
Composite-ISA Cores: Enabling Multi-ISA Heterogeneity Using a Single ISA
Ashish Venkat

University of Virginia
venkat@virginia.edu

Harsha Basavaraj Dean M. Tullsen
University of California, San Diego
{hbasavar | tullsen@cs.ucsd.edu}

Abstract—Heterogeneous multicore architectures are com-
prised of multiple cores of different sizes, organizations, and
capabilities. These architectures maximize both performance
and energy efficiency by allowing applications to adapt to
phase changes by migrating execution to the most efficient
core. Heterogeneous-ISA architectures further take advantage
of the inherent ISA preferences of different application phases
to provide additional performance and efficiency gains.

This work proposes composite-ISA cores that implement
composite feature sets made available from a single large
superset ISA. This architecture has the potential to recreate,
and in many cases supersede, the gains of multi-ISA het-
erogeneity, by leveraging a single composite-ISA, exploiting
greater flexibility in ISA choice. Composite-ISA CMPs enhance
existing performance gains due to hardware heterogeneity by
an average of 19%, and have the potential to achieve an
additional 31% energy savings and 35% reduction in Energy
Delay Product, with no loss in performance.

Keywords-heterogeneous architectures; multicore processors;
ISA; RISC; CISC; energy efficiency; single-thread performance

I. INTRODUCTION
Modern processors increasingly employ specialization to

improve the execution efficiency of domain-specific workloads [1]–
[6]. Additionally, some take advantage of microarchitectural
heterogeneity by combining large high-performance cores and
small power-efficient cores on the same chip, to create efficient
designs that cater to the diverse execution characteristics of
general-purpose mixed workloads [7]–[14]. Heterogeneous-ISA
architectures [15]–[17] further expand the dimensions of hardware
specialization by synergistically combining microarchitectural
heterogeneity with ISA heterogeneity, exploiting the inherent
ISA affinity of an application.

ISA heterogeneity provides the hardware architect and the
compiler designer with finer control over features such as register
pressure, predication support, and addressing mode availability,
that could each significantly impact the overall throughput of
the code [16], [18]–[20]. Multiple independent explorations
have shown that ISA heterogeneity substantially improves
execution efficiency in both chip multiprocessor (CMP) [15]–[22]
and datacenter environments [23], [24], and these effects are
particularly pronounced in scenarios where microarchitectural
heterogeneity alone provides diminishing returns [16], [19].

However, in prior work, the ISA-dependent features had to be
selected at a very coarse level. For example, the hardware
designer might either choose x86 that comes with perhaps one
key feature of interest but a lot of other overheads, or Thumb
which forgoes several non-essential features but also a few
others that are of significance. Such coarse selection greatly
restricts both the ability to assign threads to the best core, but
even more so it restricts the processor architect in identifying the
best combination of hardware features to assign to a globally
optimal set of heterogeneous cores.

Furthermore, despite their potential for greater performance
and energy efficiency, the deployment of heterogeneous ISAs
on a single chip is non-trivial. First, integration of multiple
vendor-specific commercial ISAs on a single chip is fraught
with significant licensing, legal, and verification costs and
barriers. Second, process migration in a heterogeneous-ISA CMP
necessitates the creation of fat binaries, and involves expensive
binary translation and state transformation costs due to the

difference in encoding schemes and application-binary interfaces
(ABI) of fully disjoint ISAs.

This work proposes composite-ISA architectures that employ
compact cores implementing fully custom ISAs derived from a
single large superset ISA. If such an architecture can just match
the performance and energy of the multi-ISA designs, this is a
significant win due to the elimination of multi-vendor licensing,
testing and verification issues, fat binaries, and high migration
overheads. However, our results show that this design can, in
fact, significantly outperform fully heterogeneous-ISA designs,
due to greatly increased flexibility in creating cores that mix and
match specific sets of features.

To derive fully custom ISAs with diverse capabilities, we first
construct a well-defined baseline superset ISA that offers a wide
range of customizable features: register depth (programmable
registers supported), register width, addressing mode complexity,
predication, and vector support. Ignoring some permutations of
these features that are not viable or unlikely to be useful, this
still gives the processor designer 26 custom ISAs that are
potentially useful. Thus, by starting with a single superset ISA,
the designer has far more choice and control than selecting from
among existing commercial ISAs.

This work features a massive design space exploration that
sweeps through all viable combinations of the customizable
ISA features, along with an extensive set of customizable
microarchitectural parameters, to identify optimal designs. A
major contribution of this work is the isolation of specific
ISA features that improve single thread performance and/or
increase multi-programmed workload throughput/efficiency, and
an extensive study of their effect on important architectural
design choices that enable efficient transistor investment on the
available silicon real estate.

In this work, we construct the superset ISA using extensions
and mechanisms completely consistent and compatible with the
existing Intel x86 ISA. However, we note that greater levels of
customization can be achieved by creating a new (superset) ISA
from scratch. We start with x86 because it not only already
employs a large set of the features we want, but it has a clear
history and process for adding extensions. In this work, we
present detailed compiler techniques to extend the x86 backend
to both support and exploit the extra features that we add and to
customize existing features. We also describe migration strategies
(with negligible binary translation costs) to switch between
the composite ISAs that implement overlapping feature sets.
In addition, this work features a comprehensive analysis of
the hardware implications of the custom feature set options,
including a full synthesized RTL design of multiple versions of
the x86 decoder.

Due to the constraint of a single baseline superset ISA,
the derived custom ISAs can never incorporate all traits of
distinct vendor-specific ISAs (such as the code compression of
Thumb). However, the greater flexibility and composability
of our design results in greater overall efficiency. In designs
optimized for multithreaded mixed workloads, we gain 18% in
performance and reduce the energy-delay product (EDP) by 35%
over single-ISA heterogeneous designs, without sacrificing most
of the benefits of a single ISA. In designs optimized for single

thread performance/efficiency, we achieve a speedup of 20%
and an EDP reduction of 28% on average, over designs that
only employ hardware heterogeneity. Further, we match and in
fact supersede (by 15%) the gains of a heterogeneous-ISA
CMP with vendor-specific ISAs, while effectively eliminating
vendor-specific ISA licensing issues, fat binary requirements,
binary translation, and state transformation costs.

II. RELATED WORK

Kumar, et al. [10]–[12] introduced single-ISA heterogeneous
multicore architectures. These architectures employ cores
of different sizes, organizations, and capabilities, allowing
an application to dynamically identify and migrate to the
most efficient core, thereby maximizing both performance
and energy efficiency. Single-ISA heterogeneity has been
well studied and applied broadly in embedded [4], [8], [14],
general-purpose [10], [11], [25], GPU [3], [7], autonomous
driving [26], and datacenter [27]–[29] environments. Architects
have further explored several microarchitectural [30]–[38] and
scheduling techniques [13], [39]–[55] to better harness the gains
due to single-ISA heterogeneity.

Heterogeneous-ISA architectures [15]–[17], [20]–[22],
[56] explore yet another dimension of heterogeneity. These
architectures allow cores that are already microarchitecturally
heterogeneous to further implement diverse instruction sets. By
exploiting ISA affinity, where different code regions within
an application inherently favor a particular ISA, they realize
substantial performance and efficiency gains over hardware
heterogeneity alone. Prior work shows that ISA affinity is
beneficial not just in general-purpose environments, but could
potentially enable significant energy efficiency in datacenter
environments [23], [24], [57]. Wang, et al. [58] further enable
offloading of binary code regions in a heterogeneous-ISA
client/server environment. Furthermore, considerable prior work
implements replicated OS kernel support for heterogeneous-ISA
architectures [24], [59], [60].

Blem, et al. [61] claim that modern ISAs such as ARM
and x86 have a similar impact in terms of performance and
energy efficiency, but that work only compares similarly register
pressure-constrained ISAs (ARM-32 and x86-32), turns off
machine-specific tuning, ignores feature set differences (e.g.,
Thumb), and makes homogeneous hardware assumptions, unlike
the work on heterogeneous-ISA architectures [16], [20], [21],
[23], [24]. Akram and Sawalha [18], [19] perform extensive
validation of the conflicting claims and conclude that the ISA
does indeed have a significant impact on performance.

The RISC-V architecture provides extensive support in terms
of both instruction set design and customizations for hardware
accelerators [62], [63]. Although we choose our baseline ISA to
be x86, the techniques we describe are not limited to x86. The
RISC-V ISA allows enough flexibility to carve out similar axes of
customization that we explore in this work, and thus would also
be a reasonable host ISA for a composite-ISA architecture. On a
fixed-length ISA like RISC-V, we expect to retain most of the
benefits due to diversity in register depth/width, predication, and
addressing-mode complexity. However, there may be additional
effects due to the difference in code density–some of which
manifested in the multi-vendor heterogeneous-ISA work that
considered both fixed-length and variable-length ISAs [16].

There has been significant design space exploration [12],
[16], [64]–[67] studies in related work.Intel’s QuickIA [68],

Fabscalar [69], [70], OpenPiton [71], [72], the heterogeneous-
ISA JuxtaPiton [73], and Alladin [74], [75] further allow the
exploration of heterogeneous architectures of varying complexity.
We do not include the exploration of GPUs and other accelerator
designs in our search space since we target diversity in execution
characteristics and our primary goal is to achieve the gains of
multi-vendor ISA-heterogeneity [16], [19], [20], [24] using a
single ISA.

III. ISA FEATURE SET DERIVATION

In this section, we describe our superset ISA. It resembles
x86, but with an additional set of features that can be customized
along 5 different dimensions: register depth, register width,
opcode and addressing mode complexity, predication, and
data-parallel execution. We further study the code generation
impact, processor performance, power, and area implications of
each dimension.

Register Depth. The number of programmable registers
exposed by the ISA to the compiler/assembly programmer
constitutes an ISA’s register depth. The importance of register
depth as an ISA feature is well established due to its close
correlation to the actual register pressure (number of registers
available for use) in any given code region [76]–[79]. While
most compiler intermediate representations allow for a large
number (potentially infinite) of virtual registers, the number of
architectural registers is limited, resulting in spills and refills
of temporary values into memory, and limiting the overall
instruction-level parallelism [18], [19].

