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Abstract. Memory-hard functions (MHFs) are moderately-hard func-
tions which enforce evaluation costs both in terms of time and memory
(often, in form of a trade-off). They are used e.g. for password protec-
tion, password-based key-derivation, and within cryptocurrencies, and
have received a considerable amount of theoretical scrutiny over the last
few years. However, analyses see MHFs as modes of operation of some
underlying hash function H, modeled as a monolithic random oracle.
This is however a very strong assumption, as such hash functions are
built from much simpler primitives, following somewhat ad-hoc design
paradigms.

This paper initiates the study of how to securely instantiate H within
MHF designs using common cryptographic primitives like block ciphers,
compression functions, and permutations. Security here will be in a
model in which the adversary has parallel access to an idealized ver-
sion of the underlying primitive. We will provide provably memory-hard
constructions from all the aforementioned primitives. Our results are
generic, in that we will rely on hard-to-pebble graphs designed in prior
works to obtain our constructions.

One particular challenge we encounter is that H is usually required to
have large outputs (to increase memory hardness without changing the
description size of MHFs), whereas the underlying primitives generally
have small output sizes.
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1 Introduction

Memory-hard functions (MHFs) are functions which are moderately hard to
compute both in terms of time and memory, in the sense that their computation
is subject to a time-memory trade-off – relatively fast computation requires mem-
ory, whereas low-memory implies slow (or even very slow) computation. This
ensures for example that the area-time complexity of custom-made hardware
(e.g., ASICs) needed to evaluate MHFs is large (and thus, the dollar cost of this
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hardware), and this fact makes them suitable for password hashing, password-
based key derivation, and proof of work in cryptocurrencies, where attackers may
leverage such hardware. The first practical MHF, Scrypt, was proposed by Per-
cival [19,20]. Starting with Alwen and Serbinenko [7], several works have been
devoted to the theoretical analysis of MHFs (cf. e.g. [1–8,12–14]), also exposing
weaknesses in practical designs like Argon2 [10] (the winner of the password-
hashing competition), Catena [17], and Balloon hashing [13].

The starting point of our work is the observation that theoretical works
describe MHFs as modes of operation of an underlying primitive, usually a
(hash) function H : {0, 1}M → {0, 1}W (where M ≥ W ), modeled as a random
oracle [9] within security proofs. However, this completely ignores the implemen-
tation details behind H which may make it far from an ideal random oracle –
often, such designs are completely ad-hoc and based on much simpler objects
(e.g., Scrypt’s resembles a permutation-based stream-cipher design), in particu-
lar because W is much larger than for conventional hash functions (e.g., a few
thousand bits).

Therefore, we would like to study MHFs at a finer level of granularity that
considers the inner structure of H, and we would like to understand how such an
H is meant to be built in a sound way. We stress that it is not enough for H to
be a random oracle in the sense of indifferentiability [18], since memory-hardness
definitions are multi-stage games to which indifferentiability does not apply [22].
Therefore, such analyses would call for completely new theory.

We also note that the primitive on which an MHF is based matters – Ren
and Devadas [21] pointed out the advantages of building MHFs from AES, as the
availability of on-chip hardware implementations (AES-NI) significantly reduces
the efficiency speed-up of dedicated hardware by ensuring a conventional CPU
can evaluate the function already at a cost similar to that of dedicated hardware.

Our contributions – a high-level view. This paper initiates the study of
provably-secure MHFs built from basic symmetric primitives, which we model
as ideal – we consider block ciphers, permutations and compression functions.
We prove general results that will enable us to obtain MHFs based on them, in
a model where these primitives are ideal and the adversary is allowed to make
multiple calls in parallel. (This naturally adapts the parallel random-oracle model
from previous MHF analyses to primitives.)

As our first contribution, we provide one-call efficient instantiations of H
from such primitives. We will adapt previous lemmas based on “ex-post-facto
arguments” (dating back to [15]) to reduce the security of a large class of MHFs
based on directed acyclic graphs (DAGs) to the pebbling complexity of the
underlying DAG. (These are usually called data-independent MHFs, or iMHFs
for short, and are favored designs due to their resilience to side-channel attacks.)

This will already give us iMHFs from all aforementioned primitives. However,
a DAG G of N vertice yields a function whose computation operates on N
memory blocks of size L bits, where L is the output length of the primitive
(e.g., L = 128 bits for AES). In this case, a good choice of G would ensure that
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product of time and memory1 to evaluate the function is (nearly) Ω(N2L) –
increasing memory hardness means increasing N , which leads to a larger function
description. A better option (consistent with practice) is to keep the same graph,
but operate on larger blocks of size W � L, to ensure the time-memory product
is now Ω(N2W ).

To do this, we will provide a generic construction of an H with W -bit output
using an underlying primitive with a shorter output. We will refer to H as a
wide-block labeling function (as opposed to a small-block one like those we gave
above), and the resulting MHF will be called a wide-block MHF. (Our design
will have the added benefit of allowing for a variable W .) Our construction will
guarantee the final MHF is memory hard as long as the graph G is sufficiently
depth-robust, a notion we review below.

We stress that all practical constructions implicitly design wide-block labeling
functions, for which existing analyses provide no guarantees, as they abstract
them away as random oracles, which they are not. While we failed to provide
either proofs or attacks on practical designs, initiating the study of provably
secure constructions in the more realistic primitive-based setting is an important
step.

The remainder of this section will provide a more in-detail overview of our
results, as well as a concise introduction to the formalism.

1.1 Overview of Our Results

Before highlighting our result in more detail, we briefly review some notions at
an informal level.

Graph-based iMHFs. This paper deals with graph-based data-independent
MHFs (which we refer to as iMHFs, for short), defined by a DAG G = (V,E)
on N vertices. For simplicity, we assume V = {v1, . . . , vN}, and each edge has
the form (vi, vj) where i < j, i.e., vertices are topologically order – vertex v1 is
the source, vN is the (unique) sink. Previous works [3,7] use G and a labeling
function H : {0, 1}≤δW+log N → {0, 1}W (we refer to W as the block length of
the MHF and δ the maximal indegree of G) to instantiate an MHF FG,H. On
input M , we first assign the label �1 = H(〈1〉‖M) to the source, where 〈i〉 is a
O(logN)-bit encoding of i, and then each vertex vi is assigned a label

�i = H(〈i〉‖�j1‖ . . . ‖�jd
) ,

where vj1 , . . . , vjd
are the predecessor vertices of vi. Finally, we output �N .

CMC and pebbling. To capture the evaluation costs for FG,H, following [7]
we adopt the cumulative memory complexity (CMC). We model the labeling
function H as a random oracle, and assume the adversary proceeds in steps. In

1 We will use the more fine-grained metric of cumulative memory complexity (CMC),
but for now the product of time and memory will suffice for an informal understand-
ing.
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each step i, the adversary holds state σi−1 (where σ0 = M), and can compute a
vector of queries to H, as well as next state σi, which it will receive in the next
step, together with the outputs of the evaluations of H on the query vector. The
CMC of the adversary is defined as the sum of the sizes of states, and CMC(FG,H)
denotes the best-possible (expected) CMC of an adversary to evaluate FG,H.

The evaluation of FG,H is tightly related to a (parallel) pebbling game for the
graph G. Initially, the graph has no pebble on it, but in each step i, the player
can (i) remove any subset of the pebbles, and (ii) put a pebble on a vertex v ∈ V

if all parents of v have been pebbled at the previous step. (This is vacuously
true for the source.) Multiple legal moves can be taken in one single step. (This
differs from traditional black pebbling games, where each step allows one single
legal move.) The player wins the game if the sink node has been pebbled. The
cumulative complexity (CC) of the pebbling is defined as the cumulative sum of
the number of pebbles on the graph in each step, and the CC of the graph cc(G)
is the minimal CC over all pebbling strategies.

Intuitively, a pebbling strategy is equivalent to an evaluation strategy for
FG,H which only remembers labels in its memory. In [7] it was shown that such
strategies are essentially optimal, i.e., CMC(FG,H) ≈ cc(G) · W .

Depth-robust graphs. Depth-robust graphs are class of graphs with high CC:
Specifically, we say a graph G = (V,E) is (e, d)-depth-robust if, after remov-
ing any nodes set S ⊆ V where |S| ≤ e, the subgraph G − S still has a path
with length d. Previous work [3] proved that any (e, d)-depth-robust graph G

has cumulative complexity cc(G) ≥ e · d. Also, they show that constructions of
(constant indegree) depth-robust graphs with de = Ω(N2/log(N)) exist, which
gives best-possible CC [1]. Later on, Alwen, Blocki, and Harsha [2] gave a proce-
dure that samples with high probability a graph with the same depth-robustness
guarantees, with a much simpler description.

Our contributions. Our two main contributions provide generic methods to
devise constructions of MHFs from a simple primitive, like a block cipher, a
permutation (that can be instantiated from a fixed-key block cipher), or a com-
pression function. We consider a natural extension of the above model where the
adversary queries an ideal version of the primitive.

