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Abstract—Distributed, low-cost sensor networks have become
a widely used tool to aid in the interpolation of atmospheric
measurements between regulatory grade monitoring stations,
referred to as Golden Standards (GS). However, the quality of
the data from these sensor networks can be questioned, especially
in poorly correlated environments. Sensors can be individually
calibrated in a laboratory environment before deployment of the
network, but this approach is unfeasible for large networks.
To overcome these shortcomings, we propose a novel online,
autonomous approach to sensor calibration, by leveraging the
ground truth measurements of the GS to calibrate neighboring
nodes of the sensor network using a Recursive Least-Squares
technique. Our algorithm percolates this calibration through the
network such that every connected node will converge towards
its ideal linear calibration. The algorithm outperforms a pre-
deployment laboratory calibration and provides good tracking
of quickly-changing environmental stimulus, which is known
to change the inherent sensor calibration. Experimental results
show a 45% improvement in estimated measurement error
when compared to measurements corrected using a laboratory
calibration.

Index Terms—recursive least squares, wireless sensor network,
blind calibration, measurement noise, distributed calibration
algorithm

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have proven to be an
invaluable tool to develop spatially and temporally dense
datasets of large-scale heterogeneous environments [1], [2].
The price of wireless sensor nodes has dropped dramatically
in the last decade, leading to the utilization of WSNs under
many facets of environmental sensing, such as water quality
monitoring, permafrost analysis, and localized urban air pol-
lution events [3], [4], [5].

The inherent properties of low-cost, wireless sensor net-
works mean that they are typically noisy by nature, due to
manufacturing variability as well as environmental measure-
ment noise. Traditionally sensors are calibrated in a laboratory
setting to determine the best linear fit before deployment.
However, this approach is undesirable for several reasons.
First, the cost of calibrating every sensor does not scale well
as the network grows. Second, it is possible that the laboratory
calibrations do not represent real environmental conditions and
therefore may misrepresent the intrinsic error of the sensor. In
many applications, such as optical particle counters, changes
in the environment will drastically alter the gain and offset of

a sensor, rendering the pre-deployment calibration useless [6].
Instead, it would be desirable to calibrate the sensors while
online, where environmental conditions can be utilized to aid
in the calibration [7].

Sensor calibration is a crucial step prior to deployment
and has rightfully been a strong research topic for many
years [7], [8]. If a ground-truth reference does not exist,
something typical of remote networks, the sensors must look
for redundancies in the data to estimate their calibrations,
known as blind calibration [9]. If a reference signal is sparsely
known by the network, the information can be leveraged to
provide baseline measurements to improve calibration. The
use of a ground-truth reference has been coined partially-
blind calibration in previous works [10]. These calibration
techniques become substantially more difficult given real-
world engineering constraints such as affordability, extreme
low power and longevity, spatial and temporal heterogeneity
of the environment, and sensor calibrations that dynamically
change with the environmental conditions. The work described
above does not address these constraints. In this work, we
explore a new technique for partially-blind calibration of an
online network by utilizing stationary ground-truth sources
as calibration seeds, in order to propagate and maintain a
dynamic calibration of each sensor that reflects the current
environment. This method was first introduced in [11] and
was used to calibrate mobile sensor nodes when they came
within proximity of one another. We build off of this concept
with a lightweight algorithm suited for extremely low-power
sensor nodes with limited communication.

In this paper, we propose a novel online calibration scheme
that leverages sparse, but highly accurate data from one or
more ground-truth references (such as a federally maintained
“Golden Standard” particle counter in the case of air pollution
monitoring) to seed the calibration of a distributed sensor
network, which we will refer to as the weighted neighborhood
calibration algorithm. We exploit the correlation and distance
between sensors to compensate for the heterogeneous and
dynamic environment in which the sensors are sampling.
By implementing a localized Recursive Least Squares (RLS)
algorithm on each sensor node, sensors estimate a linear re-
gression based on stimulus data from their calibrated neighbors
at an arbitrary time step. In this work, we demonstrate the
capabilities of the algorithm in an ideal environment, then
analyze its performance by applying it to AirU – a network
of low-cost optical particle counters currently deployed in Salt978-1-7281-2437-7/19/$31.00 ©2019 IEEE



Lake City, Utah, USA.
More specifically, we make the following major contribu-

tions in this paper:
• We propose a novel two-step, decentralized calibration

method based on recursive least squares minimization
and sample correlation between neighboring nodes. This
method uses sparse ground-truth measurements from
dependable references to provide a calibration seed to
neighboring low-cost sensors in the network.

