
Time-Space Lower Bounds for Two-Pass Learning

Sumegha Garg
Department of Computer Science, Princeton University, USA

sumegha.garg@gmail.com

Ran Raz
Department of Computer Science, Princeton University, USA

ran.raz.mail@gmail.com

Avishay Tal
Department of Computer Science, Stanford University, USA

avishay.tal@gmail.com

Abstract

A line of recent works showed that for a large class of learning problems, any learning algorithm

requires either super-linear memory size or a super-polynomial number of samples [11, 7, 12, 9, 2, 5].

For example, any algorithm for learning parities of size n requires either a memory of size Ω(n2) or

an exponential number of samples [11].

All these works modeled the learner as a one-pass branching program, allowing only one pass

over the stream of samples. In this work, we prove the first memory-samples lower bounds (with a

super-linear lower bound on the memory size and super-polynomial lower bound on the number of

samples) when the learner is allowed two passes over the stream of samples. For example, we prove

that any two-pass algorithm for learning parities of size n requires either a memory of size Ω(n1.5)

or at least 2Ω(
√

n) samples.

More generally, a matrix M : A × X → {−1, 1} corresponds to the following learning problem:

An unknown element x ∈ X is chosen uniformly at random. A learner tries to learn x from a

stream of samples, (a1, b1), (a2, b2) . . ., where for every i, ai ∈ A is chosen uniformly at random and

bi = M(ai, x).

Assume that k, ℓ, r are such that any submatrix of M of at least 2−k · |A| rows and at least

2−ℓ · |X| columns, has a bias of at most 2−r. We show that any two-pass learning algorithm for the

learning problem corresponding to M requires either a memory of size at least Ω
(
k · min{k,

√
ℓ}
)
,

or at least 2Ω(min{k,
√

ℓ,r}) samples.

2012 ACM Subject Classification Theory of computation → Machine learning theory; Theory of

computation → Circuit complexity

Keywords and phrases branching program, time-space tradeoffs, two-pass streaming, PAC learning,

lower bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.22

Related Version The paper is also available at https://eccc.weizmann.ac.il/report/2019/071/.

Funding Ran Raz: Research supported by the Simons Collaboration on Algorithms and Geometry,

by a Simons Investigator Award and by the National Science Foundation grant No. CCF-1714779.

Avishay Tal: Part of this work was done when the author was a member at the Institute for Advanced

Study, Princeton, NJ. Research supported by the Simons Collaboration on Algorithms and Geometry

and by the National Science Foundation grant No. CCF-1412958.

© Sumegha Garg, Ran Raz, and Avishay Tal;
licensed under Creative Commons License CC-BY

34th Computational Complexity Conference (CCC 2019).
Editor: Amir Shpilka; Article No. 22; pp. 22:1–22:39

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sumegha.garg@gmail.com
mailto:ran.raz.mail@gmail.com
mailto:avishay.tal@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2019.22
https://eccc.weizmann.ac.il/report/2019/071/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Time-Space Lower Bounds for Two-Pass Learning

1 Introduction

A large number of recent works studied the problem of proving memory-samples lower bounds

for learning [14, 15, 11, 16, 7, 8, 12, 9, 10, 2, 5, 4], a study that was initiated by the beautiful

papers of Shamir [14] and Steinhardt, Valiant and Wager [15]. The motivation for studying

this question comes from learning theory, computational complexity and cryptography (see

for example the discussion and references in [14, 15, 11, 16, 7, 10]).

Steinhardt, Valiant and Wager conjectured that any algorithm for learning parities of

size n requires either a memory of size Ω(n2) or an exponential number of samples. This

conjecture was proven in [11], followed by a line of works that showed that for a large number

of learning problems, any learning algorithm requires either super-linear memory size or

a super-polynomial number of samples [7, 12, 9, 2, 5]. For example, such bounds were

established for learning sparse parities, linear-size DNF Formulas, linear-size Decision Trees

and logarithmic-size Juntas [7]; learning low-degree polynomials [2, 5]; learning from sparse

linear equations and low-degree polynomial equations [5]; learning codewords from random

coordinates [12, 9, 5]; etc.

All previous memory-samples lower bounds (in the regime where the lower bound on

the memory size is super-linear and the lower bound on the number of samples is super-

polynomial) modeled the learning algorithm by a one-pass branching program, allowing only

one pass over the stream of samples.

In this work, we prove the first such results when two passes over the stream of samples

are allowed. (We remark that we leave open the question of handling more than two passes.

While some parts of the current proof naturally extend to more than two passes, others are

more delicate.)

Our Results

As in [12, 2, 7], we represent a learning problem by a matrix. Let X, A be two finite sets

of size larger than 1 (where X represents the concept-class that we are trying to learn and

A represents the set of possible samples). Let M : A × X → {−1, 1} be a matrix. The

matrix M represents the following learning problem: An unknown element x ∈ X was chosen

uniformly at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . .,

where for every i, ai ∈ A is chosen uniformly at random and bi = M(ai, x).

We model the learner for the learning problem that corresponds to the matrix M , by a

two-pass ordered branching program (Definition 2). Such a program reads the entire stream

of samples twice, in the exact same order. Roughly speaking, the model allows a learner

with infinite computational power, and bounds only the memory size of the learner and the

number of samples used.

As in [5], our result is stated in terms of the properties of the matrix M as a two-

source extractor. Two-source extractors, first studied by Santha and Vazirani [13] and Chor

and Goldreich [3], are central objects in the study of randomness and derandomization.

As in [5], our results hold whenever the matrix M has (even relatively weak) two-source

extractor properties.

Roughly speaking, our main result can be stated as follows: Assume that k, ℓ, r are

such that any submatrix of M of at least 2−k · |A| rows and at least 2−ℓ · |X| columns, has

a bias of at most 2−r. Then, any two-pass learning algorithm for the learning problem

corresponding to M requires either a memory of size at least Ω
(

k · min{k,
√

ℓ}
)

, or at least

2Ω(min{k,
√

ℓ,r}) samples.

S. Garg, R. Raz, and A. Tal 22:3

Formally, our result is stated in Theorem 4 in terms of the properties of M as an L2-

Extractor (Definition 1), a notion that was defined in [5] and (as formally proved in [5]) is

closely related to the notion of two-source extractor. (The two notions are equivalent up to

small changes in the parameters.)

As in [5], our main result can be used to prove (two-pass) memory-samples lower bounds

for many of the problems that were previously studied in this context. For example, for

learning parities, sparse parities, DNFs, decision trees, random matrices, error correcting

codes, etc. For example, our main result implies that any two-pass algorithm for learning

parities of size n requires either a memory of size Ω(n1.5) or at least 2Ω(
√

n) samples.

Related Work

To the best of our knowledge, the only previous work that proved memory-samples lower

bounds for more than one pass over the stream of samples, is the intriguing recent work of

Dagan and Shamir [4]. We note however that their results apply for a very different setting

and regime of parameters, where the obtained lower bound on the number of samples is at

most polynomial in the dimension of the problem. (Their result is proved in a very different

setting, where the samples may be noisy, and the lower bound obtained on the number of

samples is at most the product of the length of one sample times one over the information

given by each sample).

Motivation and Discussion

Many previous works studied the resources needed for learning, under certain information,

communication or memory constraints (see in particular [14, 15, 11, 16, 7, 8, 12, 9, 10, 2, 5, 4]

and the many references given there). A main message of some of these works is that for

some learning problems, access to a relatively large memory is crucial. In other words, in

some cases, learning is infeasible, due to memory constraints.

From the point of view of human learning, such results may help to explain the importance

of memory in cognitive processes. From the point of view of machine learning, these results

imply that a large class of learning algorithms cannot learn certain concept classes. In

addition, these works are related to computational complexity and have applications in

bounded-storage cryptography.

Most of these works apply to bounded-memory learning algorithms that consider the

samples one by one, with only one pass over the samples. In many practical situations,

however, more than one pass over the samples is used, so it’s desirable to extend these results

to more than one pass over the samples.

From the point of view of computational complexity, the problem of extending these

works to more than one pass over the samples is fascinating and challenging. It’s a common

practice in streaming-complexity to consider more than one pass over the inputs, and in

computational complexity read-k-times branching programs have attracted a lot of attention.

We note that by Barrington’s celebrated result, any function in NC can be computed by a

polynomial-length branching program of width 5 [1]. Hence, proving super-polynomial lower

bounds on the time needed for computing a function, by a branching program of width 5,

with polynomially many passes over the input, would imply super-polynomial lower bounds

for formula size, and is hence a very challenging problem.

Finally, let us mention that technically, allowing more than one pass over the samples is

very challenging, as all previous techniques are heavily based on the fact that in the one-pass

case all the samples are independent and hence at each time step, the learning algorithm has

no information about the next sample that it is going to see.

CCC 2019

22:4 Time-Space Lower Bounds for Two-Pass Learning

Techniques

Our proof builds on the works of [12, 5] that gave a general technique for proving memory-

samples lower bounds for learning problems. However, these works (as well as all other

previous works that prove memory-samples lower bounds in this regime of parameters) are

heavily based on the fact that in the one-pass case all the samples are independent and hence

at each time step, the learning algorithm has no information about the next sample that it is

going to see. Roughly speaking, the proofs of [12, 5] bound the L2-norm of the distribution

of x, conditioned on reaching a given vertex v of the branching program, but they rely on the

fact that the next sample is independent of x. Once one allows more than one pass over the

stream of samples, the assumption that the next sample is independent of x doesn’t hold, as

in the second pass the vertex may remember a lot of information about the joint distribution

of x and a1, . . . , am.

Roughly speaking, [12, 5] considered the computation-path of the branching program and

defined “stopping-rules”. Intuitively, the computation stops if certain “bad” events occur.

The proofs show that each stopping rule is only applied with negligible probability and that

conditioned on the event that the computation didn’t stop, the L2-norm of the distribution

of x, conditioned on reaching a vertex v of the branching program, is small (which implies

that the program didn’t learn x).

When more than one pass over the samples is allowed, there is a serious problem with

this approach. After one pass, a vertex of the branching program has joint information on x

and a1, . . . , am. If we only keep track of the distribution of x conditioned on that vertex, it

could be the case that the next sample completely reveals x. One conceptual problem seems

to be that the second part of the program (that is, the part that is doing the second pass)

is not aware of what the first part did. An idea that turned out to be very important in

our proof is to take the second part to be the product of the first and second part, so that,

in some sense, the second part of the computation runs its own copy of the first part. In

addition, we have each vertex in the second part remembering the vertex reached at the end

of the first part.

As in [12, 5], we define stopping rules for the computation-path and we prove that the

probability that the computation stops is small. We then analyze each part separately, as a

read once program. For each part separately, we prove that conditioned on the event that

the program didn’t stop, the L2-norm of the distribution of x, conditioned on reaching a

vertex v, is small. It turns out that since the second part of the program runs its own copy

of the first part, the analysis of each part separately is sufficient.

We note, however, that the entire proof is completely different than [12, 5]. The stopping

rules are different and are defined differently for each part. The proof that the computation

stops with low probability is much more delicate and complicated. The main challenge is that

when analyzing the probability to stop on the second part, we cannot ignore the first part

and we need to prove that we stop with low probability on the second part, when starting

from the start vertex of the first part (that is, the start vertex of the entire program). This

turns out to be very challenging and, in particular, requires a use of the results for one-pass

branching programs.

A proof outline is given in Section 4.

2 Preliminaries

Denote by log the logarithm to base 2. For a random variable Z and an event E, we denote

by PZ the distribution of the random variables Z, and we denote by PZ|E the distribution of

the random variable Z conditioned on the event E.

S. Garg, R. Raz, and A. Tal 22:5

We will sometimes take probabilities and expectations, conditioned on events E that may

be empty. We think of these probabilities and expectations as 0, when the event E is empty.

2.1 Learning Problem

We represent a learning problem by a matrix. Let X, A be two finite sets of size larger than 1

(where X represents the concept-class that we are trying to learn and A represents the set

of possible samples). Let M : A × X → {−1, 1} be a matrix. The matrix M represents the

following learning problem: An unknown element x ∈ X was chosen uniformly at random.

A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . ., where for every i,

ai ∈ A is chosen uniformly at random and bi = M(ai, x).

Let n = log |X| and n′ = log |A|.

2.2 Norms and Inner Products

Let p ≥ 1. For a function f : X → R, denote by ‖f‖p the Lp norm of f , with respect to the

uniform distribution over X, that is:

‖f‖p =

(
E

x∈RX
[|f(x)|p]

)1/p

.

For two functions f, g : X → R, define their inner product with respect to the uniform

distribution over X as

〈f, g〉 = E
x∈RX

[f(x) · g(x)].

For a matrix M : A × X → R and a row a ∈ A, we denote by Ma : X → R the

function corresponding to the a-th row of M . Note that for a function f : X → R, we have

〈Ma, f〉 = (M ·f)a

|X| .

2.3 L2-Extractors

◮ Definition 1. L2-Extractor: Let X, A be two finite sets. A matrix M : A×X → {−1, 1}
is a (k, ℓ)-L2-Extractor with error 2−r, if for every non-negative f : X → R with

‖f‖2

‖f‖1
≤ 2ℓ

there are at most 2−k · |A| rows a in A with

|〈Ma, f〉|
‖f‖1

≥ 2−r .

2.4 Computational Model

In the following definition, we model the learner for the learning problem that corresponds

to the matrix M , by a branching program. We consider a q-pass ordered branching program.

