
Oracle Separation of BQP and PH

Ran Raz∗

Princeton University
Princeton, NJ, USA

ran.raz.mail@gmail.com

Avishay Tal2

Stanford University
Stanford, CA, USA

avishay.tal@gmail.com

ABSTRACT

We present a distribution D over inputs in {±1}2N , such that:

(1) There exists a quantum algorithm that makes one (quantum)

query to the input, and runs in time O(logN), that

distinguishes between D and the uniform distribution with

advantage Ω(1/logN).
(2) No Boolean circuit of quasipoly(N) size and constant depth

distinguishes between D and the uniform distribution with

advantage better than polylog(N)/
√
N .

By well known reductions, this gives a separation of the classes

Promise-BQP and Promise-PH in the black-box model and implies

an oracle O relative to which BQPO ⊈ PHO .

CCS CONCEPTS

· Theory of computation → Circuit complexity; Oracles

and decision trees; Quantum complexity theory; Complexity

classes.

KEYWORDS

BQP, oracle separation, polynomial hierarchy, bounded depth

circuits

ACM Reference Format:

Ran Raz and Avishay Tal. 2019. Oracle Separation of BQP and PH. In

Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory

of Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3313276.3316315

1 INTRODUCTION

Can polynomial-time quantum algorithms be simulated by classical

algorithms in the polynomial-time hierarchy?

In this paper, we show that in the black-boxmodel (also known as

query-complexity or decision-tree complexity), the answer is negative.

∗Research supported by the Simons Collaboration on Algorithms and Geometry and
by the National Science Foundation grant No. CCF-1412958.
2Research supported by a Motwani Postdoctoral Fellowship and by NSF grant CCF-
1763311.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00
https://doi.org/10.1145/3313276.3316315

That is, in the black-box model, the class BQP of (promise1)

problems that can be solved by bounded-error polynomial-time

quantum algorithms, is not contained in the class PH, the (classical)

polynomial-time hierarchy.

More precisely, we give an explicit black-box (promise) problem,

that can be solved by a polynomial-time quantum algorithm with

only one query, but cannot be solved by a classical algorithm in the

polynomial-time hierarchy.

It is well known that this implies an oracle O relative to which

BQP is not contained in PH. Previously, even an oracle separation

of BQP and AM was not known.

1.1 Motivation and Related Work

The black-box model has played a central role in the study of

quantum computational complexity. For example, Shor’s algorithm

for factoring [Sho97] builds on Simon’s black-box algorithm for

finding periodicity [Sim94] and Grover’s database search algorithm

is stated and proved directly in the black box model [Gro96].

The relative power of BQP and classical complexity classes, in

the black box model, has been studied in numerous works, starting

with the celebrated paper by Bernstein and Vazirani that defined

the class BQP and founded the field of quantum computational

complexity [BV97]. Bernstein and Vazirani proved that in the black-

box model BQP ⊈ BPP [BV97]. They also extended their proof to

show that in the black-box model BQP ⊈ MA and conjectured that

in the black-box model BQP ⊈ PH (private communication with

the authors). A full (different) proof that in the black-box model

BQP ⊈ MA was given by Watrous [Watrous00].

Aaronson defined the Forrelation problem, as a candidate for

separating BQP and PH in the black-box model [Aar10]. By

studying a variant of the Forrelation problem, he obtained a relation

problem (i.e., a problem with many valid outputs) that is solvable

in the black-box model in BQP, but not in PH, thus separating

the relation versions of these classes, in the black-box model.

Consequently, Aaronson obtained an oracle O relative to which

the relation version of BQP is not contained in the relation version

of PH. That work by Aaronson has been quite influential. It led to

additional results in the black box model, such as [AA15, Chen16],

as well as results that are seemingly unrelated, such as [Aar11].

Followup works, such as [FSUV13, Rem16], further studied the

problems of separating BQP and PH in the black-box model and

obtaining an oracleO relative to which BQP is not contained in PH.

In his work [Aar10], Aaronson motivated the study of

oracle/black-box separation of BQP and PH in various ways. First,

1In our entire discussion of black-box complexity classes, we consider complexity
classes of promise problems, rather than decision problems. Nevertheless, separations
of classes of promise problems in the black-box model imply oracle separations of the
corresponding classes of decision problems in the łrealž world (see [Aar10]; Footnote 4).

13

https://doi.org/10.1145/3313276.3316315
https://doi.org/10.1145/3313276.3316315

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Ran Raz and Avishay Tal

he views such a separation as a formal evidence for the possibility

that BQP ⊈ PH in the real world. Second, he argues that oracle

separations played a role in many of the central developments in

complexity theory and an even more central and decisive role in

quantum computing. Third, he argues that the black-box (query

complexity) model is a natural and well motivated model in its

own right. Finally, he mentions that such a separation also implies

a separation of the classes BQLOGTIME (the class of promise

problems decidable by quantum algorithms that have random access

to an N -bit input, and run in time O(logN)) and AC0,2 in the real

world. (We refer the reader to [Aar10, FSUV13] for further details).

1.2 Our Results

Let D,D ′ be two probability distributions over a finite set X . We

say that an algorithm A distinguishes between D and D ′ with
advantage ε if

ε =
�� Pr
x∼D

[A accepts x] − Pr
x ′∼D′

[A accepts x ′]
��.

The following is our main result:

Theorem 1.1. There exists an explicit distribution D over inputs in

{±1}2N , such that:

(1) There exists a quantum algorithm that makes one query to the

input, and runs in time O(logN), that distinguishes between
D and the uniform distribution with advantage Ω(1/logN).

(2) No Boolean circuit of size quasipoly(N) and constant depth3
distinguishes between D and the uniform distribution with

advantage better than polylog(N)/
√
N .

We can amplify the advantage of the quantum algorithm in

Theorem 1.1 by making polylog(N) sequential repetitions and

obtain the following result:

Theorem 1.2. There exists an explicit distribution D1 over inputs

in {±1}N1 , such that:

(1) There exists a quantum algorithm that makes polylog(N1)
queries to the input, and runs in time polylog(N1), that
distinguishes between D1 and the uniform distribution with

probability 1 − 2−polylog(N1).
(2) No Boolean circuit of size quasipoly(N1) and constant depth

distinguishes between D1 and the uniform distribution with

advantage better than polylog(N1)/
√
N1.

We can also amplify the advantage of the quantum algorithm

in Theorem 1.1, using only one quantum query (by standard

amplification techniques) and obtain the following result:

Theorem1.3. There exist explicit distributionsD2 and Ũ over inputs

in {±1}N2 , such that:

(1) There exists a quantum algorithm that makes one query to the

input, and runs in time O(logN2), that distinguishes between
D2 and Ũ with probability 1 − 2−(logN2)Ω(1) .

(2) No Boolean circuit of size quasipoly(N2) and constant depth
distinguishes between D2 and Ũ with advantage better than

2−(logN2)Ω(1) .
2Recall that AC0 refers to Boolean circuits of polynomial size and constant depth.
3In fact, our lower bounds on Boolean circuits may be extended up to sub-exponential
size constant depth circuits. See Theorem 7.4 for the exact dependency on the size and
depth.

By the standard and straightforward relation between AC0 and

PH [FSS84] (by replacing every ∀ by ∧ gate and every ∃ by ∨ gate),

we have the following corollary:

Corollary 1.4. In the black-box model, Promise-BQP ⊈ Promise-

PH.

By the relation between black-box separations and oracle

separations, we have the following corollary. We include its proof

in the appendix for completeness.

Corollary 1.5. There exists an oracle O relative to which BQPO ⊈
PHO .

Finally, an immediate corollary of our main theorems (for details,

see [Aar10, FSUV13]):

Corollary 1.6. Promise-BQLOGTIME ⊈ Promise-AC0.

1.3 Techniques

Our distribution D is a variant of Aaronson’s Forrelation

distribution [Aar10], but differs from it in a way that turned out to

be crucial in our analysis.

The quantum algorithm for distinguishing between D and the

uniform distribution was suggested by [Aar10, AA15].

The hard part of our result is the lower bound for bounded depth

circuits distinguishing between D and the uniform distribution.