• We provide experimental results on an actively deployed
sensor network and demonstrate that the proposed method
outperforms the laboratory calibration of individual sen-
sors by 45%, and outperform the state-of-the-art dis-
tributed online calibration algorithms by 20%. Results
also show that the algorithm is capable of efficiently
tracking abrupt environmental changes and updating the
calibration accordingly.

The remainder of this paper is organized as follows: Section
II describes the background related to this work, Section III
reviews the proposed algorithm in detail, Section IV describes
the experimental setups and results of the algorithm on a
currently deployed pollution monitoring network, and Section
V concludes the work described here.

II. BACKGROUND

In this section, we cover the current state of low-cost envi-
ronmental sensor networks, how they are currently calibrated,
and the current solutions to improving their calibrations while
online.

A. Shortcomings of Offline Calibrations

Low-cost sensor networks have become a successful solu-
tion in monitoring large heterogeneous environmental events
for long periods of time, given their unparalleled ability
to cover large areas and collect measurements with high
resolution [12]. Monitoring airborne pollution is one such
use of sensor networks, with many networks, such as Pur-
pleAir [13], AeroQual [14], and Alphasense [15]. In addition,
many research groups have deployed their own networks [16],
[17]. These low-cost sensors possess some intrinsic gain and
offset when sampling data, and are therefore calibrated in a
laboratory environment before deployment [6]. These offline
calibrations are not ideal because a sensor network may span
a broad land use model, covering urban, industrial, suburban,
and geographically diverse regions. Each region produces
a unique makeup of airborne particles, and will therefore
produce different mappings of the sensor measurements to the
actual data [18]. Consequently, static offline calibrations can
misrepresent the actual online calibration of a sensor. It is then
desirable to calibrate sensors online in order to account for the
inevitable change of the calibration over time, due to drift and
changing environmental factors.

B. Current Online Calibration Techniques

The rationale into why traditional calibration techniques
are inadequate in ad-hoc localized systems, such as sensor

networks, is strictly because of the vast amount of data each
node is required to obtain to perform a calibration [19].
Since the recent popularity of low-cost sensor networks in
the last decade, much work has been done to accomplish
the task of online calibration [7], [8]. Blind calibration has
recently gained traction as a viable calibration mechanism
by leveraging redundant measurements in a densely deployed
network. The authors in [20] show that through subspace
matching, sensor gain can be extracted from over-sampled
systems, and was used to estimate linear sensor drift over
time. In [21], the authors improve on blind calibration and
achieve minimized linear least squares parameters via network
consensus algorithms. The authors in [22] were the first to
demonstrate that a network of low-cost sensors in a mobile
network could be calibrated using spatially sparse references.
As sensors passed by the reference, or one another, they would
exchange datasets and the uncalibrated sensor would calculate
its gain and offset. In [23], the authors propose a solution to
the positive relationship between calibration noise and hops
from a reference by using the Geometric Mean Regression
(GMR) in place of ordinary least squares. The advantage
of GMR is the consideration of noise in the independent
variable as well as the dependent variable, so the gain will
not tend towards zero as noise increases in the system. GMR
is intended to produce minimized linear estimates between
datasets that exhibit low correlations, where the independent
variable also contains noise. We show later that GMR is not
well suited for networks with high inter-sensor correlation,
such as optical particle counters used to measure airborne par-
ticulate concentrations. Recently there has been a development
towards advanced estimation and calibration techniques by
leveraging calibrated reference signals [24], [25], [26]. These
techniques are undesirable for our problem statement because
they require statistical assumptions about the network or are
too computationally extensive to implement in a low-power,
distributed approach.

In this work, we take into consideration the advantages
and shortcomings of the previous work, and apply it to
the specific problem of calibrating an urban low-cost sensor
network, given the constraints of a low-cost, low-power, low-
bandwidth, short-range, distributed network, sampling a highly
heterogeneous process in both space and time. We leverage the
existence of a regulatory-grade particle counter which is fairly
centralized in the network topology.

III. WEIGHTED NEIGHBORHOOD ALGORITHM

In this section we first give an overview of the sensor
network under consideration. Then we present the proposed
weighted neighborhood calibration algorithm. Finally we con-
clude the section with a trivial example demonstrating the
functionality of the algorithm.