1. We first define a simple class of so-called small-block labeling functions Hfix

which make one call to an underlying primitive. They transform a hard-
to-pebble graph G (with maximal indegree 2) into a memory hard function
FG,Hfix

as described above, but where H is now instantiated from the underly-
ing primitive via Hfix, and the resulting block length is L, the output length
of the primitive. (E.g., if we used AES, then L = 128 bits.) Moreover, we
prove that the CMC of FG,Hfix

is approximately cc(G) · L.
2. We then consider the problem of extending the block length of an iMHF

to increase memory hardness without changing the underlying graph G. To
this end, from Hfix with output length L, we define and construct a class
of wide-block labeling functions, which in fact support variable block length.
For any tunable parameters δ,W = 2w ∈ N, the wide-block hash function
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Hδ,w : {0, 1}δW → {0, 1}W turns any depth-robust graph G (with maximal
indegree δ) into a memory hard function FG,Hδ,w

via graph labeling. The
CMC of FG,Hδ,w

is approximately

CMC(FG,Hδ,w
) ≈ cc(G) · δW 3/L2 .

Note that this is larger than cc(G) · W because, intuitively, we need to make
multiple calls to the primitive to evaluate H, and use extra memory. In par-
ticular, we prove that the evaluation of FG,Hδ,w

can be done sequentially with
time Nδ(W/L)2 and memory N · W , i.e., the resulting CMC is N2δW 3/L2,
via a naive strategy which runs N times the best-possible algorithm to eval-
uate H, and keeps all W -bit labels in memory, in addition to internal states.
Hence, if cc(G) = Θ(N2/logN) and δ = O(1), this means that the best pos-
sible CMC can have a gain of a factor at most O(logN) over the “naive”
sequential strategy. This is the same upper bound on the speed-up we could
establish for iMHFs from monolithic random oracles.2

We stress that because these results are generic, constructions can be obtained by
using any graph G (or distribution over graphs) with sufficient depth-robustness
guarantees.3 We give some more details about these results next.

Small-Block Labeling Function: Constructions and Intuition. The
small-block labeling functions Hfix takes an input4 x ∈ {0, 1}L ∪ {0, 1}2L and
outputs an L-bit label. For a compression function cf, the resulting output is
cf(x); for an ideal cipher ic, we split the input into a key part k ∈ {0, 1}L ∪ {⊥}
(where ⊥ is a designated key separate from the L-bit strings, which as with
compression functions, will be necessary to implement variable input length)
and an input part x ∈ {0, 1}L, the resulting output is ic(k, x) ⊕ x; for a random
permutation rp, we denote as x∗ the exclusive-or sum of L-bit input blocks and
the output is rp(x∗) ⊕ x∗.

For any graph G = (V,E), the memory hardness of FG,Hfix
is argued similarly

as in previous work [7]. The high level idea is to transform the execution of any
algorithm A that computes the MHF into an ex-post-facto pebbling for the graph
G, and argue that the cumulative memory complexity of A is proportional to the
cumulative complexity of the pebbling. Here we generalize the technique of [7]
– which relies on a compression argument – so that it works even if:

1. The ideal-primitive input contains no explicit information of the node v. (This
was not the case in prior work.)

2 Actually for certain graphs, we prove that the efficiency gap can be reduced to the
optimal bound O(1), by giving a more memory-efficient sequential algorithm.

3 Our first result in fact only requires a lower bound on cc(G). It is an interesting
open question to provide a wide-block labeling function which only relies on a lower
bound for cc(G), rather than the (stronger) depth-robustness requirement.

4 We assume the compression function allows both L- and 2L-bit inputs, though most
compression functions do not allow this by design. This could however be easily
achieved by reserving one bit of the input to implement domain separation, and
then padding short inputs.
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2. The adversary can make inverse queries to the ideal primitive (as we also
consider block ciphers now).

3. The input length of the primitive is fixed, and usually shorter than the actual
input length of the labeling function.

Remark 1. Note that Blocki et al. [11] independently proposed a proof that
addressed the first and the third challenge. But to the best of our knowledge,
our technique is the only one that works even if the adversary makes inverse
queries.

Succinct MHFs from Wide-Block Labeling Functions. Given a small-
block labeling function Hfix and tunable parameters δ,W = 2w ∈ N, the wide-
block labeling function Hδ,w : {0, 1}δW → {0, 1}W is essentially a graph labeling
function built upon Hfix and a gadget graph Gδ,W . Gδ,W is the composition of
two subgraphs, namely, a MIX graph Gmix, and a source-to-sink depth robust
graph Gssdr = (V

′
,E

′
) that satisfies for any subset S ⊆ V

′
(with bounded size),

Gssdr − S has a long path starting from a source node of Gssdr and ending at a
sink node of Gssdr.

For any (e, d)-depth-robust graph G = (V,E), the CMC of FG,Hδ,w
is argued

by opening the graph structure underlying Hδ,w, and consider FG,Hδ,w
as a graph

function built upon Hfix and a bootstrapped graph Extδ,W (G). We show that the
graph Extδ,W (G) is extremely depth-robust and thus has pebbling complexity
Ω(δW 3/L3) · ed. Then by the property of Hfix, we can build the connection
between the CMC of FG,Hδ,w

and the CC of Extδ,W (G).

Depth-robustness of Extδ,W (G). Given any (bounded-size) nodes subset S

of Extδ,W (G), we show the existence of an extremely long path in Extδ,W (G)−S

in three steps: First, S is transformed into a small set S
′
in G, and we obtain a

long path P in G−S
′
by depth-robustness of G; second, by source-to-sink depth-

robustness of the SSDR graph, each vertex v in P is transformed into a path
P ∗

v in Extδ,W (G) − S; finally, the structure of the MIX graph helps to elegantly
connect the paths in {P ∗

v }v∈P into an extremely long path in Extδ,W (G) − S.

Remark 2. Note that our wide-block labeling functions can only turn depth-
robust graphs (instead of arbitrary graphs with high CC) into memory hard
functions. It is hard to link CMC and cc(G) directly using our extension frame-
work. The hardness lies in linking cc(Extδ,W (G)) and cc(G). In particular, even
if the gadget graph Gδ,W has high CC, we do not know how to prove that
cc(Extδ,W (G)) ≥ cc(G) · cc(Gδ,W ). This is because we do not know how to trans-
form a pebbling P1 (of Extδ,W (G)) into a legal pebbling P2 (of G), and argue
that cc(P1) is at least cc(P2) times cc(Gδ,W ).

2 Preliminaries

Notation. Let N and R denote the sets of natural numbers and real numbers
respectively. Denote by [n] the set of integers {1, . . . , n}. By log(·) we always
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refer to binary logarithm. For strings x and y, |x| is the length of x and we use
x‖y or (x, y) to denote the concatenation of x and y. For a set X, x

$← X is the
process of assigning to x an element picked uniformly from X, and |X| denotes
the number of elements in X. For a distribution D, we use x ← D to denote the
sampling of x from distribution D. For an algorithm A, we use A(x; r) to denote
the output of the algorithm on input x and random coins r.

2.1 Memory-Hard Functions in the Parallel Ideal Primitive Model

Ideal Primitives. In this paper, we consider three ideal primitives, namely,
compression functions, ideal ciphers, and random permutations. All primitives
will have an understood block length L = 2�, which is assumed to be a power of
two. In the following context, we will omit L in the ideal-primitive notation if
there is no ambiguity.

Denote by CF the set of functions5 with domain {0, 1}L ∪{0, 1}2L and image
{0, 1}L. Denote by IC the set of keyed permutations with domain K × {0, 1}L

and image {0, 1}L. For simplicity, the key space is set as K := {⊥} ∪ {0, 1}L

in the following context. Finally, we let RP be the set of permutations with
input/output length L.

Parallel Ideal Primitive Model. Towards modeling the computation of
memory-hard functions, we generalize the Parallel Random Oracle Model defined
by Alwen and Serbinenko [7] to Parallel Ideal Primitive Model. Let IP =
CF/IC/RP be a type of ideal primitive set. For any oracle-aided algorithm A,
input x and internal randomness r, the execution A(x; r) works as follows. First,
a function ip (with block length L) is uniformly chosen from the set IP. The
oracle-aided algorithm A can make oracle query to ip as follows: If ip = cf
is a randomly sampled compression function, the algorithm can make queries
with form (“CF”, x) and receive value cf(x). If ip = ic is a randomly sampled
ideal cipher, the algorithm can make forward queries with form (“IC”,+, k, x)
and receive value ic(k, x), or make inverse queries with form (“IC”,−, k, y) and
receive value ic−1(k, y). Similarly, if ip = rp is a randomly sampled permutation,
the algorithm can make forward queries with form (“RP”,+, x) and receive value
rp(x), or make inverse queries with form (“RP”,−, y) and receive value rp−1(y).

Let σ0 = (x, ∅) denote the initial input state. For each round i ∈ N, A(x; r)
takes input state σi−1, performs unbounded computation, and generates an out-
put state σ̄i = (δi,qi,outi), where δi is a binary string, qi is a vector of queries
to the ideal primitive ip, and each element of outi is with form (v, �v) where
v and �v are L-bit output labels. We define σi = (δi,ans(qi)) to be the input
state for round i + 1, where ans(qi) is the vector of ideal primitive answers to
qi. The execution terminates after round T ∈ N if |qT | = 0. We use Aip(x; r)

5 We assume the compression function allows both L- and 2L-bit inputs, though most
compression functions do not allow this by design. This could however be easily
achieved by reserving one bit of the input to implement domain separation, and
then padding short inputs.
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to indicate both the execution output (i.e., the concatenation of output labels)
and the execution trace (i.e., all of the input and output states (σ0, σ̄1, σ1, . . . )).
We also assume an upper bound q on the total number of output labels/ideal
primitive queries that an algorithm makes, i.e.,

∑
i≥1 |qi| + |outi| ≤ q. We call

A a sequential algorithm if |qi| = 1 for every 1 ≤ i < T , otherwise A is a parallel
algorithm.

