENCE,
and CFENCE that each defend against the variant-1 attack by
disallowing loads along misspeculated paths to modify the
data cache state. LSQ-MFENCE additionally protects against
the variants 1.1 and 1.2 by preventing both speculative loads
and stores from being issued out of the load/store queue,

ps sjeng bzip2 ping llu gcc ls nginx omnet gmean
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

N
or
m
al
iz
ed

E
xe
cu
ti
on

T
im
e

LFENCE-LC

LSQ-MFENCE-LC

CFENCE-LC

Figure 6. Execution Time of Different Fence Enforcement

Levels (normalized to insecure execution)

effectively avoiding store-to-load forwarding between spec-

ulative loads and stores.

The surgical insertion of these fences is facilitated by the

decoder-level information flow tracker (DLIFT) that can fol-

low instruction sequences that could serve as Spectre gad-

gets, as described in Section 5.2. While the DLIFT itself per-

forms speculative tracking of taint information, it has the

ability to detect mistaints and recover within three stages of

the pipeline. We further experimentally show later in this

section that the speculative nature of the DLIFT engine may

sometimes result in overtainting (where trusted operand-

s/instructions get marked as tainted), but never results in an

undetected and unrecovered undertainting (where untrusted

operands/instructions remain untainted).

Variants 2 and 5. These variants reverse-engineer and

mistrain the branch predictor and the return address stack to

influence the branch outcomes of a victim, which in our case

is the Linux kernel. In addition to the surgical fence injec-

tion and speculative taint tracking, context-sensitive fencing

further employs mistraining mitigations that circumvent

such attempts. More specifically, we intercept all protection

domain crossings via syscall and int 0x80 instructions and
perform a full reset of the branch target buffer (BTB) and the

return stack buffer (RSB), clearing all previous state. This

prevents user code from influencing branch outcomes of the

kernel code. We record no instance of BTB collision between

user and kernel branches, and we ensure that we always

start with a clean BTB and RSB upon entering kernel mode.

To show that our different fences and frequency optimiza-

tions close Spectre attacks, we use a proof of concept Spectre

implementation and visualization tool [63]. The attacks fail

in every case when we use context-sensitive fencing to insert

fences, despite our performance optimizations.

7.2 Performance

Figure 6 measures the performance impact of three different

fences – (a) the standard x86 LFENCE, (b) the LSQ-MFENCE,

ps sjeng bzip2 ping llu gcc ls nginx omnet gmean
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

N
or
m
al
iz
ed

E
xe
cu
ti
on

T
im

e

CFENCE-LC

CFENCE-EC

Figure 7. Execution Time of Early and Late Commit of

CFENCE (normalized to insecure execution)

N
oF

en
ce

C
F
E
N
C
E

N
oF

en
ce

C
F
E
N
C
E

N
oF

en
ce

C
F
E
N
C
E

N
oF

en
ce

C
F
E
N
C
E

N
oF

en
ce

C
F
E
N
C
E

N
oF

en
ce

C
F
E
N
C
E

N
oF

en
ce

C
F
E
N
C
E

N
oF

en
ce

C
F
E
N
C
E

N
oF

en
ce

C
F
E
N
C
E

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at
io

O
ve
r
A
ll
L
oa
d
s

bzip2 gcc omnet llu nginx sjeng ls ping ps

Non-Modifying Misses Non-Modifying Hits Misses Hits

Figure 8. Effects of injecting CFENCE on Cache Miss Rate

and (c) the CFENCE, all enforced with the standard late

commit, pessimistically inserted for every kernel load in the

program. Clearly, from the figure, the CFENCE incurs the

lowest performance overhead, since it is less restrictive than

the other two and is enforced at a much later pipeline stage.

We further study the effect of late and early commit policies

for the CFENCE, as shown in Figure 7. The early commit

version of the CFENCE consistently performs better than the

late commit version, saving about 4% in overall execution

time on average.

Overall, the CFENCE reduces the incurred performance

overhead due to fencing by 2.3X, bringing down the exe-

cution time overhead from 48% to 21%. Furthermore, this

performance improvement is consistent across all the bench-

marks; the only exception being llu, which performs random
memory accesses due to the linked list traversal and suffers

from a very high cache miss rate.

In Figure 8, we study the effect of the CFENCE on cache

miss rate. Recall that when a load passes a CFENCE, it gets

marked as non-modifying, and as a result, if it ends up being
a miss in the cache, it is deemed uncacheable and therefore

the fetched cache block isn’t brought into cache. If the miss

rate of a program is already high, as in the case of llu, the
presence of a CFENCE in the instruction stream could po-

tentially result in under-utilization of the cache since the

missed blocks aren’t being filled back into the cache while

the CFENCE is begin enforced. For programs that have un-

usually low hit rates, we suggest using the standard LFENCE

instead of the CFENCE. However, in those cases it should be

noted that the overhead of the mitigation is low regardless

of the fence used.