A. Algorithm Rationale and Assumptions

Ideal Calibration. Consider a continuous, stochastic and het-
erogeneous time dependent signal, which may be an environ-
mental measurand, such as temperature, humidity, pollution,



etc. Now, consider a spatially static sensor which collects
observations of this signal. We can define the observations
as the discrete-time signal: dk = αxk + β + zk where dk
is the observed signal, xk is the environmental measurand,
α, β are the ideal gain and offset of the sensing unit, and
zk is a normally distributed Gaussian noise with zero mean,
representing the environmental and measurement noise.

Iterative Linear Regression. Now, consider n distributed
sensors, each collecting their own set of measurements, di,k.
The system of equations relating to these n sensors is overde-
termined because of the additive noise, and therefore must be
iteratively estimated.

Our weighted neighborhood calibration algorithm makes use
of the Recursive Least Squares (RLS) filter, which iteratively
approximates the gain and offset parameters as new measure-
ments are added to the system, and is described in detail in
[27].

Additional Sensor Network Assumptions:
• We assume the n nodes form a graph, which we denote in

this text as G. We consider that two nodes form an edge
if the Euclidean distance between them is less than some
radius r. This intuitively means that we only consider the
physical neighbors of a node. We require that every node
in G have at least one edge.

• We assume that the constituent to be measured is per-
fectly known by at least one node in G, which we refer
to as the Golden Standard.

• We assume the graph follows a rational flow of commu-
nication typical for distributed sensor networks. Sensor
nodes are configured in a mesh network and only com-
municate with their direct neighbors. If a new node is
introduced to the network, it will follow an initialization
process where it is made aware of its direct neighbors
and will remember them.

B. Description of the Weighted Neighborhood Algorithm

Here we present the weighted neighborhood calibration
algorithm, a partially-blind calibration algorithm for a dis-
tributed sensor network that uses one or more ground-truth
reference nodes to seed the algorithm and percolate linear
calibrations through the network. We refer to Algorithm 1
during the overview of the algorithm.

1) Overview: The weighted neighborhood calibration algo-
rithm is a 2-step algorithm in which calibration is percolated
through the network in a breadth-first manner, starting at the
gold standard and calibrating nodes sequentially. In the first
step, the considered sensor updates a linear regression between
itself and its already calibrated neighbors. In the second step,
the sensor computes an average of these regressions, weighted
by correlation, distance, and sensor type. Once calibrated,
the sensor can be used as a reference for calibration by its
neighbor.

2) Percolation: We begin the algorithm by constructing
a breadth-first queue containing the nodes in G, with no
duplicates, with the head of the queue being the node closest

Algorithm 1 Weighted Neighborhood Iterative Calibration

1: procedure WEIGHTEDNEIGHBORHOOD(G)
2: for all k discrete time steps do
3: Create breadth-first queue
4: while queue not empty do
5: ni ← pop from queue
6: for all nj in calibrated neighbors do
7: if nj is gold standard then
8: Γj ← Γ

9: cj ← RLS(di,k, xj,k)
10: rj ← SAMPLECORR(di,k, xj,k)
11: vj ← DISTWEIGHT(ni, nj )
12: w ← r · v · Γ
13: α, β ← Mean(c,w)

in distance to the gold standard node (Step 3). This queue
will be reinitialized and emptied at every time step k (Step
2) . We consider the gold standard node, which we denote as
nGS , to be a calibrated node, because of our assumption that
it perfectly measures the local stimulus.

3) Linear Regression: For the current sensor popped from
the head of the queue (Step 5), call it ni, there exists at least
one neighbor of ni that has already been calibrated at time
step k. In the case of the completely full queue, the calibrated
neighbor corresponds to nGS . We say that there are m of these
calibrated neighbors. Node ni updates the RLS between itself
and every one of its calibrated neighbors, so that we obtain
a set of m linear regression equations, each containing gain
(α) and offset (β) parameters (Step 9). At each iteration, the
inputs to the algorithm are dk, which is the measured value
of ni at time step k, and the vector [xj , 1], where xj is the
measurement from neighbor nj after passing it through the
current calibration equation for nj . We will call this vector of
linear regressions c. The RLS algorithm is denoted as RLS
in Algorithm 1. Now that node ni has a set of calibration
estimates from its neighbors, the next step is to score the
importance of these estimates to better capture the dynamics
of the environment.

