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Abstract—Short-term power system operational planning prob-
lems that consider multi-stage uncertainties pose significant chal-
lenges, not only in the design of tractable optimization frameworks
for implementing them, but also in the testing and benchmarking
of such frameworks. This paper presents an implementation using
the open-source MATPOWER Optimal Scheduling Tool (MOST) to
study and compare a stochastic day-ahead, security-constrained
unit commitment problem with a more traditional deterministic
approach. The comparison is based on a testing methodology for
day-ahead plans designed to produce expected performance esti-
mates with minimal biases from modeling assumptions. Emphasis
is given in the proposed stochastic approach to explicit modeling of
the operational characteristics of the technologies available, their
spatial and temporal coupling, and the regulatory constraints that
assure reliability and adequacy. The problem formulations and
testing methodology are described and simulation results from
MOST are presented, with discussion of implications for future
market design. All of the code and data to replicate the simulations
is provided online.

Index Terms—Stochastic and robust dispatch, unit commitment,
optimal power flow, renewable energy sources.

NOMENCLATURE

Variable and Parameter Indexing

T Set of time periods considered, nt elements

indexed by t.
J t Set of states in the system in period t, indexed

by j.

Ktj Set of post-contingency states in the system

in state j at time t, indexed by k, where k = 0
for the base state.
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I tjk Set of all units available for dispatch in post-

contingency state k of state j at time t,
indexed by i.

Ltjk Set of all reserve zones defined in post-

contingency state k of state j at time t,
indexed by l.

Zt
l Set of generators providing reserves in zone l

at time t.

Optimization Variables comprising full optimization variable x

ptijk Active injection for unit i in post-contingency

state k of state j at time t.
pti

c Active power contract quantity for unit i at

time t.
rti
z Zonal reserve quantity provided by unit i at

time t.
rti
+/rti

− Upward/downward active contingency re-

serve quantity provided by unit i at time t.
δti
+/δti

− Upward/downward load-following ramping

reserves needed from unit i at time t for tran-

sition to time t + 1.

θtjk , ptjk Voltage angles and active injections for power

flow in post-contingency state k of state j at

time t.
uti Binary commitment state for unit i in period t,

1 if unit is on-line, 0 otherwise.

vti/wti Binary startup and shutdown states for unit i
in period t, 1 if unit has a startup/shutdown

event in period t, 0 otherwise.

Cost Functions and Parameters

Cti
P (·) Cost function for active injections for unit i

at time t.
C̃ti

P (·) Modified cost function for active injection i
at time t with the no load cost subtracted,

C̃ti
P (p) ≡ Cti

P (p) − Cti
P (0).

Cti
z (·) Cost function for zonal reserve purchased

from unit i at time t.
Cti

R+ (·)/Cti
R−(·) Cost function for upward/downward contin-

gency reserve purchased from unit i at time t.
Cti

δ+ (·)/Cti
δ−(·) Cost of upward/downward load-following

ramp reserve for unit i at time t for transi-

tion to time t + 1.
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Cti
v /Cti

w Startup/shutdown costs for unit i at time t in

$ per startup/shutdown.

Constraint Functions and Parameters

gtjk (·) Nodal power balance equations in

post-contingency state k of state j at

time t.
htjk (·) Transmission, voltage and other limits in

post-contingency state k of state j at time t.
P tijk

min , P tijk
max Limits on active injection for unit i in

post-contingency state k of state j at time t.
Rti

max+/Rti
max− Upward/downward contingency (or zonal) re-

serve capacity limits for unit i at time t.
Rt

l MW reserve requirement for zone l at time t.
∆i

+/∆i
− Upward/downward physical ramping limits

for unit i for transitions from base (k = 0)

to contingency cases.

τ+
i , τ−

i Minimum up and down times for unit i in

number of periods.

Other Parameters

φtj2 j1 Probability of transitioning to state j2 in pe-

riod t given that state j1 was realized in period

t − 1.

ψtjk Probability of contingency k in state j at

time t.
γt Probability of making it to period t without

branching off the central path in a contin-

gency in periods 1 . . . t − 1.

I. INTRODUCTION

P
OWER systems operations are facing an increasing amount

of uncertainty when making decisions in the scheduling

process. This issue stems from several factors, most notably the

inclusion of active demand and renewable sources of energy in

the generation pool. Consequently, there is a need for operation

methodologies that consider this uncertainty explicitly.