Furthermore, it is important to note that the number of

non-modifying loads in the dynamic instruction stream do

not necessarily have a negative impact on performance,

while a CFENCE is being enforced. For example, while the

ping program has the most non-modifying loads, it does
not suffer much in terms of overall performance, because

the working set fits well into the cache and most of the

non-modifying accesses end up being hits. In general, we

gain more from employing the CFENCE instead of standard

serializing fences when the cache hit rate is low.

Figure 9 shows the performance of our proposed fence

frequency optimization techniques. In the first optimization,

we inject the CFENCE only for tainted loads and branches, as

indicated by the DLIFT engine. This reduces the performance

overhead of the defense from 21% to 11% on average. We fur-

ther optimize the number of fences inserted by performing

basic block-level fence insertion, where we only instrument

the first instance of a vulnerable load in each basic block. This

results in an additional 4% improvement in performance. As

Figure 9 shows the once per basic block opitimization is suc-

cessful at improving the performance of all the benchmarks

except llu. That is because CFENCE changes the cache access
pattern, usually at some cost, but occasionally beneficially

by bypassing accesses and reducing pressure on the cache.

In such a case, like llu with its large working set, executing
fewer fences would then be slightly less beneficial. Overall,

compared to the state-of-the-art fence injection scheme that

pessimistically injects an LFENCE for all kernel loads, our

DLIFT-Based CFENCE injection reduces the performance

overhead from 48% to just 7.7% on average.

We next study the accuracy and coverage of our DLIFT

implementation. Figure 10 examines overtainting scenarios,

where the DLIFT engine conservatively marks instructions

as tainted when they’re actually not. The results are nor-

malized to the total number of dynamic load instructions

executed. Further, we examine two scenarios – the bars to

the left represent DLIFT-based fencing without the basic-

block level fence insertion, and the bars to the right includes

the basic-block level fence insertion optimization. In most

cases, the percentage of overtainted loads remains low in

both scenarios.

Figure 11 examines undertainting scenarios, where the

DLIFT engine optimistically forgoes instrumenting certain

instructions that are actually vulnerable, but recovers from

ps sjeng bzip2 ping llu gcc ls nginx omnet gmean
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

N
or
m
al
iz
ed

E
xe
cu
ti
on

T
im

e

Always Fencing

DLIFT-Based Fencing

DLIFT + Once per BB

Figure 9. Impact of Fence Frequency Optimizations on Exe-

cution Time

D
L
IF
T

O
n
ce
B
B

D
L
IF
T

O
n
ce
B
B

D
L
IF
T

O
n
ce
B
B

D
L
IF
T

O
n
ce
B
B

D
L
IF
T

O
n
ce
B
B

D
L
IF
T

O
n
ce
B
B

D
L
IF
T

O
n
ce
B
B

D
L
IF
T

O
n
ce
B
B

D
L
IF
T

O
n
ce
B
B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at
io

O
ve
r
A
ll
L
oa
d
s

ping ps nginx bzip2 ls sjeng llu omnet gcc

Over-tainted Loads Tainted Loads

Figure 10. Accuracy of DLIFT: Overtainting Rate of Loads

such scenarios later in the pipeline. We observe that the

percentage of undertainted loads is low and consistently

below 10%, with the outliers being the kernel-heavy applica-

tions, ping and ps, which have the highest number of tainted
instructions (instructions with at least one tainted source

register) as shown in Figure 12.

Note that our DLIFT engine performs explicit informa-

tion flow tracking modeled after DIFT [79] that tracks copy,

load-address, store-address, and computational dependen-

cies. However, we also evaluate CSF with a more conser-

vative implicit information flow tracking model in which

we taint the program counter when the branch outcome

depends upon a tainted value, and further track both sides

of the branch. This results in more tainted instructions and

incurs 11.8% extra performance overhead on top of our taint-

based CFENCE insertion.

To evaluate the effect of our mistraining mitigations, we

measure the impact of a full micro-op based BTB and RSB

reset at every protection domain crossing. We do this ex-

periment on three separate branch predictor configurations:

(a) a small predictor with 256 BTB and 8 RAS entries, (b) a

ps
sje
ng

bz
ip
2

pi
ng llu gc

c ls

ng
in
x

om
ne
t

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
at
io

of
U
n
d
er
-t
ai
n
te
d
L
oa
d
s

Figure 11. Coverage of DLIFT: Undertainting Rate of Loads

omnet bzip2 llu ls nginx ping ps sjeng gcc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
ai
n
te
d
In
ts
tr
u
ct
io
n
s

Tainted Untatinted

Figure 12. Ratio of instructions marked as tainted by DLIFT

medium predictor with 512 BTB and 16 RAS entries, and

(c) a large predictor with 1024 BTB and 32 RAS entries. We

measure an average performance degradation of 2.7% on our

small predictor, 6.6% on our medium predictor, and 15.2% on

our large predictor. Naturally, the overhead is almost com-

pletely due to the loss of prediction accuracy, rather than

the cost of micro-op expansion.