Complexity Measures. Given the trace Aip(x; r) on input x, randomness r
and ideal primitive ip, we define as time complexity Tm(Aip(x; r)) the number
of rounds ran by A, and space complexity Spc(Aip(x; r)) the size of the maximal
input state. Moreover, we define Tm(A) (and Spc(A)) to be the maximal time
(and space) complexity of A over all choices of x, r and ip.6 We define cumulative
memory complexity (CMC) [7] in the parallel ideal primitive model.

Definition 1 (Cumulative Memory Complexity). Given trace Aip(x; r)
(with input states (σ0, σ1, . . . )). we define cumulative memory complexity

CMC(Aip(x; r)) :=
Tm(Aip(x;r))∑

i=0

|σi|

to be the sum of input states’ size over time. For a real value ε ∈ [0, 1], and a
family of functions F =

{
f ip : X → Y}

ip∈IP
, we define the ε-cumulative memory

complexity of F to be

CMCε(F) := min
x∈X ,A∈Ax,ε

E[CMC(Aip(x; r))],

where the expectation is taken over the uniform choices of ip and r. Ax,ε is the
set of parallel algorithms7 that satisfy the following: with probability at least ε
(over the uniform choices of ip and r), the algorithm on input x and oracle ip
outputs f ip(x).

Memory-Hard Functions. We now define memory hard functions in the par-
allel ideal primitive model. Intuitively, there exists a relatively efficient sequential
algorithm that computes the MHFs, and any parallel algorithm that evaluates
the functions incurs high CMC cost.

Definition 2 (Memory Hard Functions). For an ideal primitive set IP =
CF/IC/RP, a family of functions F =

{
f ip : X → Y}

ip∈IP
is (C‖

F ,ΔF , TF )-

memory hard if and only if the following properties hold. (C‖
F ,ΔF are functions

that take as input a real value in (0, 1] and output a real value, TF is an integer.)

6 Tm(A) (and Spc(A)) measure worst-case sequential efficiency by providing upper
bounds on time/memory.

7 Recall that the total number of output labels/ideal primitive queries that the algo-
rithm makes is at most q.
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Memory-hardness: For any ε ∈ (0, 1], we have CMCε(F) ≥ C
‖
F (ε).

Efficiency-gap: For any ε ∈ (0, 1], it holds that

minA∈AF,TF (ε · Tm(A) · Spc(A))
CMCε(F)

≤ ΔF (ε),

where AF,TF is the set of deterministic sequential algorithms that run in at
most TF steps and correctly output f ip(x) for any ip and x.

2.2 Graphs and Pebbling Models

Graph Notations. We use G = (V,E) to denote a directed acyclic graph
(DAG) with N = 2n nodes, where V = {1, . . . , N}. Let src(G) ⊆ V be
the set of source nodes and sink(G) ⊆ V be the set of sink nodes. For
a node v ∈ V, pred(v) := {u : (u, v) ∈ E} are the predecessor nodes of v,
succ(v) := {w : (v, w) ∈ E} is the set of v’s successors. We use indeg(v) := |pred(v)|
to denote the indegree of v, and indeg(G) := maxv∈V indeg(v) is the indegree of
G. For a directed acyclic path P , the length of P is the number of nodes it tra-
verses. depth(G) is the length of the longest path in G. For a nodes set S ⊆ V,
G− S is the DAG obtained from G by removing S and incident edges. Next, we
review a useful graph-theoretic property called depth-robustness.

Definition 3 (Depth-Robustness [3]). A DAG G = (V,E) is (e, d)-depth-
robust if and only if depth(G − S) ≥ d for any S ⊆ V where |S| ≤ e.

Next, we define a stronger notion of depth-robustness called source-to-sink-depth-
robustness. Intuitively, it means that after removing any nodes set with certain
size, there still exists a long path from a source node to a sink node.

Definition 4 (Source-to-Sink-Depth-Robustness). A DAG G = (V,E) is
(e, d)-source-to-sink-depth-robust if and only if for any S ⊆ V where |S| ≤ e,
G−S has a path (with length at least d) that starts from a source node of G and
ends up in a sink node of G.

Graph Pebbling. We consider a pebbling game played on a DAG (G = V,E)
[7]. We denote by a parallel pebbling on G as a sequence of pebbling configura-
tions P = (P0, . . . ,Ptpeb) where P0 = ∅ and Pi ⊆ V (1 ≤ i ≤ tpeb). We define two
properties for P.

– Legality: We say P is legal if it satisfies follows: A pebble can be put on a
node v ∈ V only if v is a source node or v’s predecessors were all pebbled at
the end of the previous step, that is, for any i ∈ [tpeb] and any v ∈ Pi \ Pi−1,
it holds that pred(v) ⊆ Pi−1.8

– Successfulness: We say P is successful if it satisfies follows: Every sink node
has been pebbled at least once, that is, for any v ∈ sink(G), there exists
i ∈ [tpeb] such that v ∈ Pi.

8 pred(v) = ∅ for v ∈ src(G).
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We say P is a sequential pebbling if it further satisfies that |Pi \ Pi−1| = 1 for
every i ∈ [tpeb]. Next we define pebbling complexities of graphs.

Definition 5 (Complexity Measures [7]). For a pebbling strategy P = (P0 =
∅, . . . ,Ptpeb), we define the cumulative complexity (and ST-complexity) of P to be

cc(P) :=
tpeb∑

i=0

|Pi|, st(P) := tpeb · max
i∈[tpeb]

(|Pi|).

For a DAG G = (V,E), let P‖(G) be the set of parallel pebblings of G (that are
legal and successful); for any t ∈ N, let Pt(G) be the set of sequential pebblings
of G that (are legal and successful) and takes at most t steps. We define the
cumulative complexity (and ST-complexity) of G to be

cc(G) := min
P∈P‖(G)

cc(P), st(G, t) := min
P∈Pt(G)

st(P).

There is a tight relation between depth-robustness and cumulative complexity.

Lemma 1 ([3]). Let G be an (e, d)-depth-robust DAG, then cc(G) ≥ e · d.

2.3 Graph-Based iMHFs from Labeling Functions

For a DAG G = (V,E) with N = 2n nodes, we index the nodes set V =
{1, . . . , N} by a topological order so that src(G) = {1, . . . , ns} and sink(G) =
{N − nt + 1, . . . , N}. Fix W = 2w, δ := indeg(G) and let IP = CF/IC/RP be the
set of ideal primitives. Denote by

H = Hδ,w =
{
labipγ : {0, 1}γW → {0, 1}W

}

γ∈[δ],ip∈IP

a family of labeling functions. We define a family of graph functions FG,H =
{Fip

G,H : {0, 1}nsW → {0, 1}ntW }ip∈IP based on G and H: For an input x =
(x1, . . . , xns

) ∈ {0, 1}nsW , denote �i := labip1 (xi) as the label of the ith source
(1 ≤ i ≤ ns), we recursively define the label of v ∈ [N ] as

�v := labipγ (�v1 , . . . , �vγ
)

where (v1, . . . , vγ) are the predecessors of v. The output Fip
G,H(x) is defined as

the concatenation of sinks’ labels, that is, (�N−nt+1‖ . . . ‖�N ).

Preprocessing the Inputs. If ns = |src(G)| > 1, we implicitly assume that
the input vector x = (x1, . . . , xns

) has no overlapping blocks (and we call it a
non-colliding input vector), that is, for any i, j ∈ N such that i �= j, we have
xi �= xj . This constraint is necessary for preventing the adversary from easily
saving memory. For example, if the blocks in the input vector are identical, the
adversary only needs to store a single block instead of the entire input vector.
The constraint/assumption is also reasonable as we can re-randomize the original
input using a random oracle RO : {0, 1}nsW → {0, 1}nsW , and the output blocks
will be distinct with overwhelming probability when ns � 2W/2.
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Remark 3 (Graph constraint). In the following context, the graphs we are con-
cerned with should satisfy certain properties. In particular, each 2-indegree DAG
G = (V,E) considered in Sect. 3 should be predecessors-distinct, that is, for any
two distinct vertices u, v ∈ V\src(G), we have pred(u) �= pred(v). Looking ahead,
this constraint is used to prevent non-source nodes label collisions. Additionally,
each δ-indegree DAG G = (V,E) considered in Sect. 4 satisfies a property called
first-predecessor-distinctness, that is, there exists a map from each non-source
node v ∈ V\src(G) to a single node fpre(v) ∈ pred(v), so that for any two distinct
vertices u, v ∈ V \ src(G), we have fpre(u) �= fpre(v). Looking ahead, this con-
straint is used to guarantee that the 2-indegree bootstrapped graph Extδ,W (G)
built upon G is predecessors-distinct. We stress that practical DAG constructions
usually contain a subpath that traverses all of the vertices, and thus are both
first-predecessor-distinct and predecessors-distinct.9

3 MHFs from Small-Block Labeling Functions

In this section, we construct a family of graph-based iMHFs based on what
we refer to as a small-block labeling function, i.e., a simple hash function based
on an ideal primitive, which preserves its block length. (Note that this notion
is introduced for modularity reason – we could define our designs directly as
depending on a primitive.) In Sect. 3.1, we define and construct of efficient small-
block labeling functions from primitives, and in Sect. 3.2, we prove that the
constructions satisfies the required properties. Finally, in Sect. 3.3, we construct
iMHFs from small-block labeling functions.

