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Abstract—Personal exposure to heightened levels of fine air-
borne Particulate Matter (PM) has been linked to numerous
adverse health effects in sensitive groups. However, researchers
investigating these correlations are struggling to find spatio-
temporal datasets sufficient for study. Current airborne PM mon-
itoring solutions are highly accurate, but expensive. Therefore
they are not feasible candidates for spatially dense deployments,
and cannot be used to analyze the effects of exposure to pollution
microclimates. In this work, we present a low-cost pollution
monitoring station that operates as a single node in a wireless
network. Each node periodically collects airborne pollution and
supporting meteorological data and uploads measurements to
a central, open-source database. A total of 50 nodes were
deployed across a large metropolitan area (roughly 100 km2)
over a six-month campaign. Experimental results show good
correlation (R2 = 0.88) between devices co-located with the
Federal Equivalent Methods, which have accuracy traceable to
the National Institute of Standards and Technology. By applying
linear corrections derived from in situ field measurements to
each PM sensor, we were able to demonstrate a 1.8× decrease
in root-mean-squared error over the raw measurements.

Index Terms—IoT, Low-Cost Pollution Monitoring, Particulate
Matter, PM2.5, Wireless Sensor Network

I. INTRODUCTION

ACCORDING to the World Health Organization (WHO),
more than 80% of people living in urban areas are

exposed to air quality levels that exceed the WHO limit [1].
These airborne Particulate Matter (PM) concentrations, most
notably PM smaller than 2.5µm in diameter (PM2.5), have been
linked to numerous adverse health effects, such as increased
incidents of cardiac arrhythmia, asthma, lung cancer, heart
disease, and mortality [2], [3], [4], [5]. The WHO estimates
that in 2012 approximately 3.7 million people died as a result
of exposure to ambient air pollution [6].

The profound link between airborne PM2.5 exposure and
personal health deterioration has led researchers to thoroughly
investigate ambient air pollution, especially in the form of
urban microclimates. Current analyses of urban air pollu-
tion primarily rely on measurements from highly accurate
air quality monitoring stations (AQMs) [7]. These standard-
ized sources produce reliable measurements, but have several
drawbacks: 1) AQMs are typically large or bulky, and in
some cases require high-voltage power or peripherals such as
heating/cooling, and 2) AQMs can be prohibitively expensive
to deploy and maintain. These drawbacks can severely limit

the number of installations in a given metropolitan region,
and as a result current AQM solutions alone are incapable of
producing the resolution required to evaluate the fine-grained
formation and propagation of ambient airborne pollution in
urban environments [8]. Introducing low-cost pollution sensor
networks into these regions can help interpolate the spatial
gaps between contiguous AQMs, and ultimately offer insight
into the spatial and temporal diversity of airborne pollution
[9].

Increased accessibility of cheap, yet powerful WiFi-enabled
Microcontroller Units (MCUs) have given rise to many low-
cost pollution monitoring platforms [10] [11]. The implemen-
tation of such solutions have since seen a great response
from the community, further expanding the market and al-
lowing many institutions and small, non-profit organizations
to successfully target specific applications, such as personal
exposure or large-scale monitoring networks [12] [13]. A
popular and successful technique for dissemination of these
low-cost sensor networks is through community engagement
[14]. Residents can host a device at little to no cost to them,
which greatly reduces the burden from the research groups
and ultimately allows for the successful deployment of these
large-scale networks. However, there are several challenges
presented by relying on such networks for research-grade
data. First is the issue of maintenance and upkeep of the
devices. While WiFi-enabled embedded systems have proven
to be reliable, they can be far from intuitive to troubleshoot,
due to the lack of a user interface and standardized tools.
As a result the researchers must ensure a quick and clear
line of communication with the hosts to keep the networks
functioning properly. The second, and more predominant
issue, is the quality of data the integrated low-cost sensors
produce. Device-level variations during production can lead
to non-uniform correlations with the reliable AQMs, making
interpretation of data a particular challenge.

In this paper, we propose a low-cost pollution monitoring
station that operates as a single node in an interconnected
large-scale sensor network, to which it contributes a tempo-
rally dense dataset of air pollution concentrations and support-
ing meteorological data.

More specifically, we make the following major contribu-
tions in this paper:

• We propose a novel, low-cost embedded platform, re-
ferred to hereon as the AirU Pollution Monitor, or
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AirU, that measures ambient PM1, PM2.5, and PM10
(airborne particulate matter with diameter less than 1µm,
2.5µm, and 10µm respectively) concentrations (measured
in µg/m3), temperature, relative humidity, light intensity,
carbon monoxide, nitrogen oxide, and is equipped with
a battery-assisted real-time clock, a Global Positioning
System (GPS), and a micro-SD card.

• We demonstrate the usability of the AirU through a
deployment campaign of 50 AirUs across the Salt Lake
Valley, spanning November 1, 2018 to April 30, 2019.
This time period was chosen to coincide with elevated
airborne pollution due to winter inversions. These devices
are hosted by volunteers in the local community. They
collect air quality and meteorological data and period-
ically upload it to our server, where it is stored in a
database and made available to the public.

• We verify the quality of the data by analyzing a subset
of AirUs co-located with the high-quality Department of
Air Quality (DAQ) references. Results of the deployment
show that the AirU Pollution Monitors correlate well
with their co-located Federal Equivalent Method (FEM,
discussed in Section II) (R2 = 0.88), and an error
improvement of 1.84× of the calibrated data over the
uncalibrated data.