Such a program reads the entire input q times, in the exact same order. That is, the program

has q parts (that are sequential in time). Each part reads the same stream in the exact same

order. Our main result is proved for two-pass ordered branching programs, that is, for the

case q = 2.

CCC 2019

22:6 Time-Space Lower Bounds for Two-Pass Learning

◮ Definition 2.

q-Pass Branching Program for a Learning Problem: A q-pass (ordered) branching program

of length q · m and width d, for learning, is a directed (multi) graph with vertices arranged

in qm + 1 layers containing at most d vertices each. In the first layer, that we think

of as layer 0, there is only one vertex, called the start vertex. A vertex of outdegree 0

is called a leaf. All vertices in the last layer are leaves (but there may be additional

leaves). Every non-leaf vertex in the program has 2|A| outgoing edges, labeled by elements

(a, b) ∈ A × {−1, 1}, with exactly one edge labeled by each such (a, b), and all these edges

going into vertices in the next layer. Each leaf v in the program is labeled by an element

x̃(v) ∈ X, that we think of as the output of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ A×{−1, 1} that are given as input

define a computation-path in the branching program, by starting from the start vertex and

following at step (j − 1) · m + i the edge labeled by (ai, bi) (where j ∈ [q] and i ∈ [m]),

until reaching a leaf. The program outputs the label x̃(v) of the leaf v reached by the

computation-path.

Success Probability: The success probability of the program is the probability that x̃ = x,

where x̃ is the element that the program outputs, and the probability is over x, a1, . . . , am

(where x is uniformly distributed over X and a1, . . . , am are uniformly distributed over A,

and for every i, bi = M(ai, x)).

Remark: We will sometimes consider branching programs in which the leaves are not labeled,

and hence the program doesn’t return any value. It will be convenient to refer to such

objects also as branching programs. In particular, we will view a part of the branching

program (e.g., the first few layers of a program) also as a branching program.

We think of the program as composed of q parts, where for every j ∈ [q], part-j contains

layers {(j − 1) · m + i}i∈[m].

For convenience, we think of each vertex u of the branching program as having a small

memory Su that contains some information about the path that led to the vertex, that

the vertex “remembers” (or “records”). Formally, this means that in the actual branching

program the vertex u is split into distinct vertices u1, . . . , ud(u), according to the content

of the memory Su. Adding information to Su means that the vertex u is further split into

distinct vertices, according to the content of the information that was added. Thus, when we

refer to a vertex u of a program, we mean, a vertex u plus content of the memory Su.

In this paper, we will have the property that whenever we add some information to the

memory of a vertex u, that information is never removed/forgotten. That is, information

that was added to the memory of u, remains in the memory of all the vertices that can be

reached from u.

As mentioned above, in this paper we focus on the case q = 2. We denote by v0 the

start vertex of the program and by v1 the vertex reached at the end of the first part, that is,

layer-m. Note that v1 is a random variable that depends on x, a1, . . . , am.

2.5 Product of Programs

Intuitively, the product of two branching programs is a branching program that runs both

programs in parallel.

◮ Definition 3.

Product of One-Pass Branching Programs: Let B, B′ be two one-pass branching programs

for learning, of length m and widths d, d′, respectively. The product B ×B′ is a (one-pass)

branching program of length m and width d · d′, as follows: For every i ∈ {0, . . . , m} and

S. Garg, R. Raz, and A. Tal 22:7

vertices v in layer-i of B and v′ in layer-i of B′, we have a vertex (v, v′) in layer-i of

B × B′. For every two edges: (u, v) from layer-(i − 1) to layer-i of B and (u′, v′) from

layer-(i − 1) to layer-i of B′, both labeled by the same (a, b), we have in B × B′ an edge

((u, u′), (v, v′)) labeled by (a, b).

The label of a leaf (v, v′) is the label given by the second program B′. The content of

the memory S(v,v′) of a vertex (v, v′) is the concatenation of the content of Sv and the

content of Sv′ .

Remark: We will use this definition also in cases where the leaves of B and/or B′ are not

labeled (that is, where B and/or B′ do not output any value; see a remark in Definition 2).

3 Main Result

Fix k, ℓ, r ∈ N, such that r
k , r

ℓ are smaller than a sufficiently small constant and k < n′, ℓ < n.

Let ǫ > 0 be a sufficiently small constant. In particular, we assume that ǫ is sufficiently

smaller than all other constants that we discuss, say, ǫ < 1
1010 . We assume that n, n′ are

sufficiently large. Let

ℓ̃ = min
{

k,
√

ℓ
}

.

Let

r̃ = min
{

r
100 , ℓ̃

100

}
. (1)

We assume that

r̃ > 100 · max {log n, log n′} . (2)

We assume that M is a (10k, 10ℓ)-L2-extractor with error 2−10r.

◮ Theorem 4. Let X, A be two finite sets. Let n = log2 |X| and n′ = log2 |A|. Fix k, ℓ, r ∈ N,

such that, r
k , r

ℓ < 1
100 , and k < n′, ℓ < n. Let ǫ > 0 be a sufficiently small constant, say,

ǫ < 1
1010 . Assume that n, n′ are sufficiently large. Let

ℓ̃ = min
{

k,
√

ℓ
}

.

Let

r̃ = min
{

r
100 , ℓ̃

100

}
.

Assume that

r̃ > 100 · max {log n, log n′} .

Let M : A × X → {−1, 1} be a matrix which is a (10k, 10ℓ)-L2-extractor with error 2−10r.

Let B be a two-pass ordered branching program of length 2 · m, where m is at most 2ǫr̃, and

width at most d = 2ǫkℓ̃/10, for the learning problem that corresponds to the matrix M . Then,

the success probability of B is at most 1
100 + o(1).

CCC 2019

22:8 Time-Space Lower Bounds for Two-Pass Learning

4 Overview of the Proof

One-Pass Learners

We will start with giving a short outline of the proof of [12, 5] for one-pass learners. Assume

that M is a (10k, 10ℓ)-L2-extractor with error 2−10r, where r < k, ℓ. Let B be a one-pass

branching program for the learning problem that corresponds to the matrix M . Assume for

a contradiction that B is of length m = 2ǫr and width d = 2ǫkℓ, where ǫ is a small constant.

We define the truncated-path, T , to be the same as the computation-path of B, except

that it sometimes stops before reaching a leaf. Roughly speaking, T stops before reaching

a leaf if certain “bad” events occur. Nevertheless, we show that the probability that T
stops before reaching a leaf is negligible, so we can think of T as almost identical to the

computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. We denote

by Pr(v) = Pr(Ev) the probability for Ev (where the probability is over x, a1, . . . , am), and

we denote by Px|v = Px|Ev
the distribution of the random variable x conditioned on the

event Ev. Similarly, for an edge e of the branching program B, let Ee be the event that T
traverses the edge e. Denote, Pr(e) = Pr(Ee), and Px|e = Px|Ee

.

A vertex v of B is called significant if

∥∥Px|v
∥∥

2
> 2ℓ · 2−n.

Roughly speaking, this means that conditioning on the event that T reaches the vertex v,

a non-negligible amount of information is known about x. In order to guess x with a non-

negligible success probability, T must reach a significant vertex. We show that the probability

that T reaches any significant vertex is negligible, and thus the main result follows.

To prove this, we show that for every fixed significant vertex s, the probability that T
reaches s is at most 2−Ω(kℓ) (which is smaller than one over the number of vertices in B).

Hence, we can use a union bound to prove the bound.

The proof that the probability that T reaches s is extremely small is the main part of

the proof. To that end, we use the following functions to measure the progress made by the

branching program towards reaching s.

Let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. Let Γi be the set of

edges e from layer-(i − 1) of B to layer-i of B, such that Pr(e) > 0. Let

Zi =
∑

v∈Li

Pr(v) · 〈Px|v,Px|s〉k,

Z ′
i =

∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k.

We think of Zi, Z ′
i as measuring the progress made by the branching program, towards

reaching a state with distribution similar to Px|s.

We show that each Zi may only be negligibly larger than Zi−1. Hence, since it’s easy to

calculate that Z0 = 2−2nk, it follows that Zi is close to 2−2nk, for every i. On the other hand,

if s is in layer-i then Zi is at least Pr(s) · 〈Px|s,Px|s〉k. Thus, Pr(s) · 〈Px|s,Px|s〉k cannot be

much larger than 2−2nk. Since s is significant, 〈Px|s,Px|s〉k > 2ℓk · 2−2nk and hence Pr(s) is

at most 2−Ω(kℓ).

The proof that Zi may only be negligibly larger than Zi−1 is done in two steps. We show

by a simple convexity argument that Zi ≤ Z ′
i. The hard part is to prove that Z ′

i may only

be negligibly larger than Zi−1.

S. Garg, R. Raz, and A. Tal 22:9

For this proof, we define for every vertex v, the set of edges Γout(v) that are going out

of v, such that Pr(e) > 0 and show that for every vertex v,

∑

e∈Γout(v)

Pr(e) · 〈Px|e,Px|s〉k

may only be negligibly higher than

Pr(v) · 〈Px|v,Px|s〉k.

For this proof, we consider the function Px|v · Px|s. We first show how to bound∥∥Px|v · Px|s
∥∥

2
. We then consider two cases: If

∥∥Px|v · Px|s
∥∥

1
is negligible, then 〈Px|v,Px|s〉k is

negligible and doesn’t contribute much, and we show that for every e ∈ Γout(v), 〈Px|e,Px|s〉k

is also negligible and doesn’t contribute much. If
∥∥Px|v · Px|s

∥∥
1

is non-negligible, we use the

bound on
∥∥Px|v · Px|s

∥∥
2

and the assumption that M is a (10k, 10ℓ)-L2-extractor to show

that for almost all edges e ∈ Γout(v), we have that 〈Px|e,Px|s〉k is very close to 〈Px|v,Px|s〉k.

Only an exponentially small (2−k) fraction of edges are “bad” and give a significantly larger

〈Px|e,Px|s〉k.

The reason that in the definitions of Zi and Z ′
i we raised 〈Px|v,Px|s〉 and 〈Px|e,Px|s〉 to

the power of k is that this is the largest power for which the contribution of the “bad” edges

is still small (as their fraction is 2−k).

This outline oversimplifies many details. Let us briefly mention two of them. First, it is

not so easy to bound
∥∥Px|v · Px|s

∥∥
2
. We do that by bounding

∥∥Px|s
∥∥

2
and

∥∥Px|v
∥∥

∞. In order

to bound
∥∥Px|s

∥∥
2
, we force T to stop whenever it reaches a significant vertex (and thus we

are able to bound
∥∥Px|v

∥∥
2

for every vertex reached by T). In order to bound
∥∥Px|v

∥∥
∞, we

force T to stop whenever Px|v(x) is large, which allows us to consider only the “bounded”

part of Px|v. (This is related to the technique of flattening a distribution that was used

in [6]). Second, some edges are so “bad” that their contribution to Z ′
i is huge so they cannot

be ignored. We force T to stop before traversing any such edge. (This is related to an idea

that was used in [7] of analyzing separately paths that traverse “bad” edges). We show that

the total probability that T stops before reaching a leaf is negligible.

Thus, in [12, 5] there are three stopping rules: We stop if we reach a significant vertex.

We stop if we have a bad edge and we stop if x is a significant-value of Px|v, that is, if

Px|v(x) is too large.

Two-Pass Learners

Let us now give a short outline of the additional ideas in the proof for two-pass learners. Let

B be a two-pass branching program for the learning problem that corresponds to the matrix

M . We denote by v0 the starting vertex of the program and by v1 the vertex reached at the

end of the first part. We assume without loss of generality that the answers are given in the

last layer of the program.

We update the second part so that every vertex v in the second part “remembers” v1.

This information is stored in the memory Sv. Formally, this means that starting from every

possible v1, we have a separate copy of the entire second part of the program. We then

change the second part so that it is now the product (see definition 2) of the first part and

the second part. Intuitively, this means that the second part runs a copy of the first part of

the computation, in parallel to its own computation.

As in [12, 5], we define the truncated-path, T , to be the same as the computation-path of

the new branching program, except that it sometimes stops before reaching a leaf. Roughly

speaking, T stops before reaching a leaf if certain “bad” events occur. Nevertheless, we show

CCC 2019

22:10 Time-Space Lower Bounds for Two-Pass Learning

that the probability that T stops before reaching a leaf is small, so we can think of T as

essentially identical to the computation-path. The decision of whether or not T stops on a

given vertex v in layer-i of part-j will depend on v, Sv, x, ai+1. For that reason, we are able

to consider the path T , starting from any vertex v (without knowing the history of the path

that led to v, except for the information stored in Sv).

Let v be a vertex in the second part of the program (where an answer should be given).

The vertex v remembers (in Sv) the vertex v1. We denote by v1 → v the event that the path

T that starts from v1 reaches v (where v1 is the vertex at the end of the first part of the

program that v remembers, and the event is over x, a1, . . . , am). We denote by v0 → v the

event that the path T that starts from the start vertex v0 reaches v. More generally, for two

vertices w1, w2 in the program, we denote by w1 → w2 the event (over x, a1, . . . , am) that

the path T that starts from w1 reaches w2.

Let v be a vertex in the last layer of the program, such that Pr(v0 → v) > 0. Since

v remembers v1, the event v0 → v is equivalent to v0 → v1 → v (where v1 is the vertex

remembered by v). Since the second part of the program runs a copy of the first part and

since v is in the last layer, the event v1 → v implies the event v0 → v1. Thus, the event

v0 → v is equivalent to v1 → v.