Historically, load forecasts were the main source of uncer-

tainty in the planning process, followed perhaps by the occur-

rence of discrete events, such as disconnection of a piece of

equipment. The error in the load forecast when using modern

prediction techniques is relatively small, prompting little con-

cern about the propriety of the scheduling decisions taken, for

example, a day ahead. More recently, however, the main source

of uncertainty is the availability of renewable resources at the

time of delivery [1]. Yet, the lead time that many generation

technologies require to make their resources available remains

unchanged. Thus, decisions must be made ahead of time with

regards to the commitment of units, fuel procurement, network

configuration and other issues [2]–[4]. Traditionally, a lead time

of one day is a practical one because it fits the lead time re-

quirements of many types of generating units, as well as the

administrative processes associated with deregulated market op-

erations. In theory, said decisions could be made several times

a day, or even every hour. Thus, the general problem facing an

Independent System Operator (ISO) is that of making decisions

in the face of forecasts with pervasive time-varying uncertainty.

Even though the uncertainty-revealing process is continuous in

time, decisions are typically made in well-defined stages due to

practical computing and administrative restrictions [5].

The most common structure put in place by ISOs involves

a day-ahead decision process that includes a day-ahead market

(DAM) and a so-called (day-ahead) reliability unit commitment

(RUC), followed by subsequent finer-grained decisions as real-

time operation approaches. With this two-layered structure, a

large part of the planning problem is solved day-ahead, followed

by adjustments intended to steer the system toward appropriate

real-time operation as the time of execution approaches. It is

thus not surprising that most literature on the subject focuses

on the day-ahead planning problem, particularly the security-

constrained unit commitment (SCUC) problem (see e.g., mul-

tiple surveys including [6], [7]). A viable day-ahead planning

formulation involves modeling decisions that allow the result-

ing problem to be tractable and computationally solvable [8]. It

should take into account the day-ahead market settlement aspect;

it should internalize uncertainty into the decision process; and it

should weigh the economic benefits of reliable operation in light

of the possible outcomes presented by the chosen uncertainty

model [9]–[13]. Typically, many simplifying assumptions go

into these modeling decisions, introducing differences between

the problem that is being solved and what we might call the

“true” problem with its more accurate time-varying uncertainty

model and the different lead-times of each unit being considered

in the decision process.

Because these day-ahead planning models are approxima-

tions of reality, it follows that their performance cannot be easily

compared based solely on the value of the objective function at

their corresponding solutions, especially because the resulting

plan was based on a simplified uncertainty model with some

potentially ad hoc assumptions (cf., [14]).

Indeed, benchmarking the quality of a day-ahead plan re-

quires a new set of modeling decisions based on a more realistic

set of assumptions. The more simplifying the initial modeling

assumptions are, the more relevant the subsequent quality as-

sessment becomes. This assessment could include more detailed

modeling decisions about (1) how to meet power imbalances due

to differences in realized load and renewable generation, (2) how

to settle the deviations from the day-ahead schedule,1 and (3)

how to benchmark the day-ahead plan in light of all the possible

outcomes of the “true” or more realistic uncertainty model.

It must be decided, for example, whether to use a simple

secure optimal power flow to settle imbalances when closer to

real-time, or whether to use a more complicated procedure with

receding-horizon look-ahead instead (see e.g., [15], [16]). Ei-

ther alternative could be deterministic, using (point) forecasts,

or stochastic, using a (potentially simplified) model of the un-

realized uncertainties.

These are all practical considerations which must be decided

upon in each market and which are implemented in one way

or another by each ISO. Therefore, when testing the quality of

1These first two issues may or may not be linked to a real-time balance
market.
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day-ahead solutions, one must separate (1) the “true” or more

realistic uncertainty model; (2) the uncertainty model employed

in the day-ahead planning process; (3) the process by which

the day-ahead plan is adapted to the time-varying revelation

of uncertainty up to the real-time operation moment, and per-

haps also a third model of the uncertainty if the said adapta-

tion process involves stochastic look-ahead; and finally (4) a

procedure to statistically characterize the performance proper-

ties of the day-ahead plan. One direct procedure for this test-

ing is using statistical simulation, in which many day-ahead

plans are presented with many possible realizations of the un-

certainty, and then each outcome is evaluated. The uncertainty

model from which these realizations are drawn requires yet an-

other modeling decision; ideally, the model employed should

be as close as possible to the “true” model, i.e., not carry on

the simplifying assumptions employed in the day-ahead plan-

ning process or the adaptation process. Additionally, the pro-

cess by which the realization is presented to the day-ahead

plan must also be stochastic if the real-time adaptation process

employed utilizes look-ahead of any kind, so as to preserve

causality.