The remainder of this paper is organized as follows: Section
II discusses the issues of large-scale, real-time data acquisition,
as well as the current state of low-cost IoT sensor networks.
Section III covers the design of the AirU Pollution Monitor
and network, Section IV discusses calibration of the various
sensors, Section V describes the field experiments conducted,
and discusses the results of the aforementioned experiments.
Finally Section VI concludes the work presented here.

II. BACKGROUND

In this section we discuss the current state of air quality
monitoring. We discuss the study region (Salt Lake City, UT)
and the current pollution monitoring techniques used by the
region. We then describe state-of-the-art low-cost alternatives
to the current pollution monitoring techniques.

A. Air Quality Monitors in the Study Region

In this work, we compare measurements from the AirU net-
work against a type of Air Quality Monitor (AQM) with very
high accuracy and tight tolerance, known as a Federal Equiv-
alent Method (FEM). The Environmental Protection Agency
(EPA) defines an FEM as “a method of sampling and analyzing
the ambient air for an air pollutant that has been designated
as an equivalent method” [15]. The EPA requirements for a
commercial particle counter to be classified as an FEM are
stringent and rigorous. FEMs must be manufactured in an ISO
9001-registered facility, and all FEMs must be tested and meet
the requirements for comparability to a Federal Reference
Method (FRM) [16]. FRM data is referred to as the “gold
standard” of the ambient pollution (PM1, PM2.5, and PM10)
concentrations, and is a 24-hour integrated sample collected
from the ambient air and analyzed gravimetrically [16]. There
are two FEMs in the Salt Lake Valley, where this research

was conducted, located at the two DAQ sites (Hawthorne
Elementary School, and Rose Park Elementary School), which
we refer to throughout the study when analyzing the integrity
of the AirU network measurements. Both FEM Pollution
Monitors are ThermoFisher 5030i SHARP Monitors, which
use a combination of light-scattering nephelometry and beta
attenuation technology to produce PM measurements. We will
refer to these two FEMs as DAQ: Hawthorne and DAQ: Rose
Park throughout this paper.

B. Salt Lake County as a Test Bed

Salt Lake County, Utah, periodically experiences some of
the worst air quality in the United States [17]. The area is
surrounded by mountains, and undergoes heavy atmospheric
inversions during the winter months. This has the effect of
trapping the pollution on the valley floor for days or weeks
at a time, and prompting concern of personal exposure health
risks in the community. The Greater Salt Lake area also has a
variety of geographical and urban factors, such as a large lake
and suburban, industrial, and dense metropolitan regions that
impact pollution microclimates.

Salt Lake City

Hawthorne

Rose Park

5.16 miles

Fig. 1: The locations of the two FEMs maintained by the Department
of Air Quality in the immediate Salt Lake Valley.

Figure 1 shows the location of the two FEMs located in
the Salt Lake Valley, which are separated by a distance of
over 5 miles. The elevation change between the two stations
is less than 100 feet, and the path between them does not
intersect any interesting geographical or urban features, such
as downtown Salt Lake City. Figure 2 shows a sample of
hourly measurements taken by the two stations during one
of the more predominant periods of heightened ambient PM
levels in the valley. A short analysis of Figure 2 shows large
measurement disparities between the two locations, as well
as abrupt temporal fluctuations. In some cases, measurements
differ by as much as 27 µg/m3, which lends proof to the
existence of urban microclimates at these sources. The EPA
defines PM2.5 as harmful to human health if a daily average
exceeds 35 µg/m3 [18]. Figure 2 demonstrates that an indi-
vidual’s personal exposure risk may then be misclassified if
they are not located near one of the FEMs. To this end, there is
a need for interpolated data between the high-quality stations
to more accurately represent airborne pollution events. These
factors make the Salt Lake Valley an ideal test bed for the
initial deployment of the AirU Pollution Monitoring Network.
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Fig. 2: PM2.5 concentrations for the two DAQ FEM PM monitors
located at Hawthorne Elementary School and Salt Lake Center for
Science Education (Rose Park), during an elevated pollution event in
the Salt Lake Valley. Note that measurements can differ by up to 27
µg/m3. R2 = 0.635

C. Existing Low-Cost Pollution Monitoring Strategies and
Networks

Low-cost alternatives to the highly complex AQMs have
been proposed, and demonstrate low variability, high correla-
tion, and good repeatability with the high-quality AQMs [19].
For example, Mead et al. demonstrate a low-cost network of
sensors containing carbon monoxide (CO), nitrogen monoxide
(NO), and nitrogen dioxide (NO2) measurement instruments
that show low-noise and high-linearity results, as well as low
gain attenuation after a 12-month period [20]. Bell et al. show
that spatially heterogeneous ambient pollution levels may arise
from regional PM sources, therefore resulting in a misclassi-
fication of personal exposure levels [21]. The group investi-
gated the spatial relationship of PM2.5 chemical constituent
concentrations for the period 1999 to 2007 for 480 monitors
in the United States for seven chemical constituents of PM2.5
and found an inverse relationship between sensor distance and
measurement correlation. Zikova et al. recently showed that
low-cost particle counters correlate well with one another, and
are useful in proving heterogeneity in regional PM levels [22].
A network of 25 sensors was deployed in Rochester, New
York for two seasons during the winter months of October-
April. The sensor network could be used to identify high-
concentration areas or provide very detailed monitoring within
a smaller area. Hu et al. have demonstrated the use of low-
cost mobile monitors paired with smartphones to crowd-source
urban air pollution from the community in order to more
accurately estimate personal air pollution inhalation dosage
[13]. Many groups have also demonstrated the feasibility
of custom purpose-built network nodes at driving down the
price point while retaining the accuracy of previous low-cost
monitoring studies. Ali et al. demonstrate a General Packet
Radio Service-enabled sensor network of mobile sensors that
relay CO, NO2, and sulfur dioxide (SO2) measurements, along
with GPS location and time stamp, to a central server [23]. The
online interface makes it easy for users to access and view the
data. Vineeth et al. demonstrate a mobile monitoring system
that can monitor vehicular pollution in real-time along with the

information about the area being monitored.[24]. The group
show that the low-cost mobile device is capable of detailed
analysis of ambient pollution constituents, such as PM and
CO. The device secures the data by sending measurements to
a central server via WiFi.

