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Abstract
Heterogeneous architectures have become increasingly common.

From co-packaging small and large cores, to GPUs alongside CPUs,

to general-purpose heterogeneous-ISA architectures with cores

implementing different ISAs. As diversity of execution cores grows,

predictive models become of paramount importance for scheduling

and resource allocation. In this paper, we investigate the capabilities

of performance predictors in a heterogeneous-ISA setting, as well as

the predictors’ effects on scheduler quality. We follow an unbiased

feature selection methodology to identify the optimal set of features

for this task, instead of pre-selecting features before training. We

propose metrics that bridge the gap between traditional prediction

accuracymetrics and a scheduler’s performance.We further present

our evaluationmethodology, whichwasmeticulously designedwith

this study in mind, and finally, we incorporate our findings in ML-

based schedulers and evaluate their sensitivity to the underlying

system’s level of heterogeneity.
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1 Introduction
Heterogeneous multicores employ cores that can vary in microar-

chitecture and even instruction set architectures, on the same pro-

cessor chip. These architectures allow a running application to dy-

namically migrate execution to the most suitable core, reacting to

phase changes and changes to the dynamic execution environment,

and further maximizing performance and energy efficiency. While

single-ISA heterogeneous multicores [1–4, 19, 21, 25, 26] offer cores

that vary in their microarchitectural configurations to cater to the

diverse execution characteristics (e.g., instruction-level parallelism,

cache access patterns, branch behavior, etc.) of mixed workloads,

heterogeneous-ISA architectures [5, 6, 9, 11, 18, 27, 34, 40, 41, 43],

capture an additional dimension of heterogeneity – ISA affinity –

the inherent preference of an application code region to execute

on a particular ISA. Multiple studies have shown that exploiting

ISA affinity coult result in significant (>30%) additional gains in

performance and energy efficiency.
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However, as the amount of on-chip heterogeneity increases,

intelligent scheduling becomes more crucial, since the potential

performance and power benefits arrive from smart job allocation. In

fact, subpar job allocation can waste resources and power. Proactive

schedulingmechanisms proposed in the literature rely on predictive

models to make active performance predictions for any code region

in execution, that can further assist in making appropriate job

allocation decisions [17, 38, 45]. The quality of these mechanisms

is often considered tied to their prediction accuracy.

State-of-the-art schedulers employ either analytical [14, 17, 32]

or statistical [8, 13, 45] (for example, machine learning) predictive

models that strive to make accurate performance predictions, and

thereby enable near-optimal scheduling decisions. In both cases,

predictions are derived using a mathematical equation (or model)

whose inputs are typically associated with weights that signify their

importance. Analytical models typically employ linear equations,

similar to those used by linear regression models. However, these

models rely heavily on domain expertise to identify correlations

between input features (e.g., instruction mix) and the prediction

target (e.g., performance), and consequently determine the appro-

priate set of feature weights. These models are typically confined to

use only a handful of features due to the exponentially increasing

complexity of identifying such correlations. Statistical models on

the other hand, are trained in software using sophisticated ma-

chine learning algorithms that can not only handle far more input

features, but can further adapt to non-linear correlations.

Recent technological advances have increased the availability

and popularity of machine learning algorithms and tools, leading

to an increased number of ML-based computer architecture propos-

als [8, 13, 44, 45] in recent years. Researchers have demonstrated

that predictive models can be deployed and used in modern compu-

tation environments, from heterogeneous CMPs to datacenters [14,

32]. However, scheduling for general-purpose heterogeneous-ISA
CMPs has not been extensively studied, despite significant opportu-

nity for greater performance and energy efficiency. This is in part

because, as core diversity increases, the problem of cross-core per-

formance prediction and subsequently the problem of optimal job

allocation grows more complex. In a homogeneous multicore archi-

tecture, a running thread is expected to have similar performance

when it executes on a different core. However, in a single-ISA het-

erogeneous multicore, the performance difference of the same code

region can be vastly different on different cores depending upon

the microarchitectural diversity. ISA heterogeneity adds an extra

degree of freedom, resulting in a more complex set of parameters

that could now potentially affect performance.

In this work, we find through quantitative evaluation that sched-

ulers present, in some cases, significant tolerance towards predic-

tion error. In particular, we identify the processor’s level of diversity

to be the most influential factor that dictates the level of prediction

error tolerance. We seek to quantify and better understand this

phenomenon by developing three key metrics: Alpha-IPC (αIPC),
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Ease-of-Scheduling (EoS), and Expected Scheduler Efficiency (ESE).

EoS and ESE are statistical metrics that allow us to deal with our

practically infinite set of heterogeneous(-ISA) multicore systems

our database can generate, while αIPC allows us to fairly compare

runtime progress of workloads compiled for different ISAs.

We utilize the simulation-based dataset developed by Venkat

and Tullsen. [43]. This dataset containts simulation results of 72

workloads, each one simulated on 600 different heterogeneous-ISA

cores. To the best of our knowledge, this is the most extensive

heterogeneous-ISA, cycle-accurate, simulation-based database in

the literature. In this paper, we apply a variety of machine learning

techniques to the problem of cross-core performance prediction,

where the target core potentially differs in terms of its CPUmicroar-

chitectural traits, cache organizations, ISA, inorder/out-of-order

execution semantics, vector support, and floating point support. The

inputs to our predictors consist of application-specific features (ob-

tained via profiling on a “reference” core), and target core-specific

features. The output of the model is a performance prediction for

the application and target core pair.

Our goal is to not just make effective predictions, but to gain par-

ticular insights about the salient features of predictive ML models,

the feature correlations (program characteristics, microarchitec-

tural measurements) that are picked up and amplified by the best

ML models, and those that are less important. We do this by deci-

phering (reverse-engineering) our most accurate predictive models.

This approach allows us to probe a fundamental question – to

what extent can machine learning models understand, analyze, and

project the execution of code on arbitrary processor hardware?

Due to the vast number of possible CMP combinations in our

database, we present a meticulously developed methodology utiliz-

ing statistical analyses and a variety of evaluation frameworks that

allow us to derive insights and statistical expectations regarding

prediction accuracy and scheduler efficiency.

The contributions of this work are:

• Establishment of three novel metrics for (1) tracking cross-

ISA program throughput, (2) quantifying a system’s hetero-

geneity level, and (3) translating prediction accuracy metrics

to expected system’s performance.

• Development of accurate ML-based cross-core performance

predictors, which are to the best of our knowledge, the first

predictors to cross general-purpose ISA boundaries.