For this part, we use Fourier analysis. We use Tal’s tail bounds

on the Fourier spectrum of bounded depth circuits [Tal17] (that

builds on a long line of works, in particular [LMN93, Hås14]). We

also use the fascinating recent approach of Chattopadhyay, Hatami,

Hosseini and Lovett for constructing pseudorandom distributions

by considering a random walk that makes small steps, where each

step is sampled from a pseudorandom distribution that takes values

in [−1, 1]N [CHHL18]. In particular, their (simple yet powerful)

Claim 3.3 is crucial for our proof.

2 PROOF OUTLINE

2.1 The Distribution D
Our distribution D is a variant of Aaronson’s Forrelation

distribution, but differs from it in a way that turned out to be

crucial in our analysis.

Let n ∈ N and N = 2n . Let ε = 1/(24 · lnN). We define

a probability distribution G′ over RN × RN as follows: Sample

x1, . . . ,xN ∼ N(0, ε) independently. Let y = HN · x (where HN

is the Hadamard transform). Output z = (x ,y). Note that G′ is a
multivariate gaussian distribution with zero-means and covariance

matrix

ε ·
(
IN HN

HN IN

)
.

Aaronson had a similar distribution (with ε = 1) and obtained

from it a distribution over {±1}2N , by replacing each zi by sgn(zi).
Instead, our distribution D is defined as follows: We draw z ∼ G′

and truncate each zi to the interval [−1, 1], by applying the function
trnc(zi) := min(1,max(−1, zi)). Then, in order to obtain values

in {±1}, independently for each i ∈ [2N] we draw z′i = 1 with

probability
1+trnc(zi)

2 and z′i = −1 with probability
1−trnc(zi)

2 . We

output z′ ∈ {±1}2N .

14

Oracle Separation of BQP and PH STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Note that since ε is sufficiently small, we have that with high

probability, every zi is already in the interval [−1, 1], to begin with.

Thus, the truncation operation occurs with negligible probability

and we show that it could be essentially ignored in the analysis (See

Sec. 5). The more important point is that, assuming that zi ∈ [−1, 1],
we take z′i = 1 with probability 1+zi

2 and z′i = −1 with probability
1−zi
2 , rather than taking z′i to be the sign of zi .

The reason for defining D as above is that we can prove the

following fact, that turned out to be crucial for our analysis: Let

F : R2N → R be any multilinear function that maps [−1, 1]2N to

[−1, 1]. Then, F has similar expectation under G′ and under D. In

fact, denoting trnc(z) := (trnc(z1), . . . , trnc(z2N)), we show that

E
z′∼D

[F (z′)] = E
z∼G′

[F (trnc(z))]

and since, as mentioned above, truncation occurs with negligible

probability, we can prove that

E
z′∼D

[F (z′)] ≈ E
z∼G′

[F (z)].

Thus, in large parts of the proof, we can analyze the distribution

G′, rather than D.

2.2 The Quantum Algorithm

The quantum algorithm for distinguishing between D and the

uniform distribution is simple and is similar to [Aar10, AA15]. Since

the constrainty = HN ·x is linear, the support of the distribution G′

is anN -dimensional linear subspaceH ⊂ R2N . A vector z ∼ D will

be, on average, closer toH than a random vector. Thus, intuitively,

the algorithm just needs to accept with higher probability vectors

that are closer to H .

Given an input z = (x ,y) ∈ {±1}2N , the algorithm can generate,

by one quantum query, the quantum state Ψ = 1√
2N

∑2N
i=1 zi |i⟩. By

applying an appropriate unitary transformation and measuring the

state, the algorithm can accept with higher probability when the

distance between z and H is relatively small, and thus distinguish

between D and the uniform distribution. It was shown in [Aar10,

AA15] how to implement the appropriate unitary transformation

efficiently, by O(logN) quantum gates (using the fact that the

Hadamard transform can be computed using O(logN) quantum
gates). The algorithm distinguishes between D and the uniform

distribution with advantage that is proportional to ε .

2.3 The AC0 Lower Bound

The hard part of our result is the lower bound for bounded depth

circuits distinguishing between D and the uniform distribution.

Our proof uses Fourier analysis; Tal’s tail bounds for the Fourier

coefficients of bounded depth circuits [Tal17] and a recent

approach and claim by Chattopadhyay, Hatami, Hosseini and

Lovett [CHHL18].

LetA : {±1}2N → {±1} be a Boolean circuit of quasi-polynomial

size and constant depth. For a vector z ∈ R2N , we denote by A(z)
the value of the multilinear extension of A on z. The multilinear

extension A : R2N → R can be written as A(z) = ∑
S ⊆[2N] Â(S) ·∏

i ∈S zi , where Â(S) are the Fourier coefficients of A. Observe that

A(®0) = Â(∅) = Eu∼U2N
[A(u)]. Tal’s tail bounds imply that for all

k ∈ N, we have ∑

S ⊆[2N]: |S |=k
|Â(S)| ≤ (polylog(N))k .

We need to prove that A cannot distinguish between the

distributions D andU2N . That is, we need to prove that

E
z∼D

[A(z)] ≈ E
u∼U2N

[A(u)].

Since Eu∼U2N
[A(u)] = A(®0) and since, as mentioned above,

Ez∼D [A(z)] ≈ Ez∼G′[A(z)], it will be sufficient to prove that
��� E
z∼G′

[A(z)] −A(®0)
���

is small.

Denote by Ĝ′(S) the moments of the distribution G′. That is,
Ĝ′(S) = Ez∼G′[∏i ∈S zi]. (We use moments, rather than Fourier

coefficients, because the distribution is over the reals. In some sense,

these moments play the role of Fourier coefficients in our proof).

The values of Ĝ′(S) are well known. In particular, Ĝ′(S) = 0 when

|S | is odd, and we have a closed formula for the case that |S | is even.
Similarly to Plancherel’s theorem, it is easy to bound

��� E
z∼G′

[A(z)] −A(®0)
��� =

���
∑

∅,S ⊆[2N]
Â(S) · Ĝ′(S)

���

≤
∑

k≥1

∑

|S |=k
|Â(S)| |Ĝ′(S)| =

∑

k≥2

∑

|S |=k
|Â(S)| |Ĝ′(S)| (1)

(where the last equality is since Ĝ′(S) = 0 when |S | is odd). It turns
out that when plugging in the bounds that we have on the moments

|Ĝ′(S)| and the bounds that we have on
∑

|S |=k |Â(S)|, the terms

that correspond to small k-s are small, but the bounds that we get

on terms that correspond to large k-s (i.e. k ≥
√
N) are too large.

Thus, it is not clear how to use this expression to prove the desired

result.

Here we use the approach of [CHHL18]. Let t := N and

p := 1/
√
t = N−1/2. Rather than sampling z ∼ G′, we sample

independently z(1), . . . , z(t) ∼ G′. For i = 0, . . . , t , let z≤(i) =
p · (z(1) + . . . + z(i)). We think of z≤(1), . . . , z≤(t) as a random

walk that makes small steps, where each step is a small constant p

times a random variable that is distributed according to the original

distribution G′. (We note that in the limit p → 0, that walk would

be a Brownian motion).

[CHHL18] used a similar random walk4 in order to converge

to the discrete cube {±1}2N . In that sense, their walk was used in

order to obtain better and better distributions, that is, distributions

that are closer and closer to {±1}2N . Their motivation was the

construction of pseudorandom generators and hence they tried to

minimize the number of steps, as they needed fresh random bits

for each step. Instead, our motivation is separating BQP from PH

in the relativized world, and we use our random walk just in order

to analyze the original distribution G′. The crucial point is that
since G′ is a multivariate gaussian distribution, the distribution of

z≤(t) is exactly G′. Thus, in our case, the random walk does not

give a better distribution; it gives the exact same distribution and

4One difference is that we take a simple random walk whereas [CHHL18] adaptively
scale each step according to the current location of the walk, in order to get closer to

{±1}2N .

15

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Ran Raz and Avishay Tal

it is used because it gives a powerful way to analyze the original

distribution, as described next.