Register depth not only affects efficient code generation, but
significantly impacts machine-independent code optimizations
due to (register pressure sensitive) redundancy elimination and
re-materialization (re-computation of a temporary value to
avoid spills/refills) [80]–[84]. For example, decreasing the
register depth from 32 to 16 registers in our custom feature sets
results in a increase of 3.7% in stores (spills), 10.3% in loads
(refills), 3.5% increase in integer instructions and 2.7% in
branch instructions (rematerialization) on the SPEC CPU2006
benchmarks compiled using the methodology described in
Section IV.

Furthermore, the backend area and power is strongly correlated
to the ISA’s register depth, impacting the nature and size of
structures such as the reorder buffer and the physical register file
– even with register renaming (i.e., dynamically scheduled
cores) the physical register file still scales partially with ISA
register depth. In our superset ISA, we allow register depth to be
customized to 8, 16, 32, and 64 registers. A composite-ISA
design that customizes each core with a different register depth
alleviates the register pressure of impacted code regions by
migration to a core with greater register depth, and at the
same time saves power by enabling smaller microarchitectural
structures in other cores.

Register Width. Like register depth, the register width
of an architecture impacts performance and efficiency in
several different ways. First, wider data types implies wider
pointers allowing access to larger virtual memory and avoiding
unnecessary memory mapping to files. However, wide pointers
potentially expand the cache working set, thereby negatively
impacting performance [85]. Second, wider registers can often
be addressed as individual sub-registers enhancing the overall
register depth of the ISA. Most compilers’ register allocators
take advantage of sub-registers (e.g., eax, ax, al etc) and perform

ISA

x86+SSE microx86

32-bit 64-bit 32-bit 64-bit

8 6416 32 6416 32 8 6416 32 6416 32

Full Partial

Instruction Complexity and SIMD

Register width

Register depth

Predication Full Partial Full Partial Full Partial Full Partial Full Partial Full Partial Full Partial Full Partial Full Partial Full Partial Full PartialPartial Partial

Figure 1. Derivation of Composite Feature Sets from a Superset ISA.

aggressive live range splitting and sub-register coalescing [81],
[83], [86]–[89]. Third, emulating data types wider than the
underlying ISA/core’s register width not only requires more
dynamic instructions, but could potentially use up more registers
and thereby adversely impact register pressure.

Finally, wider registers imply larger physical register files
in the pipeline which impacts both core die area and overall
power consumption. In our experiments, doubling the register
width from 32 bits to 64 bits impacts processor power by as
much as 6.4% across different register depth organizations. Our
superset ISA supports both 32-bit and 64-bit wide registers like
x86, but we modify the instruction encoding to eliminate any
restrictions on the addressing of a particular register, sub-register,
or combination thereof.

Instruction Complexity. The variety of opcodes and
addressing modes offered by an instruction set controls the
mix of dynamic instructions that enter and flow through the
pipeline. Incorporating a reduced set of opcodes and addressing
modes into the instruction set could significantly simplify
the instruction decode engine, if chosen carefully. In fact, by
excluding instructions that translate to more than one micro-op,
we can save as much as 9.8% in peak power and 15.1% in area.
However, for some code regions, such a scheme could increase
the overall code size, potentially impacting both the overall
instruction cache accesses and instruction fetch energy.

To derive such a reduced feature set, we carve out a subset of
opcodes and addressing modes from our superset ISA that can
be implemented using a single micro-op, essentially creating
custom cores that implement the x86 micro-op ISA, albeit
with variable-length encoding. The reduced feature set, called
microx86 in this work, adheres to the load-compute-store
philosophy followed by most RISC architectures. As a result, we
could view this option as RISC vs CISC support. While one
could conceive a more aggressive low-power implementation of
microx86 that implements fewer opcodes and further recycles
opcodes for a more compact representation [90]–[94], we keep all
the same opcodes, and thus follow x86’s existing variable-length
encoding and 2-phase decoding scheme. This not only maintains
consistency with existing implementations of x86, but prevents
us from incurring the binary translation costs associated with
multi-vendor heterogeneous-ISA designs. However, this does
mean we cannot completely replicate the instruction memory
footprint of a theoretically minimal representation.

Predication. Predication converts control dependences into
data dependences in order to eliminate branches from the
instruction stream and consequently take pressure off the branch
predictor and associated structures [95]–[99], while also removing
constraints on the compiler’s instruction scheduler. Modern ISA
implementations of predication can be classified into three
categories: (a) partial predication that allows only a subset of the
ISA’s instructions to be predicated, (b) full predication that
allows any instruction to be predicated using a predefined set of

Figure 2. SPEC2006 Instr. Mix (normalized to x86-64)

predicated registers, and (c) conditional execution that allows any
instruction to be predicated using one condition code register.

The x86 ISA already implements partial predication via
CMOVxx instructions that are predicated on condition codes. In
this work, we add full predication support to our superset
ISA, allowing any instruction to be predicated using any
available general-purpose register using the if-conversion strategy
described in Section IV. While predication eliminates branch
dependences, aggressive if-conversion typically increases the
number of dynamic instructions, thus placing more pressure on
the instruction fetch unit and the instruction queue. In our
custom feature sets that offer predication, we observe an average
increase of 0.6% in the number of dynamic instructions with a
reduction of 6.5% in branches.

Data-Parallel Execution. Most modern instruction sets
offer primitives to perform SIMD operations [85], [100]–[102] to
take advantage of the inherent data-level parallelism in specific
code regions. The x86 ISA already supports multiple feature sets
that implement a variety of SIMD operations. We include the
SSE2 feature set in our superset ISA that can compute on
data types that are as wide as 128 bits as implemented in the
gem5 simulator [103]. Furthermore, we constrain our microx86
implementations to not include SSE2 since more than 50% of
SIMD operations rely on 1:n encoding of macro-op to micro-op.
In our composite-ISA design, cores that do not implement SSE2
save 7.4% in peak power and 17.3% in area. They execute a
precompiled scalarized version of the code when available, and
in most cases, migrate code regions that enter intense vector
activity to cores with full vector support.

In summary, we derive 26 different custom feature sets along
the five dimensions described above.We exclude full predication
from our 32-bit feature sets that have only 8 registers since they
suffer from high register pressure. In fact, LLVM’s predication
profitability analysis seldom turns on predication with 8 registers.
Similarly, we constrain 64-bit ISAs to support a register depth of
at least 16.

Figure 2 shows the dynamic instruction (micro-op) breakdown
for the SPEC CPU2006 benchmarks on three different custom
ISAs: (a) the 32-bit version of microx86 with a register depth of 8
and no additional features (smallest feature set in our exploration),
(b) the x86-64 ISA with SSE and no other customizations, and
(c) the superset ISA which implements all the features described
above. Due to the high register pressure in microx86-32, it
incurs an average of 28% higher memory references than x86-64
and an overall expansion of 11% in the number of micro-ops.

Also compared to the x86-64, we find that the superset ISA,
owing to the diverse set of custom features added, sees an
average reduction of 8.5% in loads (spill elimination), 6.3% in
integer instructions (aggressive redundancy elimination), and
3.2% in branches (predication).

IV. COMPILER AND RUNTIME STRATEGY

In this section, we describe our compilation strategy that
generates code to efficiently take advantage of the underlying
custom feature sets, and our runtime migration strategy that
allows code regions to seamlessly migrate back and forth
between different custom feature sets, without the overhead of
full binary translation and/or state transformation.
A. Compiler Toolchain Development

Compilation to a superset ISA or a combination of custom
feature sets allows different code regions to take advantage
of the variety of custom feature sets implemented by the
underlying hardware. For example, code regions with high
register pressure could be compiled to execute on a feature set
with greater register depth, and code regions with too many
branches could be compiled to execute predicated code. We
leverage the LLVM MC infrastructure [89] to efficiently encode
the right set of features supported by the underlying custom
design and further propagate it through various instruction
selection, code generation, and machine-dependent optimization
passes. We further take advantage of the MC code emitter
framework to encode feature sets such as register depth and
predication that require an extra prefix.

To convert the existing x86 backend to that of the superset
ISA, we first include the additional 48 registers in the ISA’s
target description and further associate code density costs with
it. This enables the register allocator to always prioritize the
allocation of a register that requires fewer prefix bits to encode
it. Furthermore, we allow each of these registers to be addressed
as a byte, a word, a doubleword, and a quadword register,
thereby smoothly blending into the register pressure tracking and
subregister coalescing framework.

We next implement full predication in x86 by re-purposing the
existing machine-dependent if-conversion framework of LLVM
that implements if-conversions in three scenarios: (a) diamond –
when a true basic block and a false basic block split from an
entry block and rejoin at the tail, (b) triangle – when the true
block falls through into the false block, and (c) simple – when
the basic blocks split but do not rejoin, such as a break statement
within a conditional. For every such pattern in the control flow
graph, if-conversion is performed if determined profitable. The
profitability of if-conversion is based on branch probability
analysis, the approximate latency of machine instructions that
occur in each path, and the configured pipeline depth. We
further add the if-conversion pass as a pre-scheduling pass for
the X86 target – this allows the scheduling pass to take full
advantage of the large blocks of unscheduled code created by
the if-conversion.

To implement microx86, we modify the existing x86 backend
to exclude all opcodes, addressing modes, and prefixes that
decode into more than one micro-op during machine instruction
selection. While LLVM’s instruction selector, for the most part,
identifies a replacement ld-compute-st combination for the
excluded addressing mode, certain IR instructions such as tail
jumps and tail call returns require explicit instruction lowering.

For each code region (where we roughly define a region as

the set of code that dominates a simpoint phase), the compiler
must now make a global (or regional) decision about which
features to use and which to skip. Further, the compiler should
make these decisions with some knowledge of the features
of the cores for the processor on which it will run. While
we find that LLVM already makes profitable decisions for
several features we explore (e.g., register depth and predication),
near-optimal instruction selection (microx86 vs x86) would still
need a well-defined heuristics approach. Because we examine so
many core combinations in our design space exploration, we
assume the compiler makes good instruction selection decisions
about which features to include in compilation in all cases. So
despite the fact that features included in compilation are not
static for a region (across experiments), we can still see clear
trends in code affinity for features.