4) Weighted Average: We consider three influences that
impact the weights.

i Skewing the gold standard. The weight in c correspond-
ing to the edge (ni, nGS) is heavily skewed to ensure
a large portion of the calibration comes from here. We
denote the gain applied to cGS as Γ, and define the vector
Γ as the all-ones vector with ΓGS = Γ.

ii Correlation Based Weights. We weight each element
in c according to the Pearson correlation on the edge
(ni, nj). In this way, estimates from highly correlated
neighbors will be trusted more, and uncorrelated neigh-
bors can be removed from the estimate. This is accom-
plished recursively using an iterative version of the Pear-
son correlation, called the sample correlation coefficient,
which is described in detail in [28]. This is done in an
identical fashion to the RLS, and we obtain the vector r.



This is denoted as SAMPLECORR in Algorithm 1, and is
referenced in Step 10.

iii Distance Based Weights. Highly heterogeneous envi-
ronments may exhibit poor correlation on an edge. To
this end the correlation-based weight distribution can be
altered by including distance based weights in the model.
Neighbors that are closer together will have a higher
distance weight metric than neighbors at the edge of the
communication range. This gain parameter is calculated
as (r/l)2, where r is the maximum communication ra-
dius and l is the Euclidean distance between sensors.
We denote the distance based weight vector as v. We
also introduce an artificial bounding condition, λ, where
0 < λ < 1 and [r · λ < l < r], to keep values
in v reasonably constrained. Without the inclusion of
λ co-located sensors may be completely dominated by
proximity measurement, so l is limited to a degree.
This is denoted as DISTWEIGHT in Algorithm 1, and
is referenced in Step 11.

The resulting weight vector w is then the element-wise
product of the three vectors: w = Γ · r · v. We then compute
the weighted average of c using w as the weights (Steps 12 -
13): [

α β
]

=
1∑
w

c •w

Now (α, β) are the new calibration parameters for node ni and
ni can be used as a calibrated neighbor for the next node in the
network. In the next section, we show Algorithm 1 applied to a
low-cost air pollution monitoring network currently deployed
in an urban region.

C. Proof-of-Concept Example

Figure 1 shows a trivial network that may be used as a
proof-of-concept example to demonstrate our algorithm. The
gold standard node, labelled GS, serves as the seed for the
algorithm at time-step k.

L=1.2, r=
0.7

L=1.6, r=0.6

L=2, r=0.9

L=1.6, r=0.85

L=1.2, r=
0.95

A: α = 1.5  
 β = 2
 d = 3.5

B: α =3  
 β = -0.5
 d = 2.5

C: α = 2.5  
 β = -2
 d = 0.5

d = 1

Fig. 1: Example network used to describe the process flow of the weighted
neighborhood calibration algorithm. L refers to the Euclidean distance be-
tween nodes, and r refers to the Pearson correlation between nodes. The gain
and offset parameters on the right-hand side represent the ideal calibration,
which is unknown to the model. d refers to the value measured by the sensor.
We arbitrarily define the maximum radius as r = 2.5.

1) We begin by queuing a list of nodes in a breadth-first
approach, with A as the head because it is closest to GS.
Our queue will then look like:

Q = {A,B,C}

2) A computes one iteration of RLS with GS:

RLS(dA = 3.5, xGS = 1) = [1.5, 2]

3) There are no other calibrated neighbors of A, so pop B
from the queue. Both GS and A are calibrated neighbors,
so compute one iteration of RLS with both.

RLS(dB = 2.5, xGS = 1) = [3,−0.5]

4) B receives the calibrated measurement from A as input:

xA = (dA − βA)/αA = 1

RLS(dB = 2.5, xA = 1) = [3,−0.5]

B also updates the correlation and distance with GS and
A:

rB = [0.6, 0.9]

vB = [(2.5/1.6)2, (2.5/2)2]

We will use Γ = 10 for the gold standard weight, so that:

ΓB = [10, 1]

5) Our weight vector is then wB = [14.65, 1.4], and the
normalized calibration parameters are:

α = (3 ∗ 14.65 + 3 ∗ 1.4)/(14.65 + 1.4) = 3

β = (−0.5 ∗ 14.65 +−0.5 ∗ 1.4)/(14.65 + 1.4) = −0.5

6) Nodes A and B can then be used to calibrate C in the
same fashion.