Moreover, this is true when conditioning on x, and hence,

Px|v0→v = Px|v1→v

and

Pr[v0 → v] = Pr[v1 → v].

This is a crucial point as it means that

∥∥Px|v0→v

∥∥
2

=
∥∥Px|v1→v

∥∥
2

,

that is, if we bound
∥∥Px|v1→v

∥∥
2

we also get a bound on
∥∥Px|v0→v

∥∥
2
.

The bound on
∥∥Px|v0→v

∥∥
2

is what we really need because if this is small then the program

cannot answer correctly. On the other hand, the bound on
∥∥Px|v1→v

∥∥
2

is easier to obtain as

it is a bound for a one-pass branching program. Thus, all we need is a bound on
∥∥Px|v1→v

∥∥
2
,

which is a bound for a one-pass branching program, and we already know how to obtain

bounds on the conditional distribution for one-pass programs.

Things, however, are not so simple, as we need to prove that T stops with small probability,

when starting from v0, rather than v1. The main problem with using the previous stopping

rules (in the second part of the program) is that it’s impossible to prove that we stop on

a bad edge with negligible probability (as demonstrated next). Roughly speaking, we say

that an edge e = (u, v) is “bad” if the equation on it splits the distribution Px|u in a biased

way. That is, a good edge is one where roughly half the probability mass of Px|u satisfies the

equation on the edge e. If the program stores in memory the i-th sample from the first pass,

then in the i-th step of the second pass, an edge e = (u, v) will definitely be bad, since it will

not split the distribution Px|u evenly.

For that reason, we change the bad-edges stopping rule. We say that an edge (v, u),

labelled by (a, b), is of high probability if the probability to sample a, conditioning on reaching

v from v0 (that is, reaching v from the starting vertex of the entire program) is large. The

third stopping rule is changed so that T doesn’t stop on a bad edge if it is of high probability.

Instead, if T traverses such an edge, we “remember” the time step in which T traversed that

edge, in all the future. That is, we enter the index i to Su (and remember it in all the future,

S. Garg, R. Raz, and A. Tal 22:11

until the end of the program). In addition, we add a stopping rule that stops if the edge is

“very-bad” and a stopping rule that stops if the number of indices in Sv is too large, that is,

if the number of high-probability edges that were already traversed is too large (intuitively,

Sv won’t be too large because of the bounded memory size).

We analyze separately the probability to stop because of each stopping rule. The main

challenge is that we need to analyze these probabilities when starting from v0, that is, when

running a two-pass program. These proofs are technically hard, but the main reason that we

manage to analyze these probabilities is the following:

Recall that the second part of the program runs a copy of the first part of the program.

Thus, a vertex v in layer-i of the second part has a corresponding vertex v′ in layer-i of the

first part, such that, if the path T reached v it previously reached v′. Recall also that v

remembers v1, so if the path T reached v it previously reached v1. Thus, the event v0 → v is

equivalent to v0 → v′ → v1 → v, that is, the event

(v0 → v′) ∧ (v′ → v1) ∧ (v1 → v).

Since the second part of the program runs a copy of the first part, the event v1 → v implies

the event v0 → v′. Hence, the event v0 → v is equivalent to the event

(v′ → v1) ∧ (v1 → v).

Note that v′ is in layer-i of the first part and v is in layer-i of the second part, and from

layer-i of the first part to layer-i of the second part, the program is a one-pass program and

is hence easier to analyze.

5 Proof of Theorem 4

Assume that we have a two-pass ordered branching program, B, for the learning problem

that corresponds to the matrix M . We assume without loss of generality that the output

is given in the last layer. Assume that the length of the program is 2 · m, where m is at

most 2ǫr̃ and the width of the program is at most d = 2ǫkℓ̃/10. We will show that the success

probability of B is at most 1
100 + o(1).

Let

ℓ1 = ℓ̃
100

and

ℓ2 = ℓ.

5.1 The Truncated Path

Below, we will make some changes in the branching program B. We will denote by B̂ the

resulting branching program. Let v0 be the start vertex of B̂. We will denote by v1 the

vertex reached at the end of the first part of B̂. Note that v1 is a random variable, that

depends on x, a1, . . . , am.

In the resulting branching program B̂, we will have the property that the vertex v1

reached at the end of the first part of the program is remembered by every future vertex v.

That is, every vertex v, in the second part of the program, remembers which vertex the path

that led to v reached, at the end of the first part of the program. Formally, this information

is stored in Sv.

CCC 2019

22:12 Time-Space Lower Bounds for Two-Pass Learning

Below, we will define the truncated-path, T , to be the same as the computation-path of

the new branching program, except that it sometimes stops before reaching a leaf. Roughly

speaking, T stops before reaching a leaf if certain “bad” events occur. Nevertheless, we show

that the probability that T stops before reaching a leaf is small, so we can think of T as

essentially identical to the computation-path. The decision of whether or not T stops on a

given vertex v in layer-i of part-j will depend on v, Sv, x, ai+1. For that reason, we are able

to consider the path T , starting from any vertex v (without knowing the history of the path

that led to v, except for the information stored in Sv).

Let v be a vertex in the second part of the program. The vertex v remembers (in Sv)

the vertex v1. We denote by v1 → v the event that the path T that starts from v1 reaches v

(where v1 is the vertex at the end of the first part of the program that v remembers, and the

event is over x, a1, . . . , am).

More generally, for two vertices w1, w2 in the program, we denote by w1 → w2 the event

(over x, a1, . . . , am) that the path T that starts from w1 reaches w2. In particular, v0 → v is

the event that the path T that starts from the start vertex v0 reaches v.

We change the original branching program B as follows:

First Part

We define stopping rules for the first part as defined in [12, 5] for one-pass programs, as if

the first part were the entire program. Next, we describe these rules formally.

Significant Vertices

We say that a vertex v in layer-i of the first part of the program is significant if
∥∥Px|v0→v

∥∥
2

> 2ℓ1 · 2−n.

Significant Values

Even if v is not significant, Px|v0→v may have relatively large values. For a vertex v in layer-i

of the first part of the program, denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v0→v(x′) > 24ℓ · 2−n.

Bad Edges

For a vertex v in layer-i of the first part of the program, denote by Bad(v) the set of all

a ∈ A, such that,
∣∣(M · Px|v0→v)(a)

∣∣ ≥ 2−2r.

The Truncated-Path T on the First Part

We define T on the first part, by induction on the layers. Assume that we already defined T
until it reaches a vertex v in layer-i of the first part. The path T stops on v if (at least) one

of the following occurs:

1. v is significant.

2. x ∈ Sig(v).

3. ai+1 ∈ Bad(v).

Otherwise, (unless i = m) T proceeds by following the edge labeled by (ai+1, bi+1) (same as

the computational-path).

S. Garg, R. Raz, and A. Tal 22:13

Second Part

We denote by v1 the vertex in layer-m (that is, the last layer of the first part of the program)

that is reached by T . Note that v1 is a random variable that depends on x, a1, . . . , am. We

denote by d1 the number of vertices in layer-m. We assume without loss of generality that

each vertex in layer-m is reached with probability of at least 2−10r̃ · d−1
1 , as vertices reached

with negligible probability can be ignored. Formally, if we reach a vertex in layer-m, such

that, the probability to reach that vertex is smaller than 2−10r̃ · d−1
1 , the path T stops.

We update the second part so that every vertex v in the second part “remembers” v1.

This information is stored in the memory Sv. Formally, this means that starting from every

possible v1, we have a separate copy of the entire second part of the program.

We then change the second part so that it is now the product (see definition 2) of the

first part (after it was changed as described above) and the second part. Intuitively, this

means that the second part runs a copy of the first part of the computation, in parallel to its

own computation.

Next, we define stopping rules for the second part, by induction over the layers, and

at the same time (by the same induction), we also define for each vertex v, a list Lv of

indices i1, . . . , id(v) ∈ [m] that the vertex v remembers (that is, the list Lv is stored in the

memory Sv). Once an index was added to Lv, it is remembered in all the future, that is, for

every vertex u reached from v (in the second part of the program), we have Lv ⊆ Lu. Note

that the stopping rules are defined for the updated second part (as described above).

The stopping rules for the second part extend the stopping rules in the case of one-pass

programs, as defined in [12, 5], as if the second part were the entire program, with starting

vertex v1. However, the third stopping rule (bad edges) is now different. We say that an edge

(v, u), labelled by (a, b), is of high probability if the probability to sample a, conditioning on

reaching v from v0 (that is, reaching v from the starting vertex of the entire program) is

larger than 2k ·2−n′

. That is, if v is in layer-i of the second part, (v, u) is of high probability if

Pr[ai+1 = a | v0 → v] ≥ 2k · 2−n′

. The third stopping rule is changed so that T doesn’t stop

on a bad edge if it is of high probability. Instead, if T traverses such an edge, we “remember”

the time step in which T traversed that edge, in all the future. That is, we enter the index

i to Lu (and remember it in all the future, until the end of the program). In addition, we

add a stopping rule that stops if the edge is “very-bad” and a stopping rule that stops if the

number of indices in Lv is too large, that is, if the number of high-probability edges that

were already traversed is too large.

Next, we describe these rules formally. We initiate Lv1 = ∅.

Significant Vertices

We say that a vertex v in layer-i of the second part of the program is significant if

∥∥Px|v1→v

∥∥
2

> 2ℓ2 · 2−n.

Significant Values

For a vertex v in layer-i of the second part of the program, denote by Sig(v) the set of all

x′ ∈ X, such that,

Px|v1→v(x′) > 24ℓ · 2−n.

CCC 2019

22:14 Time-Space Lower Bounds for Two-Pass Learning

Bad Edges

For a vertex v in layer-i of the second part of the program, denote by Bad(v) the set of all

a ∈ A, such that,

∣∣(M · Px|v1→v)(a)
∣∣ ≥ 2−2r.

Very-Bad Edges

For a vertex v in layer-i of the second part of the program, denote by VeryBad(v) the set of

all (a, b) ∈ A × {−1, 1}, such that,

Pr
x

[M(a, x) = b | v1 → v] ≤ 2−4ℓ̃.

High-Probability Edges

For a vertex v in layer-i of the second part of the program, denote by High(v) the set of all

a ∈ A, such that,

Pr[ai+1 = a | v0 → v] ≥ 2k · 2−n′

.

The Truncated-Path T on the Second Part

We define T on the second part, by induction on the layers. Assume that we already defined

T until it reaches a vertex v in layer-i of the second part (and we already defined Lv). The

path T stops on v if (at least) one of the following occurs:

1. v is significant.

2. x ∈ Sig(v).

3. ai+1 ∈ Bad(v) \ High(v).

4. (ai+1, bi+1) ∈ VeryBad(v).

5. |Lv| ≥ 200ǫℓ̃.

6. Recall that we changed the second part of the program so that it is the product of the

first part and the (original) second part. This means that the second part of the program

runs its own copy of the first part of the program. If the path T , that was defined for the

first part, stops on the copy of the first part that the second part runs, the path T stops

on the vertex v too.

◮ Remark 5. We note that if T stopped on the first part, it couldn’t have reached v1

in the first place. Thus, conditioned on the event v0 → v1, the path T didn’t stop on

the first part. Therefore, conditioned on the event v0 → v1, the path T never stops

because of stopping rule 6. Thus, this stopping rule is not necessary. Nevertheless, we

add this stopping rule for completeness, so that it would be possible to consider the path

T starting from any vertex (even in the middle of the program), without conditioning on

the event of reaching that vertex.

Otherwise, unless T already reached the end of the second part, T proceeds by following

the edge labeled by (ai+1, bi+1) (same as the computational-path). Let (v, u) be the edge

labeled by (ai+1, bi+1). It remains to define the list Lu.

Updating Lu

Let (v, u) be the traversed edge, labeled by (ai+1, bi+1). If the traversed edge (v, u) is not a

high-probability edge, that is, if ai+1 6∈ High(v), we define Lu = Lv.

S. Garg, R. Raz, and A. Tal 22:15

If the traversed edge (v, u) is a high-probability edge, that is, if ai+1 ∈ High(v), we define

Lu = Lv ∪ {i + 1}, and hence, by induction, Lu is the list of all indices corresponding to the

high-probability edges that T traversed, in the second part of the program, until reaching u.

5.2 Bounding the Width of the Branching Program B̂

From now on, we will only consider the final branching program, B̂.

The final branching program, B̂, has a larger width than the original one. The main

contributions to the larger width is that we changed the second part to be the product of the

first and second parts of the original program and that each vertex in the second part of B̂

remembers the vertex v1 (reached at the end of the first part). This multiplies the memory

needed (that is, the logarithm of the width of the program) by a factor of at most 3. In

addition, each vertex v has to remember Lv, but by Equation (1) and since T stops when

|Lv| ≥ 200ǫℓ̃, this adds memory of at most ǫℓ̃r
100 . Thus, the final width of B̂ is at most 2ǫkℓ̃/2.

5.3 The Probability that T Stops is Small

We will now prove that the probability that T stops before reaching a leaf is at most 1
100 +o(1).

◮ Lemma 6. The probability that T stops before reaching a leaf is at most 1
100 + o(1).

Proof. First, recall that if T reaches a vertex in layer-m, such that, the probability to reach

that vertex is smaller than 2−10r̃ · d−1
1 , then T stops. By the union bound, the probability

that T stops because of this rule is at most 2−10r̃ = o(1).

We will now bound the probability that T stops because of each of the other stopping rules.