We find that the highly register-constrained benchmark hmmer
is consistently compiled to use all 64 registers across all code
regions. In contrast, only one phase of the benchmark bzip2 is
compiled with a register depth of 64, with the rest of the seven
regions typically compiled with a register depth of 32. The
benchmark lbm exhibits low register pressure and prefers a
register depth of 16. While most code regions prefer microx86,
when constrained by fewer than 32 registers, x86 is preferred
since the complex addressing modes somewhat alleviate the
register pressure, as evidenced in the benchmarks sjeng and mcf.
Similarly, the compiler employs predication in four regions of
the benchmark milc, but does not find it to be profitable in two
other regions of the same benchmark. Furthermore, due to the
high register pressure and lack of free registers on hmmer, the
compiler harnesses the full suite of complex addressing modes
offered by x86 and seldom employs predication. These decisions
propagate through the rest of the optimization passes resulting in
carefully optimized code for the underlying feature set.
B. Migration Strategy

Process migration across overlapping custom feature sets
could involve two scenarios. In an upgrade scenario, a process is
compiled to use only a subset of the features implemented by
the core to which it is migrated, and therefore can resume native
execution immediately after migration (no binary translation or
state transformation). Conversely, in a downgrade scenario, the
core to which a process is migrated implements only a subset of
the features being used by the running code, which necessitates
minimal binary translation of unimplemented features. We
outline the following low-overhead mechanisms to handle feature
downgrades.

Owing to the overlapping nature of the feature sets (same
opcode and instruction format), feature emulation entails only a
small set of binary code transformations, in contrast to full blown
cross-ISA binary translation. First, when we downgrade from x86
to microx86, we perform simple addressing mode transformations
by translating any instruction that directly operates on memory
into a set of simpler instructions that adhere to the ld-compute-st
format. Second, we downgrade to a feature set with a smaller
register depth by translating higher (unimplemented) registers
into memory operands using a register context block [15], [104],
[105], a commonly used technique during binary translation to
register pressure-constrained ISAs. Third, we perform long-mode
emulation [16], [105] and use fat pointers implemented using
xmm registers in order to emulate wider types on a 32-bit core.
Finally, we employ simple reverse if-conversions to translate

Legacy
Prefixes

REX
Prefix SIBModR/M DisplacementOpcode Immediate

Grp 1, Grp 2,
Grp 3, Grp 4
(optional)

(optional) 1-byte or 2-byte
or 3-byte

1-byte
(if required)

1-byte
(if required)

 Address
displacement of
1-, 2- or 4-bytes

 Immediate
data of 1-, 2- or
4-bytes or none

REXBC
Prefix

Predicate
Prefix

2-byte
(optional)

2-byte
(optional)

Reg0xF1 W0xD6 R X B W R X B W0x4 R X B
Reg
rrr Mod

R/M
bbb

Index
xxx Scale

Base
bbb

BBBbbbRRRrrr BBBbbbXXXxxx

Figure 3. Customizations to x86 Encoding

predicated code back to control-dependences. As demonstrated in
Section VII, feature downgrades are extremely rare and often
inexpensive.

V. DECODER DESIGN

In this section, we describe our customizations to the x86
instruction encoding and decoder implementation to support the
26 feature sets derived in the Section III. We show that, due to
the extensible nature of the x86 ISA, the decoder implementation
requires minimal changes to support the new features and has a
small overall peak power and area impact.

A. Instruction Encoding
Feature extensions to the x86 instruction set are not uncommon.

In accordance with its code density and backward compatibility
goals, major feature set additions to x86 (e.g., REX, VEX, and
EVEX) have been encoded by exploiting unused opcodes and/or
by the addition of new (optional) prefix bytes. We use similar
mechanisms to encode the specific customizations we propose as
shown in Figure 3.

To double/quadruple the register depth of x86-64, we add
a new prefix – REXBC, similar to the addition of the REX
(register extension) prefix that doubled both the register width
and depth of x86-32, giving rise to the x86-64 ISA. In particular,
the REXBC prefix encodes 2 extra bits for each of the 3 register
operands (input/output register, base, and index), which is
further combined with 4 bits from the REX, MODRM, and
SIB bytes, to address any of the 64 programmable registers.
Furthermore, we use the remaining 2 bits of the REXBC prefix
to lift restrictions in x86 that do not allow certain combinations
of registers and subregisters to be used as operands in the
same instruction. Finally, we exploit an unused opcode 0xd6 to
mark the beginning of a REXBC prefix. Similarly, to support
predication, we use a combination of an unused opcode 0xf1
and a predicate prefix. To efficiently support diamond predication
(described in Section IV), we use the predicate prefix to encode
both the nature (true/not-true) of the conditional (bit 7) and the
register (bits 0-6) the instruction is predicated on.

All of the insights in this paper apply equally (if not more so)
to a new superset ISA designed from scratch – such an ISA
would allow much tighter encoding of these options.

B. Decoder Analysis
Figure 4 shows the step-by-step decoding process of a typical

x86 instruction. Owing to the variable length encoding, x86
instructions go through a 2-phase decode process. In the first
phase, an instruction-length decoder (ILD) fetches and decodes
raw bytes from a prefetch buffer, performs length validation, and
further queues the decoded macro-ops into a macro-op buffer.
These macro-ops are fused into a single macro-op when viable,

Figure 4. x86 Fetch/Decode Engine

and further fed as input into one of the instruction decoders that
decode it into one or more micro-ops. The decoded micro-ops are
subjected to fusion again, to store them in the micro-op queue
and the micro-op cache [106]–[108] in a compact representation,
and are later unfused and dispatched as multiple micro-ops. The
micro-op cache is both a performance and power optimization
that allows the engine to stream decoded (and potentially fused)
micro-ops directly from the micro-op cache, turning off the rest
of the decode pipeline until there is a micro-op miss.

In our RTL implementation, we model an ILD based on the
parallel instruction length decoder described by Madduri, et
al [109]. The ILD has 3 components: (a) an instruction decoder
that decodes each byte of an incoming 8-byte chunk as the
start of an instruction, decoding prefixes and opcodes, (b) a
length calculator that speculatively computes the length of the
instruction based on the decoded prefixes and opcodes, and (c)
an instruction marker that checks the validity of the computed
lengths, marks the begin and end of an instruction, and detects
overflows into the next chunk.

Since our customizations affect the prefix part of the instruction,
we modify the eight decode subunits of the instruction decoder
to include comparators that generate extra decode signals to
represent the custom register depth and predicate prefixes. These
decode signals propagate through the speculative instruction
length calculator and the instruction marker requiring wider
multiplexers in the eight length subunits, the length control
select unit, and the valid begin unit. These modifications to the
instruction length decoder result in an increase of 0.87% in total
peak power and 0.65% in area for our superset ISA.

Furthermore, we increase the width of the macro-op queue by
2 bytes to account for the extra prefixes. Since predication
support and greater register depth in our superset ISA could
potentially require wider micro-op ISA encoding, we increase
the width of the micro-op cache and the micro-op queue by 2
bytes. Finally, for our microx86 implementations, we replace the
complex 1:4 decoder with another simple 1:1 decoder and forgo
the microsequencing ROM. From our analysis, a decoder that
implements our simplest feature set microx86-32 consumes
0.66% less peak power and takes up 1.12% lesser area than the
x86-64 decoder, and our superset decoder consumes 0.3% more
peak power and takes up 0.46% more area than the x86-64
decoder. These variances do not include the increases or savings
from the ILD.

VI. METHODOLOGY

Table I shows our design space that consists of 5 dimensions
of ISA customizations and 19 micro-architectural dimensions.

ISA Parameter Options
Register depth 8, 16, 32, 64 registers
Register width 32-bit, 64-bit registers
Instruction/Addressing
mode complexity

1:1 macroop-microop encoding
(load-store x86 micro-op ISA),
1:n macroop-microop encoding
(fully CISC x86 ISA)

Predication Support Full Predication like IA-64/Hexagon
vs Partial (cmov) Predication

Data Parallelism Scalar vs Vector (SIMD) execution
Microarchitectural Parameter Options
Execution Semantics Inorder vs Out-Of-Order designs
Fetch/Issue Width 1, 2, 4
Decoder Configurations 1-3 1:1 decoders, 1 1:4 decoder, MSROM
Micro-op Optimizations Micro-op Cache, Micro-op Fusion
Instruction Queue Sizes 32, 64
Reorder Buffer Sizes 64, 128
Physical Register File
Configurations

(96 INT, 64 FP/SIMD),
(64 INT, 96 FP/SIMD)

Branch Predictors 2-level local, gshare, tournament
Integer ALUs 1, 3, 6
FP/SIMD ALUs 1, 2, 4
Load/Store Queue Sizes 16, 32
Instruction Cache 32KB 4-way, 64KB 4-way
Private Data Cache 32KB 4-way, 64KB 4-way
Shared Last Level (L2) Cache 4-banked 4MB 4-way, 4-banked 8MB 8-way

Table I
FEATURE EXPLORATION SPACE

After careful pruning of configurations that are not viable (e.g.,
4-issue cores with a single INT/FP ALU) or unlikely to be useful
(full predication with 8 registers), this results in 26 different
custom ISA feature sets, 180 microarchitectural configurations,
and 4680 distinct single core design points, that each are spread
across a wide range of per-core peak power (4.8W to 23.4W)
and area (9.4mm2 to 28.6mm2) distributions. The goal of our
feature set exploration is to find an optimal 4-core multicore
configuration using the fully custom feature sets derived out
of the superset ISA. Our objective functions that evaluate
optimality include both performance and energy delay product
(EDP), for both multithreaded and single-threaded workloads.
Our workloads include 8 SPEC CPU2006 benchmarks further
broken down into 49 different application phases using the
SimPoint [110], [111] methodology.