There also exist a number of commercially available low-
cost pollution monitoring solutions, such as Dylos and Pur-
pleAir. Dylos sensors are marketed as indoor pollution moni-
tors to help track personal exposure inside one’s home. Real-
time data can be viewed via a web browser, or directly from the
monitor itself. The approach of PurpleAir involves connecting
WiFi-enabled pollution monitors to the exterior of residential
homes to track outdoor pollution levels. PurpleAir has been
selling network-connected pollution monitors in northern Utah
for several years and have approximately 100 sensors currently
deployed in the Salt Lake Valley. The data collected by the
sensors is hosted on a database open to the public.

The aforementioned systems have helped to make substan-
tial advancements in the field of urban pollution research, but
fail to address all the issues to make a low-cost pollution
monitoring network a feasible device for data collection,
such as individual sensor calibration and verification prior
to deployment, use of only low-cost components, a small,
lightweight form-factor, and ease-of-use.

Our specific criteria for a feasible low-cost pollution monitor
are as follows: 1) the device must incorporate a low-cost,
calibrated PM sensor, 2) temperature and humidity sensor, 3)
wireless connectivity, 4) small, lightweight, attractive form-
factor, and 5) ease of deployment and maintenance. Due to
the incomplete design criteria of previous work and the need
for spatially and temporally dense urban pollution datasets,
this paper presents a low-cost pollution monitor that acts as
a single node in a sensor network and fits the above criteria.
Accuracy and validity of the acquired data is ensured by testing
every particle sensor in a laboratory setting and assigning a
unique linear correction to the raw PM data. In addition, every
AirU is equipped with temperature and humidity sensors,
due to the relationship between elevated humidity and PM
measurements [25]. While Salt Lake City has consistently low
humidity and is therefore not affected by this relationship,
the inclusion of these sensors allows the AirU to operate in
many different environments in future deployments. Using the
Salt Lake Valley as a test bed, we have added to the existing
infrastructure of approximately 100 wireless sensor nodes set
in place by PurpleAir.

III. DESIGN CONSIDERATIONS OF THE AIRU POLLUTION
MONITOR

In this section we discuss the rationale into the hardware
and software design of the AirU Pollution Monitor and the
AirU network. We discuss the on-board hardware/sensors, data
transport and retention protocol, server/database architecture,
electrical characteristics, cost, and storage capabilities.

A. General Design Considerations of the AirU Pollution Mon-
itor

We first formalize the requirements for an AirU Pollution
Monitor. A device must contain: 1) a low-cost particle counter
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Fig. 3: System diagram of a single AirU node and the proposed interconnected network.

(<$20), 2) temperature and humidity sensors, 3) WiFi con-
nectivity, and 4) ease of deployment and maintenance. An
optical light-scattering particle counter was chosen because
they are a popular option for measuring PM concentrations
at micron/sub-micron diameters in real-time, and are readily
available at a low price point [26], [27]. The AirU network
was targeted as a large-scale urban deployment, so WiFi
communication was the most practical solution, as opposed to
a radio frequency (RF) protocol such as LoRa or Zigbee. WiFi-
enabled MCUs are much less expensive than these alternative
RF solutions, and almost every household has a wireless access
point. A new device can be easily connected to a network
in minutes, and a robust set of protocols keeps the device
connected to the Internet and pushing data as long as the host
maintains a valid home network connection. Figure 3 shows
the proposed system diagram for a single AirU device and its
wireless connection in the AirU network.

Every AirU is given a unique serial number, denoted as
SAxxx. We will consistently use this notation to refer to the
AirU monitors for the remainder of this text.

B. AirU Pollution Monitor Hardware Design

G.TOP GPS Module

HDC1080 Temperature 
and Humdity Sensor

Plantower PMS3003
Particle Counter

TI CC3200 
Wireless MCU

Fig. 4: AirU Pollution Monitor with relevant hardware labeled.

Figure 4 shows the block diagram containing the relevant
sensors on the AirU Pollution Monitor. The PM sensor is the
Plantower PMS3003. The PMS3003 samples at roughly 1Hz,
and categorizes measurements into three bins: PM1, PM2.5,
and PM10. The sensor uses a photodiode and photosensor pair
and the light-scattering principle to obtain particle counts, and

translates these into µg/m3 concentrations. The data is trans-
ferred via the Universal Asynchronous Receiver/Transmitter
(UART) protocol to the host MCU. Every sample from the
PMS3003 for the current acquisition period (typically one
minute) is aggregated, and single averages for PM1, PM2.5,
and PM10 are sent in a packet during the upload stage.

The temperature and humidity sensor is a Texas Instruments
HDC1080. It is a low power, high accuracy digital sensor that
communicates via an Inter-Integrated Circuit (I2C) interface.
The HDC1080 was calibrated to help correct manufacturer
variability, and is discussed further in Section IV-C. Raw
measurements are uploaded to the database during the upload
stage, and the linear correction is provided online separately.
The on-board humidity sensor was also calibrated to account
for device-level fluctuations of the sensors.