In summary, the proposed defense strategy introduces a

flexible microcode customization framework that perform

the surgical insertion of newly introduced speculation fences,

that mitigate five variants of the Spectre class of attacks,

reducing the fencing overhead of state-of-the-art fence-based

Spectre mitigations by a factor of 6.

8 Conclusion

In this work, we propose context-sensitive fencing (CSF), a

set of architectural techniques that provide high-performance

defense against Spectre-style attacks. In particular, we show

that we can reduce fencing overhead by a factor of 6 com-

pared to a conservative fence insertion method.

This is done by injecting fence instructions dynamically,

in the decoder, with no recompilation and binary translation

required. This allows us to employ runtime information to

strategically insert fences when needed, using taint infor-

mation and avoiding redundant fences after branches. This

work also introduces new fence primitives which protect

sensitive structures from speculation-based microarchitec-

tural effects, with minimal impact on instruction throughput

in the pipeline.

Acknowledgments

The authors would like to thank the anonymous reviewers

for their helpful insights. This research was supported in

part by NSF Grant CNS-1652925, NSF/Intel Foundational

Microarchitecture Research Grant CCF-1823444, and DARPA

under the agreement number HR0011-18-C-0020.

References
[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. Predict-

ing secret keys via branch prediction. In CryptographersâĂŹ Track at
the RSA Conference.

[2] Onur Acıiçmez, Werner Schindler, and Çetin K Koç. 2007. Cache

based remote timing attack on the AES. In CryptographersâĂŹ Track
at the RSA Conference.

[3] Shaizeen Aga and Satish Narayanasamy. 2017. InvisiMem: Smart

Memory Defenses for Memory Bus Side Channel. In Proceedings of
the 44th Annual International Symposium on Computer Architecture
(ISCA ’17). ACM, New York, NY, USA, 94–106. https://doi.org/10.

1145/3079856.3080232

[4] AMD. 2018. White paper: SOFTWARE TECHNIQUES FOR MANAG-
ING SPECULATION ON AMD PROCESSORS. Technical Report RE-
VISION 1.24.18. https://developer.amd.com/wp-content/resources/

Managing-Speculation-on-AMD-Processors.pdf.

[5] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. 2011.

vIOMMU: Efficient IOMMU Emulation. In USENIX Annual Technical
Conference.

[6] ARM. 2018. Whitepaper: Cache Speculation Side-channels.
Technical Report Version 2.2. https://developer.arm.com/

-/media/developer/pdf/Security%20update%2010%20July%

2018/CacheSpeculationSide-channels-v2.2.pdf?revision=

7de26366-a49f-4c23-85f0-34e8f5e38881.

[7] Eli Biham and Adi Shamir. 1997. Differential fault analysis of secret

key cryptosystems. In Annual International Cryptology Conference.
[8] Nathan L Binkert, Ronald G Dreslinski, Lisa R Hsu, Kevin T Lim, Ali G

Saidi, and Steven K Reinhardt. 2006. The M5 Simulator: Modeling

Networked Systems. Micro, IEEE (2006).
[9] Darrell Boggs, Gary Brown, Nathan Tuck, and K. S. Venkatraman.

2015. Denver: Nvidia’s First 64-bit ARM Processor. IEEE Micro (2015).
[10] Chandler Carruth. 2018. Mitigating Speculative Attacks in

Crypto. https://github.com/HACS-workshop/spectre-mitigations/

blob/master/cryptoguidelines.md. Online; accessed Jul 2018.

[11] Chandler Carruth. 2018. RFC: Speculative Load Hardening (a

Spectre variant1 mitigation). https://docs.google.com/document/d/

1wwcfv3UV9ZnZVcGiGuoITT61eKo3TmoCS3uXLcJR0/edit. Online;

accessed Jul 2018.

[12] Chandler Carruth. 2018. RFC: Speculative Load Hardening (a Spectre

variant1 mitigation). https://lists.llvm.org/pipermail/llvm-dev/2018-

March/122085.html. Online; accessed Jul 2018.