In this work, we further build upon the open-source

MATPOWER Optimal Scheduling Tool (MOST) [17], [18], avail-

able in the MATPOWER package [19], and the open-source sim-

ulation framework MP-Sim [20], to benchmark a particular

choice of stochastic day-ahead planning against a more tradi-

tional approach. In doing so, all of the previous considerations

are addressed and the choices taken are clearly specified. The

stochastic day-ahead reliable unit commitment method being

tested is one of the many possible planning schemes that can be

implemented within MOST. The traditional approach is a form

of secure deterministic unit commitment with set rules for de-

termining operating reserves. The primary contributions of this

work are the thorough comparison of the two operation method-

ologies explicitly including the four considerations above, and

the presentation of a testing methodology for day-ahead plans

intended to produce expected performance estimates with mini-

mal biases from modeling assumptions, both based on the open

software platform MOST. Along the text we highlight further

advantages of our approach.

The remainder of this article is organized as follows. The

next section provides a succinct background for our work and

describes its place in the literature. Section II delineates the

framework to model day-ahead planning and real-time opera-

tion/assessment methodologies in MOST, explains the connec-

tion to the stochastic approach developed in [17], and describes

certain operation practices used by ISOs that serve as a stan-

dard benchmark. The testing framework for our model and the

numerical results are presented in Sections III and IV, respec-

tively, with concluding remarks and future research directions

in Section V.

Background and Related Work

To verify whether the solution obtained for the day-ahead

planning problem can properly dispatch the system in real-time,

most previous works select scenarios consistent with the realm

of possibilities considered in the initial planning, i.e., scenarios

that are consistent with the uncertainty sets used in day-ahead

decisions. Although these approaches can be used to approxi-

mate the original multistage problem, their performance is sel-

dom estimated [21].

In [7], the authors suggest that the approaches to deal with

uncertainty can be classified into three groups: stochastic opti-

mization e.g., [22], [23], robust optimization e.g., [24], [25], and

chance-constrained optimization e.g., [26]. Within the vast lit-

erature on the subject, there are a few works that are particularly

related to our approach as follows: Bakirtzis et al. [27] present

a model for merging the unit-commitment (UC) and economic

dispatch (ED) problems, solving complex short run (intraday)

commitments and dispatches, and simpler schedules for longer

horizons (e.g., 24h), including different time scales according

to the proximity to dispatch time. Dvorkin et al. [28] formu-

late a hybrid stochastic UC (SUC) and interval UC (IUC), with

the SUC applied to the periods closer to execution, and then

switching to the IUC for the rest of the horizon. They optimize

the switching time by balancing the costs and security bene-

fits obtained. In [16], the authors propose a stochastic approach

to UC based on affine dispatch policies to deal with uncer-

tainty in a rolling horizon framework that respects causality as

both commitment and dispatch decisions are made contingent

only on realized uncertainties. This approach can be seen as a

methodology to test a predetermined day-ahead plan. In [29],

the authors emphasize the relevance of enforcing causality (or

non-anticipativity) constraints in UC formulations for a robust

framework. This work suggests that including such constraints

is particularly relevant when ramping capabilities are scarce and

net loads are highly variable.

II. FORMULATION

Our problem consists of a day-ahead planning problem fol-

lowed by a real-time operation problem used to assess the day-

ahead plan. The structure of the uncertainty (e.g., of wind and

demand) underlying the day-ahead problem is multi-stage in the

sense that the uncertainty faced when planning the UC for the

horizon is revealed sequentially in multiple steps. The recourse

(dispatch) decisions subsequent to the UC occur consecutively,

each one in the presence of diminishing uncertainty, rather than

all at once, in a single second stage following the UC deci-

sion but prior to a dispatch decision for the full horizon. So,

whereas the structure of the underlying planning problem itself

includes multi-stage uncertainty, the modeling of the uncertainty

in the optimization problem formulated to solve that problem is

a separate question. A classical, full multi-stage formulation is

clearly out of the question due to the sheer scale of the resulting

problem, so an approximation is needed.

One common approach is to approximate the problem as a

two-stage problem, neglecting the impact of the progressive

revelation of uncertainty during the recourse decisions. Our

stochastic formulation takes a different approach that preserves

the multi-stage nature of the uncertainty but approximates the

full multi-stage decision tree with a Markovian decision pro-

cess. Our testing framework, that is, the real-time operation and
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assessment formulation, is also explicitly designed to take into

account the inherent multi-stage nature of the uncertainty in the

underlying problem.

Our stochastic formulation in this article shows a subset of the

capabilities of the MATPOWER Optimal Scheduling Tool [17],

[18]. The model is a particular form of a day-ahead, stochas-

tic, n − 1 security-constrained unit commitment problem with

DC power flow constraints. One of the main differences in our

approach from past formulations is that we discretize the range

of realizations that can occur, conditioning the ranges in pe-

riod t + 1 to the information in period t only, and providing a

hull for the range of operating points. The real-time operations

problem used for assessing the day-ahead plan is a single-period

n − 1 secure problem, similar to current practices. In contrast to

most other approaches, our real-time problem is still stochastic

regarding the operational reliability of the units.

