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Abstract—Short-term power system operational planning prob-
lems that consider multi-stage uncertainties pose significant chal-
lenges, not only in the design of tractable optimization frameworks
for implementing them, but also in the testing and benchmarking
of such frameworks. This paper presents an implementation using
the open-source MATPOWER Optimal Scheduling Tool (MOST) to
study and compare a stochastic day-ahead, security-constrained
unit commitment problem with a more traditional deterministic
approach. The comparison is based on a testing methodology for
day-ahead plans designed to produce expected performance esti-
mates with minimal biases from modeling assumptions. Emphasis
is given in the proposed stochastic approach to explicit modeling of
the operational characteristics of the technologies available, their
spatial and temporal coupling, and the regulatory constraints that
assure reliability and adequacy. The problem formulations and
testing methodology are described and simulation results from
MOST are presented, with discussion of implications for future
market design. All of the code and data to replicate the simulations
is provided online.

Index Terms—Stochastic and robust dispatch, unit commitment,
optimal power flow, renewable energy sources.

NOMENCLATURE
Variable and Parameter Indexing
T Set of time periods considered, n; elements
indexed by t.
Jt Set of states in the system in period ¢, indexed
' by j.
KU Set of post-contingency states in the system

in state j at time ¢, indexed by k, where &k = 0
for the base state.
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Itk Set of all units available for dispatch in post-
contingency state k of state j at time ¢,
indexed by i.
Set of all reserve zones defined in post-
contingency state k of state j at time ft,
indexed by [.
Z} Set of generators providing reserves in zone [
at time .

Ltjk

Optimization Variables comprising full optimization variable x
ptiik Active injection for unit i in post-contingency
state k of state j at time ¢.

pl! Active power contract quantity for unit ¢ at
time ¢.

7l Zonal reserve quantity provided by unit 7 at
time ¢.

i rti Upward/downward active contingency re-
serve quantity provided by unit ¢ at time .

8t /ot Upward/downward load-following ramping
reserves needed from unit ¢ at time ¢ for tran-
sition to time ¢ + 1.

gtk ptik Voltage angles and active injections for power
flow in post-contingency state k of state j at
time .

ult Binary commitment state for unit ¢ in period ¢,
1 if unit is on-line, O otherwise.

vt fw' Binary startup and shutdown states for unit

in period ¢, 1 if unit has a startup/shutdown
event in period ¢, 0 otherwise.

Cost Functions and Parameters

Ch(") Cost function for active injections for unit ¢

_ at time ¢.

Ch() Modified cost function for active injection 4
at time ¢ with the no load cost subtracted,
Cli(p) = C (p) — CH (0).

Cli() Cost function for zonal reserve purchased

from unit 7 at time ¢.

Cost function for upward/downward contin-
gency reserve purchased from unit ¢ at time ¢.
Cost of upward/downward load-following
ramp reserve for unit ¢ at time ¢ for transi-
tion to time ¢ + 1.

Cry ()/CE_()

CiL (/G5 ()
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cti/cti Startup/shutdown costs for unit i at time ¢ in

$ per startup/shutdown.

Constraint Functions and Parameters

g7k () Nodal power balance equations in
post-contingency state k of state j at
time ¢.
Rtk () Transmission, voltage and other limits in
y post-contingency state k of state j at time .
pligk ptijk Limits on active injection for unit 7 in
post-contingency state k of state j at time ¢.
Rl /R . Upward/downward contingency (or zonal) re-

serve capacity limits for unit ¢ at time ¢.
R! MW reserve requirement for zone [ at time ¢.

Al /AT Upward/downward physical ramping limits
for unit 4 for transitions from base (k = 0)
to contingency cases.

Y Minimum up and down times for unit ¢ in
number of periods.

Other Parameters

@lizdn Probability of transitioning to state j, in pe-
riod ¢ given that state j; was realized in period
t—1.

Ptk Probability of contingency k in state j at
time ¢.

ot Probability of making it to period ¢ without

branching off the central path in a contin-
gency in periods 1...¢ — 1.

1. INTRODUCTION

OWER systems operations are facing an increasing amount
Pof uncertainty when making decisions in the scheduling
process. This issue stems from several factors, most notably the
inclusion of active demand and renewable sources of energy in
the generation pool. Consequently, there is a need for operation
methodologies that consider this uncertainty explicitly.