Similarly to Claim 3.3 of [CHHL18], we can prove that if for

every Boolean circuit of a certain size and depth and for some b,
��� E
z∼G′

[A(pz)] −A(®0)
��� ≤ b,

then for every i ∈ [t],
���E[A(z≤(i))] −A(®0)

��� ≤ O(i · b),

and in particular for i = t ,
��� E
z∼G′

[A(z)] −A(®0)
��� =

���E[A(z≤(t))] −A(®0)
��� ≤ O(t · b) = O(p−2 · b).

Since multiplication of a random variable by a factor of p < 1,

reduces all moments of order k by a factor of pk , similarly to

Equation (1), we have
��� E
z∼G′

[A(pz)] −A(®0)
��� ≤

∑

k≥2
pk

∑

|S |=k
|Â(S)| |Ĝ′(S)|.

Thus,
��� E
z∼G′

[A(z)] −A(®0)
��� ≤ O

(
p−2 ·

∑

k≥2
pk

∑

|S |=k
|Â(S)| |Ĝ′(S)|

)
.

The last expression is (up to a multiplicative constant) the same

as Equation (1), except that all terms were reduced by a factor of

pk−2. Since we took p to be very small, all terms except for k = 2

can essentially be ignored and plugging in the bounds on |Ĝ′(S)|
and the bounds on

∑
|S |=k |Â(S)|, we get the desired bound.

3 PRELIMINARIES

We denote byUN the uniform distribution over {±1}N . We denote

by IN the identity matrix of order N .

We shall use the following standard bound on the gaussian

distribution: for any positive x ∈ R, we have Pr[|N(0, 1)| ≥ x] ≤
e−x

2/2.
We consider Boolean circuits consisting of unbounded fan-in

AND, OR gates applied to input variables and their negation. We

only consider circuits with one output. The size of a circuit is the

number of gates it contains. The depth is defined as the length of

the longest path (in edges) from any input to the output.

3.1 The Hadamard Transformation

Let n ∈ N and N = 2n . The Hadamard transformH = HN ∈ RN×N

is defined as follows. For i, j ∈ [N],
Hi, j = N−1/2 · (−1)⟨i, j ⟩ ,

where ⟨i, j⟩ denotes the inner product between the binary

representations of (i − 1) and (j − 1). It is well known that HN

is orthonormal and symmetric and thus HN · HN = IN .

3.2 Quantum Query

A quantum query to an input z ∈ {±1}2N performs the diagonal

unitary transformation Uz , defined by |i,w⟩ → zi |i,w⟩, where
i ∈ [2N] and w represents the auxiliary workspace that does not

participate in the query.

4 THE DISTRIBUTION D
4.1 The Forrelation Distribution and its Variant

Let n ∈ N and N = 2n . We assume that n is sufficiently large. We

follow Aaronson suggestion [Aar10], that defined a distribution F
on {±1}N × {±1}N (called Forrelation) that is sampled as follows:

(1) Sample x1, . . . ,xN ∼ N(0, 1) independently.
(2) Let y = HN · x (where HN is the Hadamard transform).

(3) Output (sgn(x), sgn(y)).
We define a probability distribution G over RN × RN using the

same process, but without taking signs. That is, G is sampled as

follows:

(1) Sample x1, . . . ,xN ∼ N(0, 1) independently.
(2) Let y = HN · x (where HN is the Hadamard transform).

(3) Output z = (x ,y).
Observe that G is a multivariate gaussian distribution with zero-

means and covariance matrix(
IN HN

HN IN

)
.

It is thus clear that G is symmetric in x and y. Note that

x1, . . . ,xN are independent random variables. Similarly y1, . . . ,yN
are independent.

For S,T ⊆ [N], we wish to analyze the łFourier coefficientsž of

G, defined as

Ĝ(S,T) ≜ E
(x,y)∼G

[∏

i ∈S
xi ·

∏

j ∈T
yj

]

(these are actually the moments of G). In the next claim, we bound

Ĝ(S,T).
Claim 4.1. Let S,T ⊆ [N] and i, j ∈ [N]. Let k1 = |S |, k2 = |T |.
Then,

(1) Ĝ({i}, {j}) = N−1/2 · (−1)⟨i, j ⟩ .
(2) Ĝ(S,T) = 0 if k1 , k2.

(3) |Ĝ(S,T)| ≤ k! · N−k/2 if k = k1 = k2.
(4) |Ĝ(S,T)| ≤ 1 for all S,T .

Proof. All items rely on the fact thatG is amultivariate gaussian

distribution with zero-means and covariance matrix(
IN HN

HN IN

)
.

The first item is trivial as it is actually an entry in the covariance

matrix above.

The second and third items rely on Isserlis’ Theorem [Iss1918]

(See also http://en.wikipedia.org/wiki/Isserlis’_theorem), stating

that in a zero-mean multivariate gaussian distribution Z1, . . . ,Z2N ,

for distinct i1, . . . , i2k ∈ [2N], we have E[Zi1 · · ·Zi2k−1] = 0 and

E[Zi1 · · ·Zi2k] =
∑∏

E[ZirZiℓ], where the notation
∑∏

means

summing over all distinct ways of partitioning Zi1 , . . . ,Zi2k into

pairs and each summand is the product of the k pairs. In our case,

if |S | , |T |, in any partition of the elements of S and T into pairs,

we will have a pair in which either the two entries are from the

left half or the two entries are from the right half, however the

covariance of any such pair is 0. This gives the second item. For

the third item, we note that if |S | = |T | = k there are k! partitions

of the elements of S and T into pairs such that each pair contains

16

http://en.wikipedia.org/wiki/Isserlis'_theorem

Oracle Separation of BQP and PH STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

exactly one variable from each half. The covariance of each pair

is ±N−1/2. Thus, we are summing k! numbers which are ±N−k/2,
which gives |Ĝ(S,T)| ≤ k! · N−k/2.

The last item is a simple application of Cauchy-Schwarz

inequality:

Ĝ(S,T) = E
[∏

i ∈S
xi

∏

j ∈T
yj

]
≤
√
E
[∏

i ∈S
x2i

]
· E

[∏

j ∈T
y2j

]

=

√∏

i ∈S
E[x2i] ·

∏

j ∈T
E[y2j] = 1. □

4.2 The Distribution D
Let n ∈ N. Let N = 2

n . We assume that n is sufficiently large.

Recall that G is a multivariate gaussian distribution over R2N with

zero-means and covariance matrix
(
IN HN

HN IN

)
.

Let ε = 1/(24 · lnN). We define a probability distribution G′

over R2N , sampled as follows: Sample z ∼ G and output
√
ε · z.

Note that G′ is a multivariate gaussian distribution over R2N with

zero-means and covariance matrix

ε ·
(
IN HN

HN IN

)
.

Let trnc(a) := min(1,max(−1,a)) be the function that given a

real number, truncates it to the interval [−1, 1].

The Distribution D: We draw z ∼ G′ and take trnc(z) :=

(trnc(z1), . . . , trnc(z2N)). Then, independently for each i ∈ [2N]we
draw z′i = 1with probability

1+trnc(zi)
2

and z′i = −1with probability
1−trnc(zi)

2
. We output z′ ∈ {±1}2N .

Observe that conditioned on the value of z ∼ G′, we have that
z′
1
, . . . , z′

2N
are independent and for each i ∈ [2N] the expected

value of z′i equals trnc(zi).