• In-depth characterization and evaluation of ML-based per-

formance predictors, and presentation of insights extracted

from deciphering trained ML models that make generally

accurate performance predictions.

• Demonstration of an effective ML-based heterogeneous-ISA

job scheduler.

2 Background and Related Work
This work lies in the intersection of machine learning and com-

puter architecture: We seek to quantify the influence of predictive

models and their accuracy, on the final product; a scheduler for

heterogeneous-ISA architecture.

We explore three ML algorithms: (a) ridge regression [22] (RR)

which is a variant of linear regression [33], (b) decision trees [31]

(DT) that are capable of exploiting non-linear relationships by cre-

ating a binary decision tree with one condition on a single feature

in each node, (c) random forests [12] (RF) that create a collection

of decision trees during training and when queried for a predic-

tion, return the average response from all trees. To identify the

correlations picked up by our best models, we use two commonly

used exploration techniques: linear coefficient analysis, and feature

impurity analysis [30]. We further develop a new analysis for cate-

gorical microarchitectural features, named “Reverse Path Purity”.

We describe these techniques in more detail later in the paper.

Single-ISA heterogeneous architectures have been proposed by

Kumar et al. [25]. Besides a large body of research proposals, we al-

ready see processor manufacturers offering heterogeneous products

[15, 19, 24, 39]. There is a large body of research on scheduling and

resource management on single-ISA heterogeneous CMPs (such as

[17, 37, 38] and more). General-purpose Heterogeneous-ISA multi-

core architectures [18, 43] include microarchitecturally heteroge-

neous cores that implement different ISAs. Barabalace, et al. [9, 10]

propose Popcorn Linux, an operating system that allows running

shared memory applications on a general-purpose heterogeneous-

ISA system and further assists in execution migration between the

cores. Our work assumes similar software support. Furthermore,

exploiting heterogeneous-ISA architectures has been shown to im-

prove security against code-based attacks, such as Return-Oriented

Programming, by frequently switching ISAs [42].

Systems combining CPUs and GPUs (or accelerators) in the

same package are also examples of heterogeneous-ISA architectures.

Our work focuses on systems with general-purpose CPU cores

implementing ARM’s Thumb ISA[28], Alpha [16] and Intel’s x86-

64 [23]. Accelerator-based systems (including GPUs) are out of

the scope of this work, since the interaction between software

and hardware varies greatly between CPUs and GPUs. However,

various prediction-based mechanisms have been proposed for such

systems [29], often utilizing ML algorithms: Ardalani et al, propose

XAPP [7], an ensemble prediction mechanism, which given CPU

source code can predict whether this code would benefit from

porting to a particular GPU architecture. Hayashi et al. propose

a mechanism based on Support Vector Machines (SVM), which

predicts if a given code block should run on a CPU or a GPU for

better performance [20].

LACross [45] is a cross-platform scheduler that uses the LASSO

linear regression algorithm to predict a phase’s performance and

power consumption. LACross is evaluated on two heterogeneous

machines and enables efficient resource management. Chen et al.

[13] utilize Principal Component Analysis for dimensionality reduc-

tion and clustering of similar applications for scheduling purposes.

Scheduling on general-purpose heterogeneous-ISA CMP archi-

tectures has not been investigated to the same extent as single-ISA

or CPU-GPU heterogeneous architectures. Popcorn Linux imple-

ments a scheduler that relies on application instrumentation and

generates a mapping of application’s functions to cores [10].

3 Motivation
Schedulers clearly benefit from accurate performance predictions.

Depending on the system under test, trial and error scheduling

on a complex system (many threads, diverse cores) is (1) unlikely

to find the optimal schedule and (2) likely to sample many poor

schedules before finding good ones. A scheduler that can predict the

performance of any given application on any core can intelligently

distribute jobs for maximal throughput without the overhead of

sampling all possible permutations.

Intuitively, we expect that a system’s level of heterogeneity can

affect the difficulty of the scheduling problem. In other words, it

should be easier to create good schedulers for systems with lower
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diversity. In case of predictive schedulers (ML-based or otherwise),
prediction error should have a smaller impact on realizing efficient
schedules on less diverse systems. Although intuitive, to the best
of our knowledge, the impact of heterogeneity with respect to the
scheduling problem has not been quantified in the literature. Our
Ease-of-Scheduling (EoS) metric has been developed in response
to this ambiguity.

Regardless of the underlying system, all prediction units can
be characterized by their prediction accuracy, using the mean and
standard deviation of their prediction error. However, depending on
the amount of underlying heterogeneity, these metrics do not neces-
sarily provide an accurate image as to the expected performance of
the derived scheduler that uses this unit. Our Expected Scheduler

Efficiency (ESE) metric statistically quantifies how accurate a per-
formance predictor needs to be in order for the scheduler to lead to
high performance, given a system with some arbitrary scheduling
difficulty (a system with a given EoS).

Finally, we use αIPC to maintain fair performance comparison
between workloads compiled for different ISAs. Since the number
of dynamic instructions varies between ISAs, we measure execution
progress in Alpha Instructions Per Cycle. Our compilation frame-
work allows us to map regions of executables to their corresponding
regions in an Alpha executable, thereby enabling this metric.

3.1 Limitations in Prior Work

We identify some common limitations in prediction-based schedul-
ing proposals we aim to address with our methodology: Systems
under test are often predefined and do not change throughout each
proposal, without discussing if and how the proposed scheduler
adapts to other systems. A closely related, frequently-observed
drawback is the use of small datasets on which these predictors
are trained and evaluated. This is due to the difficulty in obtaining
large datasets, particularly if the data is accumulated via simu-
lations (slow). In studies where profiling is used, the hardware
cannot be significantly varied, so a large dataset would require tens
of thousands of benchmarks.

Several prior studies select one machine learning algorithm,
often a linear model, which according to our findings is not neces-
sarily the best option for most cases. Discussion of other available
algorithms and how well they perform in the presented use cases
is often omitted. Aside from the limited exploration of available
algorithms, researchers often pre-select the input features of their
models. This selection tends to reflect the collective knowledge of
this field and includes variables that have been identified in the past
to track dynamic characteristics. However, with modern execution
environments we are able to collect significantly more measure-
ments, especially if simulations are used. Furthermore, even though
feature selection often requires significant skill and time investment,
some ML algorithms are particularly good at filtering features and
internally discarding those that have no impact on the final predic-
tion. Finally, ML-based studies that show high prediction accuracy
do not explore the machine’s “reasoning” when making decisions.
We seek to understand what these models consider important when
predicting an application’s performance on a core.