Historically, load forecasts were the main source of uncer-
tainty in the planning process, followed perhaps by the occur-
rence of discrete events, such as disconnection of a piece of
equipment. The error in the load forecast when using modern
prediction techniques is relatively small, prompting little con-
cern about the propriety of the scheduling decisions taken, for
example, a day ahead. More recently, however, the main source
of uncertainty is the availability of renewable resources at the
time of delivery [1]. Yet, the lead time that many generation
technologies require to make their resources available remains
unchanged. Thus, decisions must be made ahead of time with
regards to the commitment of units, fuel procurement, network
configuration and other issues [2]-[4]. Traditionally, a lead time
of one day is a practical one because it fits the lead time re-
quirements of many types of generating units, as well as the
administrative processes associated with deregulated market op-
erations. In theory, said decisions could be made several times
a day, or even every hour. Thus, the general problem facing an
Independent System Operator (ISO) is that of making decisions
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in the face of forecasts with pervasive time-varying uncertainty.
Even though the uncertainty-revealing process is continuous in
time, decisions are typically made in well-defined stages due to
practical computing and administrative restrictions [5].

The most common structure put in place by ISOs involves
a day-ahead decision process that includes a day-ahead market
(DAM) and a so-called (day-ahead) reliability unit commitment
(RUC), followed by subsequent finer-grained decisions as real-
time operation approaches. With this two-layered structure, a
large part of the planning problem is solved day-ahead, followed
by adjustments intended to steer the system toward appropriate
real-time operation as the time of execution approaches. It is
thus not surprising that most literature on the subject focuses
on the day-ahead planning problem, particularly the security-
constrained unit commitment (SCUC) problem (see e.g., mul-
tiple surveys including [6], [7]). A viable day-ahead planning
formulation involves modeling decisions that allow the result-
ing problem to be tractable and computationally solvable [8]. It
should take into account the day-ahead market settlement aspect;
it should internalize uncertainty into the decision process; and it
should weigh the economic benefits of reliable operation in light
of the possible outcomes presented by the chosen uncertainty
model [9]-[13]. Typically, many simplifying assumptions go
into these modeling decisions, introducing differences between
the problem that is being solved and what we might call the
“true” problem with its more accurate time-varying uncertainty
model and the different lead-times of each unit being considered
in the decision process.

Because these day-ahead planning models are approxima-
tions of reality, it follows that their performance cannot be easily
compared based solely on the value of the objective function at
their corresponding solutions, especially because the resulting
plan was based on a simplified uncertainty model with some
potentially ad hoc assumptions (cf., [14]).

Indeed, benchmarking the quality of a day-ahead plan re-
quires a new set of modeling decisions based on a more realistic
set of assumptions. The more simplifying the initial modeling
assumptions are, the more relevant the subsequent quality as-
sessment becomes. This assessment could include more detailed
modeling decisions about (1) how to meet power imbalances due
to differences in realized load and renewable generation, (2) how
to settle the deviations from the day-ahead schedule,' and (3)
how to benchmark the day-ahead plan in light of all the possible
outcomes of the “true”” or more realistic uncertainty model.

It must be decided, for example, whether to use a simple
secure optimal power flow to settle imbalances when closer to
real-time, or whether to use a more complicated procedure with
receding-horizon look-ahead instead (see e.g., [15], [16]). Ei-
ther alternative could be deterministic, using (point) forecasts,
or stochastic, using a (potentially simplified) model of the un-
realized uncertainties.

These are all practical considerations which must be decided
upon in each market and which are implemented in one way
or another by each ISO. Therefore, when testing the quality of

IThese first two issues may or may not be linked to a real-time balance
market.
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day-ahead solutions, one must separate (1) the “true” or more
realistic uncertainty model; (2) the uncertainty model employed
in the day-ahead planning process; (3) the process by which
the day-ahead plan is adapted to the time-varying revelation
of uncertainty up to the real-time operation moment, and per-
haps also a third model of the uncertainty if the said adapta-
tion process involves stochastic look-ahead; and finally (4) a
procedure to statistically characterize the performance proper-
ties of the day-ahead plan. One direct procedure for this test-
ing is using statistical simulation, in which many day-ahead
plans are presented with many possible realizations of the un-
certainty, and then each outcome is evaluated. The uncertainty
model from which these realizations are drawn requires yet an-
other modeling decision; ideally, the model employed should
be as close as possible to the “true” model, i.e., not carry on
the simplifying assumptions employed in the day-ahead plan-
ning process or the adaptation process. Additionally, the pro-
cess by which the realization is presented to the day-ahead
plan must also be stochastic if the real-time adaptation process
employed utilizes look-ahead of any kind, so as to preserve
causality.