3.1 Small-Block Labeling Functions: Definition and Construction

Definition 6 (Small-Block Labeling Functions). For an ideal primitive
IP = CF/IC/RP with block length L = 2�, we say

Hfix =
{
flabip :

{
{0, 1}L ∪ {0, 1}2L

}
→ {0, 1}L

}

ip∈IP

is a family of β-small-block labeling functions if it has the following property.

β(·, ·)-pebbling reducibility: For any ε ∈ (0, 1] and 2-indegree (predece
ssors-distinct10) DAG G = (V,E),11 let FG,Hfix

be the graph function built
upon G and Hfix. We have

CMCε(FG,Hfix
) ≥ β(ε, log |V|) · cc(G),

where cc(G) is the cumulative complexity of G (Definition 5).
9 First-predecessor-distinctness holds as each non-source node v can pick her previous

node in the subpath (that traverses all of the vertices) as their first predecessor;
predecessors-distinctness holds as otherwise a cycle would exist.

10 See Remark 3 for definition of predecessors-distinct graphs.
11

G can have multiple source/sink nodes.
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Construction. Next, we show how to construct small-block labeling functions
from ideal primitives. Our main contribution is a construction from a random
permutation, which can be instantiated from fixed-key AES. For completeness,
we also present constructions from ideal ciphers and compression functions. We
fix the input domain to be {0, 1}L ∪{0, 1}2L and the output space to be {0, 1}L,
and denote as RP, IC, CF the random permutations, ideal ciphers, and compres-
sion functions, respectively.

1. Given any rp ∈ RP, we define the labeling function flabrp(·) as follows:
For any input x ∈ {0, 1}L, the output is flabrp(x) := rp(x) ⊕ x; for any
input (x1, x2) ∈ {0, 1}2L, denote as x∗ := x1 ⊕ x2 ∈ {0, 1}L, the output is
flabrp(x1, x2) := rp(x∗) ⊕ x∗.

2. Given any ic ∈ IC, we define the labeling function flabic(·) as follows: For
any input x ∈ {0, 1}L, the output is flabic(x) := ic(⊥, x) ⊕ x; for any input
(k, x) ∈ {0, 1}2L, the output is flabic(k, x) := ic(k, x) ⊕ x.

3. Given any cf ∈ CF, we define the labeling function flabcf(·) as follows: For
any input x ∈ {0, 1}L ∪ {0, 1}2L, the output is flabcf(x) := cf(x).

Note that all of the above constructions are highly efficient as they call the
ideal-primitive only once. Next we show that the constructions are pebbling
reducible.

Remark 4. The construction for compression functions is interesting, even in
view of prior work, because of the fact that prior work included the node identity
into the hash-function input, thus effectively requiring 2L + log N -bit inputs,
whereas here we can get away with 2L.

3.2 Small-Block Labeling Functions: Pebbling Reducibility

In this section, we show that the labeling functions constructed in Sect. 3.1 satisfy
pebbling reducibility, via the following three theorems.

Theorem 1. Assume an adversary can make no more than q1 oracle calls and
q2 output calls such that q1 + q2 = q = 2L/4. Hfix = {flabcf}cf∈CF built upon
compression function CF is β(·, ·)-pebbling reducible, where for all ε ≥ 3 · 2−L/8

and N ≤ 2L/8, it holds that β(ε, log N) ≥ εL
8 .

Theorem 2. Assume an adversary can make no more than q1 oracle calls and
q2 output calls such that q1 + q2 = q = 2L/4. Hfix = {flabic}ic∈IC built upon ideal
cipher IC is β(·, ·)-pebbling reducible, where for all ε ≥ 3 · 2−L/8 and N ≤ 2L/8,
it holds that β(ε, log N) ≥ εL

8 .

Theorem 3. Assume an adversary can make no more than q1 oracle calls and
q2 output calls such that q1 + q2 = q = 2L/8. Hfix = {flabrp}rp∈RP built upon
random permutation RP is β(·, ·)-pebbling reducible, where for all ε ≥ 3 · 2−L/10

and N ≤ 2L/10, it holds that β(ε, log N) ≥ εL
40 .
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Next we present the proofs for Theorems 1, 2 and 3. First, we introduce some
notation for graph labeling, then we highlight the proof techniques and introduce
the notion of ex-post-facto pebbling in the ideal primitive model. Finally, we
provide the formal proof.

Graph Label Notations. Fix ideal primitive IP = CF/IC/RP,12 input vector
x and any graph G = (V,E). For a primitive ip ∈ IP and any node v ∈ V, we
denote as �v the graph label of v. If v is a source, prelab(v) is the corresponding
input label xv. If v is a non-source node, we define prelab(v) based on the type
of the ideal primitive:

– If IP = RP, we define prelab(v) as the exclusive-or sum of v’s parents’ �-labels.
– If IP = IC/CF, we define prelab(v) as the concatenation of v’s parents’ �-

labels.

Similarly, for every node v ∈ V, we define aftlab(v) based on the type of the ideal
primitive:

– If IP = RP/CF, we define aftlab(v) = ip(prelab(v)).
– If IP = IC and v has only one parent, we define aftlab(v) = ip(⊥, prelab(v)).

Otherwise if v has two parents, denote as prelab(v) = (y1, y2) (where y1, y2 ∈
{0, 1}L are �-labels of v’s parents), we define aftlab(v) as (y1, ip(y1, y2)).

In the following context, we abuse the notation a bit in that if prelab(v) (or
aftlab(v)) is an L-bit string and ip is an ideal cipher, we use ip(prelab(v)) (or
ip−1(aftlab(v))) to denote ip(⊥, prelab(v)) (or ip−1(⊥, aftlab(v))). Moreover, for
an ideal cipher query with input xc = (⊥, x), we say xc = prelab(v) (or xc =
aftlab(v)) if and only if x = prelab(v) (or x = aftlab(v)), respectively.

We remark that prelab(v) (and aftlab(v)) are more than just single labels,
they are used to identify the node from a query input to the ideal primitive.

Proof Highlight. Similar as in [7], the proof idea is to transform any algo-
rithm execution A into an ex-post-facto pebbling, and argue that the cumulative
memory complexity of A is proportional to the cumulative complexity of the peb-
bling. This is proved by mapping each node v ∈ V to an ideal-primitive entry
(prelab(v), ip(prelab(v))), and argue that for each round i ∈ N, the input state σi

should have large size as it is an encoding for many ideal-primitive entries. In
particular, for every node v in the ith pebbling configuration, ip(prelab(v)) (and
�v) can be decoded from an oracle-call input in the partial execution A(σi). Here
we generalize the technique of [7] so that it works even if:

1. The ideal-primitive input prelab(v) contains no explicit information of the
node index v. (Note that in previous work [7], prelab(v) has v as a prefix.)

2. The adversary can make inverse queries to the ideal primitive.
3. The input length of the primitive is much shorter than the actual input length

of the labeling function.

12
CF denotes the compression function, IC denotes the ideal cipher, and RP denotes
the random permutation.
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Ex-post-facto Pebbling. Similar as in [7], we define a notion called ex-post-
facto pebbling in the ideal primitive model. Fix ideal primitive IP = CF/IC/RP,
input vector x, DAG G = (V,E). For any ip ∈ IP, randomness r, and the
execution trace Aip(x; r) (that runs for tpeb + 1 rounds), we turn the trace into
an ex-post-facto pebbling

P(Aip(x, r)) = (P0 = ∅, . . . ,Ptpeb).

For each oracle call/query that asks for the ideal-primitive value on input xc,
we say that the call is a correct call for a node v ∈ V if and only if xc matches
prelab(v) and the call is forward, or xc matches aftlab(v) and the call is an inverse
call. We define the ex-post-facto pebbling configurations in reverse order. For i
from tpeb to 1, denote as σi the input state of round i + 1 and A(σi) the partial
execution of Aip(x; r) after round i, the pebbling configuration Pi is defined as
follows. (In the following context, by round γ, we always mean the γ-th round
in the execution Aip(x, r).)

1. Critical Calls: We sort the output/ideal primitive calls of A(σi) in chronolog-
ical order13 and determine whether they are critical calls.

– An output call (in round γ > i) with label (v, �v) is a critical call for
v ∈ V if and only if v is a sink and in the trace A(σi), no correct call for
v appeared before round γ.

– An ideal-primitive call (in round γ > i) is a critical call for a node u ∈ V

if and only if the following conditions both hold: (i) the ideal-primitive
call is a correct call for a successor node v ∈ succ(u) and in the trace
A(σi), no correct call for u appeared before round γ; (ii) v is in Pγ .

2. Pebbling Configuration: A node v ∈ V is included into the pebbling configu-
ration Pi if and only if both of the following conditions hold:

– There is at least one critical call for v in the trace A(σi).
– There is at least one correct call for v between round 1 and round i

(inclusively).14

In a critical call, the algorithm provides the information of a graph label without
recomputing, hence the call is useful in extracting ideal-primitive entries. On a
side note, by definition of critical call and ex-post-facto pebbling, for any round
i, we might possibly put a node u into Pi only if u is a sink or one of its successor
v ∈ succ(u) is in Pγ for some γ > i.

Proof (of Theorems 1, 2 and 3). Fix ideal primitive type IP = CF/IC/RP, input
vector x, adversary A, and any graph G = (V,E), the proof consists of the
following four steps.

