
Context-Sensitive
Decoding: On-Demand
Microcode Customization
for Security and Energy
Management

Mohammadkazem Taram
University of California

Ashish Venkat
University of Virginia

Dean M. Tullsen
University of California

Abstract—Modern instruction set decoders feature translation of native instructions

into internal micro-ops to simplify the CPU design and improve instruction-level

parallelism. However, this translation is static in most known instances. This paper

proposes context-sensitive decoding, a technique that enables customization of the

micro-op translation based on the current execution context and/or preset hardware

events. Further, it can transition between different translation modes rapidly. While

there are many potential applications, this paper demonstrates its effectiveness with

two use cases: 1) as a novel security defense to thwart instruction/data cache-based

side-channel attacks; and 2) as a power management technique that performs

selective devectorization to enable efficient unit-level power gating.

& THE POST-DENNARD SCALING era has witnessed

an upsurge in the adoption of specialized

processing elements to improve the execution effi-

ciency of diverse workloads. This paper exploits

an underutilized feature of modern instruction

set decoders to show that even general-purpose

processors can be customized, and in fact that

customization can be seamlessly configured

dynamically at an extremely fine granularity.

Digital Object Identifier 10.1109/MM.2019.2910507

Date of publication 11 April 2019; date of current version 8

May 2019.

May/June 2019 Published by the IEEE Computer Society 0272-1732 � 2019 IEEE 75



The key to this change is the fact that most

modern processors employ translated ISAs, as

the Intel and AMD x86 processors and many

ARM processors typically feature translation

from the native instruction set into internal

micro-ops that enter the pipeline for execution.

These architectures enjoy the dual benefits of a

versatile backward-compatible CISC front-end

and a simple cost-effective RISC back-end. How-

ever, for those architectures the translation is

static, changing once per generation. Instead, we

propose that translation be dynamic, potentially

changing frequently within the execution of a

single program.

This research unlocks the full potential of

translated ISAs via context-sensitive decoding

(CSD), a technique that allows native instructions

to be decoded/translated into a different set of

custom micro-ops based on their current execu-

tion context (see Figure 1). This presents operat-

ing systems, runtime systems, and antivirus

programs with the unique opportunity of trigger-

ing different custom translation modes, at micro-

second or finer granularity. In this way, for

example, an insecure executable can instantly

become a secure executable, or performance-

optimized code can become energy optimized,

without recompilation or binary translation.

CSD is a mechanism that is an enabler

for a multitude of architectural solutions. In

particular, it is a new approach that enables sub-

tle changes to the execution model and instruc-

tion stream that can be applied at an extremely

fine granularity. Further, it can be applied to just

about any application, even postcompilation and

postdeployment.

There are clear applications of CSD to improve

performance, energy efficiency, usability, and

debugging, etc. However, in the area of security,

this research is particularly timely. The impor-

tance of the architecture being part of the security

solution has become painfully apparent. Also

apparent is the critical need for rapid deployment

of security solutions, with a new variant of the

Spectre attacks1 seemingly being revealed every

couple of weeks.

Traditionally, software solutions to new

attacks require significant developer effort,

extensive software patching and recompilation,

or worse reverting to translation or interpreta-

tion. With CSD, we can quickly deploy a new

defense which 1) is immediately universal (no

recompilation of existing software); 2) is a hard-

ware/architectural solution and thus inaccessi-

ble and invisible to attackers; and 3) owing to its

fine-grained reconfigurability, can be deployed

surgically only where needed,2;3 preserving

performance.

The CSD framework we describe allows cus-

tom translation modes to be triggered by events

such as hotspot detection, unit-criticality predic-

tors, thread-criticality predictors, protection-

domain crossings, interception of a tainted

input, a watchdog timer event, changes in power

or energy availability, or thermal events—all

with no significant changes to the pipeline or the

ISA—a major shift from prior work on firmware-

driven binary translation and dynamic instruc-

tion stream editing4 that require complex pat-

tern-matching and user-defined production rules

to be integrated into the decoder framework.