In this work, we further build upon the open-source
MATPOWER Optimal Scheduling Tool (MOST) [17], [18], avail-
able in the MATPOWER package [19], and the open-source sim-
ulation framework MP-Sim [20], to benchmark a particular
choice of stochastic day-ahead planning against a more tradi-
tional approach. In doing so, all of the previous considerations
are addressed and the choices taken are clearly specified. The
stochastic day-ahead reliable unit commitment method being
tested is one of the many possible planning schemes that can be
implemented within MOST. The traditional approach is a form
of secure deterministic unit commitment with set rules for de-
termining operating reserves. The primary contributions of this
work are the thorough comparison of the two operation method-
ologies explicitly including the four considerations above, and
the presentation of a testing methodology for day-ahead plans
intended to produce expected performance estimates with mini-
mal biases from modeling assumptions, both based on the open
software platform MOST. Along the text we highlight further
advantages of our approach.

The remainder of this article is organized as follows. The
next section provides a succinct background for our work and
describes its place in the literature. Section II delineates the
framework to model day-ahead planning and real-time opera-
tion/assessment methodologies in MOST, explains the connec-
tion to the stochastic approach developed in [17], and describes
certain operation practices used by ISOs that serve as a stan-
dard benchmark. The testing framework for our model and the
numerical results are presented in Sections III and IV, respec-
tively, with concluding remarks and future research directions
in Section V.

Background and Related Work

To verify whether the solution obtained for the day-ahead
planning problem can properly dispatch the system in real-time,
most previous works select scenarios consistent with the realm
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of possibilities considered in the initial planning, i.e., scenarios
that are consistent with the uncertainty sets used in day-ahead
decisions. Although these approaches can be used to approxi-
mate the original multistage problem, their performance is sel-
dom estimated [21].

In [7], the authors suggest that the approaches to deal with
uncertainty can be classified into three groups: stochastic opti-
mization e.g., [22], [23], robust optimization e.g., [24], [25], and
chance-constrained optimization e.g., [26]. Within the vast lit-
erature on the subject, there are a few works that are particularly
related to our approach as follows: Bakirtzis et al. [27] present
a model for merging the unit-commitment (UC) and economic
dispatch (ED) problems, solving complex short run (intraday)
commitments and dispatches, and simpler schedules for longer
horizons (e.g., 24h), including different time scales according
to the proximity to dispatch time. Dvorkin et al. [28] formu-
late a hybrid stochastic UC (SUC) and interval UC (IUC), with
the SUC applied to the periods closer to execution, and then
switching to the IUC for the rest of the horizon. They optimize
the switching time by balancing the costs and security bene-
fits obtained. In [16], the authors propose a stochastic approach
to UC based on affine dispatch policies to deal with uncer-
tainty in a rolling horizon framework that respects causality as
both commitment and dispatch decisions are made contingent
only on realized uncertainties. This approach can be seen as a
methodology to test a predetermined day-ahead plan. In [29],
the authors emphasize the relevance of enforcing causality (or
non-anticipativity) constraints in UC formulations for a robust
framework. This work suggests that including such constraints
is particularly relevant when ramping capabilities are scarce and
net loads are highly variable.

II. FORMULATION

Our problem consists of a day-ahead planning problem fol-
lowed by a real-time operation problem used to assess the day-
ahead plan. The structure of the uncertainty (e.g., of wind and
demand) underlying the day-ahead problem is multi-stage in the
sense that the uncertainty faced when planning the UC for the
horizon is revealed sequentially in multiple steps. The recourse
(dispatch) decisions subsequent to the UC occur consecutively,
each one in the presence of diminishing uncertainty, rather than
all at once, in a single second stage following the UC deci-
sion but prior to a dispatch decision for the full horizon. So,
whereas the structure of the underlying planning problem itself
includes multi-stage uncertainty, the modeling of the uncertainty
in the optimization problem formulated to solve that problem is
a separate question. A classical, full multi-stage formulation is
clearly out of the question due to the sheer scale of the resulting
problem, so an approximation is needed.

One common approach is to approximate the problem as a
two-stage problem, neglecting the impact of the progressive
revelation of uncertainty during the recourse decisions. Our
stochastic formulation takes a different approach that preserves
the multi-stage nature of the uncertainty but approximates the
full multi-stage decision tree with a Markovian decision pro-
cess. Our testing framework, that is, the real-time operation and
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assessment formulation, is also explicitly designed to take into
account the inherent multi-stage nature of the uncertainty in the
underlying problem.