A GPS module was incorporated into the system to allow for
mobile acquisition, as well as to remove the burden from the
host of manually entering the global position of the device.
The GPS also provides elevation of the device, a crucial
component to consider when evaluating atmospheric inversion
climates, such as Salt Lake County. The GPS module on
the AirU Pollution Monitor is the G.TOP FGPMMOPA6H,
which is capable of measuring speed and velocity as well as
spatial location. The G.TOP FGPMMOPA6H also includes
a real-time clock (RTC) and backup battery connection, so
the current time and ephemeral GPS data will not be lost
if the AirU device loses power. The GPS module can keep
time for up to four years on battery power from the 3V
coin cell battery and RTC. Standardized packets containing
time and GPS measurements, and known as National Marine
Electronics Association (NMEA) sentences, are transmitted via
UART to the AirU MCU at a frequency of roughly 1Hz.

The AirU Pollution Monitor incorporates several other hard-
ware devices to assist in the study and acquisition of the PM
data. A 4GB micro-SD card is included in the AirU monitor,
and can store roughly one year of data. All packets uploaded
to the online database are also stored on the micro-SD card. In
the event that the AirU monitor becomes disconnected from
the host WiFi network the data will continue to be logged,
and when the device regains an Internet connection the logged
data is uploaded to the database. This procedure is described
in depth in III-D. The station also includes an ambient light
sensor and a SGX SensorTech MiCS-4514 carbon monoxide
and nitrogen oxide sensor. The use of the gas and ambient
light sensors is out of the scope of this work, and will not
be discussed here. The MCU used by the AirU is the Texas
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Instruments CC3200 Wireless MCU with ARM Cortex-M4.

C. Network Considerations

Locally gathered data is transferred via the MQTT protocol
from the AirU device to the server, where the Mosquitto
MQTT Broker is maintained. MQTT was chosen as the
communication protocol because it is an extremely lightweight
messaging protocol and offers simple machine-to-machine
communications through a centralized node (the MQTT Bro-
ker) through a standard Internet connection. AirU devices
periodically send data packets, which contain the device’s
MAC address, Coordinated Universal Time (UTC) time, global
coordinates in decimal-degrees, temperature, humidity, PM1,
PM2.5, PM10, and number of seconds since the last system re-
boot. This data is then transferred via Telegraf to an InfluxDB
database, where it is made publicly available. Data stored on
the InfluxDB instance can easily be retrieved at any time
using the command-line InfluxDB tool, via the Chronograf
web interface, or the InfluxDB library written for JavaScript,
C#, Java, Python, and many other languages.

The MQTT communication structure is advantageous in
that it allows clients (the AirU devices) to subscribe to, and
listen to, an arbitrary number of topics. This provides a simple
and efficient way to communicate with multiple AirU devices
at once in order to update and maintain separate firmware
versions. The simple messaging protocol also allows us to
include a number of helpful remote debugging tools, such as
instigating file (HTML and firmware patches) downloads from
the secure server.

The CC3200 MCU hosts an internal HTTP server, which
is the primary method for the user to communicate with the
device. The user can access a web page hosted on the AirU,
allowing them to connect the device to their local network,
and view some settings such as MAC address and local IP
address.

The AirU Pollution Monitor is designed to be an all-
inclusive airborne particulate monitor, and therefore includes
several sensors that have not yet been calibrated and im-
plemented into the system. Since new features and sensor
corrections are constantly being applied to the system, we
have enabled the platform with over-the-air firmware updates
capabilities. The binaries are hosted on a secure server, and
a simple MQTT message allows a device to download a new
binary from the server and execute it, without any interaction
from the AirU’s host.

D. Offline Data Upload Procedure

The inclusion of a GPS module, RTC, and micro-SD
card allows the AirU to collect pollution data while offline,
and upload this data when the device regains an Internet
connection. A file is maintained on the micro-SD card which
tracks the Internet connectivity status of the AirU. When
the device regains an Internet connection, a software task
is triggered. The task first retrieves the timestamp that the
device lost connectivity, then sends the corresponding data
files to the server via HTTP. Each data file stored on the
micro-SD card contains pollution measurements for a 24-hour

period, in 1-minute increments, with the filename YYYY-MM-
DD.csv (year-month-day). The task iteratively uploads each
daily data file contained in the down-time period. In the event
that the AirU loses Internet connectivity multiple times a
day, some duplicate data will be sent to the server. This is
done intentionally to keep the constrained AirU from using
resources to parse these data files, and instead we put this
load onto the server. The AirU devices are currently limited
to two uploads a day to minimize the traffic.

The server hosts an HTTP route dedicated to receiving and
handling these incoming data files from the AirU devices.
When a CSV file is received, each row of data is compared
against the database and inserted if missing. In this way
duplicate data points are discarded and the database maintains
a data point for every minute the AirU is powered on.

This functionality also allows the AirUs to operate as
mobile pollution monitors with no additional requirements.
The AirU can be powered through a 5V battery pack and is
not constrained to a WiFi access point. The on-board GPS will
track the location of the device, and when the AirU regains
an Internet connection, the offline data will be uploaded.