We use the gem5 [103] simulator to measure performance in
both our inorder and out-of-order cores. We modify the gem5
simulator to include micro-op cache and micro-op fusion support
in order to measure the impact of our customizations in light of
existing micro-op optimizations. However, we do not employ
micro-op fusion in our microx86 ISA because each instruction
only decomposes into one micro-op and the micro-op fusion unit
doesn’t yet combine micro-ops from different macro-ops. Our
implementations of the micro-op cache and fusion are consistent
with guidelines mentioned in the Intel Architecture Optimization
Manual [112].

We perform a full RTL synthesis using the Synopsys Design
Compiler to measure the decoder area and power overheads of
each of the customizations we employ in our feature sets, as
described in Section V. We also use the McPAT [113] power
modeling framework to evaluate the power and area of the rest
of the pipeline. The peak power and area measurements we
obtain out of McPAT simulations are key parameters to our
exploration of this massive design space, which involves 196,560
gem5+McPAT simulations (approx. 28,080 simulations per
benchmark) resulting in 49,733 core hours on the 2 petaflop
XSEDE Comet cluster at the San Diego Supercomputing
Center [114]. Furthermore, our multicore design search involves
finding an optimal 4-core multicore out of a 102.5 trillion
combinations that run all permutations of simpoint regions, for

microx86-8D-32W microx86-32D-64W x86-16D-64W
Thumb-like Features Alpha-like Features x86-64-like Features
Load/Store Architecture Load/Store Architecture CISC Architecture
Register Depth: 8 Register Depth: 32 Register Depth: 64
Register Width: 32 Register Width: 64 Register Width: 64
No SIMD support No SIMD support SIMD support

CMOV Support CMOV Support
Exclusive Features: Exclusive Features: Exclusive Features:
FP Support None None
Thumb-specific Features: Alpha-specific Features: x86-specific Features:
Code Compression 2-address instructions None
Fixed-length instructions Fixed-length instructions
(one-step decoding) (one-step decoding)

More FP Registers
Table II

X86-IZED VERSIONS OF THUMB, ALPHA, AND X86-64
several different objective functions and constraints. To again
make the search tractable, the results we report for the fully
custom feature set design are local optima, and thus conservative
estimates.

Finally, process migration in a composite-ISA architecture
could potentially involve binary translation of unimplemented
features in case of a feature downgrade. We measure this cost by
performing feature emulation for each checkpointed code region
that represents a simpoint, on artificially-constrained cores
that only implement a subset of the features the simpoint was
compiled to. We also report the overall cost of migration on our
designs optimized for multiprogrammed workload throughput
where threads often contend for the cores of their preference,
and therefore may not always run on the core of their choice.

VII. RESULTS

A. Performance and Energy Efficiency
This section elaborates on the findings of our design space

exploration. We identify custom multicore designs that benefit
from both hardware heterogeneity and feature set diversity,
providing significant gains over designs that exploit only
hardware heterogeneity. Furthermore, these designs recreate the
effects or in most cases, surpass the gains offered by a fully
heterogeneous-ISA CMP that implements a completely disjoint
set of vendor-specific ISAs and requires sophisticated OS/runtime
support. We conduct multiple searches through our design space
to model different execution scenarios and budget constraints.

In each search, we identify three optimal 4-core multicore
designs: (1) homogeneous x86-64 CMPs that employ cores that
implement the same ISA and the same microarchitecture, (2)
x86-64 CMPs that exploit hardware heterogeneity alone, and (3)
composite-ISA x86-64 CMPs that exploit hardware heterogeneity
and full ISA feature diversity.

In addition, we also identify two intermediate design points of
interest: (1) heterogeneous-ISA CMPs [16] that implement three
fixed, disjoint, vendor-specific ISAs (x86-64, Alpha, Thumb),
and (2) composite-ISA CMPs that exploit hardware heterogeneity
and a limited form of feature diversity via three x86-based fixed
feature sets that resemble the above vendor-specific ISAs. We use
the latter design as a vehicle to demonstrate that vendor-specific
ISA heterogeneity can be recreated to a large extent by carving
out custom feature sets from a single sufficiently-diverse superset
ISA. Table II offers a more detailed comparison.

Thus, we compare against a number of interesting configura-
tions, but two are most revealing. Since we seek to replicate
the advantage of multi-ISA heterogeneity over single-ISA
heterogeneity, the single-ISA heterogeneous result is our primary
baseline for comparison. However, the multi-vendor (x86, Thumb,
Alpha) result represents our “goal” that we strive to match, yet

Figure 5. Multi-programmed workload throughput comparison (higher is better)

Figure 6. Multi-programmed workload EDP comparison (lower is better)

C
o
re

C
o
m

p
le

x
it

y

R
eg

W
id

th

R
eg

D
ep

th

P
re

d
ic

at
io

n

- IO
/O

O
O

Is
su

e
W

id
th

B
ra

n
ch

P
re

d

IN
T

R
eg

F
P

R
eg

R
O

B

IQ IN
T

A
L

U

IN
T

M
U

L

F
P

/S
IM

D

L
S

Q

L
1

S
z/

A
ss

o
c

L
2

S
z/

A
ss

o
c

Peak Power Budget: 20W

0 μx86 32 8 P I 2 L 64 16 64 32 3 1 1 16 32kB/4 1MB/4
1 μx86 64 16 P I 2 T 64 16 64 32 3 1 1 16 32kB/4 1MB/4
2 μx86 32 64 F I 2 T 64 16 64 32 3 1 1 16 32kB/4 1MB/4
3 x86 32 64 F I 1 L 64 16 64 32 1 1 1 16 32kB/4 1MB/4

Peak Power Budget: 40W

0 μx86 32 16 P O 2 T 192 160 128 64 3 1 1 16 32kB/4 1MB/4
1 μx86 32 16 P O 4 T 192 160 128 64 3 1 1 32 64kB/4 2MB/8
2 μx86 64 32 P O 2 T 192 160 128 64 3 1 1 16 32kB/4 1MB/4
3 x86 32 64 F I 2 T 64 16 64 32 3 1 1 16 64kB/4 1MB/4

Peak Power Budget: 60W

0 μx86 32 16 P O 4 T 192 160 128 64 6 2 1 32 64kB/4 2MB/8
1 μx86 32 64 P O 2 T 192 160 128 64 3 1 1 16 64kB/4 2MB/8
2 μx86 64 64 P O 2 T 192 160 128 64 3 1 1 16 64kB/4 2MB/8
3 μx86 64 64 F O 4 T 192 160 128 64 6 2 1 32 64kB/4 2MB/8

Unlimited Peak Power and Area Budget.

0 μx86 32 16 P O 4 T 192 160 128 64 6 2 1 32 64kB/4 2MB/8
1 μx86 64 16 P O 4 T 192 160 128 64 6 2 1 32 64kB/4 2MB/8
2 μx86 64 64 F O 4 T 192 160 128 64 6 2 1 32 64kB/4 2MB/8
3 x86 32 64 F O 4 T 192 160 128 64 6 2 1 32 64kB/4 2MB/8

Table III
COMPOSITE-ISA MULTICORE ARCHITECTURAL COMPOSITION (OPTIMIZED

FOR MULTI-PROGRAMMED THROUGHPUT)

with essentially a single ISA and far fewer costs.
Figure 5 compares the performance and energy efficiency of

the five optimal designs listed above, optimized to provide
multi-programmed workload throughput when constrained under
different peak power and area budgets. There are four major
takeaways from this experiment. First, the designs that exploit
feature diversity alongside hardware heterogeneity consistently
and significantly outperform the designs that exploit only
hardware heterogeneity. This is because hardware heterogeneity
tends to diminish when the amount of available chip real estate
becomes too small or too generous. Second, we find in the
resulting optimal architectures that in an especially tightly
power/area constrained environment, every feature present in
the superset ISA is implemented by at least one core in the
composite-ISA design. When the constraints become more
relaxed, the composite-ISA designs continue to implement at

C
o
re

C
o
m

p
le

x
it

y

R
eg

W
id

th

R
eg

D
ep

th

P
re

d
ic

at
io

n

- IO
/O

O
O

Is
su

e
W

id
th

B
ra

n
ch

P
re

d

IN
T

R
eg

F
P

R
eg

R
O

B

IQ IN
T

A
L

U

IN
T

M
U

L

F
P

/S
IM

D

L
S

Q

L
1

S
z/

A
ss

o
c

L
2

S
z/

A
ss

o
c

Peak Power Budget: 20W

0 μx86 32 32 P I 1 T 64 16 64 32 1 1 1 16 32kB/4 1MB/4
1 x86 32 8 P I 1 T 64 16 64 32 1 1 1 16 32kB/4 2MB/8
2 x86 64 16 P I 1 L 64 16 64 32 1 1 1 16 32kB/4 1MB/4
3 x86 32 64 F I 1 L 64 16 64 32 1 1 1 16 32kB/4 1MB/4

Peak Power Budget: 40W

0 μx86 64 16 P O 2 T 192 160 128 64 3 1 1 16 32kB/4 2MB/8
1 μx86 32 64 P O 1 G 192 160 128 64 1 1 1 16 64kB/4 2MB/8
2 x86 32 16 P I 2 T 64 16 64 32 3 1 1 16 32kB/4 2MB/8
3 x86 32 64 F I 2 L 64 16 64 32 3 1 1 16 32kB/4 2MB/8

Peak Power Budget: 60W

0 μx86 32 32 P O 2 L 192 160 128 64 3 1 1 16 32kB/4 1MB/4
1 μx86 32 32 F O 2 G 192 160 128 64 3 1 1 16 32kB/4 2MB/8
2 x86 64 16 P I 2 T 64 16 64 32 3 1 1 16 32kB/4 2MB/8
3 x86 32 64 F I 2 L 64 16 64 32 3 1 1 16 32kB/4 2MB/8

Unlimited Peak Power and Area Budget.