Recall that for two vertices w1, w2 in the program, we denote by w1 → w2 the event (over

x, a1, . . . , am) that the path T that starts from w1 reaches w2.

5.3.1 Stopping Rule 1: Significant-Vertices

◮ Lemma 7. The probability that T reaches a significant vertex is at most o(1).

Lemma 7 is proved in Section 6.

Next, we will bound the probability that T stops because of each of the other stopping

rules. By Lemma 7, it’s sufficient to bound these probabilities, under the assumption that T
doesn’t reach any significant vertex (as otherwise, T would have stopped because of stopping

rule 1).

5.3.2 Stopping Rule 2: Significant-Values

We will now bound the probability that T stops because of stopping rule 2. We will first

prove the following claim.

⊲ Claim 8. If v is a non-significant vertex in layer-i of part-j (where j ∈ {1, 2}), then

Pr
x

[x ∈ Sig(v) | vj−1 → v] ≤ 2−2ℓ.

Proof. Since v is not significant,

E
x′∼Px|vj−1→v

[
Px|vj−1→v(x′)

]
=
∑

x′∈X

[
Px|vj−1→v(x′)2

]
= 2n · E

x′∈RX

[
Px|vj−1→v(x′)2

]
≤ 22ℓj · 2−n

.

CCC 2019

22:16 Time-Space Lower Bounds for Two-Pass Learning

Hence, by Markov’s inequality,

Pr
x′∼Px|vj−1→v

[
Px|vj−1→v(x′) > 24ℓ · 2−n

]
≤ 22ℓj−4ℓ ≤ 2−2ℓ.

Since conditioned on the event vj−1 → v, the distribution of x is Px|vj−1→v, we obtain

Pr
x

[
x ∈ Sig(v)

∣∣ vj−1 → v
]

= Pr
x

[(
Px|vj−1→v(x) > 24ℓ · 2−n

) ∣∣ vj−1 → v
]

≤ 2−2ℓ. ◭

By Claim 8, if v is a non-significant vertex in layer-i of part-j then

Pr
x

[x ∈ Sig(v) | vj−1 → v] ≤ 2−2ℓ ≤ 2−4ℓ̃. (3)

We need to bound from above

E
v

[
Pr
x

[x ∈ Sig(v) | v0 → v]
]
, (4)

where the expectation is over the non-significant vertices v in layer-i of part-j, reached by

the path T . (If T stops before reaching layer-i of part-j, or if it reaches a significant vertex,

we think of v as undefined and think of the inner probability as 0). If j = 1, we are done by

Claim 8. We will proceed with the case j = 2. Recall that ℓ2 = ℓ.

We will use the following lemma, whose proof is deferred to the next subsection. We shall

instantiate the lemma by setting Sv = Sig(v).

◮ Lemma 9. Assume that for every non-significant vertex v in layer-i of part-2, we have

some subset of values Sv ⊆ X that depends only on v. Assume that for every such v (with

positive probability for the event v1 → v, where v1 is the vertex recorded by v), we have

Pr
x

[x ∈ Sv | v1 → v] ≤ 2−4ℓ̃.

Then,

E
v

[Pr
x

[x ∈ Sv | v0 → v]] < 2−Ω(ℓ̃) (5)

where the expectation is over the non-significant vertices v in layer-i of part-2, reached by

the path T . (If T stops before reaching layer-i of part-2, or if it reaches a significant vertex,

we think of v as undefined and think of the inner probability as 0).

By Expression (3), the assumption of the lemma is satisfied by the choice Sv = Sig(v).

Thus, the conclusion of the lemma implies that

E
v

[
Pr
x

[x ∈ Sig(v) | v0 → v]
]

≤ 2−Ω(ℓ̃).

Thus, the probability that T stops because of stopping rule 2 is at most 2−Ω(ℓ̃), in each

step, and taking a union bound over the length of the program, the probability that T stops

because of stopping rule 2 is at most 2−Ω(ℓ̃).

5.3.3 Proof of Lemma 9

Proof. We could also write Ev[Prx[x ∈ Sv | v0 → v]] as

∑

v∈Li,2

Pr[v0 → v] · Pr
x

[x ∈ Sv | v0 → v] =
∑

v∈Li,2

Pr[(x ∈ Sv) ∧ (v0 → v)]

S. Garg, R. Raz, and A. Tal 22:17

where Li,2 denotes the non-significant vertices v in layer-i of part-2, that are reachable

(with probability larger than 0) from the start vertex.

Later on, we will define for every v ∈ Li,2, an event Gv that will occur with high

probability. We will denote by Ḡv, the complement of Gv. We will bound

∑

v∈Li,2

Pr[(x ∈ Sv) ∧ (v0 → v)],

by bounding separately

∑

v∈Li,2

Pr[Gv ∧ (x ∈ Sv) ∧ (v0 → v)] (6)

and

∑

v∈Li,2

Pr[Ḡv ∧ (x ∈ Sv) ∧ (v0 → v)] (7)

The second expression will be bounded by

∑

v∈Li,2

Pr[Ḡv ∧ (v0 → v)], (8)

that will be at most 2−Ω(ℓ̃) (see Claim 10). Thus, we will focus first on bounding Expression (6),

which is equal to

∑

v∈Li,2

∑

x′∈Sv

Pr[Gv ∧ (x = x′) ∧ (v0 → v)] (9)

=
∑

v∈Li,2

∑

x′∈Sv

Pr[Gv ∧ (v0 → v) | (x = x′)] · Pr[x = x′]. (10)

Recall that for two vertices w1, w2 in the program, we denote by w1 → w2 the event (over

x, a1, . . . , am) that the path T that starts from w1 reaches w2.

Recall that by the construction of the branching-program B̂, part-2 runs a copy of part-1

of the computation. Thus, the vertex v has a corresponding vertex v′ in layer-i of part-1,

such that, if the path T reached v it previously reached v′. Recall also that v remembers v1,

so if the path T reached v it previously reached v1.

Thus, the event v0 → v is equivalent to v0 → v′ → v1 → v, that is, the event

(v0 → v′) ∧ (v′ → v1) ∧ (v1 → v).

Since the second part of the program runs a copy of the first part, the event v1 → v implies

the event v0 → v′. Hence, the event v0 → v is equivalent to the event

(v′ → v1) ∧ (v1 → v).

Note also that if we fix x, that is, if we condition on x = x′, and we fix v (which also fixes

v′, v1) the events (v′ → v1) and (v1 → v) are independent (as the first one depends only on

ai+1, . . . , am and the second depends only on a1, . . . , ai). We will also have the property that

the event Gv is a function of v′ rather than v, and hence will also be denoted by Gv′ = Gv

(recall that v determines v′). Moreover, if we fix x and v′, we will have the property that

the event Gv′ depends only on ai+1, . . . , am, and hence the events Gv′ and (v′ → v1) are

independent of (v1 → v).

CCC 2019

22:18 Time-Space Lower Bounds for Two-Pass Learning

Thus, for a fixed v (which also fixes v′, v1) and any x′ ∈ X,

Pr[Gv ∧ (v0 → v) | x = x′] = Pr[Gv′ ∧ (v′ → v1) ∧ (v1 → v) | x = x′]

= Pr[Gv′ ∧ (v′ → v1) | x = x′] · Pr[v1 → v | x = x′].

We introduce the event (v′ →̃ v1) to indicate that the computational path from v′ reached v1

(as opposed to the usual notation that denotes the truncated path). Since (v′ → v1) implies

(v′ →̃ v1) we have

Pr[Gv′ ∧ (v′ → v1) | x = x′] · Pr[v1 → v | x = x′]

≤ Pr[Gv′ ∧ (v′ →̃ v1) | x = x′] · Pr[v1 → v | x = x′].

By Bayes’ rule, the last expression is at most

Pr[x = x′ | Gv′ ∧ (v′ →̃ v1)] · Pr[x = x′ | v1 → v] · Pr[v′ →̃ v1] · Pr[v1 → v]

Pr[x = x′]2

= P
x|Gv′ ∧(v′ →̃ v1)

(x′) · Px|v1→v(x′) · Pr[v′ →̃ v1] · Pr[v1 → v]

Pr[x = x′]2
.

Thus, Expression (10) is at most

∑

v∈Li,2

(
Pr[v′ →̃ v1] · Pr[v1 → v] ·

∑

x′∈Sv

P
x|Gv′ ∧(v′ →̃ v1)

(x′)

Pr[x = x′]
· Px|v1→v(x′)

)
. (11)

Note that from layer-i of part-1 to layer-m of part-1, the branching program is one-pass.

Denote by Rv′ the one-pass branching program, from layer-i of part-1 to layer-m of part-1,

with starting vertex v′. Thus, we can use what we already know about one-pass branching

programs. We will apply a slight modification of the main theorem of [5] (Proposition 24

from Appendix), for one-pass branching programs, with parameters k′ = k, ℓ′ = ℓ̃, r′ = r̃/4.

As m ≤ 2ǫr̃ and Rv′ has width at most 2ǫkℓ̃/2 ≤ 2k′·ℓ′/100 (ǫ is small enough), by

Proposition 24, we know that for any fixed v′, there exists an event Gv′ that depends only

on x, ai+1, . . . , am, such that, Pr(Gv′) ≥ 1 − 2−ℓ̃/8 (ℓ̃ ≤ k), and for every x′ ∈ X, and every

v1 such that Pr[Gv′ ∧ (v′ →̃ v1)] > 0 it holds that

P
x|Gv′ ∧(v′ →̃ v1)

(x′) ≤ 22ℓ̃ · 2−n.

Namely, the event Gv′ is the event G from Proposition 24 corresponding to the branching

program Rv′ (that is, the event Gv′ is the event that the truncated-path as defined for

one-pass branching programs in [5] with slight modification, didn’t stop because of one of the

stopping rules, until the last layer, and didn’t violate the significant vertices and significant

values stopping rules in the last layer, that is, layer-m of part-1).

Substituting this in Expression (11), we get that the expression is at most

22ℓ̃ ·
∑

v∈Li,2

(
Pr[v′ →̃ v1] · Pr[v1 → v] ·

∑

x′∈Sv

Px|v1→v(x′)

)
. (12)

By the assumption of the lemma, for any v ∈ Li,2 we have
∑

x′∈Sv
Px|v1→v(x′) ≤ 2−4ℓ̃, thus

Expression (12) is at most

2−2ℓ̃ ·
∑

v∈Li,2

Pr[v′ →̃ v1] · Pr[v1 → v].

S. Garg, R. Raz, and A. Tal 22:19

Recall that Li,2 denotes only the vertices v in layer-i of part-2, that are reachable (with

probability larger than 0) from the start vertex, v0. Recall that the event (v1 → v) is

equivalent to the event (v0 → v′) ∧ (v1 → v).

Thus,

∑

v∈Li,2

Pr[v′ →̃ v1] · Pr[v1 → v] ≤
∑

v′,v1,v

Pr [v′ →̃ v1] · Pr [(v0 → v′) ∧ (v1 → v)]

=
∑

v′,v1

Pr [v′ →̃ v1] ·
(∑

v

Pr [(v0 → v′) ∧ (v1 → v)]

)

≤
∑

v′,v1

Pr [v′ →̃ v1] · Pr [v0 → v′]

=
∑

v′

Pr [v0 → v′] ·
(∑

v1

Pr [v′ →̃ v1]

)

≤
∑

v′

Pr [v0 → v′] ≤ 1

(where the possible inequality in the first line is because the first sum is on all the paths

v0 → v′ → v1 → v, obtained with positive probabilities, whereas the second sum is on all

possible vertices v0, v′, v1, v in the corresponding layers of the branching program).

Thus, we conclude that Expression (6) is at most 2−2ℓ̃. It remains to bound Expression (8).

⊲ Claim 10.

∑

v∈Li,2

Pr[Ḡv ∧ (v0 → v)] ≤ 2−Ω(ℓ̃).

Proof.

∑

v∈Li,2

Pr[Ḡv ∧ (v0 → v)] =
∑

v∈Li,2

Pr[Ḡv ∧ (v0 → v′) ∧ (v′ → v1) ∧ (v1 → v)]

≤
∑

v′,v1,v

Pr[Ḡv ∧ (v0 → v′) ∧ (v′ → v1) ∧ (v1 → v)]

=
∑

v′,v1,v

Pr[Ḡv′ ∧ (v0 → v′) ∧ (v′ → v1) ∧ (v1 → v)]

=
∑

v′∈Li,1

Pr[Ḡv′ ∧ (v0 → v′)] ·
∑

v1,v

Pr[(v′ → v1) ∧ (v1 → v)|Ḡv′ ∧ (v0 → v′)]

≤
∑

v′∈Li,1

Pr[Ḡv′ ∧ (v0 → v′)]. (13)

For every non-significant v′ ∈ Li,1, denote by

Xv′ = {x′ : Px|v0→v′(x′) ≥ 2ℓ̃/16 · 2−n},

and split the expression Pr[Ḡv′ ∧ (v0 → v′)] according to whether or not (x ∈ Xv′).