E. Power, Cost, and Storage Characteristics

Here, we describe the electrical characteristics of the AirU
Pollution Monitor, which is of particular interest when the
AirU is used as a mobile station. Power measurements de-
scribed here were derived from samples taken at 1 KHz
and averaged over a 60-second duration. Measurements were
acquired using a Rigol DP832 programmable power supply
and Fluke 117 multimeter. The AirU is powered by a 5V
supply, and draws 108 mA while fully active. While in a
light-sleep state (CC3200 asleep, sensors disabled), the AirU
draws 2 mA. After a wake-up event, the PMS3003 particle
counter takes 10 seconds to calibrate before it produces valid
measurements. For a standard 60-second sampling period, the
AirU spends 40 seconds in light-sleep, 10 seconds calibrating,
and 10 seconds collecting measurements. The temperature and
humidity sensors only require several milliseconds to calibrate
after becoming active. The average power consumption of the
AirU for a 60-second period is then:

P = [2mA ∗ 40s

60s
+ 108mA ∗ 20s

60s
] ∗ 5V = 187mW (1)

Additionally, an AirU costs less than $200 for hardware,
fabrication, assembly, and housing. The AirU contains a 4GB
micro-SD card, on which it stores the collected air quality and
meteorological data. Every data packet is less than 250 bytes.
For a standard 60-second sampling period, this results in over
30 years of potential data storage. The large micro-SD was
chosen because the AirU is capable of sampling periods as
low as two seconds, and logs a number of different messages
and statistics from the device onto the micro-SD card.

IV. CALIBRATION OF AIRU ON-BOARD SENSORS

Due to the innate manufacturing variability of the sensors
on the AirU Pollution Monitors, a calibration of the on-board
sensors was performed in order to reduce measurement error.
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A generic linear calibration was derived via an in situ field
calibration technique in order to properly calibrate the sensors
to the correct aerosol makeup of the Salt Lake airshed.

A. Calibration Methodology

A subset of eight AirU monitors were deployed at the DAQ
sites in the Salt Lake Valley (four co-located with DAQ:
Hawthorne, four co-located with DAQ: Rose Park) over a
deployment campaign ranging from November 1, 2018 to
April 30, 2019 (six months). During this time, the AirU
monitors collected PM2.5, temperature, and humidity at one-
minute intervals. The data was aggregated into one-hour
averages in order to properly align with the one-hour FEM
sampling rates, and then compared against the FEMs. FEM
data was downloaded directly from the DAQ database and
was used without any alterations or filtering. To derive a
PM2.5 calibration, a subset of co-located sensors were used to
train simple linear regression models, while the remaining co-
located sensors were to used for verification of the model. Over
the six-month period, we did not see a significant change in the
gain and offset calibration parameters, and therefore believe a
single linear calibration is sufficient to properly characterize
the sensor measurements.

Results of the calibration are demonstrated using Bland-
Altman plots, also known as mean-difference plots. The x-
axis is the mean of the two measurement techniques, while
the y-axis is the difference between the two measurement
techniques. More concisely, the Cartesian coordinates of a
given sample S are given by:

S(x, y) =

(
S1 + S2

2
, S1 − S2

)
(2)

where S1 and S2 refer to samples from the two measurement
techniques. When plotted, these points give insight to the
relationship between the two methods that is not made clear
with a scatter plot and correlation alone [28]. Three horizontal
lines are drawn on the plot: the mean-difference, and upper
and lower limits-of-acceptance (LoA). The mean-difference,
denoted d̄, is the average of the difference between the two
methods:

d̄ =
1

N

N∑
n=0

(x̂n − xn) (3)

where N is the number of samples, x̂ is the predicted value
(FEM measurements), and x is the dependent variable (AirU
measurements). The LoAs, also known as the 95% LoAs,
are approximately two standard deviations on either side of
the mean-difference, and help define the amount that the two
methods may disagree.

The root-mean-squared error (RMSE) is a popular error
metric for comparing two methods, and is used frequently
throughout this text. RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
n=0

(x̂n − xn)2 (4)

where N is the total number of samples, x̂ is the predicted
value, and x is the dependent variable.

B. Calibration of Plantower PMS3003 PM Sensor
A dataset of over two million PM measurements was used

to derive a generic linear calibration. The AirU datasets were
first cleaned by removing outliers greater than 1000 µg/m3.
Values that exceeded this threshold were removed because
they have been attributed to malfunctioning particle counters,
due to debris in the chamber or a loose wire powering the
PMS3003 fan and laser [30]. These measurements were then
averaged into hourly measurements to coincide with the hourly
measurements from the DAQ PM sensors (ThermoFisher
5030i SHARP Monitor at both Hawthorne and Rose Park
sites). Three PMS3003 particle counters from each DAQ site
(six sensors total) were randomly chosen for the training
datasets. AirU sensors located at the DAQ Hawthorne site
were SA127, SA008, and SA137. AirU sensors located at the
DAQ Rose Park site were SA079, SA072, and SA134. Linear
least-squares regressions were fitted to each training sensor,
using measurements from the ThermoFisher 5030i SHARP
Monitor located at each DAQ site as the FEM reference. Table
I shows the gain and offset calculated for each of these sensors.
The gains and offsets were averaged, as shown in Table I, to
produce a generic linear calibration, which was then verified
against the remaining two test sensors, one sensor located at
each DAQ site.

TABLE I: PM2.5 gain and offset from linear least-squares regression
for the training sensors located at the DAQ sites.

DAQ: Hawthorne DAQ: Rose Park

SA008 SA127 SA137 SA072 SA079 SA134 Mean

Gain 1.89 1.22 1.43 1.47 1.67 1.61 1.55
Offset -4.03 -2.96 -3.17 -3.91 -4.53 -4.02 -3.77

The results of this calibration procedure are shown in Table
II, and supplemented by the Bland-Altman plots shown in
Figure 5. We first note that all the PMS3003 sensors showed
high correlation with the corresponding DAQ references, as
shown in Table II, as well as very high correlation amongst
themselves, as shown in Figure 9. The test sensors (SA016,
SA131) saw 1.77× and 1.84× reductions in RMSE after
calibration, respectively. The calibration also greatly tightened
the 95% LoA for both test sensors, which demonstrates that the
calibration successfully reduced the spread of measurements,
especially at high PM concentrations. This can be seen by the
decrease in the 95% LoA metrics in Table II, as well as the
calibrated 95% LoA lines in Figure 5.