The hardware and architectural barriers to

CSD are quite low. This requires minimal

changes to the architecture—only the decoder

and some related structures. Even the decoder

change is primarily adding a new table to an

existing table lookup. In fact, virtually all of the

building blocks of the CSD framework leverage

existing functionality implemented in most mod-

ern RISC and CISC processors.

Figure 1. Under normal operation, an x86 decoder would

translate the increment instruction into threemicro-ops (in black).

With CSD, that instruction would either be translated the sameway,

or depending on various possible triggers, could be translated into

moremicro-ops, for example with extra security checks (in green).

Top Picks

76 IEEE Micro



CSD has potential applications in areas such as

malware detection and prevention, dynamic infor-

mation flow tracking (DIFT), runtime profiling

and performance programming, on-demand type-

safety, program verification and debugging, and

runtime phase tracking and code specialization.

This work showcases two diverse applications

of CSD—an obfuscation-based security defense

against cache-based side channel attacks, and

criticality-aware power gating to improve the

energy efficiency.

CONTEXT-SENSITIVE DECODING
In this section, we provide a brief overview of

the x86 front-end, describe techniques to enable

CSD in an x86 architecture, and discuss potential

applications.

The x86 front end in Figure 2 has two major

components: 1) the legacy decode pipeline that

translates native instructions into micro-ops;

and 2) a micro-op cache that delivers already

translated micro-ops into the instruction queue.

The legacy decode pipeline first decodes the

variable-length x86 instructions and inserts them

into a macro-op queue, which then feeds instruc-

tions into one of the four decoders that translate

them into micro-ops. These decoders use a static

table-driven approach for the micro-op transla-

tion. In fact, only one of the decoders can trans-

late an instruction to more than one micro-op,

with the other three performing a simple one-to-

one mapping operation. Complex instructions

that decompose into more than four micro-ops

aremicrosequenced by anMSROM.

The translated micro-ops are cached in a

micro-op cache. The front-end then streams

micro-ops from the micro-op cache into the

instruction (micro-op) queue until a miss occurs,

at which point it switches back to the legacy

decode pipeline. The front-end also sports a num-

ber of optimization features such as stack-pointer

tracking, micro-op fusion, macro-op fusion, and

loop streamdetection.

CSD-Enabled x86 Front End

Figure 2 highlights necessary hardware

components required to enable CSD in the x86

front-end.

Integration with the Legacy Decode Pipeline.

To enable CSD in the x86 front-end, we provision

the legacy decode pipeline with one or more cus-

tom decoders that perform custom translations.

These decoders continue to employ a simple

static table-driven translation model, like the

four native x86 decoders. However, they can gen-

erate more sophisticated micro-op flows by rele-

gating to the MSROM.

When CSD is turned ON, we redirect macro-ops

that require custom translation to the custom

decoder. In our initial implementation, this logic

can be triggered in three different scenarios:

via OS-filled model-specific registers (MSRs), by

hardware events such as the interception of a

tainted input by DIFT or a power-gating event

from the unit criticality predictor, or from a hard-

ware watchdog timer which periodically triggers

a translationmode switch.

Interactions with the Micro-Op Cache. The

micro-op cache is an important performance

and energy optimization. Thus, CSD is designed

to work well with the micro-op cache so that

most micro-ops are served by the micro-op

cache, even when frequent custom translations

are employed. We extend the tag bits of the

micro-op cache with an additional set of context

bits that associate a particular micro-op way

with the decoder that translated it. This allows

us to improve the micro-op cache utilization by

co-locating micro-op translations from different

custom decoders.

Figure 2. Intel front end with CSD support.

May/June 2019 77



MicroCode Update (MCU) and Autotranslation

CSD exploits the already existing MCU proce-

dure of Intel processors5 to empower the runtime

system with the ability to inject custom transla-

tions into the microcode engine, with the API

provided to the runtime being the entire x86

instruction set. The CSD framework further auto-

translates such MCUs by exploiting Intel’s

existing front-end translation and optimization

infrastructure.