We benchmark our stochastic approach against a secure deter-

ministic solution, also implemented in MOST. The latter is based

on a methodology inspired by current operational practices of

ISOs in the US, in which uncertainty is dealt with primarily by

relying on heuristic exogenous reserve requirements and on the

sequential solution of deterministic optimization programs that

incorporate updated point forecasts of the system uncertainties.

Such specification of reserve requirements may lead to highly

suboptimal solutions under significant uncertainty and provide

no guarantee of solution robustness with regards to feasibility.

A. Day-Ahead Planning Formulation

The nomenclature section summarizes the notation for the

reduced form of the problem considered in this article. The

objective function for the ISO is the expected total welfare of all

the participants, consisting of four components: (1) the expected

cost of energy delivered, (2) the cost of ancillary services for

high probability events (i.e., load following reserve), (3) the unit

commitment cost, and (4) the cost of (up and down) reserves for

low probability events (i.e., contingency reserve),

min
x

f(x) = fp(p) + flf (δ+ , δ−) + fuc(u, v, w)

+ fr (rz , r+ , r−), (1)

where

fp(p) =
∑

t∈T

∑

j∈J t

∑

k∈K t j

ψtjk
∑

i∈I t j k

C̃ti
P (ptijk ), (2)

flf (δ+ , δ−) =
∑

t∈T

γt
∑

i∈I t

[
Cti

δ+ (δti
+ ) + Cti

δ−(δti
− )

]
, (3)

fuc(u, v, w) =
∑

t∈T

γt
∑

i∈I t

(
Cti

P (0)uti + Cti
v vti + Cti

w wti
)
,

(4)

and the specification of the reserve cost fr (rz , r+ , r−), de-

scribed below, depends on whether the formulation is for the

stochastic or deterministic method.2

2The benefit that consumers receive from having their load serviced is in-
cluded as a negative term in the expected cost of energy delivered in (2).

This minimization is subject to four categories of constraints,

for all t ∈ T , all j ∈ J t , all k ∈ Ktj , all i ∈ I tjk , and, for the de-

terministic case, all l ∈ Ltjk . The four categories of constraints

are:
� Standard OPF Constraints, including the full set of equal-

ity (e.g., power balance equations) and inequality (e.g.,

branch flow and generator limits) constraints,

gtjk (θtjk , ptjk ) = 0 (5)

htjk (θtjk , ptjk ) ≤ 0 (6)

� Load-following Ramping Limits and Reserves

0 ≤ δti
+ ≤ δti

max+ (7)

0 ≤ δti
− ≤ δti

max− (8)

ptij2 0 − p(t−1)ij1 0 ≤ δ
(t−1)i
+ , j1 ∈ J t−1 , j2 ∈ J t (9)

p(t−1)ij1 0 − ptij2 0 ≤ δ
(t−1)i
− , j1 ∈ J t−1 , j2 ∈ J t (10)

� Unit Commitment, including injection limits, startup and

shutdown events, minimum up and down times and inte-

grality constraints

utiP tijk
min ≤ ptijk ≤ utiP tijk

max (11)

uti − u(t−1)i = vti − wti (12)

t∑

y=t−τ +
i +1

vyi ≤ uti ,
t∑

y=t−τ −
i +1

wyi ≤ 1 − uti (13)

0 ≤ vti ≤ 1, 0 ≤ wti ≤ 1, uti ∈ {0, 1} (14)

� Security Constraints, depending on whether the formula-

tion is for the stochastic or deterministic method.

The primary differences in formulation between the stochastic

and deterministic cases are in the last set of constraints, (the

security constraints), and in the states modeled in each period,

which also affects the load-following reserves.

1) Stochastic Method: For the stochastic method, the prob-

lem is structured as a set of co-optimized DC optimal power

flow (OPF) problems, one for each period t, for each sys-

tem base state j and each of the corresponding contingency

states k, whose costs are probability weighted and whose oper-

ating points are tied together by additional constraints and costs

related to reserves, ramping, storage and unit commitment. The

stochastic resources (e.g., wind, solar, demand) are modeled as a

Markov Decision Process (MDP) with a discretized probability

distribution over a finite number of states, equivalent to recom-

bining scenarios in a traditional stochastic program but with

improved tractability. Security is handled by guarding against

an explicit set of credible contingencies. The fourth category

of constraints, the security constraints, define reserves by the

maximum deviation in any contingency from a contracted refer-

ence dispatch, restricting the ramping from base to contingency

states.