C. Calibration of the Texas Instruments HDC1080 Tempera-
ture & Humidity Sensor

Similar data processing was done to perform calibrations of
the temperature and humidity sensors. Two AirU temperature
sensors from each DAQ site (four sensors total) were randomly
chosen for the training datasets. AirU sensors located at the
DAQ Hawthorne site were SA127 and SA016. AirU sensors
located at the DAQ Rose Park site were SA079 and SA072.
Linear least-squares regressions were fitted to each training
sensor, using measurements from the MET One 597A Tem-
perature Sensor located at each DAQ site as the reference. The
humidity sensors were calibrated in an identical fashion.
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TABLE II: PMS3003 in situ field calibration statistics for PM2.5 measurements.

The applied calibration equation was the inverse of the equation derived in Table I: y−1 = 0.65x+ 2.43. This equation was applied to each sensor
measurement. Bland-Altman Plots were created for the raw and calibrated datasets for each sensor and compared against the corresponding DAQ FEM
dataset. Mean-difference and Limits-of-Agreement were extracted from the plots and are presented in this table. We also present the root-mean-squared

error, derived from the PMS3003 and FEM.

Metric (µg/m3) SA016 SA131 SA127 SA008 SA137 SA079 SA072 SA134

Correlation (R2) 0.85 0.90 0.85 0.87 0.87 0.90 0.87 0.87

RMSE (Raw) 7.91 6.41 5.95 10.77 6.87 7.68 6.89 8.02
RMSE (Cal) 4.46 3.49 4.07 5.59 3.95 3.85 3.90 4.27

95% LoA (Raw) 15.79 12.80 11.64 20.79 13.75 15.30 13.78 15.97
95% LoA (Cal) 8.92 6.89 7.85 10.75 7.90 7.70 7.73 8.54

Mean Diff (Raw) -0.49 0.38 1.26 -2.82 -0.13 -0.63 0.27 -0.73
Mean Diff (Cal) -0.03 0.56 1.09 -1.53 0.20 -0.09 0.48 -0.16

Fig. 5: Bland-Altman plots for PM test sensors SA016, located at
DAQ: Hawthorne, and SA131, located at DAQ: Rose Park. Both
test sensors saw a large reduction in measurement spread at high
PM2.5 concentrations, as well as tightening of the LoA bounds, after
calibration.

Tables III and IV show the gain and offset calculated
for each of these sensors, for temperature and humidity,
respectively. The gains and offsets were averaged (also shown
in Tables III and IV) to produce a generic linear calibration,
which was then verified against the remaining two test sensors,
one sensor located at each DAQ site.

TABLE III: HDC1080 temperature sensor calibration coefficients.
Sensors were co-located at the DAQ sites, inside the AirU enclosures.

DAQ: Hawthorne DAQ: Rose Park

SA016 SA127 SA072 SA079 Mean

Gain 0.99 1.07 0.89 0.97 0.98
Offset 10.50 10.85 12.62 11.64 11.4

TABLE IV: HDC1080 humidity sensor calibration coefficients.
Sensors were co-located at the DAQ sites, inside the AirU enclosures.

DAQ: Hawthorne DAQ: Rose Park

SA016 SA127 SA072 SA079 Mean

Gain 1.03 0.97 1.02 1.27 1.07
Offset 25.89 28.56 28.88 15.04 24.59

The results of these calibrations are shown in Table V, and
supplemented by the Bland-Altman Plots shown in Figure 6.
From Table V and Figure 6, we see that the application of
a generic linear calibration to the temperature sensors was
very successful. The test sensors (SA008, SA134) saw 2.2×
and 3.3× reduction, respectively, in RMSE. We also note
that the one-sided measurement error was largely corrected,
which can be seen by the reduction in the mean difference.

The HDC1080 temperature sensors are very noisy, which can
be seen in the large spread in Figure 6, and unfortunately
cannot be controlled with linear calibration alone. However,
all the co-located temperature sensors have a high correlation
(R2 > 0.85) with the corresponding DAQ sensors. By looking
at the linear calibration (y = 0.98+11.4), we see that most of
the discrepancy can be attributed to the sensor drift, meaning
the measurements are affected mostly by a constant offset.
We believe this is largely due to the plastic enclosure, which
only has several small holes at the bottom. With limited air
circulation, the AirU is quick to heat, and slow to cool, which
makes the temperature inside the enclosure lag behind the
ambient temperature during cooling events.

TABLE V: In situ field temperature calibration of DAQ co-located
sensors. Sensors SA008 and SA134 were used as test data, while
SA127, SA016, SA079, and SA072 were used as the training data.
Raw refers to uncalibrated data, and Cal refers to calibrated data.

Metric (◦C) SA008 SA134 SA127 SA016 SA079 SA072

Correlation (R2) 0.80 0.83 0.94 0.74 0.78 0.75

RMSE (Raw) 10.30 12.39 10.61 12.45 12.58 12.32
RMSE (Cal) 4.75 3.73 2.08 5.34 3.90 4.54

95% LoA (Raw) 8.50 7.24 3.72 10.47 7.56 8.92
95% LoA (Cal) 8.67 7.38 3.78 10.68 7.67 9.07

Mean Diff (Raw) -9.38 -11.85 -10.45 -11.30 -12.00 -11.49
Mean Diff (Cal) 1.94 -0.56 0.86 -0.01 -0.71 -0.20

(°C) (°C)

(°
C)

Fig. 6: Bland-Altman Plots for temperature test sensors (SA008 and
SA134), located at DAQ: Hawthorne and DAQ: Rose Park, respec-
tively. Both sensors saw a large reduction in RMSE after calibration,
as well as a decrease in the 95% LoA bound. The calibration also
greatly reduced the mean-difference of the measurements.