In this work, we address drawbacks commonly found in prior
work: To address the issue of small datasets we simulate 72 work-
loads on 600 different cores each, for a total database size of 43200
entries. The cores we include span 3 different ISAs: Thumb, Al-
pha, and Intel’s x86. The large heterogeneous-ISA core collection

Figure 1. Ease of Scheduling analysis
is shown to result in predictive models that generalize and adapt to
a variety of underlying systems without modification. We explore
thousands of configurations of each ML algorithm (different opti-
mizations, input sets etc) and identify the optimal models. For the
majority of this work, we do not attempt to pre-select the desired
features, instead we allow the ML models to use them all as they see
fit. Once our models are trained and report acceptable prediction
accuracy, we seek to understand how these accurate predictions
are achieved. We use an in-house scheduler evaluation framework
to describe the relation between ML metrics (such as mean error,
standard deviation etc) and the efficiency of ML-based schedulers.
We demonstrate that when we use ML models as the predictive
unit of a scheduler, isolated ML metrics do not necessarily reflect
the scheduler’s quality.

3.2 Ease of Scheduling (EoS)

We measure EoS by evaluating a system that uses a random sched-
uler. Workloads are run to completion and when execution com-
pletes, we compare the obtained mean αIPC against the mean αIPC
the same system reports using a “monte-carlo optimal scheduler”.
The closer the random scheduler scores compared to optimal, the
easier it is to schedule for the system under test. Higher scores
mean easier systems.

To minimize noise caused by random decisions, we execute each
experiment 300 times, with 200 workloads scheduled per execution
and report mean performance. The workloads are randomly chosen
before the experiment begins and remain constant throughout the

entire experiment, for all 300 runs on each of the 7500 systems under
test. We ignore cross-core migration overhead since our predictive
models don’t yet consider cross-ISA binary translation and state
transformation costs, which can significantly vary with different
application characteristics and different target ISAs. More details
on our experimental methodology are presented later in Section 4.

With 200 workloads, the problem of finding a globally optimal
schedule is practically infeasible. The number of possible schedules
for a 4-core system is 270 digits long. We define optimal perfor-
mance for each system, as themaximum observed performance from
all our EoS and ESE experiments. Combined, we compare almost
14 thousand scheduling options on all systems, while scheduling
the same 200 workloads appearing in the same order. Throughout
the experiment, we use a random scheduler, as well as schedulers
based on predictors of varied statistical accuracy, in terms of their
Mean Absolute Error and Standard Deviation.

Figure 1 presents our EoS analysis on 7500 randomly chosen
heterogeneous-ISA multicore systems. More accurately, we present
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Figure 2. Scheduler efficiency on Easy (E), Medium (M) and Hard (H) 4-, 8-, and 16-core systems.

results on 2500 randomly chosen 4-, 8-, and 16-core systems. Our
results highlight the impact of various factors on a system’s EoS.
First, we observe that the number of cores appears to have an im-
pact, regardless of the system’s level of heterogeneity, with each
cluster hitting a lower EoS ceiling than the previous one. We also
observe significant intra-cluster diversity for all clusters. Our re-
sults show that the most difficult systems to schedule resemble a
Cell-like heterogeneous-ISA architecture. For example, the most
difficult (lowest EoS) 8-core system, contains one high-end x86
core, two medium cores (1 Alpha, 1 x86) and five low-performance,
microarchitecturally heterogeneous Thumb cores. Such systems ap-
pear to be very unforgiving towards prediction error since there are
statistically, limited options that provide optimal or near-optimal
performance, each time the scheduler is invoked to make a deci-
sion. The easiest systems tend to have more balanced (in terms of
performance) cores. Our easiest 16 core system for example, has
three high-end x86 cores, while all others are medium performance
Alpha, Thumb, or x86.

We use EoS to select benchmark systems for the remainder of this
paper. Due to space restrictions, we cannot present all architectural
details for each core in the system, unless we limit our study to a
very small number of systems. In this work, we consider benchmark
systems, characterized by their EoS instead of their architectural
traits. Specifically, we use three 4-core, three 8-core, and three 16-
core benchmark systems. For each category we use the easiest,
medium, and most difficult system. With our benchmark systems
ranging from maximum to minimum EoS, and from 4 to 16 cores,
we cover a wide range of heterogeneous-ISA multicore systems.

3.3 Expected Scheduler Efficiency (ESE)

ESE is defined as the ratio of average system αIPC over the aver-
age αIPC of an optimal scheduler, given a predictor characterized
by some mean prediction error and standard deviation (of predic-
tion error) values. We find that more accurate predictions do not
necessarily translate into more efficient schedulers. Instead, the sys-
tem’s EoS can have a significant impact, as well as the predictor’s
accuracy uniformity (standard deviation of prediction error).

In this experiment, we evaluate a typical predictor-based sched-
uler on each of our 9 benchmark systems. We perform a sweep over
possible predictive units by varying Mean Absolute Error (MAE)
values from 0 (very accurate) to 1.5 (high prediction error) αIPC
and we use three different standard deviation (STD) values (low,
medium, high). Prediction error is randomly drawn from a normal
distribution characterized by MAE and STD, and applied on the
real (oracularly obtained from cycle-accurate simulations) αIPC

values. The assumed scheduler receives predictions and decides on
a greedily optimal schedule that maximizes overall αIPC . We negate
absolute error values (since we use MAE), based on the outcome of
a fair coin flip before we add it to true performance. Once again,
we perform 300 runs with 200 workloads scheduled in each run to
measure average αIPC for each data point.

Figure 2 presents our ESE evaluation results. We label each of
our benchmark systems using ’E’ (for Easy), ’M’ (Medium), and ’H’
(Hard), followed by the number of cores. For example, “M16” is a
16-core system of medium scheduling difficulty as identified by our
EoS analysis. We also include the EoS value of each system in our
results. We first observe that standard deviation demonstrates equal
or even higher impact on ESE thanMAE. Increased system difficulty
further exacerbates this effect. For example, the H4 system’s ESE
drops by up to 17% within the MAE range, but by 19% within
the STD range. We further observe that even in the presence of
predictors with very high accuracy and uniformity, the system itself
dictates how efficient the final scheduler can be, with statistical
drops over optimal scheduling of 8%, 13%, and 16% for our 16-core
(E,M,H respectively) benchmark systems. On the other hand, the
easier a system is, the more immune it becomes to prediction error,
with ESE lines not varying much as MAE increases.