0 ≤ rti
+ ≤ Rti

max+ , 0 ≤ rti
− ≤ Rti

max− (15)
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ptijk − pti
c ≤ rti

+ , pti
c − ptijk ≤ rti

− (16)

−∆i
− ≤ ptijk − ptij0 ≤ ∆i

+ , k �= 0 (17)

The reserve costs from the last term in (1) are then based on

these contingency reserves.

fr (rz , r+ , r−) =
∑

t∈T

γt
∑

i∈I t

[
Cti

R+ (rti
+ ) + Cti

R−(rti
− )

]
, (18)

The load-following ramp constraints (7)–(10) are the maxi-

mum deviations between base state dispatches in consecutive

periods.

2) Deterministic Method: The implementation of the deter-

ministic method is essentially a simplified version of the stochas-

tic problem, where all contingency states have been removed and

there is a single base state with expected availability of RES and

expected load for each period. That is, J t = {1}, Ktj = {0},

and ψt10 = γt = 1, turning (2) into a summation over t and i. In

place of the multiple RES and contingency states per period, we

rely on a set of fixed zonal reserve requirements for the security

constraints.

0 ≤ rti
z ≤ min(Rti

max+ ,∆i
+ ) (19)

ptijk + rti
z ≤ utiP tijk

max (20)
∑

i∈Z t
l

rti
z ≥ Rt

l (21)

The non-negative value rti
z , for generator i in period t, has a user-

provided upper bound Rti
max+ (e.g., a reserve offer quantity) as

well as the physical ramp rate ∆i
+ . The two additional sets of

constraints ensure that, for each generator, the total amount of

energy plus reserve provided does not exceed the capacity of the

unit and that the sum of the reserve allocated within each zone l
in period t meets the stated requirements. The load-following

ramp requirements (7)–(10) are still present. However, because

a single state is considered per period, they only apply to the

expected amount of ramping between periods. The reserve cost

term of (1), in this case, is also based on the reserves allocated

toward these zonal requirements.

fr (rz , r+ , r−) =
∑

t∈T

∑

i∈I t

Cti
z (rti

z ). (22)

B. Real-Time Operation and Assessment Formulation

1) Stochastic Method: The real-time problem for the

stochastic approach is described in Section IV of [30] and in

Section III-A of [31]. It is essentially a single-period version of

the day-ahead problem, including all of the network constraints.

We assume the uncertainty of RES and demand has been largely

resolved and that we have point forecasts for each one that are

accurate enough to ignore the remaining forecast error. So we

no longer use multiple base cases to represent a distribution

of realizations, but rather a single base case with the expected

realization of both demand and RES. On the other hand, the

dispatch must still be secure, so a credible set of contingen-

cies are still included, with probability weighted costs on their

dispatches. Additionally, the ISO can procure energy and addi-

tional reserves at real-time prices to cover trajectories outside

of the realm considered in the day-ahead problem.

2) Deterministic Method: The real-time problem for the de-

terministic approach is a DC OPF, based on updated system

conditions, with an updated set of zonal reserve requirements.

The requirements are updated to reflect the fact that some of the

contracted reserves may be deployed to cover errors in the load

and/or RES forecasts. Specifically, for each zone in which the

demand net of RES generation has increased from the values as-

sumed for the day-ahead problem, the reserve requirements are

decreased by a corresponding amount. This amount is further

reduced by a factor βzr to reflect the fact that fewer reserves

are needed since the vast majority of the uncertainty has been

resolved. In our real-time results, we optimize over a set Γ of

random trajectories of the realized uncertainties consistent with

the day-ahead optimization.

III. TESTING FRAMEWORK

A. Causal, Single-Period Real-Time Operations Problem

for Assessment

Testing power system scheduling problems with multi-

stage uncertainties is often done in a non-causal way, using

Monte Carlo (MC) simulations over a set of many trajectories,

where each represents the realization of all uncertainties across

the entire optimization horizon. Operating cost is then com-

puted for each trajectory as a deterministic problem, ignoring

the fact that, in each period, the system must still be operated

subject to subsequent uncertainties, which in reality are not

yet resolved. Our framework, on the other hand, respects these

causal constraints by guarding against subsequent uncertainty

in each single-period real-time optimization.

B. Stochastic Inputs

We use an autoregressive moving average model with exoge-

nous variables (ARMAX) to generate multiple random trajec-

tories of the stochastic system conditions, namely wind power

availability and load, for all time periods and locations, to repre-

sent possible individual realizations of those conditions for the

planning horizon. The methodology is explained in [32], [45],

and is summarized in Algorithm 1.

We partition the total set of created trajectories into two. One

subset of these trajectories is utilized to represent a forecast-

ing model whose distributions are used to create the inputs for

the day-ahead problem (training), varying over time and space.

Another subset of these trajectories, the set Γ, are used for MC

testing of the real-time operations subject to the unit commit-

ment chosen day-ahead (validation). In contrast to other works,

these two sets are independently generated in our proposal.