5 MULTILINEAR FUNCTIONS ON D
In this section, we show that any multilinear function F : R

2N → R
that maps [−1, 1]2N to [−1, 1] has similar expectation under G′ and
under D. Let F : R

2N → R be a multilinear function, defined by

F (z) =
∑

S ⊆[2N]
F̂ (S) ·

∏

i ∈S
zi ,

where F̂ (S) ∈ R. First we show that

E
z′∼D

[F (z′)] = E
z∼G′

[F (trnc(z))]. (2)

For the proof of Equation (2), recall that z′ ∼ D can be generated

as follows: Draw z ∼ G′. Then, independently for each i ∈ [2N],
draw z′i = 1with probability

1+trnc(zi)
2

and z′i = −1with probability
1−trnc(zi)

2
. Equation (2) holds since conditioned on the value of z,

the expected value of F (z′) equals F (trnc(z)). To see this, we use

linearity of expectation and the definition of G′,D:

E[F (z′) | z] = E
[∑

S ⊆[2N]
F̂ (S) ·

∏

i ∈S
z′i

��� z
]

=

∑

S ⊆[2N]
F̂ (S) ·

∏

i ∈S
E[z′i | z]

=

∑

S ⊆[2N]
F̂ (S) ·

∏

i ∈S
trnc(zi)

= F (trnc(z)).
Thus, we need to bound

the difference between Ez∼G′[F (trnc(z))] and Ez∼G′[F (z)]. Note
that whenever z ∈ [−1, 1]2N , there is no difference between F (z)
and F (trnc(z)), and we only need to bound the difference when z is

outside [−1, 1]2N . The next claim bounds the value of |F (z)| when
z is outside [−1, 1]2N .

Claim 5.1. Let F : R
2N → R be a multilinear function that

maps {±1}2N to [−1, 1]. Let z = (z1, . . . , z2N) ∈ R2N . Then,

|F (z)| ≤ ∏
2N
i=1max(1, |zi |).

Proof. Recall that two multilinear functions that agree on

{±1}2N must be equal as functions on all R2N . Thus, we can write

F (x) as

F (x) =
∑

w ∈{±1}2N
F (w) ·

2N∏

i=1

xiwi + 1

2
,

since these two expressions are multilinear and they agree on

{±1}2N . By our assumption, for any fixed w ∈ {±1}2N , F (w) ∈
[−1, 1]. Thus, the value of |F (z)| is at most

|F (z)| ≤
∑

w ∈{±1}2N
|F (w)| ·

�����
2N∏

i=1

ziwi + 1

2

�����

≤
∑

w ∈{±1}2N

2N∏

i=1

|ziwi + 1|
2

=

2N∏

i=1

(|zi + 1|
2

+

| − zi + 1|
2

)

=

2N∏

i=1

max(1, |zi |). □

We got that the value of |F (z)| is bounded by
∏

i max(1, |zi |).
The following claim bounds the latter times the indicator that

z , trnc(z).
Claim 5.2. Ez∼G′

[∏
2N
i=1max(1, |zi |) · 1{z,trnc(z)}

]
≤ 4 · N−2.

Proof. Let z = (x ,y) ∼ G′. For every sequence of non-negative

integers a = (a1, . . . ,aN), we consider the event
∀i ∈ [N] : ai ≤ |xi | ≤ ai + 1,

denoted by Ea . For every sequence of non-negative integers b =

(b1, . . . ,bN), we consider the event
∀i ∈ [N] : bi ≤ |yi | ≤ bi + 1,

denoted by E ′
b
. Since x1, . . . ,xN are independent (by the definition

of G′), we have

Pr[Ea] ≤
N∏

i=1

Pr[|N(0, ε)| ≥ ai] ≤
N∏

i=1

e−a
2

i /(2ε),

17

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Ran Raz and Avishay Tal

and similarly Pr[E ′
b
] ≤ ∏N

i=1 e
−b2

i /(2ε). We thus have

(∗) = E
z∼G′

[2N∏

i=1

max(1, |zi |) · 1{z,trnc(z)}
]

= E
(x,y)∼G′

[N∏

i=1

max(1, |xi |) ·
N∏

i=1

max(1, |yi |) · 1{(x,y),trnc(x,y)}
]

≤
∑

a∈NN ,b ∈NN ,

(a,b),02N

Pr[Ea ∧ E ′
b
] ·

N∏

i=1

(1 + ai) ·
N∏

i=1

(1 + bi)

≤
∑

a∈NN ,b ∈NN ,

(a,b),02N

min
{
Pr[Ea], Pr[E ′

b
]
}
·
N∏

i=1

(1 + ai) ·
N∏

i=1

(1 + bi)

≤
∑

a∈NN ,

b ∈NN ,

(a,b),02N

√
Pr[Ea] · Pr[E ′

b
] ·

N∏

i=1

(1 + ai) ·
N∏

i=1

(1 + bi). (3)

Since 1 + ai ≤ eai ≤ ea
2

i /(8ε) for ε < 1/8, we get
√
Pr[Ea] ·

N∏

i=1

(1 + ai) ≤ e−
∑
i a

2

i /(4ε) ·
N∏

i=1

(1 + ai)

≤ e−
∑
i a

2

i /(8ε) .

Similarly,
√
Pr[E ′

b
] · ∏N

i=1(1 + bi) ≤ e−
∑
i b

2

i /(8ε). We plug these

estimates in Expression (3):

(∗) ≤
∑

a∈NN ,b ∈NN ,

(a,b),02N

e−
∑
i a

2

i /(8ε) · e−
∑
i b

2

i /(8ε)

≤
∑

a∈NN ,b ∈NN ,

(a,b),02N

e−
∑
i ai /(8ε) · e−

∑
i bi /(8ε)

≤
∞∑

k=1

e−k/(8ε) ·
�����

{
(a,b) : a ∈ NN ,b ∈ NN ,

∑

i

ai + bi = k

}�����

≤
∞∑

k=1

e−k/(8ε) ·
(
2N + k − 1

k

)

≤
∞∑

k=1

e−k/(8ε) · (2N)k ≤
∞∑

k=1

N−3k · (2N)k ≤ 4 · N−2
. □

The next claim shows that a multilinear function has very similar

expectation under G′ and under the truncated variant of G′. For the
application in Section 7, we generalize the claim a bit to include any

shift by a constant vector z0 ∈ [−p0,p0]2N and any multiplication

by a positive constant p ∈ R, as long as p + p0 ≤ 1. We shall later

use the claim with p0 = 1/2, p ≤ 1/2 in Section 7 and (p0,p) = (0, 1)
in Section 6.

Claim 5.3. Let 0 ≤ p,p0 such that p + p0 ≤ 1. Let F : R
2N → R

be a multilinear function that maps {±1}2N to [−1, 1]. Let z0 ∈
[−p0,p0]2N . Then,

E
z∼G′

[|F (trnc(z0 + p · z)) − F (z0 + p · z)|] ≤ 8 · N−2
.

Proof. Let E be the event that (trnc(z0 + p · z) , z0 + p · z).
Note that E implies the event z , trnc(z) since p + p0 ≤ 1. Using

Claim 5.1, we get

E
z∼G′

[|F (trnc(z0 + p · z)) − F (z0 + p · z)|]

≤ E
z∼G′

[(1 + |F (z0 + p · z)|) · 1E]

≤ E
z∼G′

[(1 + |F (z0 + p · z)|) · 1{z,trnc(z)}]

≤ E
z∼G′

[(
1 +

2N∏

i=1

max(1, |(z0)i + p · zi |)
)
· 1{z,trnc(z)}

]

≤ E
z∼G′

[
2 ·

2N∏

i=1

max(1, |(z0)i + p · zi |) · 1{z,trnc(z)}
]
.

However,
∏

2N
i=1max(1, |(z0)i + p · zi |) ≤

∏
2N
i=1max(1,p0 + p |zi |) ≤∏

2N
i=1max(1, |zi |). Using Claim 5.2, we get

E
z∼G′

[|F (trnc(z0 + p · z)) − F (z0 + p · z)|]

≤ E
z∼G′

[
2 ·

2N∏

i=1

max(1, |zi |) · 1{z,trnc(z)}
]
≤ 8 · N−2

. □

6 QUANTUM ALGORITHM DISTINGUISHING

D ANDU2N

Let Q be the 1-query algorithm for Forrelation by Aaronson

and Ambainis [AA15]. By [AA15, Prop.6], on a given input x ∈
{±1}N ,y ∈ {±1}N , the algorithm Q accepts with probability

(1 + φ(x ,y))/2, where

φ(x ,y) := 1

N
·

∑

i ∈[N], j ∈[N]
xi · Hi, j · yj .

In other words, if the algorithm outputs a {±1} value, then its

expected value is exactly φ(x ,y). Observe that φ is a homogeneous

polynomial of degree 2 in the input variables.