Pr[Ḡv′ ∧ (v0 → v′)] ≤ Pr[(v0 → v′) ∧ (x ∈ Xv′)] + Pr[Ḡv′ ∧ (v0 → v′) ∧ (x /∈ Xv′)] (14)

We begin by bounding the first summand in Expression (14):

Pr[(v0 → v′) ∧ (x ∈ Xv′)] = Pr(v0 → v′) · Pr[(x ∈ Xv′)|v0 → v′]

CCC 2019

22:20 Time-Space Lower Bounds for Two-Pass Learning

We bound Pr[x ∈ Xv′ |v0 → v′] very similarly to the proof of Claim 8, but with a different

threshold. Since v′ is not significant,

E
x′∼Px|v0→v′

[
Px|v0→v′(x′)

]
=
∑

x′∈X

[
Px|v0→v′(x′)2

]
= 2n · E

x′∈RX

[
Px|v0→v′(x′)2

]
≤ 22ℓ1 · 2−n.

Hence, by Markov’s inequality,

Pr[x ∈ Xv′ |v0 → v′] = Pr
x′∼Px|v0→v′

[
Px|v0→v′(x′) ≥ 2ℓ̃/16 · 2−n

]
≤ 22ℓ1−ℓ̃/16 ≤ 2−ℓ̃/32

(recall that ℓ1 = ℓ̃/100). Overall, we bounded the first summand in Expression (14) by

Pr(v0 → v′) · 2−ℓ̃/32.

Next, we bound the second summand in Expression (14).

Pr
[
Ḡv′ ∧ (v0 → v′) ∧ (x /∈ Xv′)

]

=
∑

x′∈X\Xv′

Pr(x = x′) · Pr
[
Ḡv′ ∧ (v0 → v′) | x = x′].

Since if we fix x and v′, the event Gv′ depends only on ai+1, . . . , am and hence is independent

of (v0 → v′), we have

∑

x′∈X\Xv′

Pr(x = x′) · Pr
[
Ḡv′ ∧ (v0 → v′) | x = x′]

=
∑

x′∈X\Xv′

Pr(x = x′) · Pr
[
Ḡv′ | x = x′] · Pr

[
v0 → v′ | x = x′]

= Pr
(
v0 → v′) ·

∑

x′∈X\Xv′

Pr
[
Ḡv′ | x = x′] · Pr

[
x = x′ | v0 → v′]

(by Bayes’ rule)

= Pr
(
v0 → v′) ·

∑

x′∈X\Xv′

Pr
[
Ḡv′ | x = x′] · Px|v0→v′(x′)

≤ Pr
(
v0 → v′) ·

∑

x′∈X\Xv′

Pr
[
Ḡv′ | x = x′] · 2ℓ̃/16 · 2−n

(by the definition of Xv′)

≤ Pr
(
v0 → v′) · Pr

(
Ḡv′

)
· 2ℓ̃/16

≤ Pr
(
v0 → v′) · 2−ℓ̃/8 · 2ℓ̃/16

≤ Pr
(
v0 → v′) · 2−ℓ̃/16.

Substituting in Expression (14), we have

Pr[Ḡv′ ∧ (v0 → v′)] ≤ Pr
(
v0 → v′) · 2−ℓ̃/32 + Pr

(
v0 → v′) · 2−ℓ̃/16.

Substituting in Expression (13), we have

∑

v∈Li,2

Pr[Ḡv ∧ (v0 → v)] ≤ (2−ℓ̃/32 + 2−ℓ̃/16) ·
∑

v′∈Li,1

Pr
(
v0 → v′) ≤ 2 · 2−ℓ̃/32. ◭

This finishes the proof of Lemma 9. ◭

S. Garg, R. Raz, and A. Tal 22:21

5.3.4 Stopping Rule 3: Bad-Edges

We will now bound the probability that T stops because of stopping rule 3. We will first

prove the following claim.

⊲ Claim 11. If v is a non-significant vertex in layer-i of part-j (where j ∈ {1, 2}), then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−4k.

Proof. Since v is not significant,
∥∥Px|vj−1→v

∥∥
2

≤ 2ℓj · 2−n ≤ 2ℓ · 2−n. Since Px|vj−1→v is a

distribution,
∥∥Px|vj−1→v

∥∥
1

= 2−n. Thus,

∥∥Px|vj−1→v

∥∥
2∥∥Px|vj−1→v

∥∥
1

≤ 2ℓ.

Since M is a (10k, 10ℓ)-L2-extractor with error 2−10r, there are at most 2−10k · |A| elements

a ∈ A with

∣∣〈Ma,Px|vj−1→v〉
∣∣ ≥ 2−10r ·

∥∥Px|vj−1→v

∥∥
1

= 2−10r · 2−n

The claim follows since ai+1 is uniformly distributed over A. ⊳

By Claim 11, if v is a non-significant vertex then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−4k.

We need to bound

Pr
ai+1

[ai+1 ∈ Bad(v) \ High(v) | v0 → v].

We bound

Pr
ai+1

[ai+1 ∈ Bad(v) \ High(v) | v0 → v] =
∑

a∈Bad(v)\High(v)

Pr[ai+1 = a | v0 → v]

≤
∑

a∈Bad(v)\High(v)

2k · 2−n′ ≤ 2k ·
∑

a∈Bad(v)

Pr[ai+1 = a]

= 2k · Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2k · 2−4k = 2−3k.

Thus, the probability that T stops because of stopping rule 3 is at most 2−3k, in each

step, and taking a union bound over the length of the program, the probability that T stops

because of stopping rule 3 is at most 2−2k.

5.3.5 Stopping Rule 4: Very-Bad Edges

We will now bound the probability that T stops because of stopping rule 4.

Recall that for a vertex v in layer-i of part-2 of the program, VeryBad(v) is the set of all

(a, b) ∈ A × {−1, 1}, such that,

Pr
x

[M(a, x) = b | v1 → v] ≤ 2−4ℓ̃.

Note that for every a ∈ A, there is at most one b ∈ {−1, 1}, denoted bv(a), such that

Pr
x

[M(a, x) = b | v1 → v] ≤ 2−4ℓ̃.

CCC 2019

22:22 Time-Space Lower Bounds for Two-Pass Learning

If such a b doesn’t exist we let bv(a) = ∗, and think of it as undefined. Thus, for every v,

and every (a, b) ∈ A × {−1, 1},
(
(a, b) ∈ VeryBad(v)

)
⇐⇒

(
b = bv(a)

)
, (15)

and

Pr
x

[M(a, x) = bv(a) | v1 → v] ≤ 2−4ℓ̃. (16)

Let av ∈ A be an a ∈ A, such that Prx[M(a, x) = bv(a) | v0 → v] is maximal and let

bv = bv(av). We need to bound from above

E
v

[
Pr[(ai+1, bi+1) ∈ VeryBad(v) | v0 → v]

]
, (17)

where the expectation is over the vertex v in layer-i of part-2, reached by the path T . (If

T stops before reaching layer-i of part-2, we think of v as undefined and think of the inner

probability as 0). That is, we could also write Expression (17) as
∑

v∈Li,2

Pr[v0 → v] · Pr[(ai+1, bi+1) ∈ VeryBad(v) | v0 → v],

where Li,2 denotes the vertices v in layer-i of part-2, that are reachable (with probability

larger than 0) from the start vertex. By Equation (15), Expression (17) is equal to

E
v

[
Pr[bi+1 = bv(ai+1) | v0 → v]

]
,

which, by the definition of bi+1, is equal to

E
v

[
Pr[M(ai+1, x) = bv(ai+1) | v0 → v]

]
,

which, by the definitions of av, bv, is at most

E
v

[
Pr[M(av, x) = bv | v0 → v]

]
. (18)

In what follows, we assume for simplicity and without loss of generality that for every v,

bv ∈ {−1, 1} is defined (as otherwise Pr[M(av, x) = bv | v0 → v] = 0 and can be omitted

from the expectation).

For any fixed v, denote by Sv = {x : M(av, x) = bv}. We can apply Lemma 9, since from

Expression (16) for any non-significant v

Pr[x ∈ Sv | v1 → v] ≤ 2−4ℓ̃.

Thus, we get

E
v

[Pr[x ∈ Sv | v0 → v]] ≤ 2−Ω(ℓ̃) ,

and since (x ∈ Sv) ⇐⇒ (M(av, x) = bv), we have

E
v

[Pr[M(av, x) = bv | v0 → v]] ≤ 2−Ω(ℓ̃) .

Finally, by the definitions of av and bv we have

E
v

[Pr[(ai+1, bi+1) ∈ VeryBad(v) | v0 → v]] ≤ E
v

[Pr[M(av, x) = bv | v0 → v]] ≤ 2−Ω(ℓ̃) .

Thus, the probability that T stops because of stopping rule 4 is at most 2−Ω(ℓ̃), in each

step, and taking a union bound over the length of the program, the probability that T stops

because of stopping rule 4 is at most 2−Ω(ℓ̃).

S. Garg, R. Raz, and A. Tal 22:23

5.3.6 Stopping Rule 5: Large Lv

Recall that for two vertices w1, w2 in the program, we denote by w1 → w2 the event (over

x, a1, . . . , am) that the path T that starts from w1 reaches w2.

Recall that v1 is the vertex reached by the path at the end of part-1. Fix v1 and denote

by E the event v0 → v1. Let u0, u1, . . . , um be the vertices reached by the path in part-2,

where u0 = v1. (If the path stops before reaching layer-i of part-2, we define ui to be a

special stop vertex in that layer). Note that conditioned on the event E, the random variable

ui is a function of x, a1, . . . , ai and for i ≥ 1 it can also be viewed as a function of x, ui−1, ai.

Denote by T the number of high-probability edges that the path traverses in part-2. For

every i ∈ [m], let Ti ∈ {0, 1} be an indicator random variable that indicates whether the

path traverses a high-probability edge at step-i of part-2. Thus,

T =

m∑

i=1

Ti.

For every i ∈ [m], we have that Ti = 1 only if ai ∈ High(ui−1), that is, only if Pr(ai|ui−1, E) ≥
2k · 2−n′

, or equivalently

log
(

2n′ · Pr(ai|ui−1, E)
)

k
≥ 1.

⊲ Claim 12. Let Z ∈ {0, 1}n′

be any random variable. Let k ≥ 4. Let T (Z) ∈ {0, 1} be an

indicator random variable for the event Pr(Z) ≥ 2k · 2−n′

. Then,

2 · E
Z

log
(

2n′ · Pr(Z)
)

k

 ≥ E

Z
[T (Z)].

Proof. Let α = PrZ(T (Z) = 1). That is, we have Pr(Z) ≥ 2k · 2−n′

with probability α. Thus,

E
Z

log
(

2n′ · Pr(Z)
)

k

 =

α · E
Z

log
(

2n′ · Pr(Z)
)

k

∣∣∣∣∣ T (Z) = 1

+ (1 − α) · E

Z

log
(

2n′ · Pr(Z)
)

k

∣∣∣∣∣ T (Z) = 0

 .

By the monotonicity of the logarithm function, we have,

α · E
Z

log
(

2n′ · Pr(Z)
)

k

∣∣∣∣∣ T (Z) = 1

 ≥ α · E

Z

log
(

2n′ · 2k · 2−n′
)

k

∣∣∣∣∣ T (Z) = 1

 = α

By the monotonicity of the logarithm function and the concavity of the entropy function, we

have,

(1 − α) · E
Z

log
(

2n′ · Pr(Z)
)

k

∣∣∣∣∣ T (Z) = 0

 ≥

(1 − α) · E
Z

log
(

2n′ · (1 − α) · 2−n′
)

k

∣∣∣∣∣ T (Z) = 0

 =

CCC 2019

22:24 Time-Space Lower Bounds for Two-Pass Learning

(1 − α) log(1 − α)

k

(as, by the concavity of the entropy function, the expression is minimized when the random

variable Z|(T (Z) = 0) is uniformly distributed).

Thus, the left hand side of the claim is at least

2α +
2(1 − α) log(1 − α)

k
≥ 2α − 4α

k
≥ 2α − 4α

4
= α.

The claim follows Since EZ [T (Z)] = α. ⊳

By Claim 12,

E
x,a1,...,am

[T |E] =

m∑

i=1

E
x,a1,...,am

[Ti|E] ≤ 2 ·
m∑

i=1

E
x,a1,...,am

log
(

2n′ · Pr(ai|ui−1, E)
)

k

=
2

k
·
(

mn′ −
m∑

i=1

H(ai|ui−1, E)

)
,

where H denotes the entropy function. Since conditioning may only decrease the entropy,

the last expression is at most

≤ 2

k
·
(

mn′ −
m∑

i=1

H(ai|x, ui−1, E)

)
.

Since, conditioned on E, the random variable ui−1 is a function of x, a1, . . . , ai−1, by the

data-processing inequality, H(ai|x, ui−1, E) ≥ H(ai|x, a1, . . . , ai−1, E), and hence the last

expression is at most

≤ 2

k
·
(

mn′ −
m∑

i=1

H(ai|x, a1, . . . , ai−1, E)

)
.

By the chain rule, the last expression is equal to

=
2

k
·
(
mn′ − H(a1, . . . , am|x, E)

)

=
2

k
·
(
mn′ − H(x, a1, . . . , am|E) + H(x|E)

)

≤ 2

k
·
(
mn′ + n − H(x, a1, . . . , am|E)

)

≤ 2

k
· log

(
1

Pr(E)

)
.

Thus,

E
x,a1,...,am

[T |E] ≤ 2

k
· log

(
1

Pr(E)

)
.

By Markov inequality

Pr
x,a1,...,am

[
T ≥ 200

k
· log

(
1

Pr(E)

) ∣∣∣∣∣E
]

≤ 1

100
.