C. Contingency Analysis

We perform an extensive off-line contingency filtering proce-

dure as input data for our comparisons (cf., [33], [34]). Broadly,

this consists in selecting a limited set of critical transmission

and generator contingencies to act as a surrogate for the n − 1
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Algorithm 1: Simulating Random System Conditions.

1: Estimate ARMAX temperature model based on

deterministic cycles daily, weekly, seasonal).

2: Use temperature/deterministic cycles, estimating

ARMAX models for log of wind speed, log of load for

each location.

3: Use variance-covariance residuals from these models to

generate N1 trajectories drawing from a multivariate

normal distribution for wind speed and load, as a

forecasting model for the day-ahead problem.

4: Convert wind speed to potential wind power generation

using a multi-turbine power curve.

5: Stochastic: At each time period in the planning horizon,

Discretize the joint load and wind distribution into nj

states for each t, determine transition probability

matrices based on these nj states. Deterministic: At

each time period in the planning horizon, compute the

expected load and wind power availability or each t.
6: Randomly generate the set Γ of N2 additional

trajectories, via steps 3 and 4 above, to use as

realizations for MC testing in the real-time problem.

security criterion. Though the n − 1 criterion is generally more

conservative, it can make the resulting optimization problem

prohibitively large unless tailored decomposition techniques are

used [35].3

D. Reserve Criteria

To build a standard benchmark that allows comparing the per-

formance of the proposed model to a fixed reserves criterion, we

focus on designing reasonable zones and reasonable criteria for

those zonal reserve requirements. The determination of fixed

zones (with possible overlaps) within a transmission network

is an ad hoc methodology that seeks to internalize the need to

guarantee the availability of deliverable reserves in the presence

of stochastic suppliers and possible contingencies. In our pro-

posed benchmark, we use congestion patterns observed in the

solutions to deterministic formulations of the problem under

different states (including contingent states). Moreover, besides

the usual requirements for fixed reserves, several zonal reserve

requirement criteria have been developed with two additional

considerations. First, each criterion allows the designer to scale

reserve requirements with a scalar parameter in order to vary its

conservativeness; and second, the inter-zonal flows have been

accounted for in computing the zonal requirements when neces-

sary. For the deterministic method used to benchmark our pro-

posed model, we simulate reserve criteria following practices

in real-world operations. First, reserve zones are established

3Note that this procedure is conducted completely off-line with no iterative
process used to update the set of contingencies per period, rather using an ample
range of operating points (e.g., loading conditions) instead of a single operating
point. This data serves to calculate endogenous contingency reserves in our
setup. This methodology is based on a combination of prioritized contingency-
severity criteria, thus resembling traditional practices based on expert knowledge
of the network.

based on congestion patterns observed in deterministic OPF runs

under a variety of system states, including contingent states. For

example, in the adjusted 118-bus system we use for demonstra-

tion there is a “backbone” connecting sources in the western

part of the system to sinks in the eastern demand centers. We

establish overlapping zones under high loading conditions to

avoid internal congestion. However, when the system is highly

loaded, some inter-zonal ties may be used at their maximum ca-

pacity. Once the zones are established, we implement a convex

combination of two policies: (1) the so-called “3 + 5” policy rule

[1], budgeting reserves according to 3% of the hourly load fore-

cast and 5% of the hourly wind forecast. (2) the largest outage

policy schedules a reserve quantity equal to the amount nec-

essary to cover the single largest contingency. This condition

for n − 1 reliability includes an offline analysis of the credi-

ble contingencies, covering both generation and line outages.

The reserve requirement for a given zone can be set by an im-

port from another zone if the outage of a tie line is the largest

contingency.4

E. Load Shedding

All demand in both the stochastic and deterministic treatments

is modeled as curtailable at the value of lost load (VOLL), which

is nominally set to $10,000/MWh. In some of our studies we

vary this value across a range in order to see the effect on the

cost statistics for the stochastic and deterministic methods being

compared.

IV. NUMERICAL RESULTS

We compare the results from the real-time problem for both

fixed and stochastic reserves, by applying them to a set of 500

trajectories over the optimization horizon, with each trajectory

representing a realization of the initial forecasts. These trajec-

tories are consistent with the information used in the day-ahead

problem, derived from a MC-type simulation of wind data ob-

tained from the National Renewable Energy Laboratory (NREL)