Claim 6.1. E(x,y)∼U2N
[φ(x ,y)] = 0.

Proof. For any i, j ∈ [N], we have E[xiyj] = 0, under the

uniform distribution. By linearity of expectation, E[φ(x ,y)] = 0. □

Claim 6.2. E(x,y)∼G′[φ(x ,y)] = ε .

Proof. Using the fact that E(x,y)∼G′[xi · yj] = ε · Hi, j , we get

E
(x,y)∼G′

[φ(x ,y)] = 1

N ·
∑

i ∈[N], j ∈[N]
Hi, j · E

(x,y)∼G′
[xi · yj]

=
1

N ·
∑

i ∈[N], j ∈[N]
Hi, j · ε · Hi, j = ε . □

Claim 6.3. E(x ′,y′)∼D [φ(x ′,y′)] ≥ ε/2.

Proof. By the multi-linearity of φ, Equation (2) and the

definition of G′,D we have

E
(x ′,y′)∼D

[φ(x ′,y′)]

= E
(x,y)∼G′

[φ(trnc(x), trnc(y))]

≥ E
(x,y)∼G′

[φ(x ,y)] −
���� E
(x,y)∼G′

[φ(trnc(x), trnc(y)) − φ(x ,y)]
����

18

Oracle Separation of BQP and PH STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

≥ ε − E
(x,y)∼G′

[|φ(trnc(x), trnc(y)) − φ(x ,y)|].

Thus it suffices to upper bound E(x,y)∼G′[|φ(trnc(x), trnc(y)) −
φ(x ,y)|] by ε/2. Since φ(x ,y) is the expected value of a quantum

algorithm outputting a value in {±1} it is bounded in [−1, 1] on
inputs x ,y ∈ {±1}2N . Sinceφ is multilinear, wemay apply Claim 5.3

with p0 = 0, p = 1 and z0 = 0
2N to get

E
(x,y)∼G′

[|φ(trnc(x), trnc(y)) − φ(x ,y)|] ≤ 8 · N−2 ≤ ε/2,

which completes the proof. □

Corollary 6.4. There exists a quantum algorithmQ making 1-query

and running in time O(logN) such that
���� E
z′∼D

[Q(z′)] − E
u∼U2N

[Q(u)]
���� ≥ ε/2.

7 D FOOLS BOUNDED DEPTH CIRCUITS

In the following, for a Boolean function A : {±1}2N → {±1} and
a vector x ∈ R2N , we denote by A(x) the value of the multilinear

extension of A on x . The multilinear extension A : R2N → R can

be written as

A(x) =
∑

S ⊆[2N]
Â(S) ·

∏

i ∈S
xi . (4)

Observe that A(®0) = Â(∅) = Ex∼U2N
[A(x)].

We use the following result of Tal [Tal17]:

Lemma 7.1 ([Tal17, Thm. 37]). There exists a universal constant

c > 0 such that the following holds. Let A : {±1}2N → {±1} be a
Boolean circuit with at most s gates and depth at most d . Then, for

all k ∈ N, we have ∑S ⊆[2N]: |S |=k |Â(S)| ≤ (c · log s)(d−1)k .

For two vectors R,Q ∈ R2N we denote by R ◦ Q ∈ R2N their

point-wise product, that is (R ◦Q)i = Ri ·Qi for all i ∈ [2N].
Claim 7.2. Let p ≤ 1/2. Let A : {±1}2N → {±1} be a Boolean

circuit of size at most s and depth at most d , such that
√
εp · (c ·

log s)d−1 ≤ 1/2. Let P ∈ [−p,p]2N . Then,
���� E
z∼G′

[A(P ◦ z)] −A(®0)
���� ≤ 3ε · p2 · (c · log s)2(d−1) · N−1/2

.

Proof. By Equation (4) and since A(®0) = Â(∅),
���� E
z∼G′

[A(P ◦ z)] −A(®0)
����

=

���� E
z∼G′

[∑

∅,S ⊆[2N]
Â(S) ·

∏

i ∈S
Pi · zi

] ����

=

����
∑

∅,S ⊆[2N]
Â(S) ·

∏

i ∈S
Pi · E

z∼G′

[∏

i ∈S
zi

] ����

=

����
∑

∅,S ⊆[2N]
Â(S) ·

∏

i ∈S
Pi · Ĝ′(S)

����

≤
∑

∅,S ⊆[2N]
|Â(S)| · p |S | ·

√
ε
|S | · |Ĝ(S)|

≤
2N∑

k=1

(
√
εp)k ·

(
max

S : |S |=k
|Ĝ(S)|

)
·

∑

S ⊆[2N], |S |=k
|Â(S)|

(by Lemma 7.1) ≤
2N∑

k=1

(
√
εp)k ·

(
max

S : |S |=k
|Ĝ(S)|

)
· (c log s)(d−1)k

=

2N∑

k=1

qk ·
(
max

S : |S |=k
|Ĝ(S)|

)

where q :=
√
ε · p · (c log s)d−1. For odd k , Claim 4.1 gives

maxS : |S |=k |Ĝ(S)| = 0. For k = 2ℓ, ℓ ≤ ⌊n/2⌋, Claim 4.1 gives

maxS : |S |=2ℓ |Ĝ(S)| ≤ ℓ! · N−ℓ/2. For k = 2ℓ, ℓ ≥ ⌊n/2⌋ + 1, we

have maxS : |S |=2ℓ |Ĝ(S)| ≤ 1. Plugging these bounds in the above

expression, gives

��� E
z∼G′

[A(P ◦ z)] −A(®0)
��� ≤

⌊n/2⌋∑

ℓ=1

q2ℓ · ℓ! · N−ℓ/2
+

N∑

ℓ= ⌊n/2⌋+1
q2ℓ .

Observe that each two consecutive elements in each sequence above

are decreasing by at least a factor of 2 (sinceq =
√
εp ·(c ·log s)d−1 ≤

1/2). Thus, the sum is bounded by 2 · q2 · N−1/2
+ 2 · qn+1 ≤

3q2 · N−1/2. □

Claim 7.3. Let p ≤ 1/4. Let A : {±1}2N → {±1} be a Boolean

circuit of size s and depth d , such that
√
εp · (c · log s)d−1 ≤ 1/4. Let

z0 ∈ [−1/2, 1/2]2N . Then,
��� E
z∼G′

[A(z0 + p · z)] −A(z0)
��� ≤ 12ε · p2 · (c · log s)2(d−1) · N−1/2

.

The proof is similar to the proof of [CHHL18, Claim 3.3], relying

on the fact that restrictions of A are also Boolean circuits of size at

most s and depth at most d .

Proof. Given z0, we define a distribution Rz0 over restrictions

ρ ∈ {−1, 1, ∗}2N , as follows. For each entry i ∈ [2N] independently,
we set ρi = sgn((z0)i)with probability |(z0)i | and ρi = ∗ otherwise.

Define P ∈ [−2p, 2p]2N by Pi = p · 1
1−|(z0)i | for i ∈ [2N].

Let ρ ∼ Rz0 . Next, for any vector z ∈ R2N , we define a vector

z̃ = z̃(z, ρ) ∈ R2N , as follows:

z̃i =

{
ρi if ρi ∈ {±1}
Pi · zi otherwise

Thus, for a fixed z ∈ R2N , the vector z̃ is a random variable that

depends on ρ. We show that for any fixed z ∈ R2N , the distribution

of the random variable z̃ is a product distribution (over inputs

in R2N), and the expectation of z̃ is the vector z0 + p · z. Indeed,
each coordinate z̃i is independent of the other coordinates, and its

expected value is

E
ρ∼Rz0

[̃zi] = |(z0)i | · sgn((z0)i)+ (1− |(z0)i |) · Pi · zi = (z0)i +p · zi .

Hence, since A is multi-linear and z̃ has a product distribution, by

Equation (4), Eρ∼Rz0
[A(̃z)] = A(z0 + p · z).