Since MCU is performed via a privileged inst-

ruction or system call, only trusted entities within

the OS/runtime system should have the ability to

successfully inject MCUs into the processor.

Performance Optimizations

The micro-op expansion due to customization

could potentially have a negative impact on per-

formance if the custom translations are not opti-

mized, or not integrated well with the rest of

the front end, before they are injected into the

dynamic execution stream. Therefore, we carefully

craft the new micro-op flows to maximize the use

of micro-op fusion, and we create short and tight

loops that maximize micro-op cache utilization.

Potential Applications

Later sections of this paper focus on parti-

cular applications of CSD including 1) adding

security on-demand; and 2) selectively moving

vector computation on and off the vector unit to

minimize energy. However, other potential appli-

cations abound.

These include runtime dynamic type check-

ing, debugging (nearly cost-free breakpoints and

watchpoints, without altering the binary at all),

endlessly configurable performance counters

without current hardware limits to the quantity

of counters, and profiling and instrumentation

support, again with no changes to the binary

(which among other benefits gives true instruc-

tion cache behavior).

CASE STUDY I:SIDE-CHANNEL
DEFENSE

In this section, we demonstrate the security

potential of CSD, demonstrating one possible use

of CSD to eliminate any visibility in the cache of

data-dependent accesses to sensitive data struc-

tures, or sensitive-data dependent control flow.

We first lay out our assumptions and threat

model, then describe the stealth-mode transla-

tion feature of CSD. Finally, we leverage this

feature to secure commercial implementations

of RSA and AES against the two major data and

instruction cache side channel attacks.

Assumptions and Threat Model

Trusted Computing Base. We assume that the

micro-op engine (including the micro-op cache)

is tamper-proof and is a part of the trusted com-

puting base (TCB). We also further extend the

TCB to include all hardware or software mecha-

nisms that trigger CSD. However, the instruction

stream itself need not be trusted.

Attacker Environment. We assume an active

attacker who can effortlessly probe, flush, or

evict a co-located victim’s cache lines, but does

not have direct access to the contents in the

cache. We also assume that the attacker has the

ability to make precise timing measurements and

has unlimited access to performance counters.

This allows them to make inferences about the

victim by observing the cache characteristics.

Stealth-Mode Translation

Cache-based side channel attacks typically

involve probing one or more cache lines of a co-

located victim in order to capture its memory

access patterns, and reveal secret information.

For example, an attacker who intends to break a

cryptographic algorithm could compute one or

more bits of a secret key by capturing access

patterns of key-dependent loads and branches.

In this specific implementation, we obfuscate a

victim’s control path and/or access to sensitive

data structures. In particular, we use decoy

micro-ops that load data into the caches that

would be touched on all data-dependent paths.

These include all cache blocks that contain

T-tables of AES and themultiply functions of RSA.

Figure 3 shows context-sensitive decoding

with stealth-mode translation in action. Stealth-

mode translation is primarily triggered by

updates to register-tracked decoy address-range

registers, similar to the already existing memory

type range registers (MTRR)5 in x86. The decoy

address range registers allow antivirus and other

hardware/software trusted entities to mark

specific data and instruction address ranges

Top Picks

78 IEEE Micro



in a program’s address space as

sensitive. As soon as stealth-mode

translation is triggered, these

decoy address ranges are copied to

the context-sensitive decoder’s

internal registers; after that, the

macro-op dispatcher starts redi-

recting all loads and branches

within the PC range for custom

translation.

CSD thereby injects decoy micro-

ops into all load, store, or branch-con-

taining instructions during stealth-

mode translation. Figure 4, as an

example, shows stealth-mode transla-

tion of the MOV instruction for cache-

based side-channel prevention. In this

example, CSD injects a micro-loop into the micro-op

stream. The micro-loop obfuscates the architectural

state by loading all sensitive cache blocks whose

addresses have been specified in theMSRRs.