S. Garg, R. Raz, and A. Tal 22:25

Since we assumed that Pr(E) ≥ 2−10r̃ · d−1
1 and since the width of B̂ is at most 2ǫkℓ̃/2

and since by Equation (1) and Equation (2), r̃ is negligible compared to ǫkℓ̃/2, we have that

log
(

1
Pr(E)

)
≤ ǫkℓ̃. Hence,

Pr
x,a1,...,am

[
T ≥ 200ǫℓ̃

∣∣∣∣ E

]
≤ 1

100
.

Thus, the probability to stop on part-2 because of stopping rule 5 is at most 1
100 .

5.3.7 Stopping Rule 6: Consistency-Stop

We will now show that the probability that T stops on a vertex v, in layer-i of part-2, because

of stopping rule 6, conditioned on the event v0 → v, is 0.

Recall that by the construction of the branching-program B̂, part-2 runs a copy of part-1

of the computation. Thus, the vertex v has a corresponding vertex v′ in layer-i of part-1,

such that, if the path T reached v it previously reached v′.
If T needs to stop on v, because of stopping rule 6, because T stopped on the vertex v′, it

couldn’t have reached v in the first place (as it would have stopped on v′). Thus, conditioned

on the event v0 → v, the path T didn’t stop on v′ and doesn’t need to stop on v because of

stopping rule 6.

Thus, the probability that T stops because of stopping rule 6 is 0.

This completes the proof of Lemma 6. ◭

5.4 The Final Success Probability is Small

Let v be a vertex in the last layer of the program. Assume that the probability for the event

v0 → v is larger than 0. Since v is in the last layer, the event v0 → v is equivalent to v1 → v

(since the second part of the program runs a copy of the first part). Hence,

Px|v0→v = Px|v1→v

and

Pr[v0 → v] = Pr[v1 → v].

In particular, if v is not significant, Px|v0→v has small L2-norm.

E
x′∈RX

[
Px|v0→v(x′)2

]
≤ 22ℓ · 2−2n.

Hence, for every x′ ∈ X,

Pr[x = x′ | v0 → v] = Px|v0→v(x′) ≤ 2ℓ · 2−n/2 ≤ 2−n/4

In particular,

Pr[x̃(v) = x | v0 → v] ≤ 2−n/4.

Thus, either the computation path stops before reaching v which happens with probability

at most 1
100 + o(1) or it reaches a non-significant vertex where the probability of guessing

correctly is o(1). Thus, the final success probability is bounded by 1
100 + o(1). This completes

the proof of Theorem 4.

CCC 2019

22:26 Time-Space Lower Bounds for Two-Pass Learning

6 Proof of Lemma 7

Proof Overview

Let s be a significant vertex in part-j (that remembers the vertices visited at the end of parts

1, . . . , j − 1, denoted by s1, . . . , sj−1). Assume that the probability for the event v0 → s is

larger than 0. We need to bound from above the probability for the event v0 → s. Since the

event v0 → s is equivalent to (v0 → sj−1) ∧ (sj−1 → s), it suffices to bound from above the

probability for (sj−1 → s). Note that to analyze this probability we can ignore all parts of

the program, except for part-j, which is a one-pass branching program.

We would like to reprove Lemma 4.1 of [5], with the updated stopping rules. In the

definition of the progress function Zi, we will take the sum only on vertices u ∈ Li,j , such

that s can be reached from u (and in the same way for edges in the definition of Z ′
i). In

particular, this implies that every index in Lu is contained in Ls (as otherwise s cannot be

reached from u).

The progress function is still small at the beginning and large at the end, so as before

the main thing to do is to prove that it grows slowly. This was done in Claim 4.10 of [5].

The main difference here is that the progress function doesn’t grow slowly for every edge,

as some edges are now bad, and we have to take the bad edges into account. We separate to

time steps that are in Ls and time steps that are not in Ls. For time steps that are not in

Ls, we don’t need to count the bad edges at all, as they are not recorded by Ls and hence s

is not reachable from these edges.

As for steps in Ls, we know that the edges are not very-bad, and we show that the

progress function may increase by a factor of at most 25ℓ̃k. Since |Ls| ≤ 200ǫℓ̃ (as otherwise

T would have stopped by stopping rule 5), the total effect of the bad edges on the progress

function is a factor of at most 25ℓ̃k·200ǫℓ̃ ≤ 21000ǫkℓ, which we can afford.

6.1 Proof of Lemma 7

Proof. We need to prove that the probability that T reaches any significant vertex is o(1).

Let s be a significant vertex in part-j. Assume that the probability that T reaches s is

larger than 0. We will bound from above the probability that T reaches s, and then use

a union bound over all significant vertices of B̂. Since the event v0 → s is equivalent to

(v0 → sj−1) ∧ (sj−1 → s), it suffices to bound from above the probability for (sj−1 → s).

Note that to analyze this probability we can ignore all parts other than j of the program,

which leaves us with a one-pass branching program. Furthermore, since s determines sj−1,

we can only consider the subprogram that starts at sj−1 and analyze the probability that

the restriction of T to this subprogram reaches s. We denote by B′ the subprogram of B̂

restricted to the j-part with sj−1 as the starting node.

The Distributions Px|v and Px|e

For a vertex v in B′, we denote by Ev the event that T starting from sj−1 reaches the vertex

v. For simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability

is over x, a1, . . . , am), and we denote by Px|v = Px|Ev
the distribution of the random variable

x conditioned on the event Ev.

Similarly, for an edge e of the branching program B′, let Ee be the event that T starting

from sj−1 traverses the edge e. Denote, Pr(e) = Pr(Ee) (where the probability is over

x, a1, . . . , am), and Px|e = Px|Ee
.

S. Garg, R. Raz, and A. Tal 22:27

Notation

B′ inherits the definitions of significant vertices, Sig(v), Bad(v), VeryBad(v) and High(v)

from B̂. Note that significant vertices, Sig(v), Bad(v) and VeryBad(v) are defined conditioned

on the event vj−1 → v, which is equivalent to the event Ev. Recall that the walk T does not

stop on an edge (v, u) marked (a, b) if a ∈ High(v), as long as (a, b) /∈ VeryBad(v). We will

use the following fact on T : if i /∈ Ls and T takes a bad-edge (v, u) on the i-th step, then

Lu 6⊆ Ls and s is not reachable from u.

For i ∈ {0, . . . , m}, let L′
i be the set of vertices v in layer-i of B′ such that Pr(v) > 0

and it is possible to reach s from v (in particular, the set of high-probability equations

stored in v is also stored in s). For i ∈ {1, . . . , m}, let Γi be the set of edges e from L′
i−1 to

L′
i of B′, such that Pr(e) > 0.

Recall that by the construction of the branching-program B̂, part-j runs a copy of all

previous parts of the computation. Thus, a vertex v in B′ or equivalently a vertex v in part-j

of B̂ has corresponding vertices v′
1, . . . , v′

j−1 in layer-i of parts 1, . . . , j − 1, respectively, such

that, if the path T reached v it previously reached v′
1, . . . , v′

j−1. We denote by v′
j = v. We

denote by

S̃ig(v) ,

j⋃

j′=1

Sig(v′
j′).

Recall that by stopping rules 2 and 6, the path T stops if x ∈ S̃ig(v).

The next claim bounds the probability of stopping on a vertex v in part-2 due to stopping

rule 2 of part-1 on the vertex v′ that v remembers.

⊲ Claim 13. If v is a non-significant vertex in layer-i of part-2 that remembers v′, and v′ is

a non-significant vertex in layer-i of part-1, then

Pr
x

[x ∈ Sig(v′) | v1 → v] ≤ 2−2ℓ.

Proof. Since v is not significant,

E
x′∼Px|v1→v

[
Px|v0→v′(x′)

]
=
∑

x′∈X

[
Px|v0→v′(x′) · Px|v1→v(x′)

]

(using Cauchy-Schwarz)

≤
√∑

x′∈X

Px|v0→v′(x′)2 ·
∑

x′∈X

Px|v1→v(x′)2

= 2n ·
√

E
x′∈RX

[
Px|v0→v′(x′)2

]
E

x′∈RX

[
Px|v1→v(x′)2

]

(since both v′ and v are non-significant)

≤ 2ℓ1+ℓ2 · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v1→v

[
Px|v0→v′(x′) > 24ℓ · 2−n

]
≤ 2ℓ1+ℓ2−4ℓ ≤ 2−2ℓ.

Since conditioned on the event v1 → v, the distribution of x is Px|v1→v, we obtain

Pr
x

[
x ∈ Sig(v′)

∣∣ v1 → v
]

= Pr
x

[(
Px|v0→v(x) > 24ℓ · 2−n

) ∣∣ v1 → v
]

≤ 2−2ℓ. ◭

CCC 2019

22:28 Time-Space Lower Bounds for Two-Pass Learning

⊲ Claim 14. Let i ∈ {1, . . . , m}. For any edge e = (v, u) ∈ Γi, labeled by (a, b), such that

Pr(e) > 0, for any x′ ∈ X,

Px|e(x′) =

{
0 if x′ ∈ S̃ig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ S̃ig(v) and M(a, x′) = b

where ce is a normalization factor that satisfies

ce ≥ 1
2 − 2 · 2−2r, if i /∈ Ls.

ce ≥ 2−4ℓ̃ − 2 · 2−2ℓ ≥ 2−5ℓ̃, if i ∈ Ls.

Proof. Let v′
1, . . . , v′

j be the vertices in the branching program B̂ that v remembers. Let

e = (v, u) be an edge of B′, labeled by (a, b), and such that Pr(e) > 0. Since Pr(e) > 0, the

vertices v′
1, . . . , v′

j are not significant (as otherwise T always stops on v and hence Pr(e) = 0).

Also, since Pr(e) > 0, we know that (a, b) is not very-bad (as otherwise T never traverses e

and hence Pr(e) = 0).

If T reaches v, it traverses the edge e if and only if: x 6∈ S̃ig(v) (as otherwise T stops

on v) and M(a, x) = b and ai+1 = a. Therefore, for any x′ ∈ X,

Px|e(x′) =

{
0 if x′ ∈ S̃ig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ S̃ig(v) and M(a, x′) = b

where ce is a normalization factor, given by

ce =
∑

{
x′ : x′ 6∈S̃ig(v) ∧ M(a,x′)=b

}
Px|v(x′) = Pr

x
[(x 6∈ S̃ig(v)) ∧ (M(a, x) = b) | Ev].

Since v′
1, . . . , v′

j are not significant, by Claim 8 and Claim 13:

Pr
x

[x ∈ S̃ig(v) | Ev] ≤
j∑

j′=1

2−2ℓ ≤ 2 · 2−2ℓ ≤ 2−2r.

If i /∈ Ls, then a /∈ Bad(v), as otherwise Lu 6⊆ Ls and s is not reachable from u. Thus

∣∣∣Pr
x

[M(a, x) = 1 | Ev] − Pr
x

[M(a, x) = −1 | Ev]
∣∣∣ =

∣∣(M · Px|v)(a)
∣∣ ≤ 2−2r,

and hence

Pr
x

[M(a, x) 6= b | Ev] ≤ 1
2 + 2−2r.

Hence, by the union bound,

ce = Pr
x

[(x 6∈ S̃ig(v)) ∧ (M(a, x) = b) | Ev] ≥ 1
2 − 2 · 2−2r.

If i ∈ Ls, then (a, b) /∈ VeryBad(v), and we have Prx[M(a, x) = b | Ev] ≥ 2−4ℓ̃. Thus,

ce = Pr
x

[(x 6∈ S̃ig(v)) ∧ (M(a, x) = b) | Ev] ≥ 2−4ℓ̃ − 2 · 2−2ℓ . ◭

S. Garg, R. Raz, and A. Tal 22:29

Bounding the Norm of Px|s

We will show that
∥∥Px|s

∥∥
2

cannot be too large. Towards this, we will first prove that for

every edge e of B′ that is traversed by T starting from sj−1 with probability larger than

zero,
∥∥Px|e

∥∥
2

cannot be too large.

⊲ Claim 15. For any edge e of B′, such that Pr(e) > 0,

∥∥Px|e
∥∥

2
≤ 25ℓ̃ · 2ℓj · 2−n.

Proof. Let e = (v, u) be an edge of B′, labeled by (a, b), and such that Pr(e) > 0. Since

Pr(e) > 0, the vertex v is not significant (as otherwise T always stops on v and hence

Pr(e) = 0). Thus,

∥∥Px|v
∥∥

2
≤ 2ℓj · 2−n.

By Claim 14, for any x′ ∈ X,

Px|e(x′) =

{
0 if x′ ∈ S̃ig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ S̃ig(v) and M(a, x′) = b

where ce satisfies ce ≥ 2−5ℓ̃. Thus,

∥∥Px|e
∥∥

2
≤ c−1

e ·
∥∥Px|v

∥∥
2

≤ 25ℓ̃ · 2ℓj · 2−n ◭

⊲ Claim 16.

∥∥Px|s
∥∥

2
≤ 25ℓ̃ · 2ℓj · 2−n.

Proof. Let Γin(s) be the set of all edges e of B′, that are going into s, such that Pr(e) > 0.

Note that
∑

e∈Γin(s)

Pr(e) = Pr(s).

By the law of total probability, for every x′ ∈ X,

Px|s(x′) =
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x′),

and hence by Jensen’s inequality,

Px|s(x′)2 ≤
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x′)2.

Summing over x′ ∈ X, we obtain,

∥∥Px|s
∥∥2

2
≤

∑

e∈Γin(s)

Pr(e)
Pr(s) ·

∥∥Px|e
∥∥2

2
.

