Oracle Separation of BQP and PH

Ran Raz"
Princeton University
Princeton, NJ, USA
ran.raz.mail@gmail.com

ABSTRACT
We present a distribution 9 over inputs in {+1}*", such that:

(1) There exists a quantum algorithm that makes one (quantum)
query to the input, and runs in time O(logN), that
distinguishes between D and the uniform distribution with
advantage Q(1/log N).

(2) No Boolean circuit of quasipoly(N) size and constant depth
distinguishes between D and the uniform distribution with
advantage better than polylog(N)/ VN.

By well known reductions, this gives a separation of the classes
Promise-BQP and Promise-PH in the black-box model and implies
an oracle O relative to which BQP? g PHO.

CCS CONCEPTS

+ Theory of computation — Circuit complexity; Oracles
and decision trees; Quantum complexity theory; Complexity
classes.

KEYWORDS

BQP, oracle separation, polynomial hierarchy, bounded depth
circuits

ACM Reference Format:

Ran Raz and Avishay Tal. 2019. Oracle Separation of BQP and PH. In
Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory
of Computing (STOC °19), June 23-26, 2019, Phoenix, AZ, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3313276.3316315

1 INTRODUCTION

Can polynomial-time quantum algorithms be simulated by classical
algorithms in the polynomial-time hierarchy?

In this paper, we show that in the black-box model (also known as
query-complexity or decision-tree complexity), the answer is negative.

*Research supported by the Simons Collaboration on Algorithms and Geometry and
by the National Science Foundation grant No. CCF-1412958.

TResearch supported by a Motwani Postdoctoral Fellowship and by NSF grant CCF-
1763311.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC 19, June 23-26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6705-9/19/06....$15.00
https://doi.org/10.1145/3313276.3316315

13

Avishay Tal®
Stanford University
Stanford, CA, USA
avishay.tal@gmail.com

That is, in the black-box model, the class BQP of (promise')
problems that can be solved by bounded-error polynomial-time
quantum algorithms, is not contained in the class PH, the (classical)
polynomial-time hierarchy.

More precisely, we give an explicit black-box (promise) problem,
that can be solved by a polynomial-time quantum algorithm with
only one query, but cannot be solved by a classical algorithm in the
polynomial-time hierarchy.

It is well known that this implies an oracle O relative to which
BQP is not contained in PH. Previously, even an oracle separation
of BQP and AM was not known.

1.1 Motivation and Related Work

The black-box model has played a central role in the study of
quantum computational complexity. For example, Shor’s algorithm
for factoring [Sho97] builds on Simon’s black-box algorithm for
finding periodicity [Sim94] and Grover’s database search algorithm
is stated and proved directly in the black box model [Gro96].

The relative power of BQP and classical complexity classes, in
the black box model, has been studied in numerous works, starting
with the celebrated paper by Bernstein and Vazirani that defined
the class BQP and founded the field of quantum computational
complexity [BV97]. Bernstein and Vazirani proved that in the black-
box model BQP ¢ BPP [BV97]. They also extended their proof to
show that in the black-box model BQP ¢ MA and conjectured that
in the black-box model BQP ¢ PH (private communication with
the authors). A full (different) proof that in the black-box model
BQP ¢ MA was given by Watrous [Watrous00].

Aaronson defined the Forrelation problem, as a candidate for
separating BQP and PH in the black-box model [Aar10]. By
studying a variant of the Forrelation problem, he obtained a relation
problem (i.e., a problem with many valid outputs) that is solvable
in the black-box model in BQP, but not in PH, thus separating
the relation versions of these classes, in the black-box model.
Consequently, Aaronson obtained an oracle O relative to which
the relation version of BQP is not contained in the relation version
of PH. That work by Aaronson has been quite influential. It led to
additional results in the black box model, such as [AA15, Chen16],
as well as results that are seemingly unrelated, such as [Aar11].
Followup works, such as [FSUV13, Rem16], further studied the
problems of separating BQP and PH in the black-box model and
obtaining an oracle O relative to which BQP is not contained in PH.

In his work [Aar10], Aaronson motivated the study of
oracle/black-box separation of BQP and PH in various ways. First,

In our entire discussion of black-box complexity classes, we consider complexity
classes of promise problems, rather than decision problems. Nevertheless, separations
of classes of promise problems in the black-box model imply oracle separations of the
corresponding classes of decision problems in the “real” world (see [Aar10]; Footnote 4).

https://doi.org/10.1145/3313276.3316315
https://doi.org/10.1145/3313276.3316315

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

he views such a separation as a formal evidence for the possibility
that BQP ¢ PH in the real world. Second, he argues that oracle
separations played a role in many of the central developments in
complexity theory and an even more central and decisive role in
quantum computing. Third, he argues that the black-box (query
complexity) model is a natural and well motivated model in its
own right. Finally, he mentions that such a separation also implies
a separation of the classes BQLOGTIME (the class of promise
problems decidable by quantum algorithms that have random access
to an N-bit input, and run in time O(log N)) and AC®,? in the real

world. (We refer the reader to [Aar10, FSUV13] for further details).

1.2 Our Results

Let D, D’ be two probability distributions over a finite set X. We
say that an algorithm A distinguishes between D and D’ with
advantage ¢ if

e=| Pr [Aacceptsx] — Pr [Aacceptsx’]|.
|x~Z)[ptsx] - Pr [pts x']|
The following is our main result:

Theorem 1.1. There exists an explicit distribution D over inputs in
{£1}*N | such that:

(1) There exists a quantum algorithm that makes one query to the
input, and runs in time O(log N), that distinguishes between
D and the uniform distribution with advantage Q(1/log N).

(2) No Boolean circuit of size quasipoly(N) and constant depth
distinguishes between D and the uniform distribution with
advantage better than polylog(N)/VN.

We can amplify the advantage of the quantum algorithm in
Theorem 1.1 by making polylog(N) sequential repetitions and
obtain the following result:

Theorem 1.2. There exists an explicit distribution D1 over inputs
in {£1}™, such that:

(1) There exists a quantum algorithm that makes polylog(N7)
queries to the input, and runs in time polylog(Ny), that
distinguishes between D1 and the uniform distribution with
probability 1 — 27 POlylog(N1)

(2) No Boolean circuit of size quasipoly(N1) and constant depth
distinguishes between D1 and the uniform distribution with
advantage better than polylog(N1)/VNj.

We can also amplify the advantage of the quantum algorithm
in Theorem 1.1, using only one quantum query (by standard
amplification techniques) and obtain the following result:

Theorem 1.3. There exist explicit distributions D and U over inputs
in {+1}™2, such that:
(1) There exists a quantum algorithm that makes one query to the
input, and runs in time O(log N»), that distinguishes between
Dy and U with probability 1 — 2108 Np)
(2) No Boolean circuit of size quasipoly(N2) and constant depth

distinguishes between Dy and U with advantage better than
o—(log Np)*®

ZRecall that AC® refers to Boolean circuits of polynomial size and constant depth.
3In fact, our lower bounds on Boolean circuits may be extended up to sub-exponential
size constant depth circuits. See Theorem 7.4 for the exact dependency on the size and
depth.