Lastly, we find that all our systems demonstrate a significant
error tolerance slack: We observe no more than a 2% ESE drop for
MAE values under 0.3 and STD=0.2 across all systems. Furthermore,
as STD increases, MAE slack also increases, since the predictor
is closer to random and eventually plateaus to a low expected
efficiency. Beyond the system’s EoS level, it is worth noting that
even with 100% accurate predictions, a greedy scheduler (locally
optimal decisions, no knowledge of the future) cannot guarantee
optimal scheduling.

In conclusion, based on our results, and assuming full and ex-
tended system utilization, we argue that ESE analyses can unveil
tradeoffs during the design phase of future heterogeneous-ISA CMP
systems. It is possible that system peak performance can be traded
off in order to ensure more uniformity during execution, as well as
cost savings on scheduler development. Both EoS and ESE metrics
are computationally easy and cost effective exploratory tools.

4 Experimental Framework

This study requires a diverse set of evaluation frameworks. First,
to train and evaluate machine learning models, we develop an in-
house ML suite which allows us to explore a variety of ML models
in depth. Second, to assess the capabilities of trained ML models
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Figure 3. Experimental Framework overview

when used within schedulers, we implement a runtime scheduler

framework that makes greedily optimal decisions periodically.

We use the simulation-based dataset collected during the design-

space exploration published by Venkat et al. [43]. Figure 3 presents

a high-level overview of our experimental framework, including

the toolchain flow for creating the dataset. Our frameworks allow

us to efficiently explore the interaction between ML models and

multi-ISA software and hardware.

4.1 Machine Learning Suite
The Machine Learning aspect of this work is a multi-dimensional

problem. On one hand, we seek to explore the behavior of various

ML algorithms, with each having its own set of parameters that

could potentially improve its accuracy if set at proper values. On

the other hand, we work with a significantly large set of features,

on which we need to have fine grain control across experiments.

For example, we want to have the ability to study how each ML

algorithm reacts if we stop providing cache-related features (capac-

ity, number of hits and misses, etc), branch misprediction statistics,

etc. Our ML suite supports all our requirements and ensures a fair

comparison across all the ML models explored in this work. At its

core, our ML suite utilizes the sklearn Python library [36].

The ML suite supports a variety of boolean flags for enabling

and disabling feature groups (e.g. cache information) at the model’s

input, as well as ML optimizations (data scaling and whitening).

Table 1 presents an overview of all available flags. Besides control

over the input and optimizations, we also have the ability to select

which ML algorithm will be used and what kind of training will be

performed (i.e. how our database will be split into train and test

sets - discussed in Section 6).

Once the parameters are populated with the desired values, our

suite includes functions to train, test and score each model. Due to

the multiple control options in our study, each machine learning

algorithm we explore can have 1024 different configurations (10

boolean flags). Tree-based algorithms have 5120 flavors because of

the tree depth variable.

4.2 Scheduler Framework
We developed an event-driven scheduler framework, in order to

compare predictors, when used within schedulers. When studying

ML-based schedulers, our framework is directly linked to the ML

suite presented earlier. The model-under-test is first restored and

trained. Once it is ready, our scheduler queries the ML suite to

retrieve predictions when necessary. Non-ML-based schedulers

such as oracular and random, are implemented directly in our

framework.

Flag  Description 
Scale  Performs data scaling 
Whiten  Performs data whitening 
RefCore  Reference core selection (1‐600) 
KeepRAW  Keeps features with raw values (e.g. INT_R) 
KeepPower  Keeps profiled dynamic power features 
KeepL1  Keeps L1 cache features 
KeepL2  Keeps L2 cache features 
Target  Sets the prediction target (typically, aIPC) 

KeepRefTarget  Keeps the profiled target (aIPC) value 
KeepFI  Keeps Fetch/Issue rate measurements 

TreeDepth  Used with tree‐based algorithms 

  Table 1. Configuration flags description (ML Suite)

To compare predictors, we first configure the target system by

selecting cores from our database using their unique identifier. We

then select and if necessary, train the predictor, before scheduling

begins. We designed our scheduler to mimic an execution scenario

where workloads appear one at a time as soon as an in-flight work-

load finishes. In other words, at any given time, the number of

in-flight workloads equals the number of cores in our system. Our

scheduler’s goal is to greedily (no knowledge of future workloads)

schedule these workloads in order to achieve the maximum sum of

αIPC across all cores, according to the αIPC predictions it receives.

Once a schedule has been identified, workloads are migrated to

their new cores and resume execution.

In this work, we assume that all our workloads have been profiled

on one reference core, which is not necessarily part of the under-

lying system. Our ML models are trained to provide “one-to-all”

predictions. In other words they extrapolate application behavior

on the reference core, to the target core. During evaluation we

provide our models with a choice of two medium-performance ref-

erence cores, one Alpha and one x86, and we allow them to select

one to be used in future experiments. Our methodology can be

adapted to use one or more of the system’s cores as reference, as

well as train more specialized predictors for each pair of underly-

ing cores. We choose to use one predefined reference core for two

reasons: (1) we can better study the generality of our models in

a one-to-all prediction setting, and (2) training more specialized,

pairwise predictors would require severely reducing our dataset

(to only include two cores instead of 600).

5 Database Description and Data Optimizations
This section describes the database we use throughout this work

and our data splitting methodology. Table 2 lists all the workloads

(benchmark phases – 100M instructions each) in our database. Ta-

ble 3 presents the configurations of the cores in our dataset. A

justification is presented on why these particular configurations

are chosen out of a vast set of possible – but often unrealistic –

microarchitectural options, in the original proposal [43].

Each database entry consists of 48 features. Of those, 30 are

workload characteristics obtained via gem5-based profiling. The

remaining 18 characterize cores and are statically available features.

We refer to these two sections of our database as the “workload”

and “core” sections.