Label Collisions. First, we show that with probability at least 1 − εcoll(IP)
(over the choice of the ideal primitive), the pre-labels {prelab(v)}v∈V are all
distinct.15

13 We assume an implicit order for the calls in the same round.
14 Note that the existence of a correct call for v in round i does not imply v ∈ Pi,

because v may not have a critical call in the future.
15 If IP = IC/RP, this also implies that {aftlab(v)}v∈V are distinct.
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Lemma 2. Fix ideal primitive IP = CF/IC/RP (with block length L),
predecessors-distinct DAG G = (V,E) (with ns source nodes), non-colliding
input vector x ∈ {0, 1}nsL,16 and Hfix = {flabip}ip∈IP constructed in Sect. 3.
With probability at least 1 − εcoll(IP) (over the uniformly random choice of ip),
the graph labeling satisfies that the pre-labels {prelab(v)}v∈V are all distinct. Here
εcoll(CF) = |V|2/2L+1 and εcoll(IC) = εcoll(RP) = |V|2/2L.

Proof. The proof is deferred to full version. ��
The property in Lemma 2 is useful in determining the node index v when one
sees an ideal-primitive query related to v. Moreover, it guarantees that each node
v maps to a unique ideal-primitive input entry prelab(v).

Pebbling Legality. Next, we show that with high probability (over the uni-
form choices of the ideal primitive ip and random coins r), the ex-post-facto
pebbling P(Aip(x, r)) = (P0 = ∅, . . . ,Ptpeb) for Aip(x; r) is legal, and thus

tpeb∑

i=0

|Pi| ≥ cc(G)

as long as the pebbling is successful.
Before presenting the lemma, we prove a claim that will be useful in many

places.

Claim 1. Fix any execution Aip(x; r) (with input states σ0, σ1, . . . ) whose ex-
post-facto pebbling is P(A) = (P0, . . . ,Ptpeb). For any i ∈ [tpeb] and any vertex
v ∈ Pi \ Pi−1, it holds that there is a correct call for v in round i.

Proof. The proof is deferred to full version. ��
Lemma 3. Fix IP = CF/IC/RP (with block length L), predecessors-distinct
DAG G = (V,E) (with ns source nodes), non-colliding input vector x ∈
{0, 1}nsL, algorithm A, and Hfix = {flabip}ip∈IP constructed in Sect. 3. With prob-
ability at least 1 − εcoll(IP) − εlegal(IP) (over the uniformly random choices of
ip and A’s internal coins r), the pre-labels are distinct and the ex-post-facto
pebbling for Aip(x; r) is legal. Here εcoll(IP) is the same as in Lemma 2 and
εlegal(CF) = q · |V|/2L−1, εlegal(IC) = εlegal(RP) = q · |V|/2L−2, where q is an
upper bound on the number of calls made by A.

Proof. The proof is deferred to full version. ��
Pebbling Reduction. Next, we build the connection between the state size
and the size of the pebbling configuration. In particular, we show that with high
probability, the input state size |σi| is proportional to |Pi| for all i ∈ N.

16 By non-colliding, we mean x = (x1, . . . , xns) where xi �= xj for every i �= j.
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Lemma 4. Fix L = 2�, predecessors-distinct DAG G = (V,E) (with ns source
nodes), non-colliding input vector x ∈ {0, 1}nsL, algorithm A (that makes at most
q−1 calls), and Hfix = {flabip}ip∈IP constructed in Sect. 3. Set values βCF := �L−
2 log q− log |V|− log 3�, βIC := �L− 1− 2 log q− log |V|− log 3�, and βRP := �L

2 −
1 − 2 log q − log |V| − log 3�. For any IP = CF/IC/RP and λ ∈ N, define E

λ,IP
pred

as the event where the following three conditions all hold:

1. The pre-labels are distinct from each other.
2. The ex-post-facto pebbling (P0,P1, . . . ,Ptpeb) for Aip(x; r) is legal.
3. There exists i ∈ N such that |σi| < |Pi| · βIP − λ, where σi denotes the input

state for round i + 1 and Pi denotes the pebbling configuration in round i.

It holds that Pr[Eλ,IP
pred ] ≤ 2−λ for all λ ∈ N, where the probability is taken over

the choice of ip $← IP and random coins of A.

Proof. Without loss of generality we fix r to be the optimal random coins of
A that maximizes Pr[Eλ,IP

pred ]. We will show a predictor P (that hardwires r and
has oracle access to ip), such that if Eλ,IP

pred happens (which implies |σi| < |Pi| ·
βIP − λ for some i ∈ N), there will be a hint h with no more than |Pi| · L − λ
(and |Pi| · (L − 1) − λ when IP = IC/RP) bits, where P (h) can predict |Pi|
ideal primitive entries correctly. Thus by the compression arguments that ideal
primitives cannot be compressed (i.e., Lemmas 9 and 10), Eλ,IP

pred happens with
probability no more than 2−λ and the lemma holds. Next we describe the hint
h and the predictor P .

The Hint. For any choice of ip ∈ IP, if event Eλ,IP
pred happens, there exists a round

i ∈ N such that |σi| < |Pi| · βIP − λ, where σi is the input state of round i + 1
and Pi = (v1, v2, . . . , v|Pi|) is the ex-post-facto pebbling configuration. The hint
consists of the state σi and the following helper information. (In the following
context, if not describe explicitly, by critical call, we always mean a critical call
in the trace A(σi).)

– A sequence Qi = (id1, id2, . . . , id|Pi|) ∈ [q − 1]|Pi|, where idj (1 ≤ j ≤ |Pi|) is
the index of the first critical call for vj ∈ Pi in the trace A(σi). (Recall that
we sort the calls in chronological order, and assume an implicit order for the
calls in the same round.)

– A nodes sequence Wi = (w1, w2, . . . , w|Pi|), where wj = vj (1 ≤ j ≤ |Pi|) if
the idj-th call is an output call; otherwise, if the idj-th call is a correct call
for some successor of vj , then wj is assigned as the corresponding successor
node.

– A sequence Bi = (b1, b2, . . . , b|Pi|), where bj ∈ {0, 1, 2} is used to indicate the
relation between wj and vj . In particular, wj = vj if bj = 0, otherwise vj is
the bj-th predecessor of wj .

– A sequence Ci = (cid1, cid2, . . . , cid|Pi|), where cidj = 0 (1 ≤ j ≤ |Pi|) if there
is no correct call for vj ∈ Pi in the trace A(σi), otherwise cidj is the query
index of the first correct call for vj .
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– If IP = RP, the hint includes an extra sequence Hi = (h1, h2, . . . , h|Pi|), where
hj (1 ≤ j ≤ |Pi|) is the label �vj

if there exists some k > j such that idj = idk

(i.e., another node vk ∈ Pi has the same first critical call), otherwise hj is
set as empty17. We see that there are at most �|Pi|/2� non-empty values in
the sequence, as any ideal-primitive call can be a critical call for at most two
vertices.

Note that we can easily recover the configuration Pi from the hint Wi and Bi.
The size of the hint is no more than lenIP := |Pi|·L−λ (and lenIP := |Pi|·(L−1)−λ
when IP = IC/RP) bits given the setting of βIP.

The Predictor P . Given any input the predictor P parses the input into σi,
Qi, Wi, Bi, Ci and Hi as mentioned before18, and recovers the pebbling con-
figuration Pi. Then P runs the partial execution A(σi) and attempts to predict
(prelab(v), ip(prelab(v))) for every v ∈ Pi without querying ip(prelab(v)). In the
following context, if not describe explicitly, by critical call, we always mean a
critical call in the trace A(σi).

When simulating A(σi), the predictor uses the following approach to deter-
mine if an ideal-primitive call is a correct call for a node v: The predictor keeps
track of the labels prelab(v), aftlab(v) and �v for every v ∈ V. Moreover, after
knowing the labels of v’s predecessors, the predictor updates prelab(v) accord-
ingly. Given an ideal-primitive call from A, P determines call correctness by
checking the following cases sequentially:

– If P knows from hint Qi that the call is the first critical call for some node
v ∈ Pi, then the predictor knows that it is also a correct call for some node
w, where w can be extracted from the hint Wi.

– If the call is the first correct call19 for some node v ∈ Pi, then P will know it
from the hint Ci.

– The call is a forward call. Then the predictor checks if there exists a node
v ∈ V where prelab(v) was updated and prelab(v) matches the call input xc.
If so, P asserts that it is a correct call for v.

– IP = IC/RP and the call is an inverse call. Then the predictor first checks
if there is a node v ∈ V where aftlab(v) was updated and aftlab(v) matches
the call input xc. If no such v exists, P queries the oracle, and checks if the
answer is consistent with some updated prelab(v) (v ∈ V).

– If one of the above checks succeed, then after recognizing the correct call for
v, P updates prelab(v), aftlab(v) and �v accordingly.

Claim 2. Fix execution Aip(x; r) and round i, suppose the pre-labels are distinct,
and the ex-post-facto pebbling (P0, . . . ,Ptpeb) is legal. For any round γ > i, assume
the predictor successfully extracted �-labels for all (first) critical calls (in A(σi))
between round i and round γ. Then for any vertex v ∈ Pi ∪ · · · ∪ Pγ , and any

17 Note that we don’t need an indicator (e.g., hj = ⊥) to tell if hj is empty or not, as
we can know it from the sequence Qi. This enables us to have a shorter Hi.