14

Ran Raz and Avishay Tal

By the standard and straightforward relation between AC® and
PH [FSS84] (by replacing every V by A gate and every 3 by V gate),
we have the following corollary:

Corollary 1.4. In the black-box model, Promise-BQP ¢ Promise-
PH.

By the relation between black-box separations and oracle
separations, we have the following corollary. We include its proof
in the appendix for completeness.

Corollary 1.5. There exists an oracle O relative to which BQP® ¢
PHO.

Finally, an immediate corollary of our main theorems (for details,
see [Aar10, FSUV13]):

Corollary 1.6. Promise-BQLOGTIME ¢ Promise-AC®.

1.3 Techniques

Our distribution D is a variant of Aaronson’s Forrelation
distribution [Aar10], but differs from it in a way that turned out to
be crucial in our analysis.

The quantum algorithm for distinguishing between D and the
uniform distribution was suggested by [Aar10, AA15].

The hard part of our result is the lower bound for bounded depth
circuits distinguishing between D and the uniform distribution.
For this part, we use Fourier analysis. We use Tal’s tail bounds
on the Fourier spectrum of bounded depth circuits [Tal17] (that
builds on a long line of works, in particular [LMN93, Has14]). We
also use the fascinating recent approach of Chattopadhyay, Hatami,
Hosseini and Lovett for constructing pseudorandom distributions
by considering a random walk that makes small steps, where each
step is sampled from a pseudorandom distribution that takes values

n [-1, 1]V [CHHL18]. In particular, their (simple yet powerful)
Claim 3.3 is crucial for our proof.

2 PROOF OUTLINE
2.1 The Distribution D

Our distribution » is a variant of Aaronson’s Forrelation
distribution, but differs from it in a way that turned out to be
crucial in our analysis.

Letn € Nand N = 2" Let ¢ = 1/(24 - InN). We define
a probability distribution G’ over RN x RN as follows: Sample
X1,...,XN ~ N(0,¢) independently. Let y = Hy - x (where Hy
is the Hadamard transform). Output z = (x,y). Note that G’ is a
multivariate gaussian distribution with zero-means and covariance

matrix
.. (IN HN)
Hyv In |’

Aaronson had a similar distribution (with ¢ = 1) and obtained
from it a distribution over {+1}*", by replacing each z; by sgn(z;).
Instead, our distribution D is defined as follows: We draw z ~ G’
and truncate each z; to the interval [—1, 1], by applying the function
trnc(z;) = min(1, max(—1,z;)). Then, in order to obtain values
in {+1}, independently for each i € [2N] we draw z] = 1 with
1+trnc(z;)

2

probability l_tmTc(z’) We

output z/ € {+1}?N.

and z] = —1 with probability

Oracle Separation of BQP and PH

Note that since ¢ is sufficiently small, we have that with high

probability, every z; is already in the interval [-1, 1], to begin with.

Thus, the truncation operation occurs with negligible probability
and we show that it could be essentially ignored in the analysis (See
Sec. 5). The more important point is that, assuming that z; € [-1, 1],
we take z; = 1 with probability l;i and z] = —1 with probability
%, rather than taking z; to be the sign of z;.

The reason for defining O as above is that we can prove the
following fact, that turned out to be crucial for our analysis: Let
F : R*N — R be any multilinear function that maps [—1, 112N to
[-1, 1]. Then, F has similar expectation under G’ and under D. In
fact, denoting trnc(z) := (trnc(z1), . . ., trnc(zan)), we show that
Egl[F(trnc(z))]

zZ~

E [F(z
_EIFE]
and since, as mentioned above, truncation occurs with negligible
probability, we can prove that

E _[F(z)]

JEpIFE] = E [FG)L

Thus, in large parts of the proof, we can analyze the distribution
G’, rather than D.

2.2 The Quantum Algorithm

The quantum algorithm for distinguishing between O and the
uniform distribution is simple and is similar to [Aar10, AA15]. Since
the constraint y = Hp - x is linear, the support of the distribution G’
is an N-dimensional linear subspace H < R*N . A vector z ~ D will
be, on average, closer to H than a random vector. Thus, intuitively,
the algorithm just needs to accept with higher probability vectors
that are closer to H.

Given an input z = (x, 1) € {£1}2N, the algorithm can generate,
by one quantum query, the quantum state ¥ = x/z;W Z?ivl zi|i). By
applying an appropriate unitary transformation and measuring the
state, the algorithm can accept with higher probability when the
distance between z and H is relatively small, and thus distinguish
between D and the uniform distribution. It was shown in [Aar10,
AA15] how to implement the appropriate unitary transformation
efficiently, by O(log N) quantum gates (using the fact that the
Hadamard transform can be computed using O(log N) quantum
gates). The algorithm distinguishes between D and the uniform
distribution with advantage that is proportional to .

2.3 The AC® Lower Bound

The hard part of our result is the lower bound for bounded depth
circuits distinguishing between 9 and the uniform distribution.
Our proof uses Fourier analysis; Tal’s tail bounds for the Fourier
coefficients of bounded depth circuits [Tall7] and a recent
approach and claim by Chattopadhyay, Hatami, Hosseini and
Lovett [CHHL18].

LetA: {+1}*N = {+1} be aBoolean circuit of quasi-polynomial
size and constant depth. For a vector z € R*N, we denote by A(z)
the value of the multilinear extension of A on z. The multilinear
extension A : R?N — R can be written as A(z) = 2.5c[2N] A(S) -

[T;es zi, where A(S) are the Fourier coefficients of A. Observe that
A(0) = A(0) = Ey~u,n[A(u)]. Tal’s tail bounds imply that for all

15

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

k € N, we have

D, A®) < (polylog(N)*.

SC[2NT:|S|=k

We need to prove that A cannot distinguish between the
distributions O and U, . That is, we need to prove that

JE lA@)] ~ u~]zEJZN[A(u)]‘

Since E, .y, [A(w)] = A(a) and since, as mentioned above,
E..plA(2)] = E,. g [A(2)], it will be sufficient to prove that

LB [4G)] - 4G)

is small.

Denote by @(S) the moments of the distribution G’. That is,
@\’(S) = E; g [[1ies zi]- (We use moments, rather than Fourier
coefficients, because the distribution is over the reals. In some sense,
these moments play the role of Fourier coefficients in our proof).
The values of @(S) are well known. In particular, @\’(S) = 0 when
|S| is odd, and we have a closed formula for the case that |S| is even.

Similarly to Plancherel’s theorem, it is easy to bound

| E JA@1-40[=| Y &5)-Gs)

0£SC[2N]
<D DTIASNG S = Y. D ASIG S ()
k>1S|=k k>2|S|=k

(where the last equality is since @(S) = 0 when |S| is odd). It turns
out that when plugging in the bounds that we have on the moments
|§7(S)| and the bounds that we have on 5= |Z(S)|, the terms
that correspond to small k-s are small, but the bounds that we get
on terms that correspond to large k-s (i.e. k > VN) are too large.
Thus, it is not clear how to use this expression to prove the desired
result.