[13] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang

Lin, and Ten H. Lai. 2018. SgxPectre Attacks: Leaking Enclave

https://doi.org/10.1145/3079856.3080232
https://doi.org/10.1145/3079856.3080232
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://developer.arm.com/-/media/developer/pdf/Security%20update%2010%20July%2018/Cache_Speculation_Side-channels-v2.2.pdf?revision=7de26366-a49f-4c23-85f0-34e8f5e38881
https://developer.arm.com/-/media/developer/pdf/Security%20update%2010%20July%2018/Cache_Speculation_Side-channels-v2.2.pdf?revision=7de26366-a49f-4c23-85f0-34e8f5e38881
https://developer.arm.com/-/media/developer/pdf/Security%20update%2010%20July%2018/Cache_Speculation_Side-channels-v2.2.pdf?revision=7de26366-a49f-4c23-85f0-34e8f5e38881
https://developer.arm.com/-/media/developer/pdf/Security%20update%2010%20July%2018/Cache_Speculation_Side-channels-v2.2.pdf?revision=7de26366-a49f-4c23-85f0-34e8f5e38881
https://github.com/HACS-workshop/spectre-mitigations/blob/master/crypto_guidelines.md
https://github.com/HACS-workshop/spectre-mitigations/blob/master/crypto_guidelines.md
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit
https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html

Secrets via Speculative Execution. CoRR abs/1802.09085 (2018).
arXiv:1802.09085 http://arxiv.org/abs/1802.09085

[14] H. Chen, X. Wu, L. Yuan, B. Zang, P. c. Yew, and F. T. Chong. 2008.
From Speculation to Security: Practical and Efficient Information
Flow Tracking Using Speculative Hardware. In 2008 International
Symposium on Computer Architecture. 401–412. https://doi.org/10.
1109/ISCA.2008.18

[15] Shimin Chen, Phillip B. Gibbons,Michael Kozuch, and Todd C.Mowry.
2011. Log-based Architectures: Using Multicore to Help Software
Behave Correctly. SIGOPS Oper. Syst. Rev. 45, 1 (Feb. 2011), 84–91.
https://doi.org/10.1145/1945023.1945034

[16] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John
Sartori. 2017. Software-based Gate-level Information Flow Security
for IoT Systems. In Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO-50 ’17). ACM, New
York, NY, USA, 328–340. https://doi.org/10.1145/3123939.3123955

[17] JonathanCorbet. 2017. The current state of kernel page-table isolation.
https://lwn.net/Articles/741878/. Online; accessed Jan 2018.

[18] Marc L Corliss, E Christopher Lewis, and Amir Roth. 2003. DISE: A
programmable macro engine for customizing applications. In Com-
puter Architecture, 2003. Proceedings. 30th Annual International Sym-
posium on.

[19] Marc L Corliss, E Christopher Lewis, and Amir Roth. 2005. Low-
overhead interactive debugging via dynamic instrumentation with
DISE. In 11th International Symposium on High-Performance Computer
Architecture.

[20] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. 2005. Using
DISE to Protect Return Addresses from Attack. SIGARCH Comput.
Archit. News (March 2005).

[21] Jedidiah R. Crandall and Frederic T. Chong. 2004. Minos: Control Data
Attack Prevention Orthogonal toMemoryModel. In Proceedings of the
37th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 37). IEEE Computer Society, Washington, DC, USA, 221–232.
https://doi.org/10.1109/MICRO.2004.26

[22] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. Virtual
Ghost: Protecting Applications from Hostile Operating Systems. In
Proceedings of the 19th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’14).
ACM, New York, NY, USA, 81–96. https://doi.org/10.1145/2541940.
2541986

[23] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve.
2007. Secure Virtual Architecture: A Safe Execution Environment
for Commodity Operating Systems. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’07).
ACM, New York, NY, USA, 351–366. https://doi.org/10.1145/1294261.
1294295

[24] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha:
A Flexible Information Flow Architecture for Software Security. In
Proceedings of the 34th Annual International Symposium on Computer
Architecture (ISCA ’07). ACM, New York, NY, USA, 482–493. https:
//doi.org/10.1145/1250662.1250722

[25] James C Dehnert, Brian K Grant, John P Banning, Richard Johnson,
Thomas Kistler, Alexander Klaiber, and Jim Mattson. 2003. The Trans-
meta Code Morphing Software: using speculation, recovery, and
adaptive retranslation to address real-life challenges. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization.

[26] Matthew DeVuyst, Ashish Venkat, and Dean M Tullsen. 2012. Ex-
ecution migration in a heterogeneous-isa chip multiprocessor. In
Proceedings of the Seventeenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems.

[27] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
2017. Prime+Abort: A Timer-Free High-Precision L3 Cache
Attack using Intel TSX. In 26th USENIX Security Symposium

(USENIX Security 17). USENIX Association, Vancouver, BC, 51–
67. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/disselkoen

[28] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya
Dwarkadas. 2018. Spectres, Virtual Ghosts, and Hardware Support.
In Proceedings of the 7th International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP ’18). ACM, New
York, NY, USA, Article 5, 9 pages. https://doi.org/10.1145/3214292.
3214297

[29] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L. Cox, and Sand-
hya Dwarkadas. 2018. Shielding Software From Privileged Side-
Channel Attacks. In 27th USENIX Security Symposium (USENIX Se-
curity 18). USENIX Association, Baltimore, MD, 1441–1458. https:
//www.usenix.org/conference/usenixsecurity18/presentation/dong

[30] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. 2018. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’18). ACM, New York, NY,
USA, 693–707. https://doi.org/10.1145/3173162.3173204

[31] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Elec-
tromagnetic analysis: Concrete results. In International Workshop on
Cryptographic Hardware and Embedded Systems.