18 We assume that the encoding of the hint is unambiguous.
19 Recall that there is an implicit chronological order for the calls.
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correct call for v in round γ (denote the call as C(v)), the predictor will correctly
recognize the call C(v) when simulating A(σi).

Proof. The proof is deferred to full version. ��
Next we show how to simulate A(σi) and predict ideal-primitive entries.
The predictor simulates A(σi) (which corresponds to the partial execution

of A after round i) and keeps track of the labels prelab(v), aftlab(v) and �v for
every v ∈ V. For each round γ > i, after receiving the calls from A, the predictor
P does follows sequentially.

1. Handling critical calls: P first enumerates node vj ∈ Pi according to reverse
topological order20 and checks the following: If the idj-th call (i.e. vj ’s first
critical call) is in round γ and �vj

is unknown yet, the predictor uses the hint to
extract the label �vj

. The extraction from a critical output call is trivial, thus
we assume that the call is an ideal-primitive call. From the hint, the predictor
knows that it is a correct ideal primitive call for a node wj ∈ succ(vj) where wj

can be extracted from the hint Wi. (Note that wj ∈ Pγ by definition of critical
calls.) The predictor first extracts prelab(wj) from the call input/output:

– If the call is forward, prelab(wj) can be identified from the call input.
– If wj ∈ Pi and the call is an inverse call, since P chooses nodes in Pi

according to reverse topological order, and in A(σi) the first critical call
for wj appears no later than any correct call for wj , P must have already
extracted �wj

, and thus the predictor can extract prelab(wj) from �wj
and

the call input without querying the oracle.
– If wj /∈ Pi and the call is an inverse call, P can query the oracle and

extract the information of prelab(wj) from the oracle answer.
Given wj and prelab(wj), if IP = CF or IP = IC, P can directly extract the
label �vj

from prelab(wj) and bj ; if IP = RP and vj is the only predecessor of
wj , P can extract �vj

= prelab(wj); if IP = RP and wj has another predecessor
u, we argue that �u was already known and thus the predictor can obtain the
label �vj

= prelab(wj) ⊕ �u.
– If u /∈ Pi, since the ex-post-facto pebbling is legal and wj ∈ Pγ , there

exists a round γ′ (i < γ′ < r) such that u ∈ Pγ′ \ Pγ′−1. By Claim 1,
there is a correct call C(u) for u in round γ′. Then by Claim 2, P will
recognize the call C(u) and update the label �u.

– If u is in Pi but the first critical call for u is before round γ (but after
round i), then �u was already known before round γ.

– If u equals some node vk ∈ Pi such that vk and vj have the same first
critical call, since �vj

was unknown, it must be the case that k < j and
hk = �vk

, hence the predictors knew �u initially from the hint Hi.
2. Handling correct calls for Pi: For each node vj ∈ Pi and each correct ideal-

primitive call for vj (note that by Claim 2, P correctly recognizes the call,
as the �-labels of (first) critical calls upto round γ were correctly extracted),

20 v|Pi| is picked first, then v|Pi|−1,..., and finally v1.
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since the predictor already knew �vj
after handling the first critical call for

vj ,21 she can answer the call without querying the ideal primitive:
– If IP = CF, then �vj

is the query answer.
– If IP = IC and the call input has the value (k, x) where k ∈ {0, 1}L ∪{⊥}

and x ∈ {0, 1}L, the answer is �vj
⊕ x because �vj

= x ⊕ ip(k, x) for a
forward call and �vj

= x ⊕ ip−1(k, x) for an inverse call.
– If IP = RP and the call input has the value x, the answer is �vj

⊕ x

because �vj
= x ⊕ ip(x) for a forward call and �vj

= x ⊕ ip−1(x) for an
inverse call.

For each round γ > i, after checking correct/critical calls for all nodes in
Pi, the predictor answers the other unanswered calls by making queries to the
ideal primitive. Note that in round γ, for every node v ∈ Pi ∪ · · · ∪ Pγ , if there
is a correct ideal-primitive call for v, since P already extracted �-labels for all
(first) critical calls upto round γ, by Claim 2, P will recognize the call, get the
call answer, then update the labels prelab(v), aftlab(v), �v and the pre-labels of
v’s successors.

After executing A(σi), the predictor will compute prelab(v) for every v ∈ V

according to topological order, and predict ip(prelab(v)) for every v ∈ Pi. In
particular, if IP = CF, ip(prelab(v)) = �v; if IP = IC, let x be the last L-bit
string of prelab(v), then ip(prelab(v)) = x ⊕ �v; if IP = RP, then ip(prelab(v)) =
prelab(v) ⊕ �v. Note that if Eλ,IP

pred happens and the input is the hint h mentioned
above, the predictor does not need to query ip(prelab(v)) for any v ∈ Pi as the
answer can be computed from prelab(v) and the extracted label �v.

Correctness of the Predictor. If Eλ,IP
pred happens and P ’s input is the hint

mentioned above, the predictor will correctly predict (prelab(v), ip(prelab(v))) for
every v ∈ Pi without querying ip(prelab(v)). Recall that {prelab(v)} are distinct
so that P also predicts |Pi| ideal-primitive entries.

First, we note that the labels being updated (including prelab(v), aftlab(v)
and �v for v ∈ V) are correct by induction on the time order of updating. Initially,
only the pre-labels of source vertices were updated which are correct. Assume
all the labels being updated are correct up to now. A new label prelab(v) (or
aftlab(v)) will be updated because one of the following possibilities:

1. P recognizes the first correct call for v ∈ Pi from the hint Ci (and thus correct
by the hint).

2. P recognizes a correct call for v by finding out that the call input/output
matches the previously updated aftlab(v) (or prelab(v)) which is correct by
inductive hypothesis.

3. P computes the label according to topological order (at the end).
4. prelab(v) is updated because the �-labels of v’s predecessors were all updated

previously (which are correct by inductive hypothesis).

Similarly, a new label �v will be updated either because the possibility 2 as above,
or because P extracts �v from the first critical call for v (and thus correct by
21 Recall that in A(σi), there was no correct call for v before the round of the first

critical call for v.
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the hint). Note that the argument above also implies that P will not output an
incorrect prediction.

It remains to prove that P will never query ip(prelab(v)) for any v ∈ Pi. First,
when simulating A(σσi

), P will recognize the first correct call of v from the hint
Ci and answer the call using the extracted label �v. Then prelab(v), aftlab(v) and
�v will all be updated. For the following correct calls, since prelab(v), aftlab(v)
and �v have been updated, P will recognize and answer the call without querying
ip. Lastly, when computing prelab(v) for v ∈ V according to topological order, P
will not query ip(prelab(v)) for any v ∈ Pi as the answer will be computed from
prelab(v) and the extracted label �v.

In summary, with probability at least Pr[Eλ,IP
pred ], there exists a short hint h

where P (h) correctly guesses |Pi| ideal-primitive entries, thus by Lemmas 9 and
10, we have Pr[Eλ,IP

pred ] ≤ 2−λ and the lemma holds. ��
Putting All Things Together. For an execution Aip(x, r), we say Aip(x, r)
is correct if the algorithm generates the correct graph function output at the
end; we say Aip(x, r) is lucky if it is correct but there is a vertex v ∈ sink
where A did not make any correct call for v before outputting the label �v.
Note that if Aip(x, r) is correct but not lucky, the ex-post-facto pebbling will
be successful. Moreover, with similar compression argument as in Lemmas 2 and
3, the probability (over the uniform choice of ip and A’s internal coins) that
A is lucky is no more than εluck(IP), where εluck(CF) = |V|/2L and εluck(IC) =
εluck(RP) = |V|/2L−1.

In summary, for any algorithm A that correctly computes the graph function
with probability εA > 2 · (εcoll(IP) + εlegal(IP) + εluck(IP)), we set λ ∈ N as the
minimal integer such that ε(λ) = εcoll(IP) + εlegal(IP) + εluck(IP) + 2−λ ≤ εA/2.
Then the following conditions hold with probability more than εA − ε(λ) ≥ εA/2:

1. The pre-labels are distinct from each other.
2. The ex-post-facto pebbling is legal and successful, hence

tpeb∑

i=1

|Pi| ≥ cc(G).

3. For every i ∈ [tpeb], it holds that |σi| ≥ |Pi| ·βIP −λ. Here Aip(x; r) terminates
at round tpeb + 1, σi is the input state for round i + 1, and Pi is the pebbling
configuration in round i.
Thus we have

CMC(Aip(x; r)) ≥
tpeb∑

i=1

|σi| ≥
tpeb∑

i=1

(|Pi| · βIP − λ)

≥
( tpeb∑

i=1

|Pi|
)

· βIP − tpeb · λ

≥ cc(G) · βIP − tpeb · λ ≥ cc(G) · βIP,λ,

where βIP,λ = βIP − λ as cc(G) ≥ tpeb.
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Therefore we have

E[CMC(Aip(x; r))] ≥ εA
2

· βIP,λ · cc(G).

By plugging in the corresponding εcoll(IP), εlegal(IP), εluck(IP) and βIP for the
ideal primitive IP, we can find the optimal parameter λIP, and compute

β(εA, log |V|) =
εA
2

· (βIP − λIP),

which leads to Theorems 1, 2 and 3.
��

3.3 iMHFs from Small-Block Labeling Functions

In this section, from any graph, we construct graph-based iMHFs from the small-
block labeling functions built in Sect. 3.1.