Here we use the approach of [CHHL18]. Let t+ := N and
p = 1/t = N~1/2_ Rather than sampling z ~ G’, we sample
independently z(l),...,z(t) ~ G'.Fori = 0,...,t let 2= =
p- (z(l) + ...+ z(i)). We think of zs(l),...,zs(t) as a random
walk that makes small steps, where each step is a small constant p
times a random variable that is distributed according to the original
distribution G’. (We note that in the limit p — 0, that walk would
be a Brownian motion).

[CHHL18] used a similar random walk* in order to converge
to the discrete cube {1}V . In that sense, their walk was used in
order to obtain better and better distributions, that is, distributions
that are closer and closer to {+1}?*"N. Their motivation was the
construction of pseudorandom generators and hence they tried to
minimize the number of steps, as they needed fresh random bits
for each step. Instead, our motivation is separating BQP from PH
in the relativized world, and we use our random walk just in order
to analyze the original distribution G’. The crucial point is that
since G’ is a multivariate gaussian distribution, the distribution of
250 ig exactly G’. Thus, in our case, the random walk does not
give a better distribution; it gives the exact same distribution and

4One difference is that we take a simple random walk whereas [CHHL18] adaptively
scale each step according to the current location of the walk, in order to get closer to
{x1}2N.

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

it is used because it gives a powerful way to analyze the original
distribution, as described next.

Similarly to Claim 3.3 of [CHHL18], we can prove that if for
every Boolean circuit of a certain size and depth and for some b,

E [4(p2)] - AD)] < b.

then for every i € [¢],
|ELAG=0)] - A@)| < 06 - b),
and in particular for i = ¢,

‘ E_lA@) —A(5)’ - |E[A(ZS<”)] —A(ﬁ)‘ <O(t-b)=0(p2 - b).

Since multiplication of a random variable by a factor of p < 1,
reduces all moments of order k by a factor of p¥, similarly to
Equation (1), we have

| E [4(2] - 40 < 3\t Y IADIFS).
= k>2 |S|=k
Thus,
| E 4G -46) < 0(p 30 3 IASIFS))
= k>2 |S|=k

The last expression is (up to a multiplicative constant) the same
as Equation (1), except that all terms were reduced by a factor of
pk’z. Since we took p to be very small, all terms except for k = 2
can essentially be ignored and plugging in the bounds on |§(5)|
and the bounds on |- JA(S)|, we get the desired bound.

3 PRELIMINARIES

We denote by Uy the uniform distribution over {£1}N. We denote
by Iy the identity matrix of order N.

We shall use the following standard bound on the gaussian
distribution: for any positive x € R, we have Pr[|N(0,1)| > x] <
e "2,

We consider Boolean circuits consisting of unbounded fan-in
AND, OR gates applied to input variables and their negation. We
only consider circuits with one output. The size of a circuit is the
number of gates it contains. The depth is defined as the length of
the longest path (in edges) from any input to the output.

3.1 The Hadamard Transformation

Letn € Nand N = 2. The Hadamard transform H = Hy € RNXN
is defined as follows. For i, j € [N],

Hij= N2, (_1)<isj>’

where (i,j) denotes the inner product between the binary
representations of (i — 1) and (j — 1). It is well known that Hy
is orthonormal and symmetric and thus Hy - Hy = IN.

3.2 Quantum Query

A quantum query to an input z € {+1}?N performs the diagonal
unitary transformation U;, defined by |i, w) — z;|i, w), where
i € [2N] and w represents the auxiliary workspace that does not

participate in the query.

16

Ran Raz and Avishay Tal

4 THE DISTRIBUTION D

4.1 The Forrelation Distribution and its Variant

Let n € Nand N = 2". We assume that n is sufficiently large. We
follow Aaronson suggestion [Aar10], that defined a distribution #
on {1}V x {1}V (called Forrelation) that is sampled as follows:

(1) Sample x1,...,xy ~ N(0, 1) independently.

(2) Lety = HN - x (wWhere Hy is the Hadamard transform).

(3) Output (sgn(x). sgn(y)).
We define a probability distribution G over RN x RN using the
same process, but without taking signs. That is, G is sampled as
follows:

(1) Sample x1,...,xy ~ N(0, 1) independently.

(2) Lety = Hy - x (where Hy is the Hadamard transform).

(3) Output z = (x, y).
Observe that G is a multivariate gaussian distribution with zero-
means and covariance matrix

I Hwn

Hy IN
It is thus clear that G is symmetric in x and y. Note that
X1, ..., XN are independent random variables. Similarly y1, ..., yn

are independent.
For S, T C [N], we wish to analyze the “Fourier coefficients” of

G, defined as
GS.T)E E [X; - ;
5T E [1= [[w

ieS jerT

(these are actually the moments of G). In the next claim, we bound
G(S.T).
Claim 4.1. LetS,T C [N] andi,j € [N]. Letky = |S], k2 =
Then,

(1) G{i}, (1)) = N7V2- (=)D,

IT].

(2) G(S,T) =0 ifky # ko.
3) 1G(S.T)| < k! N7F/2 ifk = ky = k.
(4) |G(S.T)| < 1 forallS,T.

Proor. Allitems rely on the fact that G is a multivariate gaussian
distribution with zero-means and covariance matrix
I Hn
[W)
The first item is trivial as it is actually an entry in the covariance
matrix above.

The second and third items rely on Isserlis’ Theorem [Iss1918]
(See also http://en.wikipedia.org/wiki/Isserlis’_theorem), stating
that in a zero-mean multivariate gaussian distribution Z1, . .., Z3N,
for distinct iy,...,iy, € [2N], we have E[Z;, --- Z;, ,] = 0 and
E[Z; ---Zi,] = X 11 E[Zi,Z;,], where the notation }] [] means
summing over all distinct ways of partitioning Z;,, ..., Z;,, into
pairs and each summand is the product of the k pairs. In our case,
if |S| # |T|, in any partition of the elements of S and T into pairs,
we will have a pair in which either the two entries are from the
left half or the two entries are from the right half, however the
covariance of any such pair is 0. This gives the second item. For
the third item, we note that if |S| = |T| = k there are k! partitions
of the elements of S and T into pairs such that each pair contains

http://en.wikipedia.org/wiki/Isserlis'_theorem

Oracle Separation of BQP and PH

exactly one variable from each half. The covariance of each pair
is +N71/2, Thus, we are summing k! numbers which are J_rN_k/z,
which gives |G(S,T)| < k! - N~k/2,

The last item is a simple application of Cauchy-Schwarz

inequality:
s =5|[]s[o] = [EI[T<] #[[]4]
ies jeT ieS jeT
= ([Tee21- [TEI21 =1 o
ieS jeT

4.2 The Distribution D

Let n € N. Let N = 2". We assume that n is sufficiently large.

Recall that G is a multivariate gaussian distribution over RN with
zero-means and covariance matrix

I HN
Hy IN)°

Let ¢ = 1/(24 - In N). We define a probability distribution G’

over R®N, sampled as follows: Sample z ~ G and output Ve - z.