The HDC1080 humidity sensors were calibrated in the
same fashion described for the temperature sensors. From
Table VI, we see relatively good correlation between the AirU
sensors and the DAQ FEMs. Analysis of the Bland-Altman



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2941374, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, SEPTEMBER 2018 8

Plots shown in Figure 7 reveal that the sensors systematically
experience a large deviation from the mean. We believe this
may be due to several factors, such as extreme temperatures
(triggering freezing, evaporation on the exposed sensor face),
and contamination (such as dust, PM, or debris). The effects
of the enclosure tend to amplify these issues, which points to
the cause of the large 95% LoAs, which were not affected by
the calibration. However, Table VI also shows large reductions
in RMSE compared to uncalibrated datasets (2.56× reduction
for SA008, 2.51× reduction for SA134), which shows that a
linear calibration was successful in improving measurement
accuracy.

TABLE VI: In situ field humidity calibration of DAQ co-located
sensors. Sensors SA008 and SA134 were used as test data, while
SA127, SA016, SA079, and SA072 were used as the training data.
Raw refers to uncalibrated data, and Cal refers to calibrated data.

Metric (%RH) SA008 SA134 SA127 SA016 SA079 SA072

Correlation (R2) 0.66 0.60 0.76 0.68 0.67 0.78

RMSE (Raw) 30.17 32.02 26.04 29.18 28.19 23.82
RMSE (Cal) 11.77 12.77 10.83 11.61 11.79 11.27

95% LoA (Raw) 23.42 24.94 20.93 23.09 23.36 19.96
95% LoA (Cal) 23.44 24.93 20.80 23.22 23.46 19.88

Mean Diff (Raw) 27.81 29.49 23.85 26.80 25.65 21.63
Mean Diff (Cal) 1.03 2.76 -3.05 -0.02 -1.19 -5.32

(% RH)

(%
 R

H
)

(% RH)

Fig. 7: Bland-Altman Plots for humidity test sensors (SA008 and
SA134), located at DAQ: Hawthorne and DAQ: Rose Park, respec-
tively. Both sensors saw a large reduction in RMSE after calibration,
but did not see a decrease in the 95% LoA bounds. This can mainly
be attributed to the large calibration offset and unity gain.

V. DEPLOYMENT OF THE AIRU NETWORK

1) Deployment Methodology: The AirU monitors were
designed, manufactured, and fabricated in Salt Lake City. Each
board was programmed with the initial firmware and loaded
with the appropriate files prior to deployment. All boards
were housed in a custom weather-resistant plastic enclosure
designed at the University of Utah. The initial deployment of
the AirU Pollution Monitors used Salt Lake county as a test
bed. Locations were largely chosen based on geography in the
county in order to maintain a good spatial distribution. In total,
50 AirU Pollution Monitors were deployed and are currently
active in Salt Lake County. AirU pollution monitors were
shipped to participating volunteers along with instructions to
connect the device to WiFi. When a user first powers on
their AirU, it configures itself as a wireless access point,
broadcasts its SSID, and starts an HTTP server. The user

then connects their smartphone, tablet, or laptop to the AirUs
WiFi network and navigates to the AirU landing page. Here,
the user enters their home WiFi credentials and submits the
form to the AirU. The AirU then connects itself to the user's
home WiFi network. Navigating back to the AirU landing page
through their home WiFi network, the user is then able to
register their device. Name, contact information, and device
MAC address are sent to our server and stored in a MongoDB
instance. When the device obtains a valid GPS location, it
is automatically added to the interactive map, which can be
viewed at https://aqandu.org. In Section V-A, we show the
deployed AirU locations across Salt Lake County in Figure
10.

Each pollution monitor samples temperature, humidity,
PM1, PM2.5, and PM10 data. The PM measurements are taken
once a second, and a running total and count is kept. When
a data packet is constructed to upload to the server, the PM
accumulations are averaged, and this is the measurement sent.
Data is sent to the server in one minute intervals. The tempera-
ture and humidity sensors are only sampled immediately prior
to a data packet being uploaded. GPS coordinates are also
queried only once prior to uploading the data. Each DAQ site
(Rose Park and Hawthorne) have four co-located AirU monitor
alongside the FEMs. The AirU monitors were deployed during
December, 2017 and are still active as of June, 2019.

A. Deployment Results

Here we describe the results of the AirU deployment
campaign, which includes details on the reliability of the
monitors, as well as integrity of the data they produce, and how
calibration affects the raw measurements. In total, 50 AirU
Pollution Monitors were deployed across Salt Lake County,
Utah. Once connected to the host’s WiFi network, the devices
proved to be very reliable over the course of the campaign.
Figure 8 shows the percentage of data packets successfully
transmitted to the database by the AirU monitors. All 50 AirU
monitors transmitted at least 84% of the packets, and 26 of the
50 monitors successfully transmitted 95% or more of the data
packets. This high transmission rate can be largely attributed
to the collection of data packets while the AirU is offline, and
the transmission of these packets when the AirU regains an
Internet connection. The missing packets can be attributed to
power outages/issues at the host’s home, or time spent offline
while being repaired.