5.1 Workload and Core Sections:
Dynamic workload features can vary according to the core they

execute on; for example, instruction count will be constant within
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 Benchmark  # of Phases 

bzip2  9 

gcc  8 

gobmk  8 

hmmer  5 

lbm  1 

libquantum  7 

mcf  9 

milc  9 

sjeng  7 

sphinx  9 

Design Parameter  Design choices 

ISA  Thumb, Alpha, x86‐64 

Execution Semantics  In‐order, Out‐of‐Order 

Branch Predictor  Local, Tournament 

Reorder Buffer ‐ Register File 
(ROB ‐ Int. regs ‐ FP regs) 

64‐96‐64, 128‐160‐96 

Issue Width ‐ Functional Units 
 

(Width ‐ Int. ALUs ‐ Int. mult ‐ 
FP ALUs ‐ FP mult ‐ SIMD) 

1‐1‐1‐1‐1‐1 
1‐3‐2‐2‐2‐2 
2‐3‐2‐2‐2‐2 
4‐3‐2‐2‐2‐2 
4‐6‐2‐4‐2‐4 

Load Store Queue Sizes  16, 32 entries 

Cache Hierarchy 
 

(L1 ‐ L2 ‐ L3) 
32K/4  32KB, 4‐way 

32K/4 ‐ 32K/4 ‐ 4M/4 
32K/4 ‐ 32L/4 ‐ 8M/8 
64K/4 ‐ 64K/4 ‐ 4M/4 
64K/4 ‐ 64K/4 ‐ 8M/8 

Table 2. Breakdown of workloads in our database.

 

 Benchmark  # of Phases 

bzip2  9 

gcc  8 

gobmk  8 

hmmer  5 

lbm  1 

libquantum  7 

mcf  9 

milc  9 

sjeng  7 

sphinx  9 

Design Parameter  Design choices 

ISA  Thumb, Alpha, x86‐64 

Execution Semantics  In‐order, Out‐of‐Order 

Branch Predictor  Local, Tournament 

Reorder Buffer ‐ Register File 
(ROB ‐ Int. regs ‐ FP regs) 

64‐96‐64, 128‐160‐96 

Issue Width ‐ Functional Units 
 

(Width ‐ Int. ALUs ‐ Int. mult ‐ 
FP ALUs ‐ FP mult ‐ SIMD) 

1‐1‐1‐1‐1‐1 
1‐3‐2‐2‐2‐2 
2‐3‐2‐2‐2‐2 
4‐3‐2‐2‐2‐2 
4‐6‐2‐4‐2‐4 

Load Store Queue Sizes  16, 32 entries 

Cache Hierarchy 
 

(L1 ‐ L2 ‐ L3) 
32K/4  32KB, 4‐way 

32K/4 ‐ 32K/4 ‐ 4M/4 
32K/4 ‐ 32K/4 ‐ 8M/8 
64K/4 ‐ 64K/4 ‐ 4M/4 
64K/4 ‐ 64K/4 ‐ 8M/8 

Table 3. Description of core configuration points.

an ISA, but different across ISAs, while cache misses will vary

by core features and ISA. Table 4 presents a breakdown of these

features, grouped for brevity.

We characterize each core using 18 features. Each feature is

collected from the core’s microarchitectural specifications and is

available from the manufacturer. Table 5 presents all the core fea-

tures in our database. Some of our features are categorical, without

an intrinsic order, for example a core’s ISA. In other words, they

cannot be ordered from best to worse, smallest to largest etc. Such

features are a problem when used with certain ML models. “1-hot

encoding” is a commonly used technique that provides a simple

solution to this problem. Ordinal features such as cache sizes do

not present this problem.

5.2 Data Splitting
Our decision to use benchmark phases as workloads complicates

how we split our database into train and test sets for correct evalu-

ation. If we follow the commonly used ratio split method (database

entries randomly assigned to either train or test set), we introduce

information leakage between the two sets: if some workload A,

runs on CPUs 1 and 2, these two database entries should not be

split across train and test sets, because the trained predictor would

have full information about workload A when making predictions.

Similarly, workload A and workload B, on any pair of CPUs, where

A and B are different phases of the same benchmark, should also

not be split across train and test, because the phases may actually

share some code, and certainly share the dataset.

We use our ML suite to study both these problems: When using

random data split, we observe excellent prediction accuracy (0.006

MAE) over the (supposedly) unseen test set, which is of course a

Feature Names (grouped)  Description 

APPID  Unique workload identifier.  
Never used for testing or training 

INT_R, FP_SIMD_R, BR_R, 
LOAD_R, STORE_R 

Dynamic count of five instruction types: 
Int, fp or simd, branch, load, store 

INT_N, FP_SIMD_N, 
BR_N, LOAD_N, STORE_N  Normalized dynamic instruction count 

OPS  Total number of operations. Varies across ISAs 
<TYPE>_HITS_R, 
<TYPE>_MISS_R, 
<TYPE>_MISS_N 

Raw count of hits and misses, and miss ratio. 
TYPE=$I (I‐cache), $D (D‐cache), L1 ($I & $D), L2. 

Total of 12 features in this group.  
FETCH, ISSUE  Dynamic fetch and issue rates 

REF_IPC  Performance measurement (in aIPC) 
MISSPRED  Branch missprediction rate 

D_PROC_PWR, 
D_CORE_PWR 

Dynamic processor and core power consumption 
(McPat) 

  Table 4. Dynamically-collected feature groups in our database.

consequence of this particular splitting approach and not a repre-

sentative result. When we assign all 9 phases of themcf benchmark

as our test set (all other benchmarks in train set), we measure 0.48

MAE, which is quite high. Moving just one mcf phase from test to

train, MAE immediately drops to 0.16.

A better way to split data in such cases is to use a cross validation

technique named Leave-One-Group-Out (LOGO) [35]. Following

the LOGO strategy, one group is assigned as the test set, while all

other groups form the train set. For correct evaluation under this

technique, training and testing are performed in a loop, with each

group assigned as the test set at least once.

To solve the information leakage problem caused by our work-

load definition and increase the generality of our evaluation, we

define LOGO groups as entire benchmarks, with all their phases,

including runs on all core types. Training and testing is performed

over all groups for each ML model and we measure MAE across

all iterations. We use single-benchmark LOGO for this exploratory

phase of our work.

6 Deciphering ML Models
6.1 ML Model comparison
We perform a brute-force exploration over the space generated by

our configuration flags (Table 1), to identify the best variation for

each of our three algorithms.

We rank the topmodels based on their prediction accuracy (Mean

Absolute Error) over the test set. To study the impact of the refer-

ence core’s ISA, we use a mid-range Alpha as well as its equivalent

x86 core as reference cores (an equivalent core is one where the mi-

croarchitecture features are constant, only ISA-specific differences).

Our test sets still contain cores from all 3 ISAs, so regardless of the

reference core chosen, all our models make αIPC predictions for all

other cores in our database. Our ML framework allows us to pick

any of the 600 cores as the reference core.