Proposition 1. Fix L = 2� and let Hfix be the β-small-block labeling function
built in Sect. 3.1. For any 2-indegree (predecessors-distinct) DAG G = (V,E)
with N = 2n vertices and single source/sink, the graph labeling functions FG,Hfix

is (C‖
F ,ΔF , N)-memory hard, where for all ε ∈ [3 · 2−L/10, 1], it holds that

C
‖
F (ε) ≥ Ω(ε · cc(G) · L), ΔF (ε) ≤ O

(
st(G, N)
cc(G)

)

.

Proof. The proof is deferred to full version. ��
The graph G in [3] has pebbling complexities cc(G) = Ω(N2/logN) and

st(G, N) = O(N2/logN), thus we obtain the following corollary.

Corollary 1. Fix L = 2� and let Hfix be the β-small-block labeling function built
in Sect. 3.1. Let G = (V,E) be the 2-indegree (predecessors-distinct) DAG in [3]
(with N = 2n vertices). The graph labeling functions FG,Hfix

is (C‖
F ,ΔF , N)-

memory hard, where for all ε ∈ [3 · 2−L/10, 1], it holds that

C
‖
F (ε) ≥ Ω

(
ε · N2 · L

log N

)

, ΔF (ε) ≤ O(1).

4 MHFs from Wide-Block Labeling Functions

Ideally, we target a CMC which is as high as possible, while keeping the evalua-
tion of the function within a feasible margin for the legitimate users. An option
is to use a bigger graph with high CC and small-block labeling functions. How-
ever, this can lead to large description size. A way out here is to choose a graph
family that has succinct description. Unfortunately, as far as we know, prac-
tical hard-to-pebble graphs are randomly sampled and do not have a succinct
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description of the actual graph, only of the sampling process. To reduce descrip-
tion complexity of MHFs, in this section, we construct a family of graph-based
iMHFs based on an abstraction called wide-block labeling functions. In Sect. 4.1,
we define and construct a family of wide-block labeling functions from small-
block labeling functions. In Sect. 4.2, we prove that the construction satisfies
pebbling reducibility with respect to depth-robust graphs. Finally in Sect. 4.3,
we construct succinct iMHFs from wide-block labeling functions.

4.1 Wide-Block Labeling Functions: Definition and Construction

Definition 7 (Wide-Block Labeling Functions). For any ideal primitive
IP = CF/IC/RP, δ ∈ N and W = 2w, we say

Hδ,w =
{
vlabipγ,w : {0, 1}γW → {0, 1}W

}

ip∈IP,1≤γ≤δ

is a family of βδ,w-wide-block labeling functions if it satisfies the following prop-
erty.

βδ,w-pebbling reducibility w.r.t. depth-robust graphs: For any ε ∈
[0, 1] and any δ-indegree (e, d)-depth robust (first-predecessor-distinct) DAG
G = (V,E)22, the graph functions FG,Hδ,w

satisfies

CMCε(FG,Hδ,w
) ≥ e · (d − 1) · βδ,w(ε, log |V|),

where CMCε(·) is ε-cumulative-memory-complexity (Definition 1).

Construction. Next we show how to construct wide-block labeling functions
from small-block labeling functions. The construction is the composition of two
graph functions MIX and SSDR, which can be built from any small-block labeling
functions.

Remark 5. There are tailored-made variable-length hash functions available in
the real-world, for example within Scrypt [19,20] and Argon2 [10]. However, even
by modeling the underlying block/stream cipher as an ideal primitive, we do not
know how to prove the pebbling-reducibility of the hash functions. Hence we
seek another construction of labeling functions.

In the following context, we fix the indegree parameter δ ∈ N, ideal primitive
length L = 2�, output length W = 2w of the wide-block labeling functions,
and denote as K = 2k :=W/L the ratio between W and L. We will omit these
variables in notation when it is clear in the context.

We show how to construct the family of labeling functions Hδ,w. For any
1 ≤ γ ≤ δ, and any ideal primitive ip ∈ IP, we define the labeling function
vlabipγ,w : {0, 1}γW → {0, 1}W as the composition of two functions, namely,

22
G has a single source/sink vertex.
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mixipγ : {0, 1}γW → {0, 1}W and ssdripδ : {0, 1}W → {0, 1}W . More precisely,
for an input vector x ∈ {0, 1}γW , we define the W -bit function output as

vlabipγ,w(x) := ssdripδ (mixipγ (x)).

Next, we specify the functions mixipγ and ssdripδ .

Component: MIX Functions. Denote as flabip : {0, 1}L ∪ {0, 1}2L → {0, 1}L

a small-block labeling function (Definition 6), and let K := W/L be the ratio
between W and L. We define

mixipγ :=Fip

G
γ,K
mix

: {0, 1}γW → {0, 1}W=KL

as the graph function (Sect. 2.3) built upon a DAG G
γ,K
mix and the labeling func-

tion flabip. (Note that we can use flabip as the labeling function since the maximal
indegree of Gγ,K

mix is 2.) The graph G
γ,K
mix = (Vγ,K

mix ,Eγ,K
mix ) is defined as follows.

Nodes set: The set V
γ,K
mix has γK source nodes (which represent the γK input

blocks), and we use 〈0, j〉 (1 ≤ j ≤ γK) to denote the jth source node.
Besides, there are γK columns each with K nodes. We use 〈i, j〉 (1 ≤ i ≤ γK,
1 ≤ j ≤ K) to denote the node at the ith column and jth row. The K nodes
at the last column are the sink nodes (which represent the K output blocks).

Edges set:The set E
γ,K
mix has γK2 + γ(K − 1)K + K − 1 edges. Each source

node 〈0, i〉 (1 ≤ i ≤ γK) has K outgoing edges to the K nodes of column
i, namely, {〈i, j〉}j∈[K]. For each column i (1 ≤ i < γK) and each row j
(1 ≤ j ≤ K), the node 〈i, j〉 has an outgoing edge to 〈i + 1, j〉 at the next
column. Finally, each source node 〈0, j〉 (2 ≤ j ≤ K) has an outgoing edge
to 〈1, j〉23 (Fig. 1).

Fig. 1. The graph G
γ,K
mix for K = 4. We omitted the edges from 〈0, j〉 to 〈1, j〉 (2 ≤ j ≤

K) for clarity of the figure.

23 The last K − 1 edges make sure that the K nodes at column 1 have distinct sets of
predecessors (Sect. 2.3).
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Component: SSDR Functions. Denote as flabip : {0, 1}L ∪ {0, 1}2L → {0, 1}L

a small-block labeling function (Definition 6), and let K := W/L be the ratio
between W and L. Fix δ ∈ N, we define

ssdripδ :=Fip

G
δ,K
ssdr

: {0, 1}W → {0, 1}W

as the graph function built upon the labeling function flabip and a DAG G
δ,K
ssdr .

(Note that we can use flabip as the labeling function since the maximal indegree of
G

δ,K
ssdr is 2.) Gδ,K

ssdr = (Vδ,K
ssdr ,E

δ,K
ssdr ) is a source-to-sink-depth-robust graph (Definition

4) defined as follows.

Nodes set: The set V
δ,K
ssdr has K(1 + δK) vertices distributing across 1 + δK

columns and K rows. For every i ∈ {0, . . . , δK} and every j ∈ {1, . . . , K}, we
use 〈i, j〉 to denote the node at column i and row j. The K nodes at column
0 are the source nodes and the K nodes at column δK are the sink nodes.

Edges set: The set E
δ,K
ssdr consists of 3 types of edges. The first type is called

horizontal edges: For every i (0 ≤ i < δK) and every j (1 ≤ j ≤ K), there is
an edge from node 〈i, j〉 to node 〈i + 1, j〉. The second type is called vertical
edges: For every i (2 ≤ i ≤ δK) and every j (1 ≤ j < K), there is an edge
from node 〈i, j〉 to node 〈i, j + 1〉. The third type is called backward edges: For
every j (1 ≤ j < K), there is an edge from node 〈δK, j〉 to node 〈1, j + 1〉.
In total, there are δK2 + δK · (K − 1) < 2δK2 edges (Fig. 2).

Fig. 2. The graph G
δ,K
ssdr for K = 4

We prove a useful lemma showing that G
δ,K
ssdr is source-to-sink-depth-robust.

Lemma 5. Fix any K = 2k ≥ 4 and δ ∈ N, the graph G
δ,K
ssdr is (K

4 , δK2

2 )-source-
to-sink-depth-robust.

Proof. The proof is deferred to full version. ��

4.2 Wide-Block Labeling Functions: Pebbling Reducibility

In this section, we show that the labeling functions constructed in Sect. 4.1
satisfy pebbling reducibility with respect to (first-predecessor-distinct) depth-
robust graphs. We will make use of the following notation.
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Graph Composition: Given a graph G1 (with n1 source nodes and n2 sink
nodes), and a graph G2 (with n2 source nodes and n3 sink nodes), we define
G1 ◦ G2 as the composition of G1 and G2, namely, we merge the ith sink node
of G1 with the ith source node of G2 for each i ∈ [n2]24, and take the union of
the rest parts of the graphs.

Theorem 4. Fix L = 2�, W = 2w ≥ L, and set K := W/L. Let Hfix be any βfix-
small-block labeling functions. For any δ ∈ N, the labeling functions Hδ,w con-
structed in Sect. 4.1 is βδ,w-pebbling-reducible w.r.t. (first-predecessor-distinct25)
depth-robust graphs (with single source/sink) where

βδ,w(ε, log |V|) ≥ δK3

8
· βfix(ε, log |V|).