We examine two schemes of translation—one

for a software anti-virus-driven stealth-mode con-

figuration where the tainted program counter

(PC) values are known a priori with the help

of binary analysis and configured in specific

MSRs, and one for architectures that implement

full hardware DIFT. In both instances, the decoy

micro-ops execute only for tainted instructions—

for the DIFT-enhanced architectures, this deci-

sion is made dynamically at run time.

We do not need to load the decoy structures

constantly, since they will stay in the cache for a

time, or until the attacker removes them. Thus,

stealth-mode translation automatically turns

itself off after one affected load (ensuring that all

addresses in the range are loaded into the

cache). However, before turning itself off, CSD

starts the hardware watchdog timer in order to

periodically trigger stealth-mode translation. It

is important to carefully configure the watch-

dog’s timeout period to a value that is smaller

than the attacker’s best possible probe interval

period, but large enough to minimize the perfor-

mance degradation caused by the decoy micro-

ops now flowing through the pipeline.

Securing the Instruction Cache Running RSA

Instruction cache-based attacks have been

able to subvert prominent cryptographic

algorithms, such as RSA, by being able to cap-

ture their key-dependent instruction access pat-

terns. Commercial implementations of RSA, such

as PGP and GnuPG, use the square-and-multiply

algorithm to speed up modular exponentiation,

which iterates over the binary representation

of the exponent to selectively perform exponen-

tiation using three major suboperations: square,

multiply, and reduce. While square and reduce

are performed each loop iteration, multiply is

invoked only when the exponent bit is 1, invari-

ably entailing a key-dependent branch.

These suboperations are implemented as

large functions that span multiple cache blocks.

This implies that I-cache access patterns

Figure 4. Translation of MOV instruction in stealth mode.

Figure 3. CSD with stealth mode.

May/June 2019 79



potentially reveal bits of the exponent. A PRIME

+PROBE attack on RSA6 fills up the I-cache set

for the multiply operation in the prime phase,

and probes for it after a carefully chosen interval

to check if the victim evicted its block. A FLUSH

+RELOAD attack7 flushes the cache line that

corresponds to the multiply routine, and reloads

it after a carefully chosen probe interval—if that

load is quick, it indicates the victim has

accessed the code.

Effect of Stealth-Mode Translation. As a defense

mechanism against I-cache attacks, we use

stealth-mode translation to periodically inject

decoy instruction-load micro-ops into the pipe-

line. Stealth-mode can be enabled for RSA by

configuring the instruction decoy address range

MSRs with the address-range of the multiply

functions. By periodically loading the right set of

cache blocks into the I-cache, stealth-mode suc-

cessfully obfuscates the instruction access pat-

tern that is perceived by the attacker.

Securing the Data Cache Running AES

Attackers have also exploited data-cache side

channels to infer secret information by observing

a victim’s key-dependent data access patterns.

Bernstein’s original chosen plaintext attack8 tar-

gets the AES algorithm, a substitution-permuta-

tion block cipher that performs several rounds

of simple substitution and permutation during

encryption. Several software implementations

including OpenSSL employ lookup tables called

T-tables to speed up these rounds, which then

include several simple table lookups. The index

computation for the T-table lookup turns out to

be a key-dependent load.

As with I-cache attacks, a PRIME+PROBE

attack fills up the D-cache sets for one or more

of these T-table blocks in the prime phase, and

probes for them after a certain interval to check

if the victim made an access to any of the primed

sets. A FLUSH+RELOAD D-cache attack exploits

deduplication in order to flush one or more of

the T-table blocks, and reload them after a care-

fully chosen probe interval.

Effect of Stealth-Mode Translation. By configur-

ing the data decoy address range MSRs with the

appropriate address range of the T-tables, we

can successfully obfuscate the key-dependent

data access patterns.

Securing Other Side-Channels.