Note that G’ is a multivariate gaussian distribution over R*N with
zero-means and covariance matrix
. Iy Hn
Hy IN)°
Let trnc(a) := min(1, max(—1, a)) be the function that given a
real number, truncates it to the interval [-1, 1].

The Distribution D: We draw z ~ G’ and take trnc(z) :=
(trnc(zq), - - ., trnc(zan). Then, independently for each i € [2N] we

_ . 1. 1+trne(z;)
draw z; = 1 with probability ——--=

%C(Z"). We output 2/ € {1}V,

Observe that conditioned on the value of z ~ G’, we have that
2{,.. .2y are independent and for each i € [2N] the expected
value of z] equals trnc(z;).

and z; = —1 with probability

5 MULTILINEAR FUNCTIONS ON O

In this section, we show that any multilinear function F : RN LR
that maps [~1, 1]?N to [~1, 1] has similar expectation under G’ and
under D. Let F : R*N - R be a multilinear function, defined by

Fz)= Y FS)-]z

SC[2N] ieS
where Fi (S) € R. First we show that

F(z')] = z~Eg'[F (trnc(2))]. @

E

z’~D[
For the proof of Equation (2), recall that z’ ~ D can be generated
as follows: Draw z ~ G’. Then, independently for each i € [2N],

_ . 10, 1+trnc(z;)
draw z] = 1 with probability ——-

and z; = —1 with probability
l_tmTc(Z"). Equation (2) holds since conditioned on the value of z,
the expected value of F(z’) equals F(trnc(z)). To see this, we use

linearity of expectation and the definition of G’, D:

> Es) [+ z]

SC[2N] ieS

E[F(') | 2] = E [

17

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

= >, F©®-[]EE 12

SC[2N] ieS
= Z I?(S) . l_[trnc(z;)
SC[2N] ieS
= F(trnc(z)).
Thus, we need to bound

the difference between E,_g/[F(trnc(z))] and E,..g/[F(z)]. Note
that whenever z € [-1,1]%V, there is no difference between F(z)
and F(trnc(z)), and we only need to bound the difference when z is
outside [—1, 112N The next claim bounds the value of |F(z)| when
z is outside [-1, 1]2N.

Claim 5.1. Let F : R?N — R be a multilinear function that
maps {£1}*N 10 [-1,1]. Let z = (2z1,...,22N8) € R2ZN. Then,
|F(2)] < [13N) max(1, |zi]).

ProoF. Recall that two multilinear functions that agree on
{£1}?N must be equal as functions on all RN Thus, we can write
F(x) as

2N xiwi +1
Fey=) Fw)-[[7=—.

we{x1}2N i=1

since these two expressions are multilinear and they agree on
{+1}2N. By our assumption, for any fixed w € {£1}*N F(w) €
[-1, 1]. Thus, the value of |F(z)| is at most

2N
iwi +1
F@I< Y IRl |[[25—
we{x1}2N i=1
2N |ziw; + 1]
1 1
< 2 ==

we{x1}2N i=1

2N
zit+1 -zi+1
N [EASlpgECES]
2 2

i=1

2N
= ﬂ max(1, |zi]). o
i=1

We got that the value of |F(z)| is bounded by []; max(1, |z;|).
The following claim bounds the latter times the indicator that
z # trnc(z).

Claim 5.2. E,_ g []_[?51 max(1, |z;|) - l{zitmc(z)}] <4-N72
Proor. Let z = (x,y) ~ G’. For every sequence of non-negative
integers a = (a1, . .., an), we consider the event
Vie[N]:a; < |xi| <aj+1,

denoted by &,. For every sequence of non-negative integers b =
(b1, ...,bN), we consider the event

Vie[N]:b; <|yil <bi+1,

denoted by 81'7, Since x1, . .
of G’), we have

., xN are independent (by the definition

N
Pr(&q] < [[PrIN(O, 0)] = ai] < H e~ @i/(28),

i=1

—

1l
—

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

]< HN e~b1/(2) We thus have

and similarly Pr[&

2N

() = ZPQ’ [D max(1, |z;]) - 1{z;ttrnc(z)}]

N N
= (x,y];;g’ [g max(1, [x;]) - lj[max(1, |y;l) - l{(x,y)#trnc(x,y)}

< > P& AE)] ﬂ(1+a,)]_[(1+b)
aeNN peNN,
(a,b)#0*N
N N
< O min{Pr&Prig]} [[+ e[1+ i)
i=1 i=1

aeNN peNN,

(a,b)#0*N
< 3 Jerial prie]‘[<1+a,)]_[(1+b> ®)
aeNN,
beNN,
(a,b)#0*N

Since 1 +a; < e% < /() for ¢ < 1/8, we get
N N
VPr[&4] - l_l(l +a;) < e~ Ziaj/(de) 1_[(1 +a;)
i=1 i=1
< e—Ziﬂg/(SE))

Hfil(l +bj) < e Zi bi/(8) we plug these

estimates in Expression (3):

Similarly, | [Pr[gé] :

() < Z ia3/(8e) |~ X, bl/(8e)
aeNN peNN,
(a,b)#0*N
< Z e~ Ziai/(8) | ,—X;bi/(8¢)
aeNN beNN,
(a,b)#0*N
< Ze_k/(sg)- {(a,b) caeNNp ENN,Zai +b; = k}
k=1 i
< Z e_k/(sg)) (2N +kk - 1)
k=1
< Y e kB Nk < NN eN)F <4 N2, o
=1 k=1

The next claim shows that a multilinear function has very similar
expectation under G’ and under the truncated variant of G’. For the
application in Section 7, we generalize the claim a bit to include any
shift by a constant vector zy € [—po, po]*N and any multiplication
by a positive constant p € R, as long as p + pp < 1. We shall later
use the claim with pg = 1/2, p < 1/2in Section 7 and (po, p) = (0, 1)
in Section 6.

1.LetF :R?N 5 R
1,1]. Let zp €

Claim 5.3. Let 0 < p,po such thatp + py <
be a multilinear function that maps {(£1}*N o[-
[=po.po]*N. Then,

Pg,[|F(trnc(zo +p-2)—F(zo+p-2)|] <8 N2

18

Ran Raz and Avishay Tal

ProOF. Let & be the event that (trnc(zo + p - z) # zo + p - 2).
Note that & implies the event z # trnc(z) since p + py < 1. Using
Claim 5.1, we get

E ,[lF(th(Zo +p-2z))—F(zo +p-2)|]
< E 1A+ [F(zo +p-2)]) - 1g]

< 2~E§’[(1 +1F(zo +p-2)])- 1{z#trnc(z)}]

<

2N
(1 + l_[max(1, |(z0)i +p - Zi|)) : 1{z¢tmc(z)}]

E
z~G’

<

Z~Q [nmax(l [(z0)i +p - zil) - L{z#trnc(2)} |-
However, [T2N, max(1,|(z0)i +p - zil) < 12N, max(1,po + plzil) <
I

max(1, |z;|). Using Claim 5.2, we get
}3 [IE(trnc(zo +p - 2)) = F(zo + p - 2)|]

< z~g’ [nmax(l |zil) - 1{z;&trnc(z)} 8-N2. O

6 QUANTUM ALGORITHM DISTINGUISHING
D AND U, N

Let Q be the 1-query algorithm for Forrelation by Aaronson

and Ambainis [AA15]. By [AA15, Prop.6], on a given input x €

{x1}N,y e {£1}V, the algorithm Q accepts with probability

(1+ ¢(x,y))/2, where

o(x,y) = Xi-Hij-yj.
i€[N],je[N]
In other words, if the algorithm outputs a {+1} value, then its
expected value is exactly ¢(x, y). Observe that ¢ is a homogeneous
polynomial of degree 2 in the input variables.