Our stochastic formulation in this article shows a subset of the
capabilities of the MATPOWER Optimal Scheduling Tool [17],
[18]. The model is a particular form of a day-ahead, stochas-
tic, n — 1 security-constrained unit commitment problem with
DC power flow constraints. One of the main differences in our
approach from past formulations is that we discretize the range
of realizations that can occur, conditioning the ranges in pe-
riod ¢ + 1 to the information in period ¢ only, and providing a
hull for the range of operating points. The real-time operations
problem used for assessing the day-ahead plan is a single-period
n — 1 secure problem, similar to current practices. In contrast to
most other approaches, our real-time problem is still stochastic
regarding the operational reliability of the units.

We benchmark our stochastic approach against a secure deter-
ministic solution, also implemented in MOST. The latter is based
on a methodology inspired by current operational practices of
ISOs in the US, in which uncertainty is dealt with primarily by
relying on heuristic exogenous reserve requirements and on the
sequential solution of deterministic optimization programs that
incorporate updated point forecasts of the system uncertainties.
Such specification of reserve requirements may lead to highly
suboptimal solutions under significant uncertainty and provide
no guarantee of solution robustness with regards to feasibility.

A. Day-Ahead Planning Formulation

The nomenclature section summarizes the notation for the
reduced form of the problem considered in this article. The
objective function for the ISO is the expected total welfare of all
the participants, consisting of four components: (1) the expected
cost of energy delivered, (2) the cost of ancillary services for
high probability events (i.e., load following reserve), (3) the unit
commitment cost, and (4) the cost of (up and down) reserves for
low probability events (i.e., contingency reserve),

min f(z) = f,(p) + fir(9+,0-) + fuc(u, v, w)

+f7~(7’27’]"+,7’,), (l)

where

L) =330 > 9 Y CROY), @

teT jeJ! keK'i ieltik
fie(0,6) =>4 > [CFL(85) + (5], 3)
teT ielt
Jue (u, v, w) Z'y Z (CEO)u" + Clv" + Cllw'),
teT ielt
4)
and the specification of the reserve cost f,(r.,r,r_), de-

scribed below, depends on whether the formulation is for the
stochastic or deterministic method.?

2The benefit that consumers receive from having their load serviced is in-
cluded as a negative term in the expected cost of energy delivered in (2).
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This minimization is subject to four categories of constraints,
forallt € T,allj € Jt,allk € K%, alli € I'7* and, for the de-
terministic case, all | € L'/* . The four categories of constraints
are:

e Standard OPF Constraints, including the full set of equal-

ity (e.g., power balance equations) and inequality (e.g.,
branch flow and generator limits) constraints,

gtjk(etjk’ptjk) =0 5)

ht.jk(atjk’pt.jk) < 0 (6)

e Load-following Ramping Limits and Reserves

0 < 6% < Gt @)
0<d0" <o (8)
plidz0 _ pt=D)ino < 5<+t—1)i7 ey ed )
p(tfl)ijlo _pt'i/jzo S 69*1)i7 jl c Jtil,j? c Jt (10)

e Unit Commitment, including injection limits, startup and
shutdown events, minimum up and down times and inte-
grality constraints

ti ptijk tijk ti ptijk
7Pl’lllljll < p 7] < u ]RI:;{X (11)
uti _ u(f,*l)i —_ ,Uti _ wti (12)
¢ t
Z vt <l Z w’ <1—u'" (13)
y=t—7,"+1 y=t—1, +1
0<o" <1, 0<w” <1, ' e{0,1} (14)

o Security Constraints, depending on whether the formula-

tion is for the stochastic or deterministic method.

The primary differences in formulation between the stochastic
and deterministic cases are in the last set of constraints, (the
security constraints), and in the states modeled in each period,
which also affects the load-following reserves.

1) Stochastic Method: For the stochastic method, the prob-
lem is structured as a set of co-optimized DC optimal power
flow (OPF) problems, one for each period ¢, for each sys-
tem base state 7 and each of the corresponding contingency
states k, whose costs are probability weighted and whose oper-
ating points are tied together by additional constraints and costs
related to reserves, ramping, storage and unit commitment. The
stochastic resources (e.g., wind, solar, demand) are modeled as a
Markov Decision Process (MDP) with a discretized probability
distribution over a finite number of states, equivalent to recom-
bining scenarios in a traditional stochastic program but with
improved tractability. Security is handled by guarding against
an explicit set of credible contingencies. The fourth category
of constraints, the security constraints, define reserves by the
maximum deviation in any contingency from a contracted refer-
ence dispatch, restricting the ramping from base to contingency
states.
0<r" <RI

max—

0<1"“ <RtL

max-+?