[32] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A
survey of microarchitectural timing attacks and countermeasures on
contemporary hardware. Journal of Cryptographic Engineering 8, 1
(2018), 1–27.

[33] Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA key ex-
traction via low-bandwidth acoustic cryptanalysis. In International
Cryptology Conference.

[34] Daniel Genkin, Adi Shamir, and Eran Tromer. 2016. Acoustic Crypt-
analysis. Journal of Cryptology (2016).

[35] Github. [n. d.]. wrk - a HTTP benchmarking tool. https://github.
com/wg/wrk. Online; accessed Jun 2018.

[36] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clé-
mentine Maurice, and Stefan Mangard. 2017. Kaslr is dead: long live
kaslr. In International Symposium on Engineering Secure Software and
Systems. Springer, 161–176.

[37] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015.
Cache Template Attacks: Automating Attacks on Inclusive
Last-Level Caches. In 24th USENIX Security Symposium (USENIX
Security 15). USENIX Association, Washington, D.C., 897–912.
https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/gruss

[38] Maurice ClémentineWagner Klaus Gruss, Daniel and StefanMangard.
2016. Flush+Flush: A Fast and Stealthy Cache Attack.

[39] V. Haldar, D. Chandra, andM. Franz. 2005. Dynamic taint propagation
for Java. In 21st Annual Computer Security Applications Conference
(ACSAC’05). 9 pp.–311. https://doi.org/10.1109/CSAC.2005.21

[40] W. Halfond, A. Orso, and P. Manolios. 2008. WASP: Protecting Web
Applications Using Positive Tainting and Syntax-Aware Evaluation.
IEEE Transactions on Software Engineering 34, 1 (Jan 2008), 65–81.
https://doi.org/10.1109/TSE.2007.70748

[41] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Comput. Archit. News (Sept. 2006).

[42] Jonathan J Hoch and Adi Shamir. 2004. Fault analysis of stream
ciphers. In International Workshop on Cryptographic Hardware and
Embedded Systems.

[43] Intel. 2008. 2nd Generation Intel Core vPro Processor Family. Tech-
nical Report. http://www.intel.com/content/dam/doc/white-paper/
performance-2nd-generation-core-vpro-family-paper.pdf

[44] Intel. 2014. Software guard extensions programming reference. (2014).
"https://software.intel.com/sites/default/files/329298-001.pdf"

http://arxiv.org/abs/1802.09085
http://arxiv.org/abs/1802.09085
https://doi.org/10.1109/ISCA.2008.18
https://doi.org/10.1109/ISCA.2008.18
https://doi.org/10.1145/1945023.1945034
https://doi.org/10.1145/3123939.3123955
https://lwn.net/Articles/741878/
https://doi.org/10.1109/MICRO.2004.26
https://doi.org/10.1145/2541940.2541986
https://doi.org/10.1145/2541940.2541986
https://doi.org/10.1145/1294261.1294295
https://doi.org/10.1145/1294261.1294295
https://doi.org/10.1145/1250662.1250722
https://doi.org/10.1145/1250662.1250722
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://doi.org/10.1145/3214292.3214297
https://doi.org/10.1145/3214292.3214297
https://www.usenix.org/conference/usenixsecurity18/presentation/dong
https://www.usenix.org/conference/usenixsecurity18/presentation/dong
https://doi.org/10.1145/3173162.3173204
https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.1109/CSAC.2005.21
https://doi.org/10.1109/TSE.2007.70748
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-core-vpro-family-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-generation-core-vpro-family-paper.pdf
"https://software.intel.com/sites/default/files/329298-001.pdf"

[45] Intel. 2018. White paper: Intel Analysis of Speculative Exe-
cution Side Channels. Technical Report 336983-001, Revision
1.0. https://newsroom.intel.com/wp-content/uploads/sites/11/2018/
01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf.

[46] Intel. 2018. White paper: Retpoline: A Branch Target In-
jection Mitigation. Technical Report 337131-003, Revision
003. https://software.intel.com/sites/default/files/managed/1d/46/
Retpoline-A-Branch-Target-Injection-Mitigation.pdf.

[47] Intel Corporation. 2009. Intel® 64 and IA-32 Architectures Optimization
Reference Manual.

[48] Intel Corporation 2011. Intel 64 and IA-32 Architectures Software
Developer’s Manual. Intel Corporation.