Claim 6.1. E(x’y)NUZN [o(x,y)] = 0.

Proor. For any i,j € [N], we have E[x;y;] = 0, under the
uniform distribution. By linearity of expectation, E[¢(x,y)] = 0. O

Claim 6.2. E,)¢/ [o(x,y)] = .

Proor. Using the fact that Ey,). g/ [xi - yj] = € - Hj j, we get

[p(x. y)] = 7 - Hij- E [xi-yj]
(. y) g ie[NT7€[N] (x,y)~G
Z%- Z Hi,j-é"Hi,j:E. (]

i€[N],j€[N]
Claim 6.3. E(xlyy,)ND[qJ(x’,y')] > ¢ef2.

Proor. By the multi-linearity of ¢, Equation (2) and the
definition of G’, D we have

(i) z)[fp(x S8)
) <x,y>~gf[¢(””c(")’ trne(y))]
2 x y];ZNQ,[</J(x, Y- x. y];3~g,[tﬂ(trnc(x), trnc(y)) — ¢(x, y)]

Oracle Separation of BQP and PH

=€

= lotme(). tme(w) - ot)]

Thus it suffices to upper bound E(y,). g [l¢(trnc(x), trnc(y)) —
@(x,y)|] by £/2. Since ¢(x, y) is the expected value of a quantum
algorithm outputting a value in {1} it is bounded in [-1, 1] on
inputs x, y € {+1}*" . Since ¢ is multilinear, we may apply Claim 5.3
with pg = 0, p = 1 and zp = 02N to get
E [lo(trc(x), trnc(y)) — o(x,y)|]] < 8- N2 < ¢/2,
(x’y)"'g/
which completes the proof. O

Corollary 6.4. There exists a quantum algorithm Q making 1-query
and running in time O(log N) such that

>¢e/2.

_E 0G0~ E [0

2N

7 O FOOLS BOUNDED DEPTH CIRCUITS

In the following, for a Boolean function A : {il}ZN — {1} and
a vector x € R®V we denote by A(x) the value of the multilinear
extension of A on x. The multilinear extension A : R*N — R can

be written as N
Alx) = Z A(S) - ﬂ xi.
SC[2N] ieS

Observe that A(0) = A(0) = Ex~,, [A(X)].
We use the following result of Tal [Tal17]:

©

Lemma 7.1 ([Tal17, Thm. 37]). There exists a universal constant
¢ > 0 such that the following holds. Let A : {£1}*N = {£1} be a
Boolean circuit with at most s gates and depth at most d. Then, for
allk € N, we have Y5 [aN]:|S|=k JA(S)| < (c - log s)(d-Dk,

For two vectors R,Q € R*N we denote by Ro Q € R?N their
point-wise product, that is (Ro Q); = R; - Q; for all i € [2N].

Claim 7.2. Letp < 1/2. Let A : {+1}*N — {1} be a Boolean
circuit of size at most s and depth at most d, such that \ep - (c -
logs)@~1 < 1/2. Let P € [—p, p]*N. Then,

' Eg [A(P o 2)] — A(D)| < 3¢ - p* - (c - log)X~V . N~1/2 |
JE

Proor. By Equation (4) and since A(0) = A(0),

Eg,[A(P 0z)] - A(6)’
= ZNEQ/[@ Z A\(S)'ﬂpi'zi]
#SC[2N] ieS
= Z Z(S)-npi~ E/H_[zi]
0£SC[2N] ies Y9 lies
=l > Ao-[]~ @(S)'
0£SC[2N] ieS
< > AT VER L 16(s))
0+SC[2N]

JAS)|

2

SC[2NT,|S|=k

2N
F A w1665 -
< (s 160

19

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

2N
(by Lemma 7.1) < kzz;(\/}p)k . (S:Ill}ellﬁk |§(5)|) (e Iogs)(d_l)k

2N . .
:I;lq '(sﬂiik'g(s)')

where ¢ = e - p - (clogs)d_l. For odd k, Claim 4.1 gives
maxg:|s|=k |é(5)| = 0. For k = 2¢, ¢ < |n/2], Claim 4.1 gives
maxg;|s|=z¢ |§(S)| <0 -NC2 Fork =2¢,¢ > |n/2] + 1, we
have maxg.|s|=2¢ |é(5)| < 1. Plugging these bounds in the above
expression, gives
Ln/2] N
E [A(Po2)] —A(6)| < S @l Ny N gl
=g =1 t=[nj2)+1

Observe that each two consecutive elements in each sequence above
are decreasing by at least a factor of 2 (since g = v/ep-(c-log 5)4-1 <
1/2). Thus, the sum is bounded by 2 - ¢ - N™1/2 + 2. g"*1 <
3¢2 - N712,

[m]

Claim 7.3. Letp < 1/4. Let A : {£1}*N — {+1} be a Boolean
circuit of size s and depth d, such that \ep - (c - logs)@~1 < 1/4. Let
zo € [-1/2,1/2)*N . Then,
Eg [A(zo + p - 2)] — A(zo)| < 126 - p® - (c - log s)X4~D) . N~1/2,

)

The proof is similar to the proof of [CHHL18, Claim 3.3], relying
on the fact that restrictions of A are also Boolean circuits of size at
most s and depth at most d.

Proor. Given zp, we define a distribution R, over restrictions
p € {~1,1,%}*N as follows. For each entry i € [2N] independently,
we set p; = sgn((zp);) with probability |(z);| and p; = * otherwise.

Define P € [-2p,2p]*N by P; = p - m for i € [2N].

Let p ~ R,. Next, for any vector z € R2N we define a vector
Z =2z, p) € R¥N, as follows:

~ Pi
zZj =
{Pi - Zi

Thus, for a fixed z € R2N , the vector z is a random variable that
depends on p. We show that for any fixed z € R?N | the distribution
of the random variable z is a product distribution (over inputs
in R?N), and the expectation of Z is the vector zg + p - z. Indeed,
each coordinate z; is independent of the other coordinates, and its
expected value is

v [zi] = 1(z0)il - sgn((z0)i) + (1 = [(z0)i]) - Pi - zi = (20)i +p - zi.