Let z ∼ G′. We get
��� E
z∼G′

[A(z0 + p · z)] −A(z0)
���

=

��� E
z∼G′

E
ρ∼Rz0

[
A(̃z(z, ρ)) −A(̃z(®0, ρ))

] ���

≤ E
ρ∼Rz0

[��� E
z∼G′

[
A(̃z(z, ρ))

]
−A(̃z(®0, ρ))

���
]

19

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Ran Raz and Avishay Tal

However, for any fixed ρ, we have A(̃z(z, ρ)) = Aρ (P ◦ z), where
Aρ is attained from A by fixing the coordinates that were fixed in

ρ, according to ρ. Thus,
���� E
z∼G′

[A(z0 + p · z)] −A(z0)
���� ≤ E

ρ∼Rz0

[��� E
z∼G′

[Aρ (P ◦ z)] −Aρ (®0)
���
]

and we may apply Claim 7.2 to get that for any fixed ρ we have
���� E
z∼G′

[Aρ (P ◦ z)] −Aρ (®0)
���� ≤ 3 · ε · (2p)2 · (c log s)2(d−1) · N−1/2

using the fact that P ∈ [−2p, 2p]2N and the assumption
√
εp(c ·

log s)d−1 ≤ 1/4. □

Theorem 7.4. Let A : {±1}2N → {±1} be a Boolean circuit of size

s and depth d . Then,
���Ez′∼D [A(z′)] −A(®0)

��� ≤ 32ε · (c · log s)2(d−1) ·
N−1/2 .

Proof. First, we can assume without loss of generality that√
ε · (c · log s)d−1 ≤ 1

4 · N 1/4, as otherwise the claim is vacuous (as

the LHS is at most 2 and the RHS is bigger than 2).

Let t := N , p := 1/
√
t = N−1/2. Note that

√
εp(c · log s)d−1 ≤

1
4 · N−1/4 ≤ 1/4. Let z(1), . . . , z(t) ∼ G′. For i = 0, . . . , t , let

z≤(i) = p · (z(1)+ . . .+z(i)). The main observation is that z≤(t) ∼ G′.
This is since the distribution of z≤(t) is a multivariate gaussian

distribution with the same expectation and the same covariance

matrix as G′. Thus, by Equation (2), it will be sufficient to bound
���E[A(trnc(z≤(t)))] −A(®0)]

��� .
We do so by induction, by the triangle inequality: for i = 0, . . . , t−1,
we will show���E[A(trnc(z≤(i+1)))] − E[A(trnc(z≤(i)))]

���

≤ 12 · εp2 · (c · log s)2(d−1) · N−1/2
+ 12 · N−2

.

For i ∈ {0, . . . , t − 1}, let Ei be the event that z≤(i) ∈
[−1/2, 1/2]2N . Since (for i ≥ 1) z≤(i)

p
√
i

∼ G′, each j-th entry in

z≤(i) is distributed N(0,p2iε) and we have

Pr[|(z≤(i))j | ≥ 1/2] ≤ Pr[|N(0, ε)| ≥ 1/2] ≤ e−1/(8ε) ≤ N−3
.

By the union bound, we have Pr[Ei] ≥ 1 − 2N · (N−3) = 1 − 2N−2.
By Claim 7.3, used with z0 = z≤(i), we have that conditioned on

the event Ei ,���E[A(z≤(i+1))|Ei] − E[A(z≤(i))|Ei]
��� ≤ 12ε ·p2·(c ·log s)2(d−1)·N−1/2

.

Wewish to show a similar bound on the truncated version of z≤(i+1).
Note that conditioned on Ei , we have z

≤(i)
= trnc(z≤(i)), but this is

not necessarily the case for z≤(i+1). Using Claim 5.3 with p0 = 1/2
and p ≤ 1/2 we get

���E
[
|A(trnc(z≤(i+1))) −A(z≤(i+1))|

�� Ei
] ��� ≤

8 · N−2. By the triangle inequality we get
���E[A(trnc(z≤(i+1)))|Ei] − E[A(trnc(z≤(i)))|Ei]

���

≤
���E[A(trnc(z≤(i+1)))|Ei] − E[A(z≤(i+1))|Ei]

���

+

���E[A(z≤(i+1))|Ei] − E[A(trnc(z≤(i)))|Ei]
���

≤ 8 · N−2
+ 12ε · p2 · (c · log s)2(d−1) · N−1/2

.

When Ei does not hold, the difference between A(trnc(z≤(i+1)))
and A(trnc(z≤(i))) is at most 2 since A maps [−1, 1]2N to [−1, 1].
Thus,���E[A(trnc(z≤(i+1)))] − E[A(trnc(z≤(i)))]

���

≤
���E[A(trnc(z≤(i+1)))|Ei] − E[A(trnc(z≤(i)))|Ei]

��� + 2 · Pr[¬Ei]

≤ 12ε · p2 · (c · log s)2(d−1) · N−1/2
+ 12 · N−2

By Equation (2) and the triangle inequality,
���� E
z′∼D

[A(z′)] −A(®0)
����

=

���� E
z∼G′

[A(trnc(z))] −A(®0)
���� =

���E[A(trnc(z≤t))] −A(®0)
���

≤
t−1∑

i=0

���E[A(trnc(z≤(i+1)))] − E[A(trnc(z≤(i)))]
���

≤ t · 12ε · p2 · (c · log s)2(d−1) · N−1/2
+ 12t · N−2

= 12ε · (c · log s)2(d−1) · N−1/2
+ 12 · N−1

≤ 32ε · (c · log s)2(d−1) · N−1/2
,

which completes the proof. □

The following is an immediate corollary to Theorem 7.4.

Corollary 7.5. Let A : {±1}2N → {±1} be a Boolean circuit of

size exp(logO (1)(N)) and depth O(1). Then,��Ez′∼D [A(z′)] − Eu∼U2N
[A(u)]

�� ≤ polylog(N)/
√
N .

8 PROOFS OF THE MAIN THEOREMS

8.1 Proof of Theorem 1.1

Proof. The first part of the theorem is Corollary 6.4. The second

part is Corollary 7.5. □

8.2 Proof of Theorem 1.2

Proof. Let δ ∈ (0, 1) be such that δ ≥ 2−polylog(N). Let
m = 32 · ln(1/δ)

ε2
= polylog(N). We take N1 = 2Nm. Note that

polylog(N1) = polylog(N). We take D1 = D⊗m , that is, the

distribution over {±1}2N ·m , generated by taking a concatenation

ofm independent random variables with distribution D. The first

part of the theorem follows by the following claim.

Claim 8.1. There exists a quantum algorithm Q1 making

O(m) queries and running in time O(m · logN), such that,

Prz∼D1
[Q1(z) accepts] ≥ 1 − δ and Prz∼UN1

[Q1(z) accepts] ≤ δ .

Proof. The claim is proved by amplifying the advantage of the

quantum algorithm in Theorem 1.1, by making m = polylog(N)
sequential repetitions, with fresh quantum states for each repetition.

Since the repetitions are sequential with fresh quantum states, the

output of each repetition is an independent random variable. Thus,

by Chernoff’s bound, the probability that the algorithm successfully

distinguishes between D1 and the uniform distribution is close to

1.

Formally, let z = (z(1), . . . , z(m)) ∈ {±1}m ·2N , where each

z(i) ∈ {±1}2N . We run the quantum algorithmQ from Theorem 1.1

on each z(i) sequentially, and take a measurement after each run.

20

Oracle Separation of BQP and PH STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Given the results of them runs, denoted r ∈ {±1}m , we compute

S =
∑m
i=1 ri and accept if and only if S ≥ m · ε/4. The algorithm

runs in time O(m · logN) as it runsm times the algorithm Q and

then performs an addition ofm bits. The algorithmmakesm queries

to the input.

On a uniform input, the string r is distributed uniformly at

random on {±1}m , thus by Chernoff’s bound the probability that

the algorithm accepts is at most e−m(ε/4)2/2 ≤ δ .

On input z ∼ D1, the string r is distributed as a product

distribution of random variables taking values in {±1} with

expectation ≥ ε/2. By Chernoff’s bound, the probability that the

algorithm accepts is at least 1 − e−m(ε/4)2/2 ≥ 1 − δ . □

The second part of the theorem follows by the following claim.