By Claim 15, for any e ∈ Γin(s),

∥∥Px|e
∥∥2

2
≤
(

25ℓ̃ · 2ℓj · 2−n
)2

.

Hence,

∥∥Px|s
∥∥2

2
≤
(

25ℓ̃ · 2ℓj · 2−n
)2

. ◭

CCC 2019

22:30 Time-Space Lower Bounds for Two-Pass Learning

Similarity to a Target Distribution

Recall that for two functions f, g : X → R
+, we defined

〈f, g〉 = E
z∈RX

[f(z) · g(z)].

We think of 〈f, g〉 as a measure for the similarity between a function f and a target function g.

Typically f, g will be distributions.

⊲ Claim 17.

〈Px|s,Px|s〉 > 22ℓj · 2−2n.

Proof. Since s is significant,

〈Px|s,Px|s〉 =
∥∥Px|s

∥∥2

2
> 22ℓj · 2−2n. ◭

⊲ Claim 18.

〈UX ,Px|s〉 = 2−2n,

where UX is the uniform distribution over X.

Proof. Since Px|s is a distribution,

〈UX ,Px|s〉 = 2−2n ·
∑

z∈X

Px|s(z) = 2−2n. ◭

Measuring the Progress

For i ∈ {0, . . . , m}, let

Zi =
∑

v∈L′
i

Pr(v) · 〈Px|v,Px|s〉k.

For i ∈ {1, . . . , m}, let

Z ′
i =

∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k.

We think of Zi, Z ′
i as measuring the progress made by the branching program, towards

reaching a state with distribution similar to Px|s.

For a vertex v ∈ L′
i of B′, let Γout(v) be the set of all edges e of B′, that are going out of

v to L′
i+1, such that Pr(e) > 0. Note that

∑

e∈Γout(v)

Pr(e) ≤ Pr(v).

(We don’t always have an equality here, since sometimes T stops on v, or goes to a vertex

from which s is not reachable).

Recall that Ls stores a (not too long) list of indices to layers on which the path might

choose to go over bad edges. The next four claims show that the progress made by the

branching program is slow on every layer i /∈ Ls. On layers i ∈ Ls the progress might be

significant but we will still have meaningful bounds on it.

S. Garg, R. Raz, and A. Tal 22:31

⊲ Claim 19. For every vertex v ∈ L′
i−1, such that Pr(v) > 0,

∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k ≤ 〈Px|v,Px|s〉k · ck

i + 2−2nk+k · ck
i ,

where ci is defined as

ci = 1 + 2−r, if i /∈ Ls.

ci = 25ℓ̃, if i ∈ Ls.

Proof. If v is significant or v is a leaf, then T always stops on v and hence Γout(v) is empty

and thus the left hand side is equal to zero and the right hand side is positive, so the claim

follows trivially. Thus, we can assume that v is not significant and is not a leaf.

Define P : X → R
+ as follows. For any x′ ∈ X,

P (x′) =

{
0 if x′ ∈ S̃ig(v)

Px|v(x′) if x′ 6∈ S̃ig(v)

Note that by the definition of Sig(v) and since Sig(v) ⊆ S̃ig(v), for any x′ ∈ X,

P (x′) ≤ 24ℓ · 2−n. (19)

Define f : X → R
+ as follows. For any x′ ∈ X,

f(x′) = P (x′) · Px|s(x′).

By Claim 16 and Equation (19),

‖f‖2 ≤ 24ℓ · 2−n ·
∥∥Px|s

∥∥
2

≤ 24ℓ · 2−n · 25ℓ̃ · 2ℓj · 2−n ≤ 210ℓ · 2−2n. (20)

By Claim 14, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) =

{
0 if M(a, x′) 6= b

P (x′) · c−1
e if M(a, x′) = b

where ce satisfies ce ≥ 1
2 − 2 · 2−2r if i /∈ Ls and ce ≥ 2−5ℓ̃ if i ∈ Ls. Denote by cv the

minimal value that ce can get for e ∈ Γout(v). By the above, cv ≥ 2−5ℓ̃ and cv ≥ 1
2 − 2 · 2−2r

if i /∈ Ls. Note that c−1
v ≤ 2ci in both cases (recall that ci = 25ℓ̃ for i ∈ Ls and ci = 1 + 2−r

if i /∈ Ls). Therefore, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) · Px|s(x′) =

{
0 if M(a, x′) 6= b

f(x′) · c−1
e if M(a, x′) = b

and hence, we have

〈Px|e,Px|s〉 = E
x′∈RX

[Px|e(x′) · Px|s(x′)] = E
x′∈RX

[f(x′) · c−1
e · 1{x′∈X : M(a,x′)=b}]

= E
x′∈RX

[
f(x′) · c−1

e · (1+b·M(a,x′))
2

]
≤ (‖f‖1 + b · 〈Ma, f〉) · (2cv)−1. (21)

We will now consider two cases:

Case I: ‖f‖
1

< 2−2n

In this case, we bound |〈Ma, f〉| ≤ ‖f‖1 (since f is non-negative and the entries of M are

in {−1, 1}) and obtain for any edge e ∈ Γout(v),

〈Px|e,Px|s〉 < c−1
v · 2−2n ≤ 2ci · 2−2n.

Since
∑

e∈Γout(v)
Pr(e)
Pr(v) ≤ 1, Claim 19 follows, as the left hand side of the claim is smaller

than the second term on the right hand side.

CCC 2019

22:32 Time-Space Lower Bounds for Two-Pass Learning

Case II: ‖f‖
1

≥ 2−2n

For every a ∈ A, define

t(a) =
|〈Ma, f〉|

‖f‖1

.

By Equation (21),

〈Px|e,Px|s〉k < ‖f‖k
1 · (1 + t(a))

k · (2cv)−k (22)

Note that by the definitions of P and f ,

‖f‖1 = E
x′∈RX

[f(x′)] = 〈P,Px|s〉 ≤ 〈Px|v,Px|s〉.

Note also that for every a ∈ A, there is at most one edge e(a,1) ∈ Γout(v), labeled by (a, 1),

and at most one edge e(a,−1) ∈ Γout(v), labeled by (a, −1), and we have

Pr(e(a,1))

Pr(v) +
Pr(e(a,−1))

Pr(v) ≤ 1
|A| ,

since 1
|A| is the probability that the next sample read by the program is a. Thus, summing

over all e ∈ Γout(v), by Equation (22),

∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k < 〈Px|v,Px|s〉k · E

a∈RA

[
(1 + t(a))

k
]

· (2cv)−k. (23)

It remains to bound

E
a∈RA

[
(1 + t(a))

k
]

, (24)

using the properties of the matrix M and the bounds on the L2 versus L1 norms of f .

By Equation (20) and the assumption that ‖f‖1 ≥ 2−2n we get

‖f‖2

‖f‖1

≤ 210ℓ .

Since M is a (10k, 10ℓ)-L2-extractor with error 2−10r, there are at most 2−10k · |A| rows

a ∈ A with t(a) = |〈Ma,f〉|
‖f‖1

≥ 2−10r. We bound the expectation in Equation (24), by splitting

the expectation into two sums

E
a∈RA

[
(1 + t(a))

k
]

= 1
|A| ·

∑

a : t(a)≤2−10r

(1 + t(a))
k

+ 1
|A| ·

∑

a : t(a)>2−10r

(1 + t(a))
k

. (25)

We bound the first sum in Equation (25) by (1 + 2−10r)k. As for the second sum in

Equation (25), we know that it is a sum of at most 2−10k · |A| elements, and since for every

a ∈ A, we have t(a) ≤ 1, we have

1
|A| ·

∑

a : t(a)>2−10r

(1 + t(a))
k ≤ 2−10k · 2k ≤ 2−2r

(where in the last inequality we used the fact that r ≤ k). Overall, we get

E
a∈RA

[
(1 + t(a))

k
]

≤ (1 + 2−10r)k + 2−2r ≤ (1 + 2−2r)k+1. (26)

S. Garg, R. Raz, and A. Tal 22:33

Substituting Equation (26) into Equation (23), we obtain

∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k < 〈Px|v,Px|s〉k ·

(
1 + 2−2r

)k+1 · (2cv)−k.

If i /∈ Ls, then (2cv)−1 ≤
(
1 + 2−2r+3

)
and thus

(
1 + 2−2r

)k+1 · (2cv)−k ≤ (1 + 2−r)k (where

the inequality uses the assumption that r is sufficiently large).

If i ∈ Ls, then (2cv)−1 ≤ 1
2 · 25ℓ̃ and thus

(
1 + 2−2r

)k+1 · (2cv)−k ≤ 25ℓ̃k. This completes

the proof of Claim 19. ⊳

⊲ Claim 20. Recall the definition of ci from Claim 19. For every i ∈ {1, . . . , m},

Z ′
i ≤ (Zi−1 + 2−2nk+k) · ck

i

Proof. By Claim 19,

Z ′
i =

∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k =
∑

v∈L′
i−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k

≤
∑

v∈L′
i−1

Pr(v) ·
(
〈Px|v,Px|s〉k + 2−2nk+k

)
· ck

i

= ck
i ·
(

Zi−1 +
∑

v∈L′
i−1

Pr(v) · 2−2nk+k
)

≤ ck
i ·
(
Zi−1 + 2−2nk+k

)
◭

⊲ Claim 21. For every i ∈ {1, . . . , m},

Zi ≤ Z ′
i.

Proof. For any v ∈ L′
i, let Γin(v) be the set of all edges e ∈ Γi, that are going into v. Note

that
∑

e∈Γin(v)

Pr(e) = Pr(v).

By the law of total probability, for every v ∈ L′
i and every x′ ∈ X,

Px|v(x′) =
∑

e∈Γin(v)

Pr(e)
Pr(v) · Px|e(x′),

and hence

〈Px|v,Px|s〉 =
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉.

Thus, by Jensen’s inequality,

〈Px|v,Px|s〉k ≤
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k.

Summing over all v ∈ L′
i, we get

Zi =
∑

v∈L′
i

Pr(v) · 〈Px|v,Px|s〉k ≤
∑

v∈L′
i

Pr(v) ·
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉k

=
∑

e∈Γi

Pr(e) · 〈Px|e,Px|s〉k = Z ′
i. ◭

CCC 2019

22:34 Time-Space Lower Bounds for Two-Pass Learning

⊲ Claim 22. For every i ∈ {1, . . . , m},

Zi ≤ 2r+3k+5ℓ̃k·|Ls| · 2−2k·n.

Proof. By Claim 20 and Claim 21, for every i ∈ {1, . . . , m},

Zi ≤ (Zi−1 + 2−2nk+k) · ck
i

where ci = (1 + 2−r) if i /∈ Ls and ci = 25ℓ̃ if i ∈ Ls. Thus, we can show by induction on

i ∈ {1, . . . , m} that

Zi ≤ 2−2nk+k · (i + 1) ·
i∏

i′=1

ck
i′

Hence, for any i ∈ {1, . . . , m} it holds that

Zi ≤ 2−2nk+k · (m + 1) · (1 + 2−r)mk · 25ℓ̃k|Ls|.

Since m ≤ 2ǫr̃ ≤ 2r − 1,

Zi ≤ 2−2k·n+k · 2r · ek · 25ℓ̃k|Ls|. ◭

Proof of Lemma 7

We can now complete the proof of Lemma 7. Assume that s is in layer-i of B′. By Claim 17,

Zi ≥ Pr(s) · 〈Px|s,Px|s〉k > Pr(s) ·
(
22ℓj · 2−2n

)k
= Pr(s) · 22ℓj ·k · 2−2k·n.

On the other hand, by Claim 22,

Zi ≤ 2r+3k+5ℓ̃k·|Ls| · 2−2k·n.

Thus, we get

Pr(s) ≤ 2r+3k+5ℓ̃k·|Ls| · 2−2ℓj ·k

We treat differently the case j = 1 and j = 2 as follows. For j = 1, the set Ls is empty, and

we have

Pr(s) ≤ 2r+3k · 2−2ℓ1·k ≤ 2−ℓ1·k.

For j = 2 we have

Pr(s) ≤ 2r+3k+5ℓ̃k·|Ls| · 2−2ℓ·k

≤ 2r+3k+1000ǫℓ̃2k · 2−2ℓ·k (|Ls| ≤ 200ǫℓ̃)

≤ 24k+1000ǫℓk · 2−2ℓ·k (r ≤ k, ℓ̃ ≤
√

ℓ)

≤ 2−ℓk ≤ 2−ℓ1·k . (ǫ < 1/1010)

Thus, in both cases we showed Pr(s) ≤ 2−ℓ1k.

Recall that we showed that the width of B̂ is at most 2ǫkℓ̃/2, and note that the length of

B̂ is at most 2 · 2ǫr̃. Taking a union bound over at most 2ǫkℓ̃/2 · 2 · 2ǫr̃ ≤ 2kℓ1/2 significant

vertices of B̂, we conclude that the probability that T reaches any significant vertex is at

most 2−kℓ1/2 = o(1). ◭

S. Garg, R. Raz, and A. Tal 22:35

References

1 David A Barrington. Bounded-width polynomial-size branching programs recognize exactly

those languages in NC1. Journal of Computer and System Sciences, 38(1):150–164, 1989.

2 Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-space tradeoffs for learning finite

functions from random evaluations, with applications to polynomials. In Conference On

Learning Theory, pages 843–856, 2018.

3 Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and

probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

4 Yuval Dagan and Ohad Shamir. Detecting Correlations with Little Memory and Communica-

tion. In Conference On Learning Theory, pages 1145–1198, 2018.