0 μx86 32 16 P O 4 T 192 160 128 64 6 2 1 32 64kB/4 2MB/8
1 μx86 32 32 P O 2 T 192 160 128 64 3 1 1 16 64kB/4 2MB/8
2 μx86 64 32 P O 2 T 192 160 128 64 3 1 1 16 32kB/4 2MB/8
3 x86 32 64 F I 4 L 64 16 64 32 3 1 1 32 64kB/4 2MB/8

Table IV
COMPOSITE-ISA MULTICORE ARCHITECTURAL COMPOSITION (OPTIMIZED

FOR MULTI-PROGRAMMED EFFICIENCY)

least 10 out of the 12 features described in Section III. Third,
the composite-ISA designs that implement the x86-ized versions
of the vendor-specific ISAs trail slightly but generally match
the gains of the fully heterogeneous-ISA designs. Fourth, the
composite-ISA design with full ISA feature set diversity not only
matches but frequently outperforms the fully heterogeneous-ISA
design. This indicates that any loss due to the lack of specific ISA
encoding and simplified hardware (e.g. decoders) is more than
compensated for by the increased flexibility of the composable
ISA features.

Overall, composite-ISA designs outperform single-ISA
heterogeneous designs by 17.6% on average, and by 30%
under tight power constraints. A significant chunk of these
benefits arise from greater feature diversity. In fact, composite-
ISA configurations with full feature diversity but uniform
microarchitecture improve performance by an average of 9.3%

Figure 7. Single Thread Performance (higher is better) and EDP (lower is better) comparison under Peak Power Budget

Figure 8. Single Thread Performance (higher is better) and EDP (lower is better) comparison under Area Budget

for multiprogrammed and 12.8% for single-threaded workloads,
against a uniform-ISA (x86-64) and uniform microarchitecture
baseline.

Table III gives the derived optimal designs for some of the
experiments from Figure 5. As expected, we see the hardware
heterogeneity of previous work, including variation in dynamic
scheduling, queue sizes, ROB size, ALU count, and branch
predictor (local (L), gshare (G), or tournament (T). However, we
also see significant (perhaps even greater) use of the ISA design
space, with variation in complexity, register width, register depth,
and predication, not only as constraints vary, but within a single
multicore design. For example, with a 20W power budget, we
have designs with both the simple (microx86) and complex
decoders, two register widths, 3 register depths, and both full
and partial predication. It is interesting to note that for that tight
power budget, the x86 design has a large number of registers
but is otherwise conservative (scalar issue, narrow registers),
while the microx86 cores use the saved power budget for more
aggressive features like wider issue and tournament predictors.
Overall, we see no clear dominant choice for any of our ISA
features, but rather each optimal design taking good advantage
of the choice of ISA parameters.

In Figure 6, we compare designs optimized to provide
multi-threaded workload energy efficiency, measured as Energy
Delay Product (EDP), while being constrained under different
peak power and area budgets. We observe significant energy
savings due to full ISA customization – an average of 31%
savings in energy and 34.6% reduction in EDP over single-ISA
heterogeneous multicore designs. This result was not necessarily
expected, as the Thumb architecture still provides significant
advantages over our most conservative microx86 core. However,
many codes cannot use Thumb because of its limited features,
while the composite-ISA architecture can combine microx86 with
a variety of other features and make use of it far more often.

Table IV gives the derived optimal designs for experiments
from Figure 6. We again see the designs taking good advantage
of both hardware heterogeneity and ISA heterogeneity. While the
choice of decoder complexity is clearly still a boon in this

Figure 9. Performance Degradation over Composite-ISA Designs optimized for
multi-programmed workload throughput at 48mm2 budget, and under different
Feature Constraints

design space, we see more designs that use the full decoder. So
while the microx86 ISA coupled with superscalar is a good
tradeoff for performance-optimized designs, for example, the
EDP-optimized designs favored more x86 scalar designs. In
nearly all designs, however, having the choice was the key to
reaching the optimal design point.

We next evaluate our designs optimized to provide high
single thread performance and energy efficiency. That is, while
the prior results optimized for four threads running on four
cores, this exploration optimizes for one thread utilizing four
cores via migration. When the designs are constrained by peak
power budgets, we model them after the dynamic multicore
topology [115] where only one core is active at any given point
of time, while the rest of the cores are powered off.

Figure 7 compares designs optimized to provide high single
thread performance and energy efficiency. Note that the peak
power budgets are tighter in this case since we assume only
one core to be powered on at a time. Due to the low power
constraints, hardware heterogeneity provides only marginal
improvements in performance and EDP. However, we observe
that every feature of the superset ISA again manifests in at least
one of the feature sets implemented by the composite-ISA
design, allowing applications to migrate across different cores in
order to take advantage of any required ISA feature. We observe
an average speedup of 19.5% and an average EDP reduction
of 27.8% over single-ISA heterogeneous designs. Moreover,
owing to the many low-power and feature-rich microx86 options

Figure 10. Transistor Investment by Processor Area normalized over that of
Composite-ISA Designs optimized for multi-programmed workload throughput at
48mm2 budget, and under different Feature Constraints

available, we manage to outperform the fully heterogeneous-ISA
design that implements vendor-specific ISAs, by 14.6% and
reduce EDP by 3.5% under tight (5W) power constraints. The
x86-ized versions of the fully heterogeneous-ISA designs again
trail, but generally match up well, to the performance levels
offered by vendor-specific ISA-heterogeneity. Once again, the
composite-ISA design overall match the performance results of
the fully heterogeneous-ISA design, while trailing slightly behind
in terms of EDP.

When designs are constrained by area budget, the optimal
multicore is typically composed of multiple small cores and one
large core that maximizes single thread performance. In Figure 8,
we evaluate the single thread performance and energy efficiency
of the optimal designs under different area budgets. We observe
that the composite-ISA designs sport two out-of-order microx86
cores even under the most tightly area-constrained environment
implementing different register depth and width features in each
of them, allowing applications to migrate across cores and
take advantage of the specific ISA features. While the fully
heterogeneous-ISA design offers similar capabilities due to the
area-efficient thumb cores, we note that migration across thumb
and x86-64 cores is non-trivial and incurs significant overhead in
comparison to the simpler migration across the two overlapping
x86-based ISAs in our case. Moreover, under tight constraints,
we are able to design more effective composite-ISA architectures
due to the greater design options available (e.g., more efficient
combination of 32-bit and 64-bit designs), saving an extra 13.2%
in EDP when compared to fully heterogeneous-ISA designs.

Overall, the composite-ISA design consistently outperforms
the single-ISA heterogeneous design, resulting in an average
speedup of 20% and an EDP reduction of 21%.

B. Feature Sensitivity Analysis
Owing to their feature-rich nature, composite-ISA CMPs

consistently offer significant performance and energy efficiency
benefits, even in scenarios where hardware heterogeneity provides
diminishing returns. One of the major goals of this design space

Figure 11. Processor Energy Breakdown normalized over that of Fully Custom
Designs optimized for multi-programmed workload throughput at 48mm2 budget,
and under different Feature Constraints

exploration is to identify specific ISA features that contribute
toward these benefits, and further help architects make more
efficient design choices. However, since ISA features typically
manifest as components of a larger feature set a core implements,
it is generally non-trivial to measure the effect of a specific
feature in isolation.

In this section, we perform additional searches through our
design space in order to understand the impact an ISA feature
has over performance, energy, and transistor investment, by
removing one axis of feature diversity at a time. As an example,
consider the search for an optimal composite-ISA CMP that
optimizes for multi-programmed throughput under an area
budget of 48mm2, but constrained to only include designs that
limit the number of architectural registers to 16 in all cores. If
register depth is an important feature, the optimal design from
this search is expected to perform worse than the one chosen
through an unconstrained search.

Figure 9 shows the result of this experiment. We make several
inferences. First, constraining all cores to implement fewer
than 32 architectural registers negates a significant chunk of
the performance gain due to feature diversity. Most optimal
designs typically employ two or more cores with a register
depth of at least 32, and seldom employ cores with fewer than
16 registers. Second, the best performing designs typically
include a mix of both 32-bit and 64-bit cores. While 64-bit
cores are more efficient at computing on wider data types,
32-bit cores employ smaller hardware structures, saving area for
other features. Designs that exclude any one of them incur
3-7% loss in performance. Third, most optimal designs employ
both microx86 and x86 cores. While constraining cores to
only include microx86 cores marginally affects performance,
excluding them limits performance considerably. Finally, most
optimal designs include both partially predicated and fully
predicated cores.

We will examine these 10 constrained-optimal designs further.
For example, this will allow us to compare the four-core design
where all cores are microx86 with the design where all cores are

x86. Figure 10 shows the transistor investment for the processor
part of the real estate for each of the best designs from the
above experiment. These designs were all optimized for the
same area budget, but here we plot combined core area, without
caches; therefore, longer bars imply that the design needed to
spend more transistors on cores and sacrifice cache area to get
maximum performance. We make the following observations.
First, the design that constrains all cores to microx86 takes
up the least combined core area. However, owing to the area
efficiency of microx86, it is the only design among the 10 that
employs all out-of-order cores, each sporting a tournament
branch predictor. Second, the design constrained to exclude
microx86 takes up the highest processor area, investing most of
its transistors on functional units. Note that we always combine
SIMD units with x86 cores, and that the microx86 cores lack
any SIMD units. Third, the 64-bit-only optimal design spends
more transistors on the register file and the scheduler than any
other design. In that design, two out of four 64-bit cores are
configured with a register depth of 64, with the remaining two
configured with 32.

Figure 11 shows the processor energy breakdown by stages
for each of the best designs from the above experiment. We find
that the energy breakdown shows significant deviation from the
corresponding area breakdown. While the decoder requires a
greater portion of processor area than the fetch unit, it is the
fetch unit that expends more energy during run-time since the
decode pipeline is only triggered upon a micro-op cache miss,
and instructions are streamed out of the micro-op cache for the
most part. Interestingly, the design that constrains all cores to
be configured with a register depth of 8 spends significant
energy in the Fetch stage. This is due to the artificial instruction
bloat caused by spills, refills, and rematerializations – a direct
consequence of high register pressure. Furthermore, although the
x86-only designs invested significantly in SIMD units, the energy
spent by the functional units is not nearly as proportional.
This is due to relatively infrequent vector activity. Finally, the
64-bit-only design continues to have high register file and
scheduler energy.