It should be noted that in the case of this example, the gain
and offset parameters are calculated perfectly because of the
absence of noise in the system.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section we produce and analyze two experiments
performed using our weighted neighborhood calibration al-
gorithm, and compare them to static laboratory calibrations,
as well as the current state-of-the-art online calibration tech-
niques. We simulate the algorithm using a network graph from
an active low-cost pollution monitoring network, dubbed AirU.

A. Methodology

Our algorithm has been validated using a network of low-
cost air pollution monitors currently deployed in Salt Lake
City, Utah, USA – dubbed the AirU Low Cost Pollution
Monitoring Network [29]. The network currently consists of
22 nodes and a single reference node (Gold Standard) that is
centralized in the network. The degree of the Gold Standard
is 7, so roughly 33% of the nodes are directly connected to
the Gold Standard. We refer to the topology of this network
as the graph G. Figure 2 shows the graphical representation,
G, of the AirU network, where the gold circle refers to the



Fig. 2: AirU Pollution Monitoring Network, located in the Salt Lake Valley,
USA. The network consists of 22 low-cost pollution monitoring stations, as
well as a single ”Gold Standard” monitor hosted by Utah Department of Air
Quality [30].

Gold Standard. The dataset and network information were
downloaded from the AirU open-source database.

The goal of our study is to quantify the measurement error
between the AirU dataset calibrated using our algorithm and
the ground-truth data. To this end, we consider a test dataset
that fully captures the properties of the network, by comparing
the laboratory calibrations to the real calibrations from a subset
of 12 nodes collocated at the gold standard site. We also
model the inter-sensor correlation using a multivariate normal
distribution as additive measurement noise, which was derived
from the measured AirU dataset.

Prior to deployment, the AirU particulate matter sensors
were calibrated in a carefully scrutinized laboratory setting,
using a regulatory grade reference. The sensors were assigned
unique linear calibrations, which we will use in this section
as a quality metric.

Throughout this section we refer to several datasets pertain-
ing to the data collected from the AirU network.

• The measured dataset refers to values that the sensors
measure. In the second experiment it refers to hourly
measurements collected by the AirU nodes between July
01, 2018, and August 31, 2018.

• The laboratory dataset refers to the mapping of the
measured dataset using the laboratory calibrations.

• The ideal dataset refers to actual pollution concentrations
at the sensor locations.

• The Weighted Neighborhood Calibration (WNC) Algo-
rithm dataset refers to the mapping of the measured

dataset using calibrations from the weighted neighbor-
hood calibration algorithm.

• The GMR dataset refers to the mapping of the measured
dataset using calibrations produced with the GMR algo-
rithm described in [23].

• The Consensus dataset refers to the mapping of the
measured dataset using calibrations derived from a global
average consensus, as proposed in [9].

Throughout the experiments we use the Root Mean Squared
Deviation (RMSD) to refer to the error between two datasets.
RMSD is a popular metric when comparing the difference of
time-varying signals from the ideal signal [31].

B. Simulation in an ideal environment

We first perform an experiment on the AirU graph in a
spatially homogeneous environment to investigate the prop-
erties of the weighted neighborhood calibration algorithm.
The graph G was subjugated to a spatially homogeneous
field that increased from 1 to 100 µg/m3 over 1000 time
steps.In this experiment, we refer to the measured dataset as
the ideal dataset mapped to the ideal calibrations, with additive
Gaussian noise modeled after the noise distribution of the
sensors from laboratory experiments.

For each time step, the weighted neighborhood calibration
algorithm was run on the modeled AirU network. The im-
provement is calculated as the ratio of error of the measured
dataset over error of the given calibrated dataset. Results show
that the weighted neighborhood calibration algorithm shows
4× improvement over the raw, uncalibrated data, and also
demonstrates a 2.8× improvement over the laboratory dataset.
With these results we prove that the weighted neighborhood
algorithm captures the unique calibration of each sensor, even
when that calibration changes based on the environment.

maximum
(40 µg/m3)

minimum
(23 µg/m3)

maximum
(26 µg/m3)

minimum
(17 µg/m3)Golden

Standard

Fig. 3: (Left) Uncalibrated and (Right) Calibrated graphs of the AirU network.
Calibration was performed using the weighted neighborhood calibration
algorithm, in a homogeneous spatial field of 25 µg ·m−3.