Figures 10 and 11 provide good visual representations of
the quality of the PM2.5 dataset collected over the course of
this deployment campaign by the distributed AirU network.
Figure 10 show PM2.5 concentrations for the deployed network
at 19:00 on December 8, 2018, during an elevated pollution
event. Circles indicate the locations of AirU monitors, and
stars indicate locations of the DAQ FEMs. Size and color
of the markers correspond to the pollution concentration
recorded by that device. The image on the left shows raw,
uncalibrated measurements, while the figure on the right shows
calibrated measurements, using the linear correction derived in
Table I. In Figure 10a., the AirU monitors are systematically
overestimating the PM2.5 concentrations, which can be seen
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Fig. 8: Percent of data packets sent by all 50 AirU monitors over the
6-month deployment campaign.
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Fig. 9: PMS3003 sensor correlation (r) for AirU monitors located at
the DAQ sites. DAQ: Hawthorne is denoted as HW, and DAQ:Rose
Park is denoted as RP. Sensors show good correlation with the
corresponding DAQ sensors, and very high correlation amongst
themselves.

by the disparity in color between the DAQ FEMs (stars) and
AirUs (circles). After applying the linear correction, the AirUs
show much more reasonable measurements.

Figure 11 shows the correlation between all 50 PM sensors
over the course of the deployment campaign. The figure was
created by ordering the AirU monitors by cardinal distance
from the Rose Park FEM, then plotting the Pearson correlation
between all sensors, using a dataset which spanned from
November 1, 2018 to April 30, 2019. The average correlation
is R2 = 0.72 for these 50 sensors. Weaker correlations can
generally be attributed to larger distances, as depicted by the
color gradient of the plot, with higher correlations towards
the top-left, and lower correlations along the bottom and right
sides. We can also see that one sensor (row/column 26 of
this figure) is most likely defective, because of the lack of
correlation with all other sensors.

Other studies using the Plantower PMS family of optical
particle counters found similar results that we describe here.
In a one-year field evaluation of the Plantower PMS5003
and PMS7003, Bulot et al. found correlation of R2 = 0.98,
and RMSE of 2.2 between 12 PMS sensors. On average,
the 12 sensors reported Pearson Correlations of 0.86 with
the background reference station, and an average of 6.7
RMSE [29]. Sayahi et. al. performed a similar evaluation of
four Plantower PMS sensors, over the course of 320 days,

Fig. 10: Pollution concentrations recorded by the AirU network
during an elevated pollution event on December 08, 2018. Each circle
represents the location of an AirU Pollution Monitor. The size and
color of each circle is proportional to the PM2.5 concentration. Stars
represent the DAQ FEMs. Star colors also represent PM concentra-
tion. (a) shows raw PM2.5 measurements from the network, and (b)
shows calibrated measurements. This figure visually demonstrates the
large discrepancy between FEM data and uncalibrated AirU data, and
how a single generic calibration derived from field measurements is
able to drastically decrease the error between the two measurement
techniques.

which were co-located with one tapered element oscillating
microbalance (TEOM), and one gravimetric Federal Reference
Method (FRM) [30]. The sensors showed good correlation
with both the hourly TEOM (R2 > 0.87) and 24-hour FRM
(R2 > 0.88). They also found similar calibration gains (1.8)
that we report here. Badura et. al. compared a Plantower
PMS7003 to a TEOM 1400a analyser [31], and found excellent
daily correlations (R2 = 0.92). These studies help reiterate the
integrity and reliability of the PMS3003 sensor used by the
AirU Pollution Monitor.

Correlation (r)

Fig. 11: PM sensor correlation over the length of the campaign.
Average correlation is R2 = 0.72.



2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2941374, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, SEPTEMBER 2018 10

VI. CONCLUSION

In this work we have demonstrated the design of a low-cost
air pollution monitoring station (dubbed the AirU Pollution
Monitor) that can provide reproducible, dense air quality and
supporting meteorological measurements. These WiFi-enabled
devices gather airborne particulate matter (PM1, PM2.5, and
PM10) concentrations, temperature, humidity, and global po-
sitioning data and periodically upload it to a server. The
sensors are hosted and maintained by participating members
of the community, which not only supplements community
engagement, but eases a time-consuming burden of main-
taining hundreds of sensors by a small team across a large
geographical region.

Through a six-month deployment campaign of 50 sen-
sor across a 100 km2 metropolitan area, we demonstrate
a spatially and temporally dense representation of pollution
concentrations in urban environments, thus aiding significantly
in the study of personal exposure to ambient pollution. The
low-cost optical particle counters housed on the AirU are
calibrated to account for any manufacturing irregularities.
The derived linear correction was effective in correcting the
linear regression of the best-fit line, and resulted in a 1.84×
root-mean-squared error improvement in regards to their co-
located Environmental Protection Agency-approved Federal
Equivalent Method (FEM) standards, which are maintained
by the Department of Air Quality. The AirU monitors also
include temperature and humidity sensors, which also saw a
benefit from linear calibration.

The AirU is capable of real-time monitoring, as well as
automatically uploading measurements after loss of Internet
connection, which are stored on a micro-SD card. As a
result, intermittent Internet connections on the host’s personal
network will not affect the continuity and density of the data
collected. The monitors are outfitted with GPS modules, and
therefore may act as mobile pollution monitoring stations,
collecting air quality and meteorological data and automati-
cally uploading to the online database upon regaining Internet
access. In this work we have shown that a great reduction in
size and cost from an FEM standard does not necessarily mean
a dramatic decrease in measurement accuracy, and thereby
demonstrate that a scalable, low-cost PM sensor network is
a reliable and efficient means for collecting spatially and
temporally dense heterogeneous pollution data across large
metropolitan areas, and ultimately greatly aids in the analysis
of urban pollution microclimates.
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