Eastern Wind Integration and Transmission Study [36]. The

simulations are based on MP-Sim [20], an open-source, object-

oriented, Matlab-language simulation framework developed by

two of the authors. They were run using MATPOWER [19] and

MOST with the Gurobi optimizer [37]. Currently, the problem

is passed in a standard form to the solver without employing

decomposition techniques to solve it, see e.g., [38]–[41]. Im-

proving performance through such techniques is a subject of

future work. We modified extensively a version of the IEEE

118 bus network for illustrative purposes. The adjustments in-

clude modifying the generators according to guidelines from

the FERC RTO Unit Commitment Test System, including the

ramping capabilities per fuel type [42], adding wind turbines to

the system (20% of generating capacity at 11 buses) according

to NREL data [43], and converting all of the 345 kV lines to

double circuits. All of the code and data for the simulations

4The final reserve requirement used for each zone is the larger of the require-
ments from these two policies, resulting in a relatively conservative operating
mode. We multiply these base requirements by a single scaling factor to vary
the enforced level of security for part of our results.
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Fig. 1. Total wind availability and dispatch expected + min/max range.

Fig. 2. Reserve comparison by period.

is publicly available on the “MOST Paper Simulation” GitHub

site [44].

The system-wide wind power availability and dispatch is

shown in Fig. 1 for the stochastic case, displaying the amount

of supply uncertainty considered in our simulations apart from

the uncertainty from low probability contingencies.5 Notably,

both approaches spill more wind in early hours when wind

availability is higher due to transmission congestion restricting

deliverability. Fig. 2 shows the aggregate amount of reserves

scheduled by the two approaches for each hour. The determinis-

tic approach, which schedules more reserves than the stochastic

approach for nearly all hours of the horizon, shows temporal

variations caused primarily by the changing dispatch of the

5Naturally, the uncertainty of wind availability increases as we predict further
into the future, as illustrated by the widening min/max ranges observed. A
similar plot for the deterministic case (not shown) reveals a negligible difference
in the expected wind dispatch for the two approaches.

Fig. 3. Expected average system costs, day-ahead planning, and operation.

largest unit for different hours. On the other hand, the reserves

scheduled in the stochastic approach increase throughout the

planning horizon as uncertainty from wind and load increases.

These results indicate that the zonal reserve requirements needed

to ensure security under contingencies are systematically higher

than the endogenously determined nodal reserves determined by

the stochastic approach, even with the uncertainty added.

In Fig. 3 we report the total operation costs incurred through-

out a single day averaged across the 500 MC simulations under

both the stochastic (left) and several deterministic approaches

(right). Each of the deterministic cases corresponds to a differ-

ent multiplicative scaling parameter applied to the zonal reserve

requirements as a heuristic to adjust the level of security of the

methodology. By and large, the stochastic approach dominates

the deterministic approach, yielding uniformly lower average

costs of energy, reserves, and commitment. Not surprisingly,

the reserve scaling parameter controls a trade-off between high

costs of load not served (LNS) and high costs of energy, primar-

ily, and reserves to a lesser extent. This is because larger reserve

requirements force less expensive generators to provide more

reserves and less energy, shifting that energy to more expen-

sive generators. These results suggest that there is an “optimal”

scaling parameter for the given reserve requirements that (1)

minimizes the expected operation costs induced by the deter-

ministic approach, (2) may differ from the one chosen by the

ISO (i.e., 1), (3) would be difficult to compute efficiently for

a large-scale system, (4) may be too risky due to the potential

underestimation of low probability LNS events, and (5) that is

consistently outperformed by the endogenous allocation of re-

serves throughout the network by the stochastic formulation.

Figs. 4 and 5 show the maximum capacity committed excluding

wind (for adequacy) and the expected energy delivered by fuel

type. The stochastic approach commits and uses more coal and

less gas Combustion Turbines (CT) resources than the determin-

istic approach across the varying levels of reserve requirements.

As the reserve requirement levels increase, more coal is replaced
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Fig. 4. Max. committed capacity by fuel type.

Fig. 5. Expected real-time dispatch by fuel type.

by gas CT in terms of usage, even though comparable amounts

of coal resources are committed.

Generally, the stochastic approach was able to find a commit-

ment that avoids the use of the marginally more expensive gas

CT resources by committing additional, marginally less expen-

sive, coal capacity at strategic locations. To better understand

the way both approaches schedule resources to manage the sup-

ply and demand uncertainty, Fig. 6 illustrates the amount of

reserves scheduled by fuel type. The deterministic approach

schedules less reserves than the stochastic only at the lowest

scaling factors, where significant load shedding is still an issue

(Fig. 3).

These plots confirm that the deterministic approach con-

sistently requires more reserves, even when the requirements

are 40% below the original criteria. Although both approaches

schedule reserves predominantly from peaking generators

(gas CT and Combined Cycle, CC), the stochastic approach

schedules no reserves from hydro or nuclear resources, though

Fig. 6. Reserve comparison by fuel type.