Table 6 presents our evaluation results as well as the configura-

tion of each model. we present MAE, and STD results of each model

when queried on their train set entries (all previously seen data), in

addition to showing results when queried with the test set. Without

loss of generality, we can expect any scheduler to occasionally be

confronted with the same applications, possibly even similar in-

puts – querying with train set entries gives an upper bound to the

quality of the predictions when a new workload closely matches a

previously seen one.

On the configuration side, the top models have some interesting

disagreements. First, an Alpha reference core is preferred by the
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Feature Names   Description 

CPUID  Unique core identifier.  
Never used for testing or training. 

ISA (THUMB, ALPHA, X86)  Core’s ISA. Categorical feature. 
SEMANTICS (IO, OOO)  In‐order or Out‐of‐Order. Categorical feature. 

BR_PRED (LOCAL, TMNT)  Core’s branch predictor, local or tournament. 
Categorical feature. 

WIDTH  Core’s width 
ROBSIZE  Reorder buffer size 

INTREGS, FPREGS  Number of int and fp registers 
LSQSIZE  Load‐Store Queue size 

L1SIZE, L2SIZE  Cache sizes for L1 (kB) and L2 (LLC, MB) 
INTALUS, FPALUS  Number of int and fp ALUs 

INTMULTDIV, FPMULTDIV  Number of int and fp multiply‐divide units 
SIMD  Number of SIMD units 
AREA  Core’s area (McPat) 

PEAKPOWER  Core’s peak power (McPat) 

  Table 5. Statically-collected core features in our database.

RR model, while the tree-based models prefer the x86 core. For

comparison, the equivalent RR model that uses the x86 reference

core, reports 5.4x higher prediction error over the test set and the

most accurate RR model that uses the x86 reference core shows 13%

lower prediction accuracy compared to the top RR model. Second,

our three models also disagree on whether to keep dynamic power

consumption measurements, with only the RF model utilizing this

information. Third, the RR model scales its input features and drops

all raw measurements (very high values) in an attempt to keep all

its feature values roughly in the same range which is a common

optimization for linear models. Finally, the only features kept by the

RRmodel in addition to normalized dynamic instruction breakdown

(cannot be turned off by any model) are L1 cache and reference

target features (profiled αIPC on reference core). We later explore

which of these features our models consider important and how

much weight they are assigned on the final prediction.

Interestingly, the DT model chooses to ignore L1 cache features

and the αIPC measurement from the reference core and instead

works with raw values, measured fetch and issue rates, and L2 cache

features. No optimizations are applied since theDT algorithm shines

at internally dealing with messy data. The RF model keeps the

highest number of features, but ignores all cache information. It also

chooses to whiten its features. This is because keeping correlated

features reduces the variance between the forest’s trees and as a

result reduces prediction accuracy. For comparison, the equivalent

RF model without whitening reports a 6% higher MAE.

All three of our models enjoy a very large training dataset, due

to the LOGO splitting technique. Such a dataset is not unreasonable

in a production-level scheduler, given periodical re-training with

newly observed workloads. However, we later (Section 8) show that

the RR model is much more sensitive to reduction of the train set

size, whereas tree-based models remain within error tolerance.

6.2 Linear Coefficients (LC) Analysis
The linear coefficients analysis can be applied to linear models and

gives us an understanding of how it internally utilizes its input

variables. During training, Ridge (linear) Regression algorithms

generate an equation of the form: αIPC =
∑n
i=1 ci fi where n is the

number of features, and ci is the coefficient associated with the fea-

ture fi . Features with higher absolute coefficient values have more

impact on the final prediction than those with lower coefficient

values. The linear coefficient analysis simply sorts each feature

based on its significance. However, features with extremely high

measurement values compared to the rest of the input can still

have significant impact even with lower coefficients. Since our top

RR model applies the scaling optimization, we know that all our

features have the same mean value of zero, and standard deviation

of one. This allows us to simply sort the coefficients themselves in

order to understand each feature’s significance.

Our results presented in Figure 4(a) reveal that this linear model

assigns extremely high weight on the hardware characteristics of

the target core. We only present features that have normalized

weight of at least 1%. Interestingly, this model assigns significant

weight on the type of branch predictor of the target core (LOCAL

or TMNT). It also assigns some weight to the target’s ISA, as well

as its number of functional units, and execution semantics (IO or

OOO). When we look at the collection of hardware features that

are considered important, it appears that this model is attempting

to quantify the computational capacity of its target core. Such an

approach is reasonable since this model is only allowed to draw a

straight αIPC prediction line. Its best bet is to predict performance

based on the overall computational capacity offered by the core.

If instead it tried to predict based on dynamic workload measure-

ments or even a combination of the two, the relationship is likely to

be non-linear. We notice that even though the profiled αIPC from

the reference core is part of this model’s input (refer to Table 6), it is

assigned a weight less than 1% – in other words it is an insignificant

part of the prediction equation derived by our most accurate RR

model. Finally, we observe that this model picks one dynamic (pro-

filed) feature and assigns it a small weight – the number of dynamic

instruction cache misses, which confirms the fact that instruction

cache misses, although infrequent, can have a substantial impact

on overall performance.

6.3 Mean Decrease of Impurity (MDI) Analysis
Feature impurity analysis is performed on tree-based models. We

apply it on our top random forest, since a collection of decision

trees gives us a broader view of the feature space. During tree

construction, these algorithms create decision nodes with each

node being a “less than X” condition on a single feature, where X

is typically a real number.

Similarly to linear models gradually adjusting feature weights

to minimize prediction error, decision node conditions are cho-

sen such that they minimize the “impurity” of the two subtrees

generated by that node. Since we are using regression models (not

classifiers), the impurity measurement is defined as the variance

between all final responses (predictions) of each subtree. During

training, we can compute how much each feature decreases the

weighted impurity in a tree (e.g. how narrow it makes the subtree’s

prediction range). Since our RF model performs data whitening, we

avoid a shortcoming of this analysis, where the presence of highly

correlated features gives the appearance of lower importance (be-

cause correlated features can be used interchangeably at decision

nodes).

Figure 4(b) presents our impurity analysis results. Similarly to

Figure 4(a), we only plot the features with at least 1% of normalized

importance. Since we study a collection of predictors, we are also

able to plot standard deviation lines showing how each feature is

ranked amongst all trees.