Here ε ∈ (0, 1] and |V| is the number of vertices in the graph.

Remark 6 (Generalization). For the wide-block labeling functions constructed
in Sect. 4.1, we make use of a specific graph G

δ,K
ssdr that is source-to-sink depth

robust. We emphasize, however, that any source-to-sink depth robust graphs
suffice. In particular, by replacing G

δ,K
ssdr with any 2-indegree DAG G

∗ where i)
G

∗ has K source/sink nodes and ii) G∗ is (e∗, d∗)-source-to-sink depth robust, the
corresponding wide-block labeling functions is still β-pebbling-reducible, where

β(ε, log |V|) ≥ e∗ · d∗ · βfix(ε, log |V|).
We leave finding new source-to-sink depth-robust graphs as an interesting direc-
tion for future work.

Remark 7. Note that in Theorem 4, the pebbling reducibility only holds for
depth-robust graphs. It is hard to directly link CMC and cc(G). More discussions
can be found at Remark 2.

Proof (of Theorem 4). Let G = (V,E) be any (first-predecessor-distinct) (e, d)-
depth-robust DAG with δ-indegree and single source/sink, let FG,Hδ,w

be the
graph functions built upon G and Hδ,w. It is sufficient to show that for every
ε ∈ (0, 1],

CMCε(FG,Hδ,w
) ≥ βfix(ε, log |V|) · δK3

8
· e · (d − 1).

By opening the underlying graph structure of Hδ,w, we see that FG,Hδ,w
is

also a graph function built upon functions Hfix and an extension graph Extδ,K(G)
that has the following properties.

– Nodes Expansion: Every node v ∈ V in the original graph G = (V,E) is
expanded into K nodes, that is,

copy(v) :=
(
v(1), . . . , v(K)

)
.

24 We assume an implicit order for nodes in G1 and G2.
25 See Remark 3 for definition of first-predecessor-distinctness.
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– Neighborhood Connection: For every non-source node v ∈ V − src(G),
denote as pred(v) := (u1, . . . , uγ) the predecessors of v in G. In Extδ,K(G),
there is a subgraph G

γ,K
mix (v) ◦ G

δ,K
ssdr (v) that connects

neighbor(v) := {copy(u1), . . . , copy(uγ)}

to the set copy(v), where neighbor(v) (and copy(v)) are the source nodes (and
the sink nodes) of G

γ,K
mix (v) ◦ G

δ,K
ssdr (v), respectively. Note G

γ,K
mix (v) ◦ G

δ,K
ssdr (v)

has the identical graph structure with the composition of Gγ,K
mix and G

δ,K
ssdr .

By first-predecessor-distinctness of G and by the graph structure of the MIX
graph, it holds that Extδ,K(G) is a predecessors-distinct graph with 2-indegree.
Next, we will show that the extension graph Extδ,K(G) is (e, (d−1) · δK)-depth-
robust for K ∈ {1, 2} and (eK/4, (d − 1) · δK2/2)-depth-robust for K ≥ 4. By
Lemma 1, for any K = 2k ≥ 1, we have

cc(Extδ,K(G)) ≥ δK3

8
· e · (d − 1).

Thus by βfix-pebbling reducibility of Hfix
26, we obtain Theorem 4.

Before proving the depth-robustness of the extension graph, we introduce a
useful notation called meta-node [3]. Intuitively, meta-node maps each vertex of
the original graph G to a set of vertices in Extδ,K(G).

Meta-Node: We define meta-node nodes(v) for every node v ∈ V: For every
non-source node v ∈ V − src(G), we define nodes(v) as the set of vertices in the
graph G

γ,K
mix (v) ◦ G

δ,K
ssdr (v) − neighbor(v); for every source node v ∈ src(G), we

define nodes(v) := copy(v). Note that for any u, v ∈ V such that u �= v, the sets
nodes(u) and nodes(v) are disjoint.

Depth-robustness of the Extension Graph: Next we show the depth
robustness of the extension graph. We first consider the simpler case where
K ∈ {1, 2}. (In the following context, for a graph G = (V,E), we sometimes
think G = V ∪ E as the union of set V and E if there is no ambiguity.)

Lemma 6. For any K = 2k ∈ {1, 2} and (e, d)-depth robust DAG G = (V,E)
that has maximal indegree δ ∈ N, the corresponding extension graph Extδ,K(G)
is (e, (d − 1) · δK)-depth-robust.

Proof. The proof is deferred to full version. ��
Next, we consider the more general case where K ≥ 4.

Lemma 7. For any K = 2k ≥ 4 and any (e, d)-depth robust DAG G = (V,E)
with maximal indegree δ ∈ N, the corresponding extension graph Extδ,K(G) is
(K
4 · e, δK2

2 · (d − 1))-depth-robust.

26 Note that βfix-pebbling reducibility holds for multi-sources graphs.
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Proof. For any nodes subset Sext ⊆ Extδ,K(G) such that |Sext| ≤ K
4 · e, we show

that depth(Extδ,K(G) − Sext) ≥ δK2

2 · (d − 1), which finishes the proof.

Step 1: From Sext, we first derive a set of nodes S ⊆ V in the graph G, and find
a long path in G − S.

Claim 3. Define a set

S :=
{

v ∈ V : |nodes(v) ∩ Sext| ≥ K

4

}

,

there exists a d-path27 P = (v1, . . . , vd) in the graph G − S.

Proof. The proof is deferred to full version. ��
Step 2: Given the path P = (v1, . . . , vd) ⊆ G − S, next in Lemma 8 we show
that for every i ∈ [d − 1], there exists a long path from copy(vi) to copy(vi+1) in
the graph Extδ,K(G)−Sext, then by connecting the d−1 paths, we obtain a path
with length at least δK2

2 · (d − 1), hence finish the proof of Lemma 7. Note that
the path extraction from copy(vi) to copy(vi+1) consists of two steps: First we
exploit the structure of SSDR graphs and obtain a long path ending at a node
in copy(vi+1), then we exploit the structure of MIX graphs and connect copy(vi)
to the source node of the obtained path.

Lemma 8. Given the path P = (v1, . . . , vd) ⊆ G − S (obtained in Claim 3)
and the graph Extδ,K(G)−Sext, there exists a nodes sequence (u1, . . . , ud) (where
ui ∈ copy(vi) − Sext for every i ∈ [d]), such that for every i ∈ [d − 1], there is a
path (with length at least δK2

2 ) that connects ui and ui+1 in Extδ,K(G) − Sext.

Proof. We first show that there exists a path (with length at least δK2

2 ) from
some node u1 ∈ copy(v1)−Sext to some node u2 ∈ copy(v2)−Sext. (The arguments
for u2, . . . , ud will be similar.) The idea consists of two steps: First, we find a
long source-to-sink path in G

δ,K
ssdr (v2); second, we connect u1 to the starting node

of the source-to-sink path. We stress that the path we obtain has no intersection
with Sext.

Finding the Source-to-Sink Path: We first define a set Sssdr and find a
source-to-sink path in G

δ,K
ssdr (v2) − Sssdr.

Claim 4. Define row ⊆ [K] as the set of row indices where j is in row if and
only if the jth row of Gγ,K

mix (v2) − neighbor(v2) has intersection with Sext. Define
a set

Sssdr := {〈0, j〉ssdr}j∈row ∪ (Sext ∩ G
δ,K
ssdr (v2)),

where 〈0, j〉ssdr is the source node of Gδ,K
ssdr (v2) at row j. The graph G

δ,K
ssdr (v2)−Sssdr

has a source-to-sink path of Gδ,K
ssdr (v2) with length at least δK2

2 .

27 A d-path is a path with d vertices.
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Proof. The proof is deferred to full version. ��
Paths Connection: Next, we show how to connect copy(v1)−Sext to the start-
ing node of the source-to-sink path. Here we exploit the structure of MIX graphs.

Claim 5. Denote as u1 an arbitrary node in the non-empty set28 copy(v1)−Sext

and Pssdr(v2) the source-to-sink path obtained in Claim 4. The graph G
γ,K
mix (v2)−

Sext has a path from u1 to the starting node of Pssdr(v2).

Proof. The proof is deferred to full version. ��
Finally, using identical arguments, we can show that for every i ∈ {2, . . . , d−

1}, there exists a path (with length at least δK2

2 ) from the node ui ∈ copy(vi) −
Sext to some node ui+1 ∈ copy(vi+1) − Sext. Hence we finish the proof of
Lemma 8. ��

From Lemma 8, we obtain Lemma 7. ��
From Lemmas 6 and 7, we obtain Theorem 4. ��

4.3 iMHFs from Wide-Block Labeling Functions

In this section, from a relatively small depth-robust graph, we construct a graph-
based iMHF with strong memory hardness based on the wide-block labeling
functions built in Sect. 4.1.

Theorem 5. Fix L = 2�, W = 2w and set K := W/L. Let Hδ,w be the wide-
block labeling functions built in Sect. 4.1. For any (first-predecessor-distinct29)
(e, d)-depth-robust DAG G = (V,E)30 with δ-indegree and N = 2n vertices, the
graph-based iMHFs family FG,Hδ,w

is (C‖
F ,ΔF , 2δNK2)-memory hard, where for

sufficiently large ε ≤ 1, it holds that

C
‖
F (ε) ≥ Ω(ε · e · d · δ · K2 · W ), ΔF (ε) ≤ O

(
st