15)
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pfcl _ phidk < pti
k#0

The reserve costs from the last term in (1) are then based on
these contingency reserves.

fr(rari,r) =Y 4" Y [CRL () + CR_()], (18)

teT ielt

(16)
a7

tijk ti ti
p — De S T+>

_At, Spti]’k _ptijO < Aiﬂ

The load-following ramp constraints (7)—(10) are the maxi-
mum deviations between base state dispatches in consecutive
periods.

2) Deterministic Method: The implementation of the deter-
ministic method is essentially a simplified version of the stochas-
tic problem, where all contingency states have been removed and
there is a single base state with expected availability of RES and
expected load for each period. That is, J! = {1}, K% = {0},
and ¢'' = 4! = 1, turning (2) into a summation over ¢ and 4. In
place of the multiple RES and contingency states per period, we
rely on a set of fixed zonal reserve requirements for the security
constraints.

0 <72 <min(Ry ey, AL) (19)
Pt <P (20)
Y >R @1

ez}

The non-negative value ', for generator i in period ¢, has a user-
provided upper bound R!! . (e.g., a reserve offer quantity) as
well as the physical ramp rate A’, . The two additional sets of
constraints ensure that, for each generator, the total amount of
energy plus reserve provided does not exceed the capacity of the
unit and that the sum of the reserve allocated within each zone [
in period ¢ meets the stated requirements. The load-following
ramp requirements (7)—(10) are still present. However, because
a single state is considered per period, they only apply to the
expected amount of ramping between periods. The reserve cost
term of (1), in this case, is also based on the reserves allocated
toward these zonal requirements.

f7‘(rzv7a+7r*) = Z ZCS(T?)

teT ielt

(22)

B. Real-Time Operation and Assessment Formulation

1) Stochastic Method: The real-time problem for the
stochastic approach is described in Section IV of [30] and in
Section III-A of [31]. It is essentially a single-period version of
the day-ahead problem, including all of the network constraints.
We assume the uncertainty of RES and demand has been largely
resolved and that we have point forecasts for each one that are
accurate enough to ignore the remaining forecast error. So we
no longer use multiple base cases to represent a distribution
of realizations, but rather a single base case with the expected
realization of both demand and RES. On the other hand, the
dispatch must still be secure, so a credible set of contingen-
cies are still included, with probability weighted costs on their
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dispatches. Additionally, the ISO can procure energy and addi-
tional reserves at real-time prices to cover trajectories outside
of the realm considered in the day-ahead problem.

2) Deterministic Method: The real-time problem for the de-
terministic approach is a DC OPF, based on updated system
conditions, with an updated set of zonal reserve requirements.
The requirements are updated to reflect the fact that some of the
contracted reserves may be deployed to cover errors in the load
and/or RES forecasts. Specifically, for each zone in which the
demand net of RES generation has increased from the values as-
sumed for the day-ahead problem, the reserve requirements are
decreased by a corresponding amount. This amount is further
reduced by a factor 3., to reflect the fact that fewer reserves
are needed since the vast majority of the uncertainty has been
resolved. In our real-time results, we optimize over a set I' of
random trajectories of the realized uncertainties consistent with
the day-ahead optimization.

III. TESTING FRAMEWORK

A. Causal, Single-Period Real-Time Operations Problem
for Assessment

Testing power system scheduling problems with multi-
stage uncertainties is often done in a non-causal way, using
Monte Carlo (MC) simulations over a set of many trajectories,
where each represents the realization of all uncertainties across
the entire optimization horizon. Operating cost is then com-
puted for each trajectory as a deterministic problem, ignoring
the fact that, in each period, the system must still be operated
subject to subsequent uncertainties, which in reality are not
yet resolved. Our framework, on the other hand, respects these
causal constraints by guarding against subsequent uncertainty
in each single-period real-time optimization.

B. Stochastic Inputs

We use an autoregressive moving average model with exoge-
nous variables (ARMAX) to generate multiple random trajec-
tories of the stochastic system conditions, namely wind power
availability and load, for all time periods and locations, to repre-
sent possible individual realizations of those conditions for the
planning horizon. The methodology is explained in [32], [45],
and is summarized in Algorithm 1.