Fig. 7. Total cost statistics, sensitivity to VOLL and reserve levels.

some from coal. The increases in reserve requirements of

the deterministic approach are almost entirely covered by the

marginally most expensive resource, gas CT. This apparent

paradox is explained by the fact that the deterministic formula-

tion does not account for the reserve deployment cost, therefore

scheduling relatively more reserves from resources with low

startup and reserve costs. ISOs are often considered to be overly

conservative in their operation practices. This may be interpreted

as a preference for scheduling practices that induce more certain

ex-post operating costs. Such consideration motivates analyzing

not only the average operation costs but also their standard

deviation. Fig. 7 depicts both statistics for various deterministic

and stochastic approaches, computed from the MC simulations.

For the deterministic case we varied the reserve scaling factor

from 0.6 to 1.2 while holding the VOLL fixed, and vice versa.

For the stochastic approach, only the VOLL was varied since

reserve quantities and locations are scheduled endogenously. In

this figure, the (black) data points with highest standard devi-
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ation costs correspond to deterministic cases with low reserve

requirements and varying amounts of load shedding. In general,

LNS is the predominant cause for variability in operation costs

due to the relatively large magnitude of the VOLL. This ex-

plains why increasing reserve requirements in the deterministic

approach provides no reductions in variability after a certain

threshold. On the other hand, the stochastic approach produces

a consistently desirable outcome. At a VOLL of $10,000/MWh,

it yields a significantly lower average cost and yet the lowest

level of variability.6 These results show that the stochastic

approach consistently produces commitment decisions that

are robust to the modeled uncertainties. This may not be the

case for the deterministic approach as it is sensitive to the choice

of zonal reserve requirements.7 One can thus conclude that the

stochastic approach consistently improves on the levels of aver-

age costs and variability that are achievable by a deterministic

approach.

V. CONCLUSION

In this paper we present the open-source MATPOWER Opti-

mal Scheduling Tool to compare the behavior of two alternative

approaches to a day-ahead planning problem considering multi-

stage uncertainties. The case study uses a testing methodology

designed to minimize the impact of modeling assumptions on

the performance assessments. A stochastic security-constrained

unit commitment (SCUC) with DC power flow constraints is

compared against a more traditional, secure, deterministic unit

commitment approach, using a causal, single-period real-time

operations problem to assess both physical and economic per-

formance under high levels of variability and uncertainty. All of

the code and data for the case study is publicly available on the

“MOST Paper Simulation” GitHub site [44].

We illustrate how our stochastic model outperforms the de-

terministic approximations, providing a more secure operation

of the system (measured by load shedding) and savings after in-

cluding all economically incurred benefits and costs. Through a

sensitivity analysis on the parameters of the deterministic model

we show that we can find a deterministic solution with statistics

that are close, but still inferior, to those of the stochastic solution.

We demonstrate and differentiate from past work the advantages

of our stochastic model using an out-of-sample validation over

500 possible trajectories of the system, with uncertainty char-

acteristics that can fall out of the purview used in the day-ahead

problem.

There are several avenues for further development. The

amount of reserves required for the stochastic treatment

increases further down the planning horizon, driven by the

intrinsic difficulty associated with accurately predicting the

availability of renewable resources. Therefore, a receding hori-

zon approach would enable the use of updated, more accurate

forecasts of the potential generation from renewables, resulting

in (1) a reduction in the amount of reserve generating capacity

6For other values of VOLL, significantly lower average costs and comparable
levels of cost variability are induced by the stochastic approach.

7Indeed, the deterministic approach yields robust commitment decisions
when reserve requirements exceed a sharp threshold beyond which unacceptable
levels of LNS, average costs and variability are observed.

committed and (2) a more efficient management of potential en-

ergy storage resources participating in the system. Furthermore,

the endogenous assignment of contingency reserves depends

on the selected set of credible contingencies, determined in

the current work by an extensive offline process and static for

all hours of the horizon. Adapting the set of most credible

contingencies to reflect changes over time can help improve

the reserves scheduled in each period. Even though these issues

may not manifest in current system operations, with increased

penetration of renewables and storage resources, they have the

potential to impact the reliable operation of the electric grid.
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the Ph.D. degree in electrical engineering from Cornell University, Ithaca, NY,
USA, in 2017.

Carlos E. Murillo-Sánchez (M’87) received the electronics engineering de-
gree from ITESM, Monterrey, Mexico, in 1987, the M.Sc. degree in electrical
engineering from the University of Wisconsin-Madison, Madison, WI, USA, in
1991, and the Ph.D. degree in electrical engineering from Cornell University,
Ithaca, NY, USA, in 1999. He is currently a Professor with the Universidad
Nacional de Colombia, Manizales, Colombia. He is a founding member of the
Colombian Automation Society (Asociación Colombiana de Automática). His
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