C. Feature Affinity
In this section, we study the feature affinity of the eight

applications we benchmark, in two specific execution scenarios.
In the first scenario, we consider a composite-ISA heterogeneous
design optimized for single thread performance under a peak
power budget of 10W. Recall that in such a design, hardware
heterogeneity provides only marginal benefits, and most of the
gains come from the fact that an application is free to migrate
across different cores that each implement a diverse feature set.
Therefore, such a design captures the true ISA affinity of an
application.

Figure 12 shows the feature affinity in terms of the fraction of
time an application spends executing on a particular feature set.
First, we find that the multicore design that optimizes single
thread performance exhibits significant feature diversity. In fact,
by analyzing the component features of the multicore, we
find that all features from our superset ISA have been used.
Second, we find that there is significant variance in feature set
preference across different applications. There is no single
best feature set that is preferred by all applications. Third, we
observe that there is some variance in feature set preference
even within a single application’s internal phases. We find that

Figure 12. Execution Time Breakdown on the best composite-ISA CMP
optimized for Single Thread Performance under 10W Peak Power Budget

Figure 13. Execution Time Breakdown on the best composite-ISA CMP
optimized for Multi-programmed Throughput under 48mm2 Area Budget

most applications migrate to a core with a different feature set at
least once. Fourth, the benchmark hmmer that exhibits significant
register pressure tends to always execute on a feature set with a
register depth of 64. Interestingly, we found that phases with
considerable irregular branch activity, due to indirect branches
and function pointer calls, prefer full predication since it eases
the pressure on the branch predictor by converting some of the
control flow into data flow. This is evidenced by the benchmarks
sjeng and gobmk.

In the second scenario, we consider a composite-ISA design
optimized for multi-programmed workload throughput under an
area budget of 48mm2, in which case applications typically
contend for the best feature set preference, and may sometimes
execute on feature sets of second preference. Figure 13 shows
the results of this experiment. In sharp contrast to the design
optimized for single thread performance, where applications
had clear preferences, we find that all applications in the
multi-programmed workload execute on all feature sets at
some point of time. However, we are still able to make some
high level inferences about feature affinity. For example, the
benchmark sjeng continues to show a clear preference to x86
over microx86, and both benchmarks sjeng and gobmk prefer to
execute on fully predicated ISAs during phases of irregular
branch activity.

D. Migration Cost Analysis
Process migration across composite-ISA cores can involve two

scenarios. In a feature upgrade scenario, the core which a
process migrates to already implements a superset of the features
the process was compiled to, in which case, there is zero binary
translation or state transformation costs. On the other hand, in a
feature downgrade scenario, the core to which the process
migrates implements only a subset of the features the process is
compiled to, necessitating minimal translation of unimplemented
features. We first discuss the cost of a feature downgrade for
any arbitrary code region, and then measure its performance
impact on a design optimized for multi-programmed workload
throughput.

Figure 14. Feature Downgrade Cost

We measure feature downgrade costs by running each code
region that corresponds to a simpoint on an artificially constrained
core that only implements a subset of the features the simpoint
was compiled to. Figure 14 shows the result of this experiment.
We make several important observations here. First, when we
downgrade from 64-bit to 32-bit cores, most of the emulation
cost is negated due to the cache-efficient 32-bit cores. In fact,
we achieve a speedup for some applications when we downgrade
them from 64-bit to 32-bit feature sets. Second, since most
applications use 32 or fewer registers, there is little emulation
cost incurred due to a register depth downgrade from 64 to 32
registers. While we incur some overhead (an average of 2.7%)
when we downgrade to a feature set that implements only 16
registers, there is significant overhead (an average of 33.5%) in
migrating to a feature set that implements only 8 registers.
In all cases, we find that the benchmark hmmer incurs the
highest emulation overhead due to a register depth downgrade,
concurring with our prior feature affinity analysis. Third, we
incur an average of 5.5% overhead when we downgrade to a
feature set without full predication. Finally, downgrade from x86
to microx86 comes at a cost of 4.2% on average. Note that we
turn on full vectorization and our compiler emits SSE code for
all floating-point benchmarks. However, any reasonable scheduler
will not schedule simpoints with significant vector activity on
microx86 cores without SIMD support so the lack of vector
support is not significantly exposed in these experiments. We
limit the x86-to-microx86 translation to simple addressing-mode
transformations (as described in Section 4.2).

In our design space analysis, we needed to assume optimal
selection of compiler features to make the search tractable. In
the next experiment, we explore a single instantiation of one of
our optimal core configurations, and a single instance (single
set of features) of each compiled binary. The set of features
chosen for the binary is the most common one selected for that
application (among all possible scheduling permutations). We
then run (again, for all permutations of our benchmark set), an
experiment with four cores and four applications for 500 billion
instructions. Every time one of the applications experiences a
phase change that would cause us to re-shuffle job-to-core
assignments, we assume a migration cost for each application
that moves, and a possible downgrade cost over the next interval
for each job that moves to a core that doesn’t fully support the
compiled features. Migration cost is measured via simulation for

Figure 15. Multi-threaded Workload Throughput with Downgrade Cost

each binary and set of features not supported.
Figure 15 compares the designs optimized for multi-prog-

rammed workload throughput with migration cost included.
Recall that in such a design, threads often contend for the best
core and may not always run on their core of first preference.
We observe that the performance degradation due to migrations
across composite ISAs is a negligible 0.42%, on average (max
0.75%), virtually preserving all of the performance gains due
to feature diversity. We attribute this to the fact that feature
downgrades are infrequent and when there is one, the cost of
software emulating it is minimal, due to the overlapping nature
of feature sets. In fact, out of the 1863 migrations that occur in
this experiment, only 125 migrations required downgrade from
64-bit to 32-bit, 171 from a register-depth of 64 to 32, 177 from
a register-depth of 64 to 16, and 8 from x86 to microx86.

In summary, composite-ISA heterogeneous designs consistently
outperform and use far less energy than single-ISA heteroge-
neous designs, generally matching or exceeding multi-vendor
heterogeneous-ISA designs.

VIII. CONCLUSION

This paper presents a composite-ISA architecture and
compiler/runtime infrastructure that extends the advantages of
multi-vendor heterogeneous-ISA architectures. It enables the full
performance and energy benefits of multi-ISA design, without
the issues of multi-vendor licensing, cross-ISA binary translation,
and state transformation. It also gives both the processor designer
and the compiler a much richer set of ISA design choices,
enabling them to select and combine features that match the
expected workload. This provides richer gains in efficiency than
highly optimized but inflexible existing-ISA based designs. This
architecture gains an average of 19% in performance and over
30% in energy savings over single-ISA heterogeneous designs.
Further, it matches and in many cases outperforms multi-vendor
heterogeneous-ISA designs, essentially with a single ISA.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their helpful insights. This research was supported in part by NSF
Grant CNS-1652925, NSF/Intel Foundational Microarchitecture
Research Grant CCF-1823444, and DARPA under the agreement
number HR0011-18-C-0020. In addition, this work used the
Extreme Science and Engineering Discovery Environment
(XSEDE) Comet cluster at the San Diego Supercomputing
Center through allocation CCR170018, which is supported by
NSF Grant ACI-1548562.

REFERENCES

[1] “2nd Generation Intel Core vPro Processor Family,” tech. rep.,
Intel, 2008.

[2] “The future is fusion: The Industry-Changing Impact of
Accelerated Computing.,” tech. rep., AMD, 2008.

[3] “The Benefits of Multiple CPU Cores in Mobile Devices,” tech.
rep., NVidia, 2010.

[4] “Qualcomm snapdragon 810 processor: The ultimate connected
mobile computing processor,” tech. rep., Qualcomm, 2014.

[5] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,
G. P. Gopal, et al., “A reconfigurable fabric for accelerating
large-scale datacenter services,” in Proceeding of the 41st Annual
International Symposium on Computer Architecuture, ISCA ’14,
(Piscataway, NJ, USA), pp. 13–24, IEEE Press, 2014.

[6] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, et al., “In-datacenter performance analysis
of a tensor processing unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA ’17,
(New York, NY, USA), pp. 1–12, ACM, 2017.

[7] “Variable SMP A Multi-Core CPU Architecture for Low Power
and High Performance,” tech. rep., NVidia, 2011.

[8] P. Greenhalgh, “big.LITTLE Processing with ARM Cortex-A15
& Cortex-A7,” tech. rep., ARM, 2011.

[9] M. Hill and M. Marty, “Amdahl’s Law in the Multicore Era,”
Computer, July 2008.

[10] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen, “Single-ISA Heterogeneous Multi-core Architectures:
The Potential for Processor Power Reduction,” in International
Symposium on Microarchitecture, Dec. 2003.

[11] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas, “Single-ISA Heterogeneous Multi-core Architectures
for Multithreaded Workload Performance,” in International
Symposium on Computer Architecture, June 2004.

[12] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core Architecture
Optimization for Heterogeneous Chip Multiprocessors,” in
International Conference on Parallel Architectures and
Compilation Techniques, Sept. 2006.

[13] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and
J. Emer, “Scheduling Heterogeneous Multi-Cores through
Performance Impact Estimation (pie),” in International Symposium
on Computer Architecture, June 2012.

[14] “Apple 2017: The iphone x (ten) announced,” 2017.
[15] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution migration

in a heterogeneous-isa chip multiprocessor,” in Proceedings of
the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
2012.

[16] A. Venkat and D. M. Tullsen, “Harnessing ISA diversity: Design
of a heterogeneous-ISA chip multiprocessor,” in Proceedings of
the International Symposium on Computer Architecture, 2014.

[17] A. Venkat, S. Shamasunder, H. Shacham, and D. M. Tullsen,
“HIPStR: Heterogeneous-isa program state relocation,” in
Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2016.

[18] A. Akram and L. Sawalha, “the impact of isas on performance”,”
in Proceedings of the 14th Annual Workshop on Duplicating,
Deconstructing and Debunking (WDDD) associated with ISCA,
June 2017.