We partition the total set of created trajectories into two. One
subset of these trajectories is utilized to represent a forecast-
ing model whose distributions are used to create the inputs for
the day-ahead problem (training), varying over time and space.
Another subset of these trajectories, the set I, are used for MC
testing of the real-time operations subject to the unit commit-
ment chosen day-ahead (validation). In contrast to other works,
these two sets are independently generated in our proposal.

C. Contingency Analysis

We perform an extensive off-line contingency filtering proce-
dure as input data for our comparisons (cf., [33], [34]). Broadly,
this consists in selecting a limited set of critical transmission
and generator contingencies to act as a surrogate for the n — 1
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Algorithm 1: Simulating Random System Conditions.

1: Estimate ARMAX temperature model based on
deterministic cycles daily, weekly, seasonal).

2: Use temperature/deterministic cycles, estimating
ARMAX models for log of wind speed, log of load for
each location.

3: Use variance-covariance residuals from these models to
generate [V, trajectories drawing from a multivariate
normal distribution for wind speed and load, as a
forecasting model for the day-ahead problem.

4: Convert wind speed to potential wind power generation
using a multi-turbine power curve.

5: Stochastic: At each time period in the planning horizon,
Discretize the joint load and wind distribution into 7;
states for each ¢, determine transition probability
matrices based on these n; states. Deterministic: At
each time period in the planning horizon, compute the
expected load and wind power availability or each ¢.

6: Randomly generate the set I' of IV, additional
trajectories, via steps 3 and 4 above, to use as
realizations for MC testing in the real-time problem.

security criterion. Though the n — 1 criterion is generally more
conservative, it can make the resulting optimization problem
prohibitively large unless tailored decomposition techniques are
used [35].3

D. Reserve Criteria

To build a standard benchmark that allows comparing the per-
formance of the proposed model to a fixed reserves criterion, we
focus on designing reasonable zones and reasonable criteria for
those zonal reserve requirements. The determination of fixed
zones (with possible overlaps) within a transmission network
is an ad hoc methodology that seeks to internalize the need to
guarantee the availability of deliverable reserves in the presence
of stochastic suppliers and possible contingencies. In our pro-
posed benchmark, we use congestion patterns observed in the
solutions to deterministic formulations of the problem under
different states (including contingent states). Moreover, besides
the usual requirements for fixed reserves, several zonal reserve
requirement criteria have been developed with two additional
considerations. First, each criterion allows the designer to scale
reserve requirements with a scalar parameter in order to vary its
conservativeness; and second, the inter-zonal flows have been
accounted for in computing the zonal requirements when neces-
sary. For the deterministic method used to benchmark our pro-
posed model, we simulate reserve criteria following practices
in real-world operations. First, reserve zones are established

3Note that this procedure is conducted completely off-line with no iterative
process used to update the set of contingencies per period, rather using an ample
range of operating points (e.g., loading conditions) instead of a single operating
point. This data serves to calculate endogenous contingency reserves in our
setup. This methodology is based on a combination of prioritized contingency-
severity criteria, thus resembling traditional practices based on expert knowledge
of the network.
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based on congestion patterns observed in deterministic OPF runs
under a variety of system states, including contingent states. For
example, in the adjusted 118-bus system we use for demonstra-
tion there is a “backbone” connecting sources in the western
part of the system to sinks in the eastern demand centers. We
establish overlapping zones under high loading conditions to
avoid internal congestion. However, when the system is highly
loaded, some inter-zonal ties may be used at their maximum ca-
pacity. Once the zones are established, we implement a convex
combination of two policies: (1) the so-called “3 + 5” policy rule
[1], budgeting reserves according to 3% of the hourly load fore-
cast and 5% of the hourly wind forecast. (2) the largest outage
policy schedules a reserve quantity equal to the amount nec-
essary to cover the single largest contingency. This condition
for n — 1 reliability includes an offline analysis of the credi-
ble contingencies, covering both generation and line outages.
The reserve requirement for a given zone can be set by an im-
port from another zone if the outage of a tie line is the largest
contingency.*

E. Load Shedding

All demand in both the stochastic and deterministic treatments
is modeled as curtailable at the value of lost load (VOLL), which
is nominally set to $10,000/MWh. In some of our studies we
vary this value across a range in order to see the effect on the
cost statistics for the stochastic and deterministic methods being
compared.