Although the primary focus of this paper is to

defend against cache-based side-channel attacks,

we note that the stealth-mode translation feature of

CSD could be exploited in the future to defend

against other timing and physical attacks. For exam-

ple, the decoymicro-ops could alter the branch pre-

dictor tables and BTB entries to confuse branch

prediction analysis attacks, or potentially introduce

a random stream of NOPs (and different types of

NOPs) to skew timing analysis. Furthermore, owing

to its ability to microsequence instructions using

the MSROM, it can add additional noise into the

sensed power by nondeterministically microse-

quencing instructions that cause switching activity

across different microarchitectural structures.

CASE STUDY II: UNIT-LEVEL POWER
GATING

In this section, we present another use case of

CSD, selective devectorization for unit-level power-

gating. While similar in functionality to software-

based devectorization approaches proposed in

prior work,9;10 we eliminate binary translation costs

and related cache effects, add the ability to switch

modes at a finer granularity, allow cheaper and

more effective monitoring, and provide more direct

control over power gating and ungating.

Figure 5. Effect of the cache attacks on AES and RSA with stealth-mode translation enabled. (a) PRIME+PROBE on AES.

(b) FLUSH+RELOAD on RSA.

Top Picks

80 IEEE Micro



Unit-level power gating is one of our primary

tools to reduce the leakage power. However,

upon encountering demand for that unit, it must

connect back to the supply voltage. Powering a

unit on and off uses power and energy but also

slows execution, typically stalling until the unit

is activated. We leverage CSD to enable efficient

and more fine-grained power gating of vector

units. CSD does this in two ways: 1) for infre-

quent vector instructions, it avoids powering on

the unit by translating vector instructions to

equivalent scalar micro-ops; and 2) when it does

need to power ON, it hides the power-on delay by

continuing the execution of instructions using

scalar mode until the unit is ready.

For this optimization, we employ a simple

counter that tracks vector instructions over a

window of instructions. When it goes below a

threshold, it turns on devectorization and

powers off the entire vector unit, and when it

goes above a (higher) threshold, it turns the vec-

tor unit back on. When devectorization is

enabled, themicrocode engine translates the vec-

tor instructions to an equivalent set of scalar

micro-ops using the alternative CSD decoder.

METHODOLOGY
We model the x86 pipeline using the gem5

architectural simulator, which already features

micro-op translation. We further extend the gem5

front-end to include amicro-op cache and support

micro-op fusion as described in the Intel Architec-

tures Optimization Reference Manual. Our base-

line processor is based on the Intel Sandybridge

microarchitecture, adapted to the instruction

queuemodel of gem5. Themodeled processor is a

3.3-GHz, 4-issue out-of-order superscalar proces-

sor with 32-KB L1 instruction and data caches.

We evaluate the security of CSD on two com-

mercial implementations of cryptographic algo-

rithms: OpenSSL’s AES and GnuPG’s RSA. We also

include two additional security benchmarks from

the MiBench suite that are vulnerable to data

cache based side channel attacks for perfor-

mance analysis. Each of our security applications

can be run in two distinct modes (encrypt and

decrypt), giving us eight performance datapoints.

To evaluate the selective devectorization

mode, we use a wide range of high and low ILP

applications from the SPEC CPU2006 suite.

RESULTS

Stealth Mode Translation

Security Evaluation. Figure 5(a) shows the

results of the PRIME+PROBE attack on AES. The

attack repeatedly triggers encryptions with care-

fully chosen plaintexts while probing 16 different

addresses of the AES T-tables. For each probe,

only one plaintext has a 100% hit rate (steep

dips in the curve), revealing 4 bits of the key.

When the stealth-mode translation is not

enabled, 64 bits out of the 128 bits of the key get

compromised after 64,000 attempts. However,

when stealth-mode translation is enabled, the

attacker-perceived data access patterns are

completely obfuscated and result in a hit for

every probe.