[19] A. Akram, “A study on the impact of instruction set architectures
on processors performance,” 2017.

[20] S. K. Bhat, A. Saya, H. K. Rawat, A. Barbalace, and B. Ravindran,
“Harnessing energy efficiency of heterogeneous-isa platforms,”
ACM SIGOPS Operating Systems Review, vol. 49, no. 2,
pp. 65–69, 2016.

[21] A. Venkat, Breaking the ISA Barrier in Modern Computing.
PhD thesis, UC San Diego, 2018.

[22] W. Lee, D. Sunwoo, C. D. Emmons, A. Gerstlauer, and L. K.
John, “Exploring heterogeneous-isa core architectures for high-
performance and energy-efficient mobile socs,” in Proceedings of
the on Great Lakes Symposium on VLSI 2017, pp. 419–422,
ACM, 2017.

[23] J. Nider and M. Rapoport, “Cross-isa container migration,” in
Proceedings of the 9th ACM International on Systems and

Storage Conference, SYSTOR ’16, (New York, NY, USA),
pp. 24:1–24:1, ACM, 2016.

[24] A. Barbalace, R. Lyerly, C. Jelesnianski, A. Carno, H.-R. Chuang,
V. Legout, and B. Ravindran, “Breaking the boundaries in
heterogeneous-isa datacenters,” in Proceedings of the Twenty-
Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’17,
pp. 645–659, 2017.

[25] “2nd generation intel core vpro processor family,” tech. rep.,
Intel, 2008.

[26] “Intel go autonomous driving solutions,” tech. rep., Intel, 2017.
[27] D. Wong and M. Annavaram, “Knightshift: Scaling the energy

proportionality wall through server-level heterogeneity,” in
Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 119–130, IEEE Computer
Society, 2012.

[28] J. Mars and L. Tang, “Whare-map: heterogeneity in homogeneous
warehouse-scale computers,” in ACM SIGARCH Computer
Architecture News, vol. 41, pp. 619–630, ACM, 2013.

[29] V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mosse,
J. Mars, and L. Tang, “Octopus-man: Qos-driven task management
for heterogeneous multicores in warehouse-scale computers,” in
High Performance Computer Architecture (HPCA), 2015 IEEE
21st International Symposium on, pp. 246–258, IEEE, 2015.

[30] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. F. Wenisch, and S. Mahlke, “Composite cores: Pushing
heterogeneity into a core,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 317–328, IEEE Computer Society, 2012.

[31] S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke,
“Dynamos: dynamic schedule migration for heterogeneous
cores,” in Proceedings of the 48th International Symposium on
Microarchitecture, pp. 322–333, ACM, 2015.

[32] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. G.
Dreslinski, T. F. Wenisch, and S. Mahlke, “Exploring fine-grained
heterogeneity with composite cores,” IEEE Transactions on
Computers, vol. 65, no. 2, pp. 535–547, 2016.

[33] A. Lukefahr, S. Padmanabha, R. Das, R. Dreslinski Jr, T. F.
Wenisch, and S. Mahlke, “Heterogeneous microarchitectures
trump voltage scaling for low-power cores,” in Proceedings of
the 23rd international conference on Parallel architectures and
compilation, pp. 237–250, ACM, 2014.

[34] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou, A. Venkat,
D. Tullsen, and R. Gupta, “Reliability-aware data placement for
heterogeneous memory architecture,” in High Performance
Computer Architecture (HPCA), 2018 IEEE International
Symposium on, pp. 583–595, IEEE, 2018.

[35] S. Srinivasan, N. Kurella, I. Koren, and S. Kundu, “Exploring
heterogeneity within a core for improved power efficiency,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 4, pp. 1057–1069, 2016.

[36] H. R. Ghasemi, U. R. Karpuzcu, and N. S. Kim, “Comparison of
single-isa heterogeneous versus wide dynamic range processors
for mobile applications,” in Computer Design (ICCD), 2015 33rd
IEEE International Conference on, pp. 304–310, IEEE, 2015.

[37] S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke, “Trace
based phase prediction for tightly-coupled heterogeneous cores,”
in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 445–456, ACM, 2013.

[38] M. A. Kinsy, S. Khadka, M. Isakov, and A. Farrukh, “Hermes:
Secure heterogeneous multicore architecture design,” in Hardware
Oriented Security and Trust (HOST), 2017 IEEE International
Symposium on, pp. 14–20, IEEE, 2017.

[39] K. Van Craeynest and L. Eeckhout, “Understanding fundamental
design choices in single-isa heterogeneous multicore architectures,”
ACM Transactions on Architecture and Code Optimization
(TACO), vol. 9, no. 4, p. 32, 2013.

[40] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and
L. Eeckhout, “Fairness-aware scheduling on single-isa heteroge-
neous multi-cores,” in Parallel Architectures and Compilation
Techniques (PACT), 2013 22nd International Conference on,
pp. 177–187, IEEE, 2013.

[41] S. Akram, J. B. Sartor, K. V. Craeynest, W. Heirman, and
L. Eeckhout, “Boosting the priority of garbage: Scheduling
collection on heterogeneous multicore processors,” ACM
Transactions on Architecture and Code Optimization (TACO),
vol. 13, no. 1, p. 4, 2016.

[42] A. Naithani, S. Eyerman, and L. Eeckhout, “Reliability-aware
scheduling on heterogeneous multicore processors,” in High
Performance Computer Architecture (HPCA), 2017 IEEE
International Symposium on, pp. 397–408, IEEE, 2017.

[43] N. Markovic, D. Nemirovsky, O. Unsal, M. Valero, and A. Cristal,
“Thread lock section-aware scheduling on asymmetric single-isa
multi-core,” IEEE Computer Architecture Letters, vol. 14, no. 2,
pp. 160–163, 2015.

[44] N. Markovic, D. Nemirovsky, V. Milutinovic, O. Unsal, M. Valero,
and A. Cristal, “Hardware round-robin scheduler for single-isa
asymmetric multi-core,” in European Conference on Parallel
Processing, pp. 122–134, Springer, 2015.

[45] D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky,
O. Unsal, and A. Cristal, “A machine learning approach for
performance prediction and scheduling on heterogeneous cpus,”
in Computer Architecture and High Performance Computing
(SBAC-PAD), 2017 29th International Symposium on, pp. 121–128,
IEEE, 2017.

[46] L. Sawalha, S. Wolff, M. P. Tull, and R. D. Barnes, “Phase-guided
scheduling on single-isa heterogeneous multicore processors,” in
Digital System Design (DSD), 2011 14th Euromicro Conference
on, pp. 736–745, IEEE, 2011.

[47] A. Adileh, S. Eyerman, A. Jaleel, and L. Eeckhout, “Mind
the power holes: Sifting operating points in power-limited
heterogeneous multicores,” IEEE Computer Architecture Letters,
vol. 16, no. 1, pp. 56–59, 2017.

[48] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling
for heterogeneous datacenters,” in ACM SIGPLAN Notices,
vol. 48, pp. 77–88, ACM, 2013.

[49] A. Naithani, S. Eyerman, and L. Eeckhout, “Optimizing soft
error reliability through scheduling on heterogeneous multicore
processors,” IEEE Transactions on Computers, vol. 67, no. 6,
pp. 830–846, 2018.

[50] J. Chen and L. K. John, “Efficient program scheduling for
heterogeneous multi-core processors,” in Design Automation
Conference, 2009. DAC’09. 46th ACM/IEEE, pp. 927–930, IEEE,
2009.

[51] J. Chen and L. K. John, “Energy-aware application scheduling on
a heterogeneous multi-core system,” in Workload Characterization,
2008. IISWC 2008. IEEE International Symposium on, pp. 5–13,
IEEE, 2008.

[52] J. A. Winter and D. H. Albonesi, “Scheduling algorithms for
unpredictably heterogeneous cmp architectures,” in Dependable
Systems and Networks With FTCS and DCC, 2008. DSN 2008.
IEEE International Conference on, pp. 42–51, IEEE, 2008.

[53] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker,
“Scalable thread scheduling and global power management for
heterogeneous many-core architectures,” in Parallel Architectures
and Compilation Techniques (PACT), 2010 19th International
Conference on, pp. 29–39, IEEE, 2010.

[54] E. Forbes and E. Rotenberg, “Fast register consolidation and
migration for heterogeneous multi-core processors,” in Computer
Design (ICCD), 2016 IEEE 34th International Conference on,
pp. 1–8, IEEE, 2016.

[55] E. Forbes, Z. Zhang, R. Widialaksono, B. Dwiel, R. B. R.
Chowdhury, V. Srinivasan, S. Lipa, E. Rotenberg, W. R. Davis,
and P. D. Franzon, “Under 100-cycle thread migration latency in
a single-isa heterogeneous multi-core processor,” in Hot Chips
27 Symposium (HCS), 2015 IEEE, pp. 1–1, IEEE, 2015.

[56] A. Venkat, A. Krishnaswamy, K. Yamada, and P. R. Shanmu-
gavelayutham, “Binary translator driven program state relocation,”
Sept. 15 2015. US Patent 9,135,435.

[57] “Ibm’s power chips hit the big time at google,” tech. rep.,
PCWorld, 2016.

[58] W. Wang, P.-C. Yew, A. Zhai, S. McCamant, Y. Wu, and
J. Bobba, “Enabling cross-isa offloading for cots binaries,” in
Proceedings of the 15th Annual International Conference on

Mobile Systems, Applications, and Services, pp. 319–331, ACM,
2017.

[59] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichan-
dran, C. Kendir, A. Murray, and B. Ravindran, “Popcorn:
Bridging the programmability gap in heterogeneous-isa platforms,”
in Proceedings of the Tenth European Conference on Computer
Systems, EuroSys ’15, (New York, NY, USA), pp. 29:1–29:16,
ACM, 2015.

[60] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and
S. Hahn, “Operating System Support for Overlapping-ISA
Heterogeneous Multi-Core Architectures,” in International
Symposium on High Performance Computer Architecture, Jan.
2010.