IV. NUMERICAL RESULTS

We compare the results from the real-time problem for both
fixed and stochastic reserves, by applying them to a set of 500
trajectories over the optimization horizon, with each trajectory
representing a realization of the initial forecasts. These trajec-
tories are consistent with the information used in the day-ahead
problem, derived from a MC-type simulation of wind data ob-
tained from the National Renewable Energy Laboratory (NREL)
Eastern Wind Integration and Transmission Study [36]. The
simulations are based on MP-Sim [20], an open-source, object-
oriented, Matlab-language simulation framework developed by
two of the authors. They were run using MATPOWER [19] and
MOST with the Gurobi optimizer [37]. Currently, the problem
is passed in a standard form to the solver without employing
decomposition techniques to solve it, see e.g., [38]-[41]. Im-
proving performance through such techniques is a subject of
future work. We modified extensively a version of the IEEE
118 bus network for illustrative purposes. The adjustments in-
clude modifying the generators according to guidelines from
the FERC RTO Unit Commitment Test System, including the
ramping capabilities per fuel type [42], adding wind turbines to
the system (20% of generating capacity at 11 buses) according
to NREL data [43], and converting all of the 345 kV lines to
double circuits. All of the code and data for the simulations

4The final reserve requirement used for each zone is the larger of the require-
ments from these two policies, resulting in a relatively conservative operating
mode. We multiply these base requirements by a single scaling factor to vary
the enforced level of security for part of our results.
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is publicly available on the “MOST Paper Simulation” GitHub
site [44].

The system-wide wind power availability and dispatch is
shown in Fig. 1 for the stochastic case, displaying the amount
of supply uncertainty considered in our simulations apart from
the uncertainty from low probability contingencies.’ Notably,
both approaches spill more wind in early hours when wind
availability is higher due to transmission congestion restricting
deliverability. Fig. 2 shows the aggregate amount of reserves
scheduled by the two approaches for each hour. The determinis-
tic approach, which schedules more reserves than the stochastic
approach for nearly all hours of the horizon, shows temporal
variations caused primarily by the changing dispatch of the

SNaturally, the uncertainty of wind availability increases as we predict further
into the future, as illustrated by the widening min/max ranges observed. A
similar plot for the deterministic case (not shown) reveals a negligible difference
in the expected wind dispatch for the two approaches.
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largest unit for different hours. On the other hand, the reserves
scheduled in the stochastic approach increase throughout the
planning horizon as uncertainty from wind and load increases.
These results indicate that the zonal reserve requirements needed
to ensure security under contingencies are systematically higher
than the endogenously determined nodal reserves determined by
the stochastic approach, even with the uncertainty added.

In Fig. 3 we report the total operation costs incurred through-
out a single day averaged across the 500 MC simulations under
both the stochastic (left) and several deterministic approaches
(right). Each of the deterministic cases corresponds to a differ-
ent multiplicative scaling parameter applied to the zonal reserve
requirements as a heuristic to adjust the level of security of the
methodology. By and large, the stochastic approach dominates
the deterministic approach, yielding uniformly lower average
costs of energy, reserves, and commitment. Not surprisingly,
the reserve scaling parameter controls a trade-off between high
costs of load not served (LNS) and high costs of energy, primar-
ily, and reserves to a lesser extent. This is because larger reserve
requirements force less expensive generators to provide more
reserves and less energy, shifting that energy to more expen-
sive generators. These results suggest that there is an “optimal”
scaling parameter for the given reserve requirements that (1)
minimizes the expected operation costs induced by the deter-
ministic approach, (2) may differ from the one chosen by the
ISO @.e., 1), (3) would be difficult to compute efficiently for
a large-scale system, (4) may be too risky due to the potential
underestimation of low probability LNS events, and (5) that is
consistently outperformed by the endogenous allocation of re-
serves throughout the network by the stochastic formulation.
Figs. 4 and 5 show the maximum capacity committed excluding
wind (for adequacy) and the expected energy delivered by fuel
type. The stochastic approach commits and uses more coal and
less gas Combustion Turbines (CT) resources than the determin-
istic approach across the varying levels of reserve requirements.
As the reserve requirement levels increase, more coal is replaced
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by gas CT in terms of usage, even though comparable amounts
of coal resources are committed.

Generally, the stochastic approach was able to find a commit-
ment that avoids the use of the marginally more expensive gas
CT resources by committing additional, marginally less expen-
sive, coal capacity at strategic locations. To better understand
the way both approaches schedule resources to manage the sup-
ply and demand uncertainty, Fig. 6 illustrates the amount of
reserves scheduled by fuel type. The deterministic approach
schedules less reserves than the stochastic only at the lowest
scaling factors, where significant load shedding is still an issue
(Fig. 3).