Figure 3 shows a graphical analysis of this simulation. The
figure is a snapshot in time when the value of the spatial
field to be measured is 25 µg/m3. The graph on the left-
hand side shows the measured dataset, and the right-hand
side shows the algorithm dataset. The graph provides a good
understanding of the difference in distributions of RMSD error
between the uncalibrated and calibrated data. We also note that
the nodes at the edge of the network are still misrepresenting
their measurements more than nodes towards the center of the



network, which contain many more edges, even after applying
our algorithm. This can be attributed to the accumulation of
distance and correlation weight degradation as the algorithm
propagates from the reference node. This experiment also
shows that a sensor with a large error (which corresponds
to a large intrinsic gain and offset) in the raw measurements
does not attribute a large error in the algorithm dataset. The
RMSD in the algorithm dataset is instead largely due to the
intrinsic additive noise from the sensor itself, as the gain and
offset are well estimated.

In this experiment, we show that the weighted neighborhood
calibration algorithm effectively converges to a close estimate
of the ideal sensor calibrations, and outperforms the static,
offline laboratory calibrations. The remaining RMSD from the
algorithm dataset can be largely attributed to the intrinsic noise
of each sensor.

C. Simulation using the AirU Dataset

An experiment was then performed on the simulated net-
work using the AirU dataset. Here, we refer to the measured
dataset as the AirU dataset, which corresponds to data down-
loaded directly from the AirU open-source database from July
01, 2018 to August 31, 2018. We now include the correlated
noise between sensors as the additive sensor measurement
noise to fully capture the properties of the AirU network
deployed in a complex urban environment. The previous
experiment was repeated on this dataset, and the results are
shown in Table I.

TABLE I: RMSD results for different calibration techniques. Measured refers
to the raw dataset of measured values. Laboratory refers to the measured
dataset calibrated using the static, offline laboratory calibrations. WNCC refers
to the measured dataset calibrated using the weighted neighborhood (WNC)
Algorithm with averaging weight based off sensor correlations. WNCC,D

refers to the measured dataset calibrated using the weighted neighborhood
calibration algorithm, with averaging weight based off sensor correlations as
well as distance-based weights. Consensus uses the global average across the
network to calibrate the sensors [9]. GMR produces multi-hop calibrations
from the reference to all nodes in the network [23].

Method Min Max Mean Improvement

Measured 10.378 30.803 16.508 -
Laboratory 9.273 27.509 13.586 1.215×
Consensus [9] 10.8 18.36 12.54 1.135×
GMR [23] 7.83 16.5 11.18 1.478×
WNCC–This work 8.082 13.212 9.410 1.754×
WNCC,D–This work 8.108 13.212 9.402 1.756×

The inclusion of sensor correlation statistics and the hetero-
geneous land-use model more accurately represent the actual
error and improvement of our proposed algorithm, which still
outperforms the static, offline laboratory calibrations, as well
as current state-of-the-art techniques. We demonstrate that
both WNCC and WNCC , D outperform macro-calibration via
average consensus by 34%. Average consensus algorithms
are used to compute global averages across distributed net-
works [32]. This technique is thus not well suited for our
heterogeneous environment, as the results show. In previous
work, a multi-hop GMR algorithm was able to significantly
outperform an ordinary least squares approach [23]. However,
that is not the case when applied to our model. In [23], a

calibration would typically percolate through several nodes,
thus producing a wide noise distribution between calibrations.
The AirU network, and many other stationary, urban sensor
networks, are generally within 1-2 hops of a reference sensor.
It is therefore more appropriate to assume the calibrated sensor
as an independent source in the model, and apply ordinary
least squares. We see that our work outperforms the GMR
approach by 20% when applied to the AirU network.

In Figure 4 we show the distribution of RMSD for each
sensor as a result of this experiment under the measured
dataset (a), laboratory calibrated dataset (b), and the weighted
neighborhood calibrated dataset (c). The Weighted Neighbor-
hood Algorithm decreased the RMSD relative to the laboratory
calibrations on every node in the network. The average RMSD
was lowered from 13.586 using the laboratory calibrations to
9.4 using the weighted neighborhood calibration algorithm. We
see that the the weighted neighborhood calibration algorithm
was able to effectively converge on the ideal calibration
parameters of sensors with even the highest RMSD and bring
them to roughly the same calibration estimate as sensors with
an already low RMSD. We show that on average our proposed
algorithm demonstrates 45% improvement over the laboratory
dataset. We note here that the remaining RMSD error shown
in Figure 4c can be largely attributed to the noise floor of
each sensor, as is demonstrated by the uniform distribution of
RMSD error between the sensors.