P~Rzy

if p; € {£1}

otherwise

Hence, since A is multi-linear and z has a product distribution, by
Equation (4), EPNRZO [A@)] = A(zo + p - 2).
Letz ~ G'. We get

| E [AGo +p-2)] - Az)

=| B, B [AGE) - AGG.p) |
< B LE [AG(z. p))] = AG(O, p))”

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

However, for any fixed p, we have A(z(z, p)) = Ap (P o z), where
A, is attained from A by fixing the coordinates that were fixed in
p, according to p. Thus,

< E

p~

ngg,[A@o +p-2)] - Azo)

“ E_[A,(Po2)] - 4,(0)
o Il 2~G
and we may apply Claim 7.2 to get that for any fixed p we have

<3-¢- (Zp)2 - (clog s)z(d_l) .N71/2

E [Ap(Po2)] - Ay(0)

z~G’
using the fact that P € [-2p, 2p]*N and the assumption ep(c -
logs)”lf1 <1/4 O

Theorem 7.4. Let A: {x1}*N — {£1} be a Boolean circuit of size
s and depth d. Then, ’EZ/ND[A(Z’)] — A(0)| < 326 (c- log 5)2d-1).
N2,

Proor. First, we can assume without loss of generality that
Ve (c-log 541 < % - N1/4_as otherwise the claim is vacuous (as
the LHS is at most 2 and the RHS is bigger than 2).

Let t := N, p := 1/ = N~'/2. Note that yzp(c - logs)?~! <

%-N_1/4 < 1/4. Let 202D @ Fori = 0,...,¢t let

250 = p- (z(l) +.. .+z(i)). The main observation is that z<(!) ~ G’.

This is since the distribution of z<(*) is a multivariate gaussian
distribution with the same expectation and the same covariance
matrix as G’. Thus, by Equation (2), it will be sufficient to bound

[ElA(trne(z="))] - A@)]

We do so by induction, by the triangle inequality: fori = 0,...,t—1,
we will show

(E[A(tmc(zﬁ(i“)))] - E[A(trnc(z5<i>))]|
<12-¢p?-(c- logs)z(d_l) "N7Y24112.N72,

For i € {0,...,t — 1}, let E; be the event that 2<) ¢

[—1/2,1/2]2N. Since (for i > 1) ‘Z:(‘;l)
2= s distributed A(0, p?ie) and we have

Pr{|(z=);] > 1/2] < Pr[IN(0,)| > 1/2] < e /(B8 < N73,

~ @G’, each j-th entry in

By the union bound, we have Pr[E;] > 1—2N - (N73) =1 -2N~2

By Claim 7.3, used with z¢ = 25 we have that conditioned on
the event E;,

E[A(zSU*D)|E;] - E[A(zﬁ<i>)|E,~](< 126-p*-(c-log s)X 4 D.N71/2
We wish to show a similar bound on the truncated version of z

Note that conditioned on E;, we have z<() = trnc(zg(")), but this is
not necessarily the case for z<(*1), Using Claim 5.3 with py = 1/2

and p < 1/2 we get ‘E [|A(trnc(25(i+1))) — A(zSU+D)y) \Ei” <
8 - N~2. By the triangle inequality we get

‘E[A(trnc(zs(i“)))wi] — E[A(trnc(zSD))|E;]

< [BlA(tmc(z = D)IE] - BLAG=CD) |
+[BIAG=D) B, - BlArmcz=O)) E |

<8-NZ24+12¢-p% (c- logs)z(d_l) N2,

<(i+1)

20

Ran Raz and Avishay Tal

When E; doqs not hold, the difference between A(trnc(zg(i“)))
and A(trnc(z=)) is at most 2 since A maps [-1,1]?N to [-1,1].
Thus,

)E[A(trnc(ls(iﬂ)))] - E[A(tmc(zs(i)))]‘
< ’E[A(trnc(zs(i+1)))|Ei] - E[A(trnc(zs(i)))|E,~]‘ +2-Pr[~E;]

<126-p% - (c-logs)?@V . N"V2 1 12. N2
By Equation (2) and the triangle inequality,

'Z,ED[A(Z’)] —A@‘

z~G

-1))

< > [BlAmez =0+ D)) - Blagtmez <))
i=0

<t-12e-p?-(c- 10gs)2<d_1) N"Y2 412t N7?

E_[A(trnc())] — A(6)‘ - |E[A(tmc(zﬁf))] - A(6)‘

=12¢-(c- logs)z(d_l) "N712412.N71
<32-(c- logs)z(dfl) CN7V2
which completes the proof. O
The following is an immediate corollary to Theorem 7.4.

Corollary 7.5. Let A : {£1}2N — {+1} be a Boolean circuit of
size exp(logo(l)(N)) and depth o(1). Then,
[Ez~p[AZ")] = Byt [A@W)]| < polylog(N)/VN.

8 PROOFS OF THE MAIN THEOREMS

8.1 Proof of Theorem 1.1

Proor. The first part of the theorem is Corollary 6.4. The second
part is Corollary 7.5. O

8.2 Proof of Theorem 1.2

PrOOF. Let § € (0,1) be such that § > 27POWIog(N) et
m = 32- ln(‘:ﬁ = polylog(N). We take N; = 2Nm. Note that
polylog(N1) = polylog(N). We take D1 = D®™, that is, the
distribution over {+1}*N"™, generated by taking a concatenation
of m independent random variables with distribution D. The first
part of the theorem follows by the following claim.

Claim 8.1. There exists a quantum algorithm Qp making
O(m) queries and running in time O(m - logN), such that,
Pr,.p, [Q1(2) accepts] > 1 -6 and Pro vy, [Q1(z) accepts] < 6.

Proor. The claim is proved by amplifying the advantage of the
quantum algorithm in Theorem 1.1, by making m = polylog(N)
sequential repetitions, with fresh quantum states for each repetition.
Since the repetitions are sequential with fresh quantum states, the
output of each repetition is an independent random variable. Thus,
by Chernoft’s bound, the probability that the algorithm successfully
distinguishes between D7 and the uniform distribution is close to
1.

Formally, let z = (W, ..., 2m) e {£1}™2N_ where each
20 € {+1}*N We run the quantum algorithm Q from Theorem 1.1
on each z(?) sequentially, and take a measurement after each run.

Oracle Separation of BQP and PH

Given the results of the m runs, denoted r € {+1}"", we compute
S = Y™, ri and accept if and only if § > m - ¢/4. The algorithm
runs in time O(m - log N) as it runs m times the algorithm Q and
then performs an addition of m bits. The algorithm makes m queries
to the input.

On a uniform input, the string r is distributed uniformly at
random on {+1}", thus by Chernoff’s bound the probability that
the algorithm accepts is at most emie/9*/2 < 5,

On input z ~ Dj, the string r is distributed as a product
distribution of random variables taking values in {+1} with
expectation > ¢/2. By Chernoff’s bound, the probability that the
algorithm accepts is at least 1 — emE/ V2 5 g g, m|

The second part of the theorem follows by the following claim.