Claim 8.2. Let A be any Boolean circuit of size s and depth d . Then,
����� E
z∼D1

[A(z)] − E
u∼UN1

[A(u)]
����� ≤ m · 32ε · (c · log s)2(d−1) · N−1/2

.

Proof. We apply a hybrid argument. We definem + 1 hybrids:

U2Nm =

H0,H1, . . . ,Hm = D⊗m , by taking Hi = D⊗i ⊗ (U2N)⊗(m−i). We

bound the difference between Ez∼Hi−1 [A(z)] and Ez′∼Hi
[A(z′)], for

i ∈ {1, . . . ,m}. Let z = (z(1), . . . , z(i−1),u(i),u(i+1), . . . ,u(m)) ∼
Hi−1. Let z′ = (z(1), . . . , z(i−1), z(i),u(i+1), . . . ,u(m)) ∼ Hi . For

a partial assignment to all m parts except the i-th part, a−i =
(a(1), . . . ,a(i−1),a(i+1), . . . ,a(m)), we denote by A|a−i (w) the value
of A on (a(1), . . . ,a(i−1),w,a(i+1), . . . ,a(m)). By an averaging

argument, there exists a string a−i , such that,
���� E
z′∼Hi

[A(z′)] − E
z∼Hi−1

[A(z)]
����

≤
���� E
z(i)∼D

[A|a−i (z(i))] − E
u (i)∼U2N

[A|a−i (u(i))]
���� .

For any fixed string a−i , the restricted function A|a−i is a Boolean
circuit of size at most s and depth at most d . Thus, we can apply

Theorem 7.4 to get that
���� E
z(i)∼D

[A|a−i (z(i))] − E
u (i)∼U2N

[A|a−i (u(i))]
����

≤ 32ε · (c · log s)2(d−1) · N−1/2
.

The proof follows by a triangle inequality. □

□

8.3 Proof of Theorem 1.3

Proof. Let δ ∈ (0, 1) be such that δ = 2−polylog(N). Let
m = 32 · ln(1/δ)

ε2
= polylog(N). Let N ′

= (2N)m . Note that

polylog(N ′) = polylog(N).
Define the distributionD ′ over {±1}N ′

, generated as follows: Let

z(1), . . . , z(m) bem independent random variables with distribution

D. Output z := z(1) ⊗ . . . ⊗ z(m), where ⊗ denotes tensor product,

that is, for i1, . . . , im ∈ [2N], zi1, ...,im =
∏m

j=1 z
(j)
i j
.

Define the distributionU ′ over {±1}N ′
, generated as follows: Let

u(1), . . . ,u(m) bem independent random variables with distribution

U2N . Output u := u(1) ⊗ . . . ⊗ u(m), that is, for i1, . . . , im ∈ [2N],
ui1, ...,im =

∏m
j=1 u

(j)
i j
.

Claim 8.3. There exists a quantum algorithm Q ′ making one query

and running in time polylog(N), such that, Prz∼D′[Q ′(z) accepts] ≥
1 − δ and Prz∼U ′[Q ′(z) accepts] ≤ δ .

Proof. Let Q be the one-query quantum algorithm from

Theorem 1.1, for distinguishing between D and U2N . Intuitively,

the algorithm Q ′ will runm unentangled copies of Q in parallel.

Recall that for an input z ∈ {±1}2N , a quantum query to the

input performs the diagonal unitary transformationUz , defined by

|i,w⟩ → zi |i,w⟩,

where i ∈ [2N] andw represents the auxiliary workspace that does

not participate in the query. Thus, for an input z = z(1)⊗ . . .⊗z(m) ∈
{±1}N ′

, a quantum query to the input performs the diagonal

unitary transformationUz , defined by

|i1, . . . , im ,w⟩ → zi1, ...,im |i1, . . . , im ,w⟩,

where i1, . . . , im ∈ [2N] andw represents the auxiliary workspace.

Since zi1, ...,im =
∏m

j=1 z
(j)
i j
,

zi1, ...,im |i1, . . . , im ,w⟩ =
(
z
(1)
i1

|i1⟩
)
⊗ . . . ⊗

(
z
(m)
im

|im⟩
)
⊗ |w⟩.

Thus, for an input z = z(1) ⊗ . . . ⊗ z(m) ∈ {±1}N ′
,

Uz = Uz(1) ⊗ . . . ⊗ Uz(m) ,

where ⊗ represents tensor product of operators.

Note that the algorithmQ ′ is promised that the input z ∈ {±1}N ′

satisfies z = z(1) ⊗ . . . ⊗ z(m), for some z(1), . . . , z(m) ∈ {±1}2N , as

this is the case in both distributions D ′ andU ′.
Assume that the algorithm Q applies a query transformation on

the state |Ψ⟩. The algorithm Q ′ will preparem unentangled copies

of |Ψ⟩ (by applyingm times the procedure run byQ to prepare |Ψ⟩)
and obtain the state |Ψ⟩1 ⊗ . . . ⊗ |Ψ⟩m . Next, Q ′ applies a query
transformation on that state and, assuming that z = z(1)⊗ . . .⊗z(m),
obtains the state

(
Uz(1) |Ψ⟩1

)
⊗ . . . ⊗

(
Uz(m) |Ψ⟩m

)
.

Finally, Q ′ takes the same measurement as Q , on each of the m

unentangled states separately. Since the states are unentangled, the

measurements give independent results.

Given the results of them measurements, denoted r ∈ {±1}m ,

we compute S =
∑m
i=1 ri and accept if and only if S ≥ m · ε/4.

The algorithm Q ′ runs in time polylog(N) as it runsm times the

algorithm Q . The algorithm makes one query to the input.

On input z ∼ U ′, the string r is distributed uniformly at random

on {±1}m , thus by Chernoff’s bound the probability that the

algorithm accepts is at most e−m(ε/4)2/2 ≤ δ .

On input z ∼ D ′, the string r is distributed as a product

distribution of random variables taking values in {±1} with

expectation ≥ ε/2. By Chernoff’s bound, the probability that the

algorithm accepts is at least 1 − e−m(ε/4)2/2 ≥ 1 − δ . □

21

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Ran Raz and Avishay Tal

Claim 8.4. Let A be any Boolean circuit of size quasipoly(N) and
constant depth. Then,

��� E
z∼D′

[A(z)] − E
u∼U ′[A(u)]

��� ≤ polylog(N) · N−1/2
.

Proof. The proof is by a reduction to Claim 8.2. Let A be any

Boolean circuit of size quasipoly(N) and constant depth, and denote

α =
��� E
z∼D′

[A(z)] − E
u∼U ′[A(u)]

���.

We will construct a Boolean circuit A′ of size quasipoly(N) and
constant depth, such that,

��� E
z∼D1

[A′(z)] − E
u∼UN1

[A′(u)]
��� = α ,

where D1,N1 are as in the proof of Theorem 1.2. The proof hence

follows by Claim 8.2.

The circuit A′ gets as input z = (z(1), . . . , z(m)) ∈ {±1}m ·2N ,

computes z′ := z(1) ⊗ · · · ⊗ z(m) and outputs A(z′). Note that by
the definitions of D1,UN1

,D ′,U ′, if z ∼ D1, then z′ ∼ D ′ and if

z ∼ UN1
, then z′ ∼ U ′. Thus,

��� E
z∼D1

[A′(z)] − E
u∼UN1

[A′(u)]
��� = α .

Note that each bit in z′ is the XOR of m bits in the inputs

(z(1), . . . , z(m)). Sincem = polylog(N), the computation z′ := z(1)⊗
· · ·⊗z(m) can be done by a circuit of size poly(N) and constant depth.
Thus, A′ is a Boolean circuit of size quasipoly(N) and constant

depth. Therefore, by Claim 8.2, α ≤ polylog(N) · N−1/2. □

We are now ready to define the distributions D2 and Ũ and

complete the proof of the theorem. Note that in Claim 8.3, the

running time of the algorithm Q ′ is polylog(N) and not O(logN ′)
as needed. Nevertheless, this is easy to fix by a padding argument.