Figure 5(b) shows the results of a FLUSH

+RELOAD attack on RSA. In the absence of

stealth-mode translation, the attacker can

almost always detect when a multiply function

has been invoked by measuring hits and misses

(access time around 400 cycles versus access

time around 1600 cycles) to the corresponding

reloaded cache line. However, when stealth-

mode translation is in effect, the attacker-per-

ceived instruction access pattern is completely

obfuscated resulting in a perceived I-cache hit at

the end of every probe interval. The PRIME

+PROBE attack on RSA (not shown) is also

defeated, recording a miss on the attacker end

after every probe interval.

Performance. The potential performance over-

heads of CSD include micro-op expansion (send-

ing more micro-ops through the pipeline) and

related side effects (micro-op queue pressure,

micro-op cache pressure) and possible cache

Figure 6. Execution time impact of CSD when implementing

secure cache obfuscation normalized to insecure execution

mode. The watchdog timer is set so that secure mode is reentered

every 500 ms.

May/June 2019 81



effects due to increased cache pressure from

decoy loads.

Figure 6 compares the execution time of our

pipeline without any optimization (NoOpt) and

with both micro-op cache and micro-op fusion

enabled (Opt). In these results, we see perfor-

mance loss consistently below 10% and averag-

ing 5.6% when secure mode is enabled.

To break down the performance overhead

of CSD, we further examine both the impact of

micro-op expansion and cache pressure. In these

experiments, CSD causes a micro-op expansion of

8.0% on average. Further, we see a very slight loss

in effectiveness of the micro-op cache (from 43%

hit rate to 42%). On the other hand, we see almost

no negative cache effects from the increased

number of loads—misses per instruction remain

nearly constant, meaning that overall hit rate has

increased due to the prefetching effect of con-

stantly bringing in the entire table. More detailed

performance results can be found2.

In these experiments, the watchdog timer

is set to 1000 cycles, so the decoy loads are

deployed at the first decoded tainted load or

branch encountered, then decoding returns to

normalmode until the timer fires again.

Selective Devectorization

Figure 7 shows the breakdown of energy for

regular decoding with (1) conventional power

gating and (2) our devectorizing mode using

CSD. Energy numbers are normalized to the

total energy of conventional power gating.

On average, dynamic devectorization results in

a 12.9% decrease in total energy consumption.

Figure 8 compares the execution time of

three different VPU power-gating polices:1)

Always execute on the vector units (Always On);

2) CSD which scalarizes the instructions in cer-

tain intervals; 3) Conventional power gating

(Power Gating); and 4) Always translate instruc-

tions to scalar micro-ops to execute on scalar

units (Always Off). The always-devectorize policy

and power gating both incur considerable per-

formance overheads (12% and 5%, on average

respectively) while CSD reduces this to only

1.6% overhead. Thus, it keeps performance close

to full vectorization even though the vector units

are turned off much of the time. The only excep-

tion is namd, where CSD is much faster than full

devectorization and conventional power gating,

but still incurs a high cost.

More detailed results2 show that for several

applicationswith low (but not nonexistent) levels

of vector activity, we are able to keep the vector

units off virtually all the time, and over all bench-

marks the vector units are powered down 70% of

the time. Some applications that we observe to

execute a significant number of vector instruc-

tions while in gated mode (e.g., bwaves and milc)

still see little performance overhead due to the

ability to execute the vector operations in scalar

mode while the unit powers up. However, with

namd, this happens too often, and the cost is

higher.

Overall, for CSD-enabled selective devectori-

zation, we find that we are able to power gate the

vector unit for longer, unbroken periods, result-

ing in good energy savings with a small perfor-

mance cost.

CONCLUSION
CSD enables the decoder to dynamically alter

the instruction stream. This allows the system

to change the functionality of the software with-

out programmer or compiler intervention. This

mechanism can enable any number of security,

Figure 8. Execution time for different power gating policies,

normalized to always on policy.

Figure 7. Total energy consumption of CSD’s devectorizing

mode normalized to that of power-gating.