These plots confirm that the deterministic approach con-
sistently requires more reserves, even when the requirements
are 40% below the original criteria. Although both approaches
schedule reserves predominantly from peaking generators
(gas CT and Combined Cycle, CC), the stochastic approach
schedules no reserves from hydro or nuclear resources, though
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some from coal. The increases in reserve requirements of
the deterministic approach are almost entirely covered by the
marginally most expensive resource, gas CT. This apparent
paradox is explained by the fact that the deterministic formula-
tion does not account for the reserve deployment cost, therefore
scheduling relatively more reserves from resources with low
startup and reserve costs. ISOs are often considered to be overly
conservative in their operation practices. This may be interpreted
as a preference for scheduling practices that induce more certain
ex-post operating costs. Such consideration motivates analyzing
not only the average operation costs but also their standard
deviation. Fig. 7 depicts both statistics for various deterministic
and stochastic approaches, computed from the MC simulations.
For the deterministic case we varied the reserve scaling factor
from 0.6 to 1.2 while holding the VOLL fixed, and vice versa.
For the stochastic approach, only the VOLL was varied since
reserve quantities and locations are scheduled endogenously. In
this figure, the (black) data points with highest standard devi-
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ation costs correspond to deterministic cases with low reserve
requirements and varying amounts of load shedding. In general,
LNS is the predominant cause for variability in operation costs
due to the relatively large magnitude of the VOLL. This ex-
plains why increasing reserve requirements in the deterministic
approach provides no reductions in variability after a certain
threshold. On the other hand, the stochastic approach produces
a consistently desirable outcome. At a VOLL of $10,000/MWh,
it yields a significantly lower average cost and yet the lowest
level of variability.® These results show that the stochastic
approach consistently produces commitment decisions that
are robust to the modeled uncertainties. This may not be the
case for the deterministic approach as it is sensitive to the choice
of zonal reserve requirements.” One can thus conclude that the
stochastic approach consistently improves on the levels of aver-
age costs and variability that are achievable by a deterministic
approach.

V. CONCLUSION

In this paper we present the open-source MATPOWER Opti-
mal Scheduling Tool to compare the behavior of two alternative
approaches to a day-ahead planning problem considering multi-
stage uncertainties. The case study uses a testing methodology
designed to minimize the impact of modeling assumptions on
the performance assessments. A stochastic security-constrained
unit commitment (SCUC) with DC power flow constraints is
compared against a more traditional, secure, deterministic unit
commitment approach, using a causal, single-period real-time
operations problem to assess both physical and economic per-
formance under high levels of variability and uncertainty. All of
the code and data for the case study is publicly available on the
“MOST Paper Simulation” GitHub site [44].

We illustrate how our stochastic model outperforms the de-
terministic approximations, providing a more secure operation
of the system (measured by load shedding) and savings after in-
cluding all economically incurred benefits and costs. Through a
sensitivity analysis on the parameters of the deterministic model
we show that we can find a deterministic solution with statistics
that are close, but still inferior, to those of the stochastic solution.
We demonstrate and differentiate from past work the advantages
of our stochastic model using an out-of-sample validation over
500 possible trajectories of the system, with uncertainty char-
acteristics that can fall out of the purview used in the day-ahead
problem.

There are several avenues for further development. The
amount of reserves required for the stochastic treatment
increases further down the planning horizon, driven by the
intrinsic difficulty associated with accurately predicting the
availability of renewable resources. Therefore, a receding hori-
zon approach would enable the use of updated, more accurate
forecasts of the potential generation from renewables, resulting
in (1) a reduction in the amount of reserve generating capacity

“For other values of VOLL, significantly lower average costs and comparable
levels of cost variability are induced by the stochastic approach.

7Indeed, the deterministic approach yields robust commitment decisions
when reserve requirements exceed a sharp threshold beyond which unacceptable
levels of LNS, average costs and variability are observed.
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committed and (2) a more efficient management of potential en-
ergy storage resources participating in the system. Furthermore,
the endogenous assignment of contingency reserves depends
on the selected set of credible contingencies, determined in
the current work by an extensive offline process and static for
all hours of the horizon. Adapting the set of most credible
contingencies to reflect changes over time can help improve
the reserves scheduled in each period. Even though these issues
may not manifest in current system operations, with increased
penetration of renewables and storage resources, they have the
potential to impact the reliable operation of the electric grid.
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