5 Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for

learning. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,

pages 990–1002. ACM, 2018.

6 Gillat Kol and Ran Raz. Interactive channel capacity. In Proceedings of the forty-fifth annual

ACM symposium on Theory of computing, pages 715–724. ACM, 2013.

7 Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages

1067–1080. ACM, 2017.

8 Dana Moshkovitz and Michal Moshkovitz. Mixing implies lower bounds for space bounded

learning. In Conference on Learning Theory, pages 1516–1566, 2017.

9 Dana Moshkovitz and Michal Moshkovitz. Entropy samplers and strong generic lower bounds

for space bounded learning. In 9th Innovations in Theoretical Computer Science Conference

(ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

10 Michal Moshkovitz and Naftali Tishby. Mixing complexity and its applications to neural

networks. arXiv preprint, 2017. arXiv:1703.00729.

11 Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.

In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages

266–275. IEEE, 2016.

12 Ran Raz. A time-space lower bound for a large class of learning problems. In 2017 IEEE 58th

Annual Symposium on Foundations of Computer Science (FOCS), pages 732–742. IEEE, 2017.

13 Miklos Santha and Umesh V Vazirani. Generating quasi-random sequences from slightly-

random sources. In Foundations of Computer Science, 1984. 25th Annual Symposium on,

pages 434–440. IEEE, 1984.

14 Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning

and estimation. In Advances in Neural Information Processing Systems, pages 163–171, 2014.

15 Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical

queries. In Conference on Learning Theory, pages 1490–1516, 2016.

16 Gregory Valiant and Paul Valiant. Information theoretically secure databases. arXiv preprint,

2016. arXiv:1605.02646.

A Appendix

We first state the main theorem of [5] and then the modified proposition used in the proof of

Lemma 9.

◮ Theorem 23 (Theorem 1, [5]). Let 1
100 < c < 2

3 . Fix γ to be such that 3c
2 < γ2 < 1. Let

X, A be two finite sets. Let n = log2 |X|. Let M : A × X → {−1, 1} be a matrix which is a

(k′, ℓ′)-L2-extractor with error 2−r′

, for sufficiently large1 k′, ℓ′ and r′, where ℓ′ ≤ n. Let

r := min
{

r′

2 , (1−γ)k′

2 , (1−γ)ℓ′

2 − 1
}

.

1 k′, ℓ′, r′ are larger than some constant that depends on γ.

CCC 2019

http://arxiv.org/abs/1703.00729
http://arxiv.org/abs/1605.02646

22:36 Time-Space Lower Bounds for Two-Pass Learning

Let B be a branching program of length at most 2r and width at most 2c·k′·ℓ′

for the learn-

ing problem that corresponds to the matrix M . Then, the success probability of B is at

most O(2−r).

The authors prove the above theorem by first defining a truncated path that stops on a

significant vertex, a significant value or a bad edge, such that, if the path doesn’t stop before

reaching a leaf, then the probability of guessing the correct x is small (at most O(2−r) to

be precise). Then, the authors prove that the probability that the truncated path stops

is at most O(2−r). Through slight modifications to the proof of the above theorem (with

weaker bounds on the memory and length of B, in terms of constants), we can prove that

the probability that a slightly modified truncated path stops is at most 2−Ω(min{k′,ℓ′}). As

the modified proof is very similar to that of Theorem 23 and the original proof is lengthy, we

just highlight the changes to the proof to get the following proposition.

◮ Proposition 24. Let X, A be two finite sets. Let n = log2 |X|. Let M : A × X → {−1, 1}
be a matrix which is a (k′, ℓ′)-L2-extractor with error 2−r′

, for sufficiently large k′, ℓ′ and r′,
where ℓ′ ≤ n. Let

r :=
min {r′, k′, ℓ′}

100
.

Let B be a branching program of length at most 2r and width at most 2
k′·ℓ′

100 for the learning

problem that corresponds to the matrix M . Then, there exists an event G such that

Pr[G] ≥ 1 − 2− min{k′,ℓ′}
8

and for every x′ ∈ X and every leaf z of the branching program B (with starting vertex z0),

Pr [x = x′ | G ∧ (z0→̃z)] ≤ 22ℓ′ · 2−n,

whenever the event G ∧ (z0→̃z) is non-empty, where z0→̃z denotes the event that the

computational path (as opposed to the truncated path) from z0 reaches z.

Proof. The proof of Theorem 1 of [5] defines the truncated-path, T , to be the same as the

computation-path of B, except that it sometimes stops before reaching a leaf. Roughly

speaking, T stops before reaching a leaf if certain “bad” events occur. Nevertheless, the

proof shows that the probability that T stops before reaching a leaf is negligible, so we can

think of T as almost identical to the computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. We denote

by Pr(v) = Pr(Ev) the probability for Ev, and we denote by Px|v = Px|Ev
the distribution of

the random variable x conditioned on the event Ev.

We first look at the definition of the truncated-path from the proof of Theorem 1 of [5].

We modify the stopping rules for a path as follows:

Let l̂ = ℓ′

6 .

Significant Vertices. A vertex v in layer-i of B is significant if

∥∥Px|v
∥∥

2
> 2l̂ · 2−n.

Significant Values. Even if v is not significant, Px|v may have relatively large values. For a

vertex v in layer-i of B, denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v(x′) > 23l̂ · 2−n.

S. Garg, R. Raz, and A. Tal 22:37

Bad Edges. For a vertex v in layer-i of B, denote by Bad(v) the set of all α ∈ A, such that,
∣∣(M · Px|v)(α)

∣∣ ≥ 2−r′

.

Recall, that the truncated path is defined by induction on the layers of the branching

program B:

The Truncated-Path T

Assume that we already defined T until it reaches a vertex v in layer-i of B. The path T
stops on v if (at least) one of the following occurs:

1. v is significant.

2. x ∈ Sig(v).

3. ai+1 ∈ Bad(v).

4. v is a leaf.

Otherwise, T proceeds by following the edge labeled by (ai+1, bi+1) (same as the computa-

tional-path).

The Event G

We define G to be the event that the truncated-path T didn’t stop because of one of the

first three stopping rules: That is, T didn’t stop before reaching a leaf and didn’t violate the

significant vertices and significant values stopping rules (that is, the first two stopping rules)

on the leaf that it reached.

We can upper bound the probability for Ḡ similarly to the way that it’s done in [5].

◮ Lemma 25. The probability that T reaches a significant vertex is at most 2−k′

.

The proof of the above lemma is very similar to the analogous lemma in the proof of

Theorem 23. The only change is in the definition of significant value - we define the significant

values to be the set of all x′ ∈ X, such that, Px|v(x′) > 23l̂ · 2−n instead of the set of all

x′ ∈ X, such that, Px|v(x′) > 22l̂+2r · 2−n. With the above (worse in terms of constants)

bounds on the memory and the length of the branching program, the proof works in the

same way.

Lemma 25 shows that the probability that T stops on a vertex, because of the first reason

(i.e., that the vertex is significant), is small. The next two claims imply that the probabilities

that T stops on a vertex, because of the second and third reasons, are also small.

⊲ Claim 26. If v is a non-significant vertex of B then

Pr
x

[x ∈ Sig(v) | Ev] ≤ 2−l̂.

Proof. Since v is not significant,

E
x′∼Px|v

[
Px|v(x′)

]
=
∑

x′∈X

[
Px|v(x′)2

]
= 2n · E

x′∈RX

[
Px|v(x′)2

]
≤ 22l̂ · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v

[
Px|v(x′) > 2l̂ · 22l̂ · 2−n

]
≤ 2−l̂.

Since conditioned on Ev, the distribution of x is Px|v, we obtain

Pr
x

[
x ∈ Sig(v)

∣∣ Ev

]
= Pr

x

[(
Px|v(x) > 2l̂ · 22l̂ · 2−n

) ∣∣ Ev

]
≤ 2−l̂. ◭

CCC 2019

22:38 Time-Space Lower Bounds for Two-Pass Learning

⊲ Claim 27. If v is a non-significant vertex of B then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−k′

.

Proof. Since v is not significant,
∥∥Px|v

∥∥
2

≤ 2l̂·2−n. Since Px|v is a distribution,
∥∥Px|v

∥∥
1

= 2−n.

Thus,

∥∥Px|v
∥∥

2∥∥Px|v
∥∥

1

≤ 2l̂ ≤ 2ℓ′

.

Since M is a (k′, ℓ′)-L2-extractor with error 2−r′

, there are at most 2−k′ · |A| elements α ∈ A

with

∣∣〈Mα,Px|v〉
∣∣ ≥ 2−r′ ·

∥∥Px|v
∥∥

1
= 2−r′ · 2−n.

The claim follows since ai+1 is uniformly distributed over A. ⊳

We can now use Lemma 25, Claim 26 and Claim 27 to prove that the probability that T
stops because of the first three stopping rules is at most 2− min{k′,ℓ′}

8 . Lemma 25 shows

that the probability that T reaches a significant vertex and hence stops because of the first

stopping rule, is at most 2−k′

. Assuming that T doesn’t reach any significant vertex (in

which case it would have stopped because of the first stopping rule), Claim 26 shows that in

each step, the probability that T stops because of the second stopping rule, is at most 2− ℓ′

6 .

Taking a union bound over the 2r steps, the total probability that T stops because of the

second stopping rule, is at most 2− ℓ′

7 (for sufficiently large ℓ′). In the same way, assuming

that T doesn’t reach any significant vertex (in which case it would have stopped because

of the first stopping rule), Claim 27 shows that in each step, the probability that T stops

because of the third stopping rule, is at most 2−k′

. Again, taking a union bound over the

2r steps, the total probability that T stops because of the third stopping rule, is at most

2− k′

7 . Thus, the total probability that T stops (for any reason) before reaching a leaf (or

violated the significant vertices or significant values stopping rules (that is, the first two

stopping rules) on the leaf that it reached) is at most 2− min{k′,ℓ′}
8 . (Summing over the three

probabilities and using the fact that k′, ℓ′ are sufficiently large).

Thus, Pr[Ḡ] ≤ 2− min{k′,ℓ′}
8 , as required.

Bounding Pr [x = x′ | G ∧ (z0→̃z)]

It remains to prove that for every x′ ∈ X and every leaf z of the branching program B (with

starting vertex z0),

Pr [x = x′ | G ∧ (z0→̃z)] ≤ 22ℓ′ · 2−n,

whenever the event G ∧ (z0→̃z) is non-empty, where z0→̃z denotes the event that the

computational path (as opposed to the truncated path) from z0 reaches z.

Recall that Ez is the event that T reaches the vertex z.

⊲ Claim 28. The event G ∧ (z0→̃z) is equivalent to Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z)).

Proof. If G ∧ (z0→̃z) occurs then the truncated-path T didn’t stop before reaching a leaf

(since G occurs) and the computational path from z0 reaches z (since (z0→̃z) occurs). Thus,

Ez occurs. Also, since the first stopping rule is not violated on z, we have that z is not

significant and since the second stopping rule is not violated on z, we have x 6∈ Sig(z).

S. Garg, R. Raz, and A. Tal 22:39

On the other direction, if Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z)) occurs, then (z0→̃z)

occurs (since Ez occurs), the truncated-path T didn’t stop before reaching a leaf (since Ez

occurs) and none of the first two stopping rules are violated on z, since z is not significant

and x 6∈ Sig(z). ⊳

By Claim 28, it remains to prove that for every leaf z and every x′ ∈ X, if the event

Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z)) is non-empty then

Pr [x = x′ | Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z))] ≤ 22ℓ′ · 2−n.

Equivalently, we need to prove that for every non-significant leaf z and every x′ ∈ X, if the

event Ez ∧ (x 6∈ Sig(z)) is non-empty then

Px|Ez∧(x6∈Sig(z))(x
′) = Pr [x = x′ | Ez ∧ (x 6∈ Sig(z))] ≤ 22ℓ′ · 2−n.

By the definition of conditional distribution,

Px|Ez∧(x6∈Sig(z))(x
′) =

{
0 if x′ ∈ Sig(z)

Px|Ez
(x′) · c−1 if x′ 6∈ Sig(z)

where c =
∑

x′ /∈Sig(z) Px|Ez
(x′) is the normalization factor. As z is not significant, by

Claim 26,

Pr
x

[x ∈ Sig(z) | Ez] ≤ 2−l̂.

Therefore, c ≥ 1 − 2−l̂. Since by the definition of Sig(z), for x′ 6∈ Sig(z), we have Px|z(x′) ≤
23l̂ · 2−n, we can bound

Px|Ez∧(x6∈Sig(z))(x
′) ≤ 23l̂ · 2−n · c−1 ≤ 23l̂+1 · 2−n ≤ 22ℓ′ · 2−n. ◭

CCC 2019

	Introduction
	Preliminaries
	Learning Problem
	Norms and Inner Products
	L_2-Extractors
	Computational Model
	Product of Programs

	Main Result
	Overview of the Proof
	Proof of Theorem 4
	The Truncated Path
	Bounding the Width of the Branching Program B^
	The Probability that {T} Stops is Small
	Stopping Rule 1: Significant-Vertices
	Stopping Rule 2: Significant-Values
	Proof of Lemma 9
	Stopping Rule 3: Bad-Edges
	Stopping Rule 4: Very-Bad Edges
	Stopping Rule 5: Large L_v
	Stopping Rule 6: Consistency-Stop

	The Final Success Probability is Small

	Proof of Lemma 7
	Proof of Lemma 7

	Appendix