[49] Project Zero Jann Horn. 2018. Reading privileged memory with a side-
channel. https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html. Online; accessed Jan 2018.

[50] Morteza Mohajjel Kafshdooz, Mohammadkazem Taram, Sepehr As-
sadi, and Alireza Ejlali. 2016. A Compile-Time Optimization Method
forWCET Reduction in Real-Time Embedded Systems Through Block
Formation. ACMTrans. Archit. Code Optim. 12, 4, Article 66 (Jan. 2016),
25 pages. https://doi.org/10.1145/2845083

[51] R. Karri, K. Wu, P. Mishra, and Yongkook Kim. 2002. Concurrent
error detection schemes for fault-based side-channel cryptanalysis
of symmetric block ciphers. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 21, 12 (Dec 2002), 1509–1517.
https://doi.org/10.1109/TCAD.2002.804378

[52] Mehmet Kayaalp, Khaled N. Khasawneh, Hodjat Asghari Esfeden,
Jesse Elwell, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. 2017. RIC: Relaxed Inclusion Caches for Mitigating LLC Side-
Channel Attacks. In Proceedings of the 54th Annual Design Automation
Conference 2017 (DAC ’17). ACM, New York, NY, USA, Article 7,
6 pages. https://doi.org/10.1145/3061639.3062313

[53] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. 2018. SafeSpec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation. arXiv preprint arXiv:1806.05179 (2018).

[54] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer
overflows: Attacks and defenses. arXiv preprint arXiv:1807.03757
(2018).

[55] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer
Overflows: Attacks and Defenses. arXiv preprint arXiv:1807.03757
(2018).

[56] Paul Kocher. 2018. Spectre Mitigations in Microsoft’s
C/C++ Compiler . https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html. Online; accessed
Jul 2018.

[57] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2018. Spectre Attacks: Exploiting Specu-
lative Execution. ArXiv e-prints (Jan. 2018). arXiv:1801.01203

[58] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation
Attacks using the Return Stack Buffer. In 12th USENIXWorkshop on Of-
fensive Technologies (WOOT 18). USENIX Association, Baltimore, MD.
https://www.usenix.org/conference/woot18/presentation/koruyeh

[59] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation
Attacks using the Return Stack Buffer. In 12th USENIXWorkshop on Of-
fensive Technologies (WOOT 18). USENIX Association, Baltimore, MD.
https://www.usenix.org/conference/woot18/presentation/koruyeh

[60] Monica S. Lam, Michael Martin, Benjamin Livshits, and John Wha-
ley. 2008. Securing Web Applications with Static and Dynamic
Information Flow Tracking. In Proceedings of the 2008 ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-based Pro-
gram Manipulation (PEPM ’08). ACM, New York, NY, USA, 3–12.

https://doi.org/10.1145/1328408.1328410
[61] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,

Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown:
Reading Kernel Memory from User Space. In 27th USENIX Security
Symposium (USENIX Security 18).

[62] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. 2015. Last-Level Cache Side-Channel Attacks Are Practical.
In Proceedings of the 2015 IEEE Symposium on Security and Privacy
(SP ’15). IEEE Computer Society, Washington, DC, USA, 605–622.
https://doi.org/10.1109/SP.2015.43

[63] Jason Lowe-Power. 2018. Visualizing Spectre with gem5. http://www.
lowepower.com/jason/visualizing-spectre-with-gem5.html. Online;
accessed Jun 2018.

[64] Jason Lowe-Power, Venkatesh Akella, Matthew K. Farrens, Samuel T.
King, and Christopher J. Nitta. 2018. Position Paper: A Case for
Exposing Extra-architectural State in the ISA. In Proceedings of the
7th International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP ’18). ACM, New York, NY, USA, Article 8,
6 pages. https://doi.org/10.1145/3214292.3214300

[65] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and
Roger A. Bringmann. 1992. Effective compiler support for predicated
execution using the hyperblock. In MICRO.

[66] Giorgi Maisuradze and Christian Rossow. 2018. Ret2Spec: Speculative
Execution Using Return Stack Buffers. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS
’18). ACM, New York, NY, USA, 2109–2122. https://doi.org/10.1145/
3243734.3243761

[67] Microsoft Security Response Center (MSRC) Matt Miller. 2018.
Analysis and mitigation of speculative store bypass (CVE-2018-
3639). https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-
and-mitigation-of-speculative-store-bypass-cve-2018-3639/. Online;
accessed Jul 2018.

[68] Keaton Mowery, Sriram Keelveedhi, and Hovav Shacham. 2012. Are
AES x86 cache timing attacks still feasible?. In Proceedings of the 2012
ACM Workshop on Cloud computing security workshop.