Top Picks

82 IEEE Micro



performance, energy, or code analysis optimiza-

tions. In this paper, we demonstrate first

a dynamic cache obfuscation technique, with

minimal performance costs, that eliminates

data-dependent access to code or data from

being observed in the cache. Additionally, we

demonstrate dynamic devectorization, allowing

the vector units to power down in the face of

low utilization.

ACKNOWLEDGMENTS
This work was supported in part by NSF

under Grant CNS-1652925, in part by NSF/Intel

Foundational Microarchitecture Research Grant

CCF-1823444, and in part by DARPA under Agree-

ment HR0011-18-C-0020.

& REFERENCES

1. P. Kocher et al., “Spectre attacks: Exploiting speculative

execution,” arXiv, 1801.01203, 2018.

2. M. Taram, A. Venkat, and D. M. Tullsen, “Mobilizing the

micro-ops: Exploiting context sensitive decoding for

security and energy efficiency,” inProc. ACM/IEEE 45th

Annu. Int. Symp.Comput. Archit., 2018, pp. 624–637.

3. M. Taram, A. Venkat, and D. Tullsen, “Context-

sensitive fencing: Securing speculative execution via

microcode customization,” in Proc. 24th Int. Conf.

Archit. Support Program. Lang. Operating Syst., 2019,

pp. 395–410.

4. M. L. Corliss, E. C. Lewis, and A. Roth, “Dise:

A programmable macro engine for customizing

applications,” in Proc. 30th Annu. Int. Symp. Comput.

Archit, 2003, pp. 362–373.

5. Intel 64 and IA-32 Architectures Software Developer’s

Manual - Volume 3B, Intel Corp., Aug. 2011.

6. O. Aciiçmez, “Yet another microarchitectural attack:

Exploiting i-cache,” in Proc. 14th ACMWorkshop

Comput. Secur. Archit., 2007, pp. 11–18.

7. Y. Yarom and K. Falkner, “Flush+ reload: A high

resolution, low noise, l3 cache side-channel attack.”

in Proc. 23rd USENIX Security Symp., 2014,

pp. 719–732.

8. D. J. Bernstein, “Cache-timing attacks on AES,” Tech.

Rep., 2005, available at http://cr.yp.to/antiforgery/

cachetiming-20050414.pdf

9. M. A. Laurenzano, Y. Zhang, J. Chen, L. Tang, and

J. Mars, “Powerchop: Identifying and managing

non-critical units in hybrid processor architectures,”

in Proc. 43rd Int. Symp. Comput. Archit., 2016,

pp. 140–152.

10. R. Kumar, A. Mart�ınez, and A. Gonz�alez, “Efficient

power gating of simd accelerators through dynamic

selective devectorization in an hw/sw codesigned

environment,” ACM Trans. Archit. Code Optim.,

pp. 25:1–25:23, art no. 25, 2014.

Mohammadkazem Taram is currently a PhD

student in the Department of Computer Science and

Engineering , University of California San Diego. He

is interested in computer architecture, compilers,

and security. He has an MS in computer engineering

from Sharif University of Technology. Contact him at

mtaram@cs.ucsd.edu.

Ashish Venkat is an assistant professor in the

Department of Computer Science, University of

Virginia. His research interests are in computer archi-

tecture and compilers, especially in instruction set

design, processor microarchitecture, binary transla-

tion, code generation, and their intersection with

computer security and machine learning. He has a

PhD from the University of California San Diego. His

dissertation research has been successfully ported

and transferred to the Cloud Platforms division of

the IBM Haifa Research Lab. Contact him at

venkat@virginia.edu.

Dean Tullsen is professor and chair of the Depart-

ment of Computer Science and Engineering, University

of California. He works in the areas of computer archi-

tecture, compilers, and security. He has been awarded

the ISCA Influential Paper Award twice. He is a Fellow

of the IEEE, a Fellow of the ACM, and a past chair of

the IEEE Technical Committee on Computer Architec-

ture. Contact him at tullsen@cs.ucsd.edu.

May/June 2019 83