The drawbacks of the algorithm are demonstrated in Figure
5. After the experiment was performed, sensors were grouped
based off the number of hops (number of intermediate graph
edges) from the reference node to the sensor node. The RMSD
for each sensor in the group for the AirU dataset was averaged
and plotted. It is clear to see that the error follows a roughly
linear increase as the path length between nGS and ni grows.
This is expected and rational, as the error (mostly due to
intrinsic noise of the sensor) introduced by each sensor is
accumulated as the calibration percolates outward from the
reference node. As the number of nodes in the network
grows, the error per hop will tend towards a linear trend
proportional to the average noise floor of the sensors. In many
target applications, this error may be mitigated by additional
ground-truth reference nodes in the network. For example, in
the AirU network a second ground-truth reference exists in
the northwest corner, but was omitted in the context of this
research for simplicity of the simulations.

D. Algorithm Response to Nonlinear Changes

Figure 6 shows the calibration response of two sensors
from the AirU network subjugated to an abrupt change in the
sensing environment (denoted as Field in Figure 6). Prior to
the change the environment was temporally static at 1 µg/m3,
then underwent a jump to 25 µg/m3 in a single time step,
and then was temporally static. This step is equivalent to a
sharp change in the calibration parameters (offset of one and
gain of zero), and is meant to simulate the dynamic change
in environmental factors which directly affect the calibration
of the sensors. Using the setup from the static environment



Fig. 4: (a) RMSD for uncalibrated measurements. (b) RMSD for laboratory-calibrated measurements. (c) RMSD for measurements calibrated using our
algorithm. All RMSD metrics were computed by comparing the above data to the ideal calibration.
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Fig. 5: Average RMSD, grouped by number of hops from gold standard.
Measurements are from the AirU dataset simulation.
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Fig. 6: Tracking capabilities of the weighted neighborhood calibration algo-
rithm. The network is subjected to a homogeneous spatial field, that has an
abrupt change in value. Where the uncalibrated sensors largely overestimate
the actual field value, the weighted neighborhood calibration algorithm quickly
updates the calibration to account for the sudden change.

simulation, we observe the fast tracking capabilities of the
filter to abrupt changes in the environment. We arbitrarily pick
two sensors from the network to demonstrate. We show the raw
and calibrated responses of the sensors when subjugated to an
initial concentration of 1 µg/m3. We see that the calibration
estimates a concentration much closer to the real value than
the raw values. After the abrupt shift in concentration, which
will inevitably change the sensor’s calibration statistics, we see
an extremely fast response from the algorithm to incorporate
this change. In a temporally static environment such as the
one demonstrated here, it only takes several iterations for a

sensor to converge to its new calibration estimate, because the
feedback error calculation in the RLS algorithm allows the
sensor to correct the majority of its error in a single iteration.
This experiment demonstrates the ability of the algorithm to
dynamically update the sensors’ calibrations, which may be
necessary due to environmental changes that directly affect
the sensing technique, or linear drift as the sensors age.

V. CONCLUSION

The calibration of wireless sensor networks is a necessary
step to map a measured dataset to a close approximation
of the actual stimulus. Sensors may be calibrated prior to
deployment in a carefully controlled laboratory setting, but
this approach does not scale well as the network grows, and
is subject to error when deployed in a real environment that
does not conform to the laboratory constituents. Instead, it
is desirable to adaptively calibrate the network while it is
online and deployed, where the environmental conditions may
be taken into consideration. In this paper, we proposed a
partially-blind calibration scheme in which a decentralized
and distributed sensor network has access to at least one
ground-truth reference (such as a federally maintained sensor
which follows NIST standards), which is considered as an
additional network node. The neighbors of the ground-truth
node calibrate themselves directly using the reference. The
calibration then percolates through the network as nodes
use their calibrated neighbors to calibrate themselves. The
algorithm described in this work was designed to operate on a
distributed, low-power network that is measuring to a highly
heterogeneous environment, such as urban airborne pollution
microclimates. Calibrations produced via sample correlation
and recursive least squares techniques keep the algorithm
extremely lightweight while maintaining accuracy. Results
using a real dataset from a currently deployed sensor network
show a 45% improvement over pre-deployment laboratory cal-
ibrations, and 20% improvement over current state-of-the-art
distributed online calibration solutions. We also demonstrate
the ability of the algorithm to quickly adapt to abrupt changes
in the environment, which would change the intrinsic gain and
offset parameters of the sensors.
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