[69] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein,
and Christof Fetzer. 2018. You Shall Not Bypass: Employing data
dependencies to prevent Bounds Check Bypass. CoRR abs/1805.08506
(2018). arXiv:1805.08506 http://arxiv.org/abs/1805.08506

[70] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and An-
gelos D. Keromytis. 2015. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and Their Implications. In Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications
Security.

[71] Guilherme Ottoni, Thomas Hartin, ChristopherWeaver, Jason Brandt,
Belliappa Kuttanna, and HongWang. 2011. Harmonia: A Transparent,
Efficient, and Harmonious Dynamic Binary Translator Targeting the
Intel&Reg; Architecture. In Proceedings of the 8th ACM International
Conference on Computing Frontiers (CF ’11). ACM, New York, NY,
USA, Article 26, 10 pages. https://doi.org/10.1145/2016604.2016635

[72] Andrew Pardoe. 2018. Spectre mitigations in MSVC .
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-
mitigations-in-msvc/. Online; accessed Jul 2018.

[73] Joseph CH Park and Mike Schlansker. 1991. On predicated execution.
Hewlett-Packard Laboratories Palo Alto, California.

[74] Will Reese. 2008. Nginx: The High-performance Web Server and
Reverse Proxy. Linux J. 2008, 173, Article 2 (Sept. 2008). http://dl.
acm.org/citation.cfm?id=1412202.1412204

[75] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
2012. Return-oriented programming: Systems, languages, and ap-
plications. ACM Transactions on Information and System Security
(2012).

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://doi.org/10.1145/2845083
https://doi.org/10.1109/TCAD.2002.804378
https://doi.org/10.1145/3061639.3062313
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
http://arxiv.org/abs/1801.01203
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1145/1328408.1328410
https://doi.org/10.1109/SP.2015.43
http://www.lowepower.com/jason/visualizing-spectre-with-gem5.html
http://www.lowepower.com/jason/visualizing-spectre-with-gem5.html
https://doi.org/10.1145/3214292.3214300
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
http://arxiv.org/abs/1805.08506
http://arxiv.org/abs/1805.08506
https://doi.org/10.1145/2016604.2016635
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
http://dl.acm.org/citation.cfm?id=1412202.1412204
http://dl.acm.org/citation.cfm?id=1412202.1412204

[76] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
2018. NetSpectre: Read Arbitrary Memory over Network. arXiv
preprint arXiv:1807.10535 (2018).

[77] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. 2004. On the Effectiveness of Address-
space Randomization. In Proceedings of the 11th ACM Conference on
Computer and Communications Security (CCS ’04). ACM, New York,
NY, USA, 298–307. https://doi.org/10.1145/1030083.1030124

[78] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU
Register State using Microarchitectural Side-Channels. arXiv preprint
arXiv:1806.07480 (2018).

[79] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas.
2004. Secure Program Execution via Dynamic Information Flow
Tracking. In Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS XI). ACM, New York, NY, USA, 85–96. https:
//doi.org/10.1145/1024393.1024404

[80] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2018.
Mobilizing the Micro-Ops: Exploiting Context Sensitive Decoding
for Security and Energy Efficiency. In Proceedings of the 45th Annual
International Symposium on Computer Architecture (ISCA ’18).

[81] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar
Mysore, Frederic T. Chong, and Timothy Sherwood. 2009. Com-
plete Information Flow Tracking from the Gates Up. In Proceedings of
the 14th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XIV). ACM, New
York, NY, USA, 109–120. https://doi.org/10.1145/1508244.1508258

[82] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018.
MeltdownPrime and SpectrePrime: Automatically-Synthesized At-
tacks Exploiting Invalidation-Based Coherence Protocols. CoRR
abs/1802.03802 (2018). arXiv:1802.03802 http://arxiv.org/abs/1802.
03802

[83] DeanM Tullsen, Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo,
and Rebecca L Stamm. 1996. Exploiting choice: Instruction fetch and
issue on an implementable simultaneous multithreading processor. In
ACM SIGARCH Computer Architecture News, Vol. 24. ACM, 191–202.

[84] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. 1995. Si-
multaneous Multithreading: Maximizing On-chip Parallelism. In
Proceedings of the 22Nd Annual International Symposium on Com-
puter Architecture (ISCA ’95). ACM, New York, NY, USA, 392–403.
https://doi.org/10.1145/223982.224449

[85] Paul Turner. 2018. Retpoline: a software construct for preventing
branch-target-injection. https://support.google.com/faqs/answer/
7625886. Online; accessed Jul 2018.

[86] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A.
Blome, G. A. Reis, M. Vachharajani, and D. I. August. 2004. RIFLE:
An Architectural Framework for User-Centric Information-Flow Se-
curity. In Microarchitecture, 2004. MICRO-37 2004. 37th International
Symposium on. 243–254. https://doi.org/10.1109/MICRO.2004.31

[87] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yu-
val Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Execu-
tion. In Proceedings of the 27th USENIX Security Symposium. USENIX
Association. See also technical report Foreshadow-NG [95].