Assume that the running time of Q ′ is at most (logN)c , where c
is a constant. Let N2 = N ′

+ 2(logN)c . Let D2 be D ′, padded by

2(logN)c ones, and let Ũ beU ′, padded by 2(logN)c ones. Note that

polylog(N2) = polylog(N), that is, N = 2(logN2)Ω(1) .
The theorem thus follows by Claim 8.3 and Claim 8.4. □

A ORACLE SEPARATION RESULT

In this section, we prove that using the distribution D1, one can

construct an oracle O such that BQPO ⊈ PHO . The proof was

essentially given in the work of Aaronson [Aar10] and Fefferman

et al. [FSUV13, Section 2.6] (based on [BG81]). We repeat it here

for completeness.

Proof of Corollary 1.5. We view the oracle O as encoding

the truth-tables of Boolean functions of different input lengths.

As in the proof of Theorem 1.2, for each n ∈ N, let N = 2n ,

ε = 1
24 ln(N) , δ =

1
n2 , m = 32 · ⌈ ln(1/δ)

ε2
⌉ and N1 = 2N ·m. Note

that N1 is a function of n and we denote it also as N1(n). With

probability 1/2 we draw xn ∈ {±1}N1 from the uniform distribution

UN1
, and with probability 1/2 we draw xn ∈ {±1}N1 from the

distribution D1. We interpret xn ∈ {±1}N1 as a Boolean function

fn : {±1} ⌈log(N1(n))⌉ → {±1} that describes the oracle O restricted

to strings of length ⌈log(N1(n))⌉ (note that ⌈log(N1(n))⌉ is strictly

increasing in n). Let L be the unary language consisting of all 1n

for which xn was drawn from the distribution D1.

Using Claim 8.1, we show that there exists a BQPO machineM

that decides L on all but finitely many values of n. The machineM

on input 1n would run the quantum algorithm Q1 from Claim 8.1

on the oracle string provided by O of length N1(n) and would

accept/reject according to Q1. Note that this is a BQP machine

since Q1 runs in polylog(N) = poly(n) time. We show that with

high probability over the choices of O , the machine M decides L

correctly on all but finitely many inputs. Indeed, for sufficiently

large n:

(1) If 1n ∈ L, then xn was sampled from D1, and the probability

that Q1 accepts xn is at least 1 − 1/n2.
(2) If 1n < L, then xn was sampled fromUN1

, and the probability

that Q1 accepts xn is at most 1/n2.
We see that in both cases the probability (over the choices ofO and

the randomness ofM ’s measurements) thatMO decides L correctly

on 1n is at least 1 − 1/n2. Let n0 ∈ N be sufficiently large. Then,

Pr
M,O

[MO decides L correctly on 1n for all n ≥ n0]

≥
∏

n≥n0

(1 − 1/n2) ≥ 0.9,

(where PrM,O denotes the probability over the choices ofO and the

randomness ofM ’s measurements). By averaging, with probability

at least 0.5 over the choice of O , we have

Pr
M
[MO decides L correctly on 1n for all n ≥ n0] ≥ 0.8.

On the other hand, for any fixed PH machine A and fixed oracle

O , let En (A,O) be the event that AO decides L correctly on 1n . By

Theorem 1.2 for sufficiently large n, we have PrO [En (A,O)] ≤ 0.51,

since we may reinterpret AO on 1n as a Boolean circuit of size at

most 2poly(n) = quasipoly(N) and constant depth. By independence
of O on different input lengths, and the fact that A can only

ask queries of length poly(n) on input 1n , we get that there are

infinitely many input lengths n1,n2, . . . such that for each i ∈ N,
PrO [Eni+1 (A,O)|En1 (A,O) ∧ . . . ∧ Eni (A,O)] ≤ 0.51. We get that

Pr
O
[E1(A,O) ∧ E2(A,O) ∧ . . .] = 0,

and since there are countably many PH machines we have

Pr
O
[∃A : E1(A,O) ∧ E2(A,O) ∧ . . .] = 0.

Overall, we got that with probability at least 0.5 over the choice

of O , MO decides L correctly on 1n for all n ≥ n0, and no PHO

machine decides L correctly on 1n for all n ≥ 1. Thus, there exists

an oracleO where both events happen. Fixing the oracleO , we may

hardwire the values of L on 1n for n < n0 toM , making it a BQPO

machine that decides L correctly on 1n for all n ≥ 1. □

ACKNOWLEDGEMENTS

We would like to thank Scott Aaronson, Shalev Ben-David, Mika

Göös, Johan Håstad, Pooya Hatami, and Toni Pitassi for very helpful

discussions.

22

Oracle Separation of BQP and PH STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

REFERENCES
[Aar10] Scott Aaronson: BQP and the polynomial hierarchy. STOC 2010: 141-150
[Aar11] Scott Aaronson: A Counterexample to the Generalized Linial-Nisan

Conjecture. CoRR abs/1110.6126 (2011)
[AA15] Scott Aaronson, Andris Ambainis: Forrelation: A Problem that Optimally

Separates Quantum from Classical Computing. STOC 2015: 307-316

[BG81] Charles H. Bennett, John Gill: Relative to a Random Oracle A, PA != NPA !=

co-NPA with Probability 1. SIAM J. Comput. 10(1): 96-113 (1981)
[BV97] Ethan Bernstein, Umesh V. Vazirani: Quantum Complexity Theory. SIAM J.

Comput. 26(5): 1411-1473 (1997)
[Chen16] Lijie Chen: A Note on Oracle Separations for BQP. CoRR abs/1605.00619

(2016)
[CHHL18] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett:

Pseudorandom Generators from Polarizing RandomWalks. Electronic Colloquium
on Computational Complexity (ECCC) 25: 15 (2018)

[FSS84] Merrick L. Furst, James B. Saxe, Michael Sipser: Parity, Circuits, and the
Polynomial-Time Hierarchy. Mathematical Systems Theory 17(1): 13-27 (1984)

[FSUV13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, Emanuele Viola: On
Beating the Hybrid Argument. Theory of Computing 9: 809-843 (2013)

[Gro96] Lov K. Grover: A Fast Quantum Mechanical Algorithm for Database Search.
STOC 1996: 212-219

[Hås14] Johan Håstad: On the Correlation of Parity and Small-Depth Circuits. SIAM
J. Comput. 43(5): 1699-1708 (2014)

[Iss1918] Leon Isserlis: On a Formula for the Product-Moment Coefficient of any Order
of a Normal Frequency Distribution in any Number of Variables. Biometrika, 12(1):
134-139 (1918)

[LMN93] Nathan Linial, Yishay Mansour, Noam Nisan: Constant Depth Circuits,
Fourier Transform, and Learnability. J. ACM 40(3): 607-620 (1993)

[Rem16] Zachary Remscrim: The Hilbert Function, Algebraic Extractors, and
Recursive Fourier Sampling. FOCS 2016: 197ś208

[Sho97] Peter W. Shor: Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26(5): 1484-1509
(1997)

[Sim94] Daniel R. Simon: On the Power of Quantum Computation. SIAM J. Comput.
26(5): 1474-1483 (1997)

[Tal17] Avishay Tal: Tight Bounds on the Fourier Spectrum of AC0. Computational
Complexity Conference 2017: 15:1-15:31

[Watrous00] John Watrous: Succinct quantum proofs for properties of finite groups.
FOCS 2000: 537-546

23

	Abstract
	1 Introduction
	1.1 Motivation and Related Work
	1.2 Our Results
	1.3 Techniques

	2 Proof Outline
	2.1 The Distribution D
	2.2 The Quantum Algorithm
	2.3 The AC0 Lower Bound

	3 Preliminaries
	3.1 The Hadamard Transformation
	3.2 Quantum Query

	4 The Distribution D
	4.1 The Forrelation Distribution and its Variant
	4.2 The Distribution D

	5 Multilinear Functions on D
	6 Quantum Algorithm Distinguishing D and U2N
	7 D Fools Bounded Depth Circuits
	8 Proofs of the Main Theorems
	8.1 Proof of Theorem 1.1
	8.2 Proof of Theorem 1.2
	8.3 Proof of Theorem 1.3

	A Oracle Separation Result
	References