The RF model assigns high significance to fewer features than

the RR model (8 vs 15). We also observe that this collection of

features seems more reasonable for performance predictions. For
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Model  Configuration of best model after full space exploration

  Scale  Whiten  RefCore  keepRAW  keepPower keepL1 keepL2 keepRefTarget keepFI  TreeDepth  # of Trees
RR      Alpha          ‐‐  ‐‐
DT      x86          12  ‐‐
RF      x86          11  10

  Accuracy  ESE evaluation on benchmark systems on test set
  MAE  STD  E4  E8  E16 M4 M8 M16 H4  H8  H16

RR  0.23  0.3  0.95  0.90  0.90 0.94 0.91 0.81 0.92  0.91  0.79
DT  0.22  0.35  0.95  0.89  0.89 0.94 0.91 0.80 0.91  0.90  0.78
RF  0.19  0.31  0.96  0.90  0.90 0.95 0.92 0.81 0.93  0.91  0.80

  Accuracy  ESE evaluation on benchmark systems on train set
RR  0.21  0.26  0.96  0.90  0.90 0.95 0.92 0.82 0.93  0.92  0.80
DT  0.07  0.04  0.96  0.95  0.95 0.97 0.94 0.93 0.99  0.92  0.86
RF  0.03  0.04  0.95  0.94  0.91 0.96 0.90 0.93 0.99  0.91  0.87

Model  Test Set  Train Set  Configuration of best model after full space exploration

  MAE  STD  MAE  STD  Scale  Whiten 
Ref 
Core 

Keep 
RAW 

Keep 
Power 

Keep 
L1 

Keep 
L2 

Keep 
Ref. Target 

Keep 
FI 

Tree 
Depth 

#Trees 

RR  0.23  0.3  0.21  0.26      Alpha       ‐‐  ‐‐ 
DT  0.22  0.35  0.07  0.04      x86       12  ‐‐ 
RF  0.19  0.31  0.03  0.04      x86       11  10 

Table 6. Comparison of top ML Models
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Figure 4. Normalized feature importance from three different analysis techniques. Refer to tables 4 and 5 for a description of our keywords.

LC analysis performed on top RR model. MDI performed on top RF model. RPP performed on near-oracular DT predictor.

example, if we focus on their average importance, the profiled αIPC
is considered the most influential feature, followed very closely by

the target core’s static peak power (not to be confused with the

workload’s profiled dynamic power consumption).

Peak power is a very good proxy for the peak performance of

the target core – power consumption is a major factor for any com-

mercial core produced, so manufacturers are typically not willing

to increase their product’s peak power consumption unless it offers

significant gains in performance.

Interestingly, we observe significant difference in the amount

of deviation in the top two features. While all trees consider peak

power equally important (predict based on target core), the impor-

tance of the profiled αIPC varies significantly amongst trees. This

partially explains the surprising decision of the linear model pre-

sented earlier to not use any of these measurements. Even though

this feature combination is meaningful and according to our results

successful, their relationship towards the prediction target is non

linear (we verify this phenomenon by visualizing all our database

entries). Random forests on the other hand are able to exploit this

non-linear relationship by having only a small set of trees using

profiled αIPC while the remaining trees use other measures to

minimize the overall prediction error, and at the same time use the

peak power feature in all trees. Clearly, this feature combination is

very strong given the excellent prediction accuracy of this model

on the train set.

We further observe an architectural feature overlap between the

RF and RR models – the target core’s instruction width and ISA

(all with relatively low importance but also short deviation lines).

Notice that when a decision tree path asks the two ISA questions

sequentially, it is able to differentiate between all three of our ISAs,

unlike the linear model which ends up with less information. In-

struction width and ISA are among the top features in our best DT

model as well (MDI analysis results not shown), showing a strong

consensus among all types of predictors on the usefulness of these

variables. With the ISA variable playing such an important role,

it is clear that prediction techniques focused on single-ISA het-

erogeneous datasets cannot predict accurately when applications

cross ISAs. To the best of our knowledge, we are the first to design

predictors that remain accurate across general-purpose ISAs.

We finally observe that this model also focuses on profiled fea-

tures such as the profiled number of ops (very high deviation), issue,

and fetch rates. It stands to reason that fetch and issue rates hint

towards the workload’s parallelism levels which eventually affect

its performance. The amplitude of this effect depends on the target

core’s characteristics, which are also queried by our RF model.

6.4 Reverse Path Purity (RPP) Analysis
Consider a decision tree model which has near-perfect prediction

accuracy. This model is essentially a collection of paths that start

at the root node and end on leaf (decision) nodes. Each path asks

a sequence of questions that “filter” the input query. Intuitively, if

we observe that some categorical feature X which has N possible

values gets cleanly separated amongst the tree’s paths, then we can

argue that the given model deemed important to always “know”

the exact value of X before making a prediction. In this experiment

we refer to tree paths as pure, if and only if they can be traversed

by exactly one value of some categorical feature. Paths that are

shared by two or more values are referred to as impure.

It is challenging to measure path purity by simply traversing all

paths and reading their questions, because some features can be

extrapolated by questions on other features. For example, our tree

can ask “Is the target ISA Thumb?”, or it can ask “Is there floating

point support on the target core?”. We devise this experiment to

overcome the possibly unpredictable combination of questions that

can lead to a single feature value, and it allows us to measure path

purity for all features that have a finite number of values.

We begin by creating a near-perfect predictor. We achieve this

by training our best DT model using the entirety of our dataset

(everything is in the train set). This leads to minimal MAE and

STD (both are measured below 0.02). Of course the actual accuracy

measurements are irrelevant to this study, but we now know that

we have a predictor that successfully converted our entire dataset

to 2117 (measured) distinct paths of up to 12 questions each.

In order to measure path purity, we first pick the categorical

featurewe seek to study. For this walkthrough example, let’s assume
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we pick the ISA feature. Then, we query this model for a prediction

for each row of our dataset. We maintain a map between leaf node

ID and a count of different ISA values that reached it; by definition

exactly one path can reach one leaf node. Those nodes that only

counted a single ISA value are pure, while all others (with 2 or 3

values) are not. Clearly, if the model internally fully separates ISAs

to different paths, it is of paramount importance (to the model) to

“know” which ISA it’s predicting for, leading us to the conclusion

that ISA is an important feature. If on the other hand, some other

feature is shared in most paths, then – regardless of the features

implicit weight – this accurate model cares less about extracting

the exact value, thus the feature is of lower importance.