[88] Ashish Venkat. 2018. Breaking the ISA Barrier in Modern Computing.
Ph.D. Dissertation. UC San Diego.

[89] Ashish Venkat, Arvind Krishnaswamy, Koichi Yamada, and Rajan
Palanivel. 2015. Binary Translation driven Program State Relocation.
In United States Patent Grant US009135435B2.

[90] Ashish Venkat, S Shamasunder, Hovav Shacham, and DeanM. Tullsen.
2016. HIPStR: Heterogeneous-ISA Program State Relocation. In Pro-
ceedings of the International Symposium on Architectural Support for
Programming Languages and Operating Systems.

[91] Ashish Venkat and Dean M. Tullsen. 2014. Harnessing ISA diversity:
Design of a heterogeneous-ISA chip multiprocessor. In Proceedings
of the International Symposium on Computer Architecture.

[92] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. 2008.
FlexiTaint: A programmable accelerator for dynamic taint propaga-
tion. In 2008 IEEE 14th International Symposium on High Performance
Computer Architecture. 173–184. https://doi.org/10.1109/HPCA.2008.
4658637

[93] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. 2007. Cross Site Script-
ing Prevention with Dynamic Data Tainting and Static Analysis.. In
NDSS, Vol. 2007. 12.

[94] Zhenghong Wang and Ruby B Lee. 2006. Covert and side channels
due to processor architecture. In Computer Security Applications Con-
ference, 2006. ACSAC’06. 22nd Annual. IEEE, 473–482.

[95] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F.
Wenisch, and Yuval Yarom. 2018. Foreshadow-NG: Breaking the
Virtual Memory Abstraction with Transient Out-of-Order Execu-
tion. Technical report (2018). See also USENIX Security paper Fore-
shadow [87].

[96] Troy Wolverton. 2018. Spectre and Meltdown are now a le-
gal pain for Intel, the chip maker faces 35 lawsuits over the at-
tacks. https://www.businessinsider.com/35-lawsuits-have-been-
filed-against-intel-over-spectre-and-meltdown-2018-2. Online; ac-
cessed Aug 2018.

[97] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the
Hyper-space: High-speed Covert Channel Attacks in the Cloud. In
Presented as part of the 21st USENIX Security Symposium (USENIX Se-
curity 12). USENIX, Bellevue, WA, 159–173. https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/wu

[98] Wei Xu, Sandeep Bhatkar, and Ramachandran Sekar. 2006. Taint-
Enhanced Policy Enforcement: A Practical Approach to Defeat a
Wide Range of Attacks.. In USENIX Security Symposium. 121–136.

[99] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas.
2018. InvisiSpec: Making Speculative Execution Invisible in the Cache
Hierarchy. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 428–441. https://doi.org/10.1109/MICRO.
2018.00042

[100] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack.. In USENIX
Security.

[101] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed:
A timing attack on OpenSSL constant time RSA. In International
Conference on Cryptographic Hardware and Embedded Systems.

[102] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek.
2009. Improving Application Security with Data Flow Assertions.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles (SOSP ’09). ACM, New York, NY, USA, 291–304.
https://doi.org/10.1145/1629575.1629604

[103] Craig Zilles. 2001. Linked List Traversal Micro-Benchmark. http:
//zilles.cs.illinois.edu/llubenchmark.html. Online; accessed Jun 2018.

https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1145/1024393.1024404
https://doi.org/10.1145/1024393.1024404
https://doi.org/10.1145/1508244.1508258
http://arxiv.org/abs/1802.03802
http://arxiv.org/abs/1802.03802
http://arxiv.org/abs/1802.03802
https://doi.org/10.1145/223982.224449
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://doi.org/10.1109/MICRO.2004.31
https://doi.org/10.1109/HPCA.2008.4658637
https://doi.org/10.1109/HPCA.2008.4658637
https://www.businessinsider.com/35-lawsuits-have-been-filed-against-intel-over-spectre-and-meltdown-2018-2
https://www.businessinsider.com/35-lawsuits-have-been-filed-against-intel-over-spectre-and-meltdown-2018-2
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1145/1629575.1629604
http://zilles.cs.illinois.edu/llubenchmark.html
http://zilles.cs.illinois.edu/llubenchmark.html

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Assumptions and Threat Model
	4 Architectural Overview
	5 Design and Implementation
	5.1 Microcode Customization
	5.2 Decoder-Level Information Flow Tracking
	5.3 Mitigations for Control-flow Mistraining

	6 Methodology
	7 Evaluation
	7.1 Security Discussion
	7.2 Performance

	8 Conclusion
	Acknowledgments
	References