Claim 8.2. Let A be any Boolean circuit of size s and depth d. Then,

E [Aw)]|<m-32¢-(c- logs)z(d_l) -N7YZ,

u~UN1

RACOR

Proor. We apply a hybrid argument. We define m + 1 hybrids:
UsNm =
Ho,Hy,...,Hp = D®™ by taking H; = D @ (Uyn)®™ D). We
bound the difference between E, .y, , [A(z)] and E,/ .1, [A(z)], for
i€ {1,...,mhpLetz = (2, ..., 20=D (D yG+D) g (m)y
Hi_1. Let 2/ = (z(l), T U O Ry Gt VR ,u(m)) ~ H;. For
a partial assignment to all m parts except the i-th part, a_; =
(a(l), i gy a(’")), we denote by A|,_,(w) the value
of A on (a<1), o, a(i_l), w, a(i+1), o, a(m)). By an averaging
argument, there exists a string a—;, such that,

E [AZ)]

Z’~Hl‘

E [AG)]

i-1

z~

<

E [Alo, D]~ E

zZO~D uld~Upn

[Ala_,)]

For any fixed string a_;, the restricted function Al,_, is a Boolean
circuit of size at most s and depth at most d. Thus, we can apply
Theorem 7.4 to get that

E [Alo,))]- E
D

2z~ uD~U,n

[A|a,,.(u<”)]'

< 32¢-(c-log s)z(d_l) N7V,

The proof follows by a triangle inequality. O

8.3 Proof of Theorem 1.3

ProoF. Let § € (0,1) be such that § = 27Polylog(N) pet
m = 32- M = polylog(N). Let N’ = (2N)™. Note that
polylog(N’) = polylog(N).

Define the distribution D’ over {1}V ’, generated as follows: Let
z(l), ol 2™ be m independent random variables with distribution
D. Output z := 2D ® ... ® 2™, where ® denotes tensor product,
.sim € [2N], 23, .. i, = [T ZO)

that is, for iy, . . m = =1 % -
- J

Define the distribution U’ over {£1} ", generated as follows: Let
uD, ™ bem independent random variables with distribution

21

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

UsN. Output u := uV @ ... @ ul™ that is, for i1,...,im € [2N],
T | i u,(j’)

Claim 8.3. There exists a quantum algorithm Q' making one query
and running in time polylog(N), such that, Pr,. ¢/ [Q’(z) accepts] >
1— 36 and Pr,_y/[Q’(2) accepts] < 6.

Proor. Let Q be the one-query quantum algorithm from
Theorem 1.1, for distinguishing between D and U; . Intuitively,
the algorithm Q” will run m unentangled copies of Q in parallel.

Recall that for an input z € {+1}*N, a quantum query to the
input performs the diagonal unitary transformation U, defined by

[i, w) — z;[i, w),

where i € [2N] and w represents the auxiliary workspace that does
not participate in the query. Thus, for an input z = We.. .0z2M ¢
(=1}, a quantum query to the input performs the diagonal
unitary transformation U, defined by

lit, .oy ims W) = Zig i i1 - s ims W),
where i1,...,im € [2N] and w represents the auxiliary workspace.
; . om0
Since z;,, .. i, = =1 zl.j ,

Zigoooi |11y W) = (zgj)|i1>) ®...® (Z§:)|im>) ® |w).
Thus, for an input z = We.. . .0z2me {J_rl}N,,

U, =U

H®... 8 Wz(m),

where ® represents tensor product of operators.

Note that the algorithm Q is promised that the input z € {1}V '
satisfies z = z0 ® ... ® 2™, for some 2V, ..., z(M) € {il}ZN, as
this is the case in both distributions D’ and U”.

Assume that the algorithm Q applies a query transformation on
the state |¥). The algorithm Q’ will prepare m unentangled copies
of |¥) (by applying m times the procedure run by Q to prepare |¥))
and obtain the state [¥); ® ... ® |¥)p. Next, Q" applies a query
transformation on that state and, assuming that z = Ve . .®z(m),
obtains the state

(ﬂz(1)|\y>1) ®...8 ((L(Z(m)l\P>m).

Finally, Q’ takes the same measurement as Q, on each of the m
unentangled states separately. Since the states are unentangled, the
measurements give independent results.

Given the results of the m measurements, denoted r € {1},
we compute S = }7, r; and accept if and only if S > m - ¢/4.
The algorithm Q’ runs in time polylog(N) as it runs m times the
algorithm Q. The algorithm makes one query to the input.

On input z ~ U’, the string r is distributed uniformly at random
on {£1}™, thus by Chernoff’s bound the probability that the
algorithm accepts is at most emle//2 < 5.

On input z ~ 9’, the string r is distributed as a product
distribution of random variables taking values in {+1} with
expectation > ¢/2. By Chernoff’s bound, the probability that the
algorithm accepts is at least 1 — e/ 2 5 -5, o

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Claim 8.4. Let A be any Boolean circuit of size quasipoly(N) and
constant depth. Then,

< polylog(N) - N2,

_E [AG)]

E AW

u~

Proor. The proof is by a reduction to Claim 8.2. Let A be any
Boolean circuit of size quasipoly(N) and constant depth, and denote

_E [A@)]

o=

- E AW

We will construct a Boolean circuit A’ of size quasipoly(N) and
constant depth, such that,

E [A'(z)]- E

B lemwm=m

where D1, N; are as in the proof of Theorem 1.2. The proof hence
follows by Claim 8.2.

The circuit A" gets as input z = (D, ..., 2m) e {1y 2N,
computes z’ := z) ® - - - ® z(™) and outputs A(z’). Note that by
the definitions of D1, Un,, D', U’, if z ~ D1, then 2’ ~ D’ and if
z ~ Un,, then z’ ~ U’. Thus,

E [A'(2)] - E [AW)]| = a.

z~Dy u~Un,

Note that each bit in z’ is the XOR of m bits in the inputs
(=D, ..., z(m).Since m = polylog(N), the computation z’ := We
---®2(™) can be done by a circuit of size poly(N) and constant depth.
Thus, A’ is a Boolean circuit of size quasipoly(N) and constant
depth. Therefore, by Claim 8.2, & < polylog(N) - N2, O

We are now ready to define the distributions 9D, and U and
complete the proof of the theorem. Note that in Claim 8.3, the
running time of the algorithm Q” is polylog(N) and not O(log N’)
as needed. Nevertheless, this is easy to fix by a padding argument.
Assume that the running time of Q’ is at most (log N)¢, where ¢
is a constant. Let Ny = N’ + 2008 N)° Let D, be D’, padded by
2108 N)* 4nes, and let U be U’ padded by 200g N)® ghes. Note that
polylog(Ny) = polylog(N), that is, N = 2(1°g Ng)?

The theorem thus follows by Claim 8.3 and Claim 8.4. O

A ORACLE SEPARATION RESULT

In this section, we prove that using the distribution D1, one can
construct an oracle O such that BQP? g PHO. The proof was
essentially given in the work of Aaronson [Aar10] and Fefferman
et al. [FSUV13, Section 2.6] (based on [BG81]). We repeat it here
for completeness.