We plot our findings in Figure 4(c). We see that a near-perfect

model separates the target core’s ISA and width almost entirely

(97% and 95% of the paths are pure respectively). Execution se-

mantics (inorder/OoO) follow with 89% path purity. The majority

of our core-describing features lies between 80% and 60%, while

cache sizes and the number of integer ALUs are below 50% (the

majority of their paths are impure). This experiment proves that

ISA, width, and execution semantics are of paramount importance

when predicting performance for heterogeneous-ISA systems. This

finding is in agreement with our insights derived in the previous

two experiments, however we now have a clear image of just how

important these features are. The reason previous experiments do

not show higher weights on some of the features (e.g., the ISA) is

because they can often be extrapolated via other features.

7 Predictor Overhead Comparison
This section presents an overhead comparison for our three models.

We perform the following experiments on a system with an i7 core

running at 2.9GHz and 16 GB of memory. We use the algorithm

implementations found in sklearn [36].

First, we vary the dataset size and train each model 100 times to

report average training overhead. All algorithms are measured to

have linear algorithmic complexities for training, however RR has

the lowest slope of 1.4, followed by DT (14.3) and RF (92.7). Training

times for a dataset of 30k entries are 21ms, 203ms and 1.4s for RR,

DT, and RF respectively. Training overhead has little significance

in choosing a model, since it happens infrequently. For extremely

large datasets however, RF’s overhead might become prohibitive.

To measure query overhead, we ask each trained model for 55k

predictions and report the average time per prediction. Query over-

heads for RR, DT and RF are 24ns, 29ns, and 667ns respectively.

Query overhead is an important metric, since predictions can be

part of the critical path, especially in the context of job scheduling.

RR and DT are comparable, however RF is significantly slower.

Our deciphering methodologies presented in Section 6 identify

which dynamic measurement each model requires. Dynamic mea-

surements require HW support, specifically on-chip counters. We

find that the RR model requires one counter (# instruction cache

misses) and the DTmodel needs 4 counters (# ops, # L2 cachemisses,

# load instructions and # of branch instructions). Finally, the RF

model requires 5 counters (profiled αIPC , issue and fetch rates, #

ops and # loads). We note that most modern cores already feature

these performance counters.

Finally, we measure the memory overhead of each model. Linear

models only need to store their coefficients’ values. Tree-based

models must store a condition value and a feature identifier for

each node. We assume that all condition and coefficient values
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Figure 5. Scheduler performance comparison.

require 64 bits and the number of features defines the number

of bits necessary to represent them. We finally assume that our

models only keep the features with high (> 1%) importance. The RR

model needs 960 bits, the DT model 276kB, and the RF model 1.5MB.

Overall, RF is very expensive compared to the others. Although

it does provide high accuracy, the predictions do not necessarily

translate to a significant gain in scheduler efficiency. Decision trees

are larger than RR, but not prohibitively large, and just slightly

slower in predictions/training. They are also more accurate and a

little more efficient as schedulers.

8 Scheduler Evaluation
This section materializes our insights derived in the exploratory

part of this work. Specifically, we train our most accurate RR, DT,

and RF models using only the features we identify as important in

Section 6. Each model is then linked to a scheduler that receives

a prediction matrix and derives a greedily optimal schedule to

maximize performance. Using this scheduler framework, we run

200 workloads to completion on each of our 9 benchmark multicore

systems identified in Section 3.2.We compare our schedulers against

a greedy oracular scheduler that consistently makes 100% accurate

performance “predictions” on every probe.

We no longer use the LOGO data splitting approach to measure

the overall scheduler efficiency. Instead, we increase the size of the

test set and reduce the size of the training set, by assigning four

randomly chosen benchmarks (instead of one) to be our test set.

While this could potentially result in reduced predictor quality in

terms of MAE and STD, it enables a larger selection of previously

unseenworkloads allowing us to exploremore realistic computation

environments.

For this experiment, we randomly select input workloads that

create a mix of 50% unseen (from test set) and 50% previously seen

workloads (from train set), resembling a typical IaaS (Infrastructure-

as-a-Service) environment (e.g., Amazon’s EC2) – some users use

EC2 instances to run the same application every time (such as a

web server), while others execute a more diverse mix of workloads

(software development and testing).

8.1 Performance Analysis
Figure 5 presents our results normalized to the average performance

under the optimal scheduler that emits a schedule resulting in the

maximum-achievable overall throughput. We first observe that the

RF-based scheduler has an advantage compared to the other ML-

based schedulers. However, the much cheaper DT-based scheduler

scores very close, across all systems. Compared to RF, DT reports a

2.8% average performance reduction (6.2% max reduction), while

it outperforms RF on the E8 system by 1.2%. We further observe

that our RF scheduler is within 2.2-11.2% (7.5% on average) from

an oracular scheduler, and DT within 1.6-16.8% (10% average).
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Our RR-based scheduler shows significantly reduced perfor-

mance. The reduced training set size affects our top RR predictor’s

accuracy significantly enough to move it past the error tolerance

zones we identify in our ESE analysis. While the (test set) accuracy

of all our models drops due to the reduced training data set, RR is

affected the most, with its MAE doubling and STD increasing by

almost 3x. For comparison, tree-based models only experience 6%

MAE and STD degradation. Furthermore, tree-based prediction ac-

curacy on the training set is slightly better (by 1%), which provides

a significant advantage over RR in this experiment. RR remains

roughly within the same levels of accuracy on the training set.

8.2 Sensitivity to Underlying System
Figure 5 allows us to study the sensitivity of each scheduler as

the underlying difficulty increases. We observe that our tree-based

schedulers are affected by the transition from 4 to 8 cores at a higher

degree compared to the oracular scheduler, but their performance

remains almost intact by the transition from 8 to 16 cores. The

oracular scheduler is affected by both transitions, however with a

smaller impact. The RR scheduler is affected by all transitions as

well except on the easy systems. Our results show the tree-based

schedulers to provide roughly equal performance in all 8 and 16

core systems, essentially overcoming the increase of scheduling

difficulty.

9 Conclusions
With heterogeneity becoming more and more available in mod-

ern systems, predictive models enjoy increased attention from the

scientific community for applications in scheduling, power manage-

ment, resource management, resource allocation and more. In this

work we first present an exhaustive exploration and analysis of the

abilities of ML models to act as performance predictors. Our results

reveal that accuracy metrics typically used in ML works do not

necessarily translate to computer architecture applications such

as scheduling in a predictable fashion. Furthermore, we reverse-

engineer trained ML models and conclude on which measurements

are necessary for accurate predictions. We finally materialize our

insights in three ML-based schedulers for heterogeneous-ISA sys-

tems and demonstrate their effectiveness on systems of varying

scheduling difficulty.
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