[61] E. Blem, J. Menon, and K. Sankaralingam, “Power Struggles:
Revisiting the RISC vs. CISC Debate on Contemporary ARM
and x86 Architectures,” in International Symposium on High
Performance Computer Architecture, Feb. 2013.

[62] A. S. Waterman, Design of the RISC-V Instruction Set Architecture.
University of California, Berkeley, 2016.

[63] A. Raveendran, V. B. Patil, D. Selvakumar, and V. Desalphine,
“A risc-v instruction set processor-micro-architecture design
and analysis,” in VLSI Systems, Architectures, Technology and
Applications (VLSI-SATA), 2016 International Conference on,
pp. 1–7, IEEE, 2016.

[64] J. Huh, D. Burger, and S. W. Keckler, “Exploring the design
space of future cmps,” in Parallel Architectures and Compilation
Techniques, 2001. Proceedings. 2001 International Conference
on, pp. 199–210, IEEE, 2001.

[65] M. Monchiero, R. Canal, and A. Gonzalez, “Power/per-
formance/thermal design-space exploration for multicore
architectures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, no. 5, pp. 666–681, 2008.

[66] M. Monchiero, R. Canal, and A. González, “Design space
exploration for multicore architectures: a power/performance/ther-
mal view,” in Proceedings of the 20th annual international
conference on Supercomputing, pp. 177–186, ACM, 2006.

[67] L. Strozek and D. Brooks, “Energy-and Area-Efficient
Architectures through Application Clustering and Architectural
Heterogeneity,” ACM Transactions on Architecture and Code
Optimization, 2009.

[68] N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy,
D. Koufaty, P. Brett, A. Prabhakaran, L. Zhao, N. Ijih, et al.,
“Quickia: Exploring heterogeneous architectures on real prototypes,”
in High Performance Computer Architecture (HPCA), 2012 IEEE
18th International Symposium on, pp. 1–8, IEEE, 2012.

[69] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh,
J. Gandhi, B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and
E. Rotenberg, “Fabscalar: composing synthesizable rtl designs of
arbitrary cores within a canonical superscalar template,” in ACM
SIGARCH Computer Architecture News, vol. 39, pp. 11–22,
ACM, 2011.

[70] N. Choudhary, S. Wadhavkar, T. Shah, H. Mayukh, J. Gandhi,
B. Dwiel, S. Navada, H. Najaf-abadi, and E. Rotenberg,
“Fabscalar: Automating superscalar core design,” IEEE Micro,
vol. 32, no. 3, pp. 48–59, 2012.

[71] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, M. Matl, and
D. Wentzlaff, “Openpiton: An open source manycore research
framework,” ACM SIGOPS Operating Systems Review, vol. 50,
no. 2, pp. 217–232, 2016.

[72] M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, J. Balkind, A. Lavrov,
M. Shahrad, S. Payne, and D. Wentzlaff, “Piton: A manycore
processor for multitenant clouds,” Ieee micro, vol. 37, no. 2,
pp. 70–80, 2017.

[73] K. Lim, J. Balkind, and D. Wentzlaff, “Juxtapiton: Enabling
heterogeneous-isa research with RISC-V and SPARC FPGA
soft-cores,” CoRR, vol. abs/1811.08091, 2018.

[74] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A
pre-rtl, power-performance accelerator simulator enabling large
design space exploration of customized architectures,” in ACM
SIGARCH Computer Architecture News, vol. 42, pp. 97–108,
IEEE Press, 2014.

[75] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “The aladdin
approach to accelerator design and modeling,” IEEE Micro,
vol. 35, no. 3, pp. 58–70, 2015.

[76] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E.
Hopkins, and P. W. Markstein, “Register allocation via coloring,”
Computer languages, vol. 6, no. 1, pp. 47–57, 1981.

[77] M. Auslander and M. Hopkins, “An overview of the pl. 8
compiler,” in ACM SIGPLAN Notices, vol. 17, pp. 22–31, ACM,
1982.

[78] F. C. Chow and J. L. Hennessy, “The priority-based coloring
approach to register allocation,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 12, no. 4,
pp. 501–536, 1990.

[79] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 13, no. 4,
pp. 451–490, 1991.

[80] P. Briggs, K. D. Cooper, and L. Torczon, “Rematerialization,”
ACM SIGPLAN Notices, vol. 27, no. 7, pp. 311–321, 1992.

[81] D. Bernstein, M. C. Golumbic, Y. Mansour, R. Y. Pinter, D. Q.
Goldin, H. Krawczyk, and I. Nahshon, “Spill code minimization
techniques for optimizing compliers,” in ACM SIGPLAN Notices,
vol. 24, pp. 258–263, ACM, 1989.

[82] R. Gupta and R. Bodı́k, “Register pressure sensitive redundancy
elimination,” CC, vol. 99, pp. 107–121, 1999.

[83] K. D. Cooper and L. T. Simpson, “Live range splitting in a
graph coloring register allocator,” in International Conference on
Compiler Construction, pp. 174–187, Springer, 1998.

[84] P. Zhao and J. N. Amaral, “To inline or not to inline? enhanced
inlining decisions,” in International Workshop on Languages and
Compilers for Parallel Computing, pp. 405–419, Springer, 2003.

[85] ARM Limited, ARM Cortex-A Series Programmers Guide for
ARMv8-A.

[86] L. George and A. W. Appel, “Iterated register coalescing,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), 1996.

[87] G.-Y. Lueh, T. Gross, and A.-R. Adl-Tabatabai, “Fusion-
based register allocation,” ACM Transactions on Programming
Languages and Systems (TOPLAS), 2000.

[88] P. Bergner, P. Dahl, D. Engebretsen, and M. O’Keefe, “Spill code
minimization via interference region spilling,” ACM SIGPLAN
Notices, 1997.

[89] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of
the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, p. 75, IEEE Computer
Society, 2004.

[90] B. C. Lopes, R. Auler, L. Ramos, E. Borin, and R. Azevedo,
“Shrink: Reducing the isa complexity via instruction recycling,”
in ACM SIGARCH Computer Architecture News, 2015.

[91] E. Borin, M. Breternitz, Y. Wu, and G. Araujo, “Clustering-based
microcode compression,” in Computer Design, 2006. ICCD 2006.
International Conference on, pp. 189–196, IEEE, 2007.

[92] E. Borin, G. Araujo, M. Breternitz Jr, and Y. Wu, “Structure-
constrained microcode compression,” in Computer Architecture
and High Performance Computing (SBAC-PAD), 2011 23rd
International Symposium on, pp. 104–111, IEEE, 2011.

[93] E. Borin, G. Araujo, M. Breternitz, and Y. Wu, “Microcode
compression using structured-constrained clustering,” International
Journal of Parallel Programming, vol. 42, no. 1, pp. 140–164,
2014.

[94] A. Baumann, “Hardware is the new software,” in Proceedings of
the 16th Workshop on Hot Topics in Operating Systems, HotOS
’17, 2017.

[95] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion
of control dependence to data dependence,” in Proceedings of
the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 177–189, ACM, 1983.

[96] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann, “Effective compiler support for predicated execution
using the hyperblock,” in ACM SIGMICRO Newsletter, vol. 23,

pp. 45–54, IEEE Computer Society Press, 1992.
[97] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal,

D. M. Gallagher, and W.-m. W. Hwu, “Characterizing the impact
of predicated execution on branch prediction,” in Proceedings of
the 27th annual international symposium on Microarchitecture,
pp. 217–227, ACM, 1994.

[98] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and
W.-M. W. Hwu, “A comparison of full and partial predicated
execution support for ilp processors,” ACM SIGARCH Computer
Architecture News, vol. 23, no. 2, pp. 138–150, 1995.

[99] D. I. August, W.-m. W. Hwu, and S. A. Mahlke, “A framework
for balancing control flow and predication,” in Microarchitecture,
1997. Proceedings., Thirtieth Annual IEEE/ACM International
Symposium on, pp. 92–103, IEEE, 1997.

[100] M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE transactions on computers, vol. 100, no. 9, pp. 948–960,
1972.

[101] R. Duncan, “A survey of parallel computer architectures,”
Computer, vol. 23, no. 2, pp. 5–16, 1990.

[102] Intel, Intel 64 and IA-32 Architectures Software Developers
Manual.

[103] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G.
Saidi, and S. K. Reinhardt, “The M5 Simulator: Modeling
Networked Systems,” Micro, IEEE, 2006.

[104] P. Smith and N. C. Hutchinson, “Heterogeneous Process
Migration: The Tui System,” Software-Practice and Experience,
1998.

[105] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
USENIX Technical Conference, Apr. 2005.

[106] B. Solomon, A. Mendelson, R. Ronen, D. Orenstien, and
Y. Almog, “Micro-operation cache: A power aware frontend for
variable instruction length isa,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 11, no. 5, pp. 801–811,
2003.

[107] M. Taram, A. Venkat, and D. Tullsen, “Mobilizing the micro-ops:
Exploiting context sensitive decoding for security and energy
efficiency,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pp. 624–637,
IEEE, 2018.

[108] M. Taram, A. Venkat, and D. M. Tullsen, “Context-sensitive fenc-
ing: Securing speculative execution via microcode customization,”
in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2019.

[109] V. Madduri, R. Segelken, and B. Toll, “Method and apparatus
for variable length instruction parallel decoding,” in United
States Patent Application 10/331,335.

[110] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program Behavior,”
in International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2002.

[111] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood,
and B. Calder, “Using SimPoint for Accurate and Efficient
Simulation,” in ACM SIGMETRICS Performance Evaluation
Review, June 2003.

[112] Intel Corporation, Intel R© 64 and IA-32 Architectures Optimization
Reference Manual. No. 248966-018, March 2009.

[113] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
in Proceedings of the 42Nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, (New York, NY,
USA), pp. 469–480, ACM, 2009.

[114] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson, et al., “Xsede: accelerating scientific discovery,”
Computing in Science & Engineering, vol. 16, no. 5, pp. 62–74,
2014.

[115] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in
International Symposium on Computer Architecture, June 2011.