PrROOF OF COROLLARY 1.5. We view the oracle O as encoding
the truth-tables of Boolean functions of different input lengths.
As in the proof of Theorem 1.2, for each n € N, let N = 27,
m,(S = #m =32 [ln(gl%] and N; = 2N - m. Note
that Nj is a function of n and we denote it also as Nj(n). With
probability 1/2 we draw x,, € {+1}N! from the uniform distribution
Un,, and with probability 1/2 we draw x, € {£1}™ from the
distribution D;. We interpret x, € {£1}™ as a Boolean function
o {£1} Mog(Ni(n)1 _, {#£1} that describes the oracle O restricted
to strings of length [log(Ni(n))] (note that [log(Ni(n))] is strictly

£ =

22

Ran Raz and Avishay Tal

increasing in n). Let L be the unary language consisting of all 1"
for which x, was drawn from the distribution D;.

Using Claim 8.1, we show that there exists a BQPC machine M
that decides L on all but finitely many values of n. The machine M
on input 1” would run the quantum algorithm Q; from Claim 8.1
on the oracle string provided by O of length Nj(n) and would
accept/reject according to Q1. Note that this is a BQP machine
since Q1 runs in polylog(N) = poly(n) time. We show that with
high probability over the choices of O, the machine M decides L
correctly on all but finitely many inputs. Indeed, for sufficiently
large n:

(1) If 1" € L, then x, was sampled from 9, and the probability
that Q; accepts x, is at least 1 — 1/n?.

(2) If 1" ¢ L, then x,, was sampled from Uy, , and the probability
that Q; accepts x5, is at most 1/n.

We see that in both cases the probability (over the choices of O and
the randomness of M’s measurements) that M© decides L correctly
on 17 is at least 1 — 1/n?. Let ny € N be sufficiently large. Then,

A/E’ro [MO decides L correctly on 1" for all n > ng]

> 1—[(1-1/n?) > 0.9,

nzngp

(where Prj o denotes the probability over the choices of O and the
randomness of M’s measurements). By averaging, with probability
at least 0.5 over the choice of O, we have

1}5\’/}'[Mo decides L correctly on 1" for all n > ng] > 0.8.

On the other hand, for any fixed PH machine A and fixed oracle
0, let Ey(A, O) be the event that AC decides L correctly on 17. By
Theorem 1.2 for sufficiently large n, we have Pro[E, (A, O)] < 0.51,
since we may reinterpret AP on 1" as a Boolean circuit of size at
most 2P°(") = quasipoly(N) and constant depth. By independence
of O on different input lengths, and the fact that A can only
ask queries of length poly(n) on input 1", we get that there are
infinitely many input lengths ni, ng, . .. such that for each i € N,
ProlEn,,, (A O)|En, (A, O) A ... A En (A O)] < 0.51. We get that

Pr{E1(4,0) A E2(A,0) A...] =0,

and since there are countably many PH machines we have

Pr{3A: E1(4,0) AE2(4,0) A...]=0.

Overall, we got that with probability at least 0.5 over the choice
of O, MO decides L correctly on 1" for all n > ng, and no PHO
machine decides L correctly on 1" for all n > 1. Thus, there exists
an oracle O where both events happen. Fixing the oracle O, we may
hardwire the values of L on 1" for n < ng to M, making it a BQP©

machine that decides L correctly on 1" foralln > 1. O

ACKNOWLEDGEMENTS

We would like to thank Scott Aaronson, Shalev Ben-David, Mika
G66s, Johan Hastad, Pooya Hatami, and Toni Pitassi for very helpful
discussions.

Oracle Separation of BQP and PH

REFERENCES

[Aar10] Scott Aaronson: BQP and the polynomial hierarchy. STOC 2010: 141-150

[Aar11] Scott Aaronson: A Counterexample to the Generalized Linial-Nisan
Conjecture. CoRR abs/1110.6126 (2011)

[AA15] Scott Aaronson, Andris Ambainis: Forrelation: A Problem that Optimally
Separates Quantum from Classical Computing. STOC 2015: 307-316

[BG81] Charles H. Bennett, John Gill: Relative to a Random Oracle A, pA 1= NPA 1=
co-NPA with Probability 1. SIAM J. Comput. 10(1): 96-113 (1981)

[BV97] Ethan Bernstein, Umesh V. Vazirani: Quantum Complexity Theory. SIAM J.

Comput. 26(5): 1411-1473 (1997)

[Chen16] Lijie Chen: A Note on Oracle Separations for BQP. CoRR abs/1605.00619
(2016)

[CHHL18] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett:
Pseudorandom Generators from Polarizing Random Walks. Electronic Colloquium
on Computational Complexity (ECCC) 25: 15 (2018)

[FSS84] Merrick L. Furst, James B. Saxe, Michael Sipser: Parity, Circuits, and the
Polynomial-Time Hierarchy. Mathematical Systems Theory 17(1): 13-27 (1984)

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, Emanuele Viola: On
Beating the Hybrid Argument. Theory of Computing 9: 809-843 (2013)

23

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

[Gro96] Lov K. Grover: A Fast Quantum Mechanical Algorithm for Database Search.
STOC 1996: 212-219

[Has14] Johan Hastad: On the Correlation of Parity and Small-Depth Circuits. SIAM
J. Comput. 43(5): 1699-1708 (2014)

[Iss1918] Leon Isserlis: On a Formula for the Product-Moment Coefficient of any Order
of a Normal Frequency Distribution in any Number of Variables. Biometrika, 12(1):
134-139 (1918)

[LMN93] Nathan Linial, Yishay Mansour, Noam Nisan: Constant Depth Circuits,
Fourier Transform, and Learnability. J. ACM 40(3): 607-620 (1993)

[Rem16] Zachary Remscrim: The Hilbert Function, Algebraic Extractors, and
Recursive Fourier Sampling. FOCS 2016: 197-208

[Sho97] Peter W. Shor: Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26(5): 1484-1509
(1997)

[Sim94] Daniel R. Simon: On the Power of Quantum Computation. SIAM J. Comput.
26(5): 1474-1483 (1997)

[Tal17] Avishay Tal: Tight Bounds on the Fourier Spectrum of AC0. Computational
Complexity Conference 2017: 15:1-15:31

[Watrous00] John Watrous: Succinct quantum proofs for properties of finite groups.
FOCS 2000: 537-546

	Abstract
	1 Introduction
	1.1 Motivation and Related Work
	1.2 Our Results
	1.3 Techniques

	2 Proof Outline
	2.1 The Distribution D
	2.2 The Quantum Algorithm
	2.3 The AC0 Lower Bound

	3 Preliminaries
	3.1 The Hadamard Transformation
	3.2 Quantum Query

	4 The Distribution D
	4.1 The Forrelation Distribution and its Variant
	4.2 The Distribution D

	5 Multilinear Functions on D
	6 Quantum Algorithm Distinguishing D and U2N
	7 D Fools Bounded Depth Circuits
	8 Proofs of the Main Theorems
	8.1 Proof of Theorem 1.1
	8.2 Proof of Theorem 1.2
	8.3 Proof of Theorem 1.3

	A Oracle Separation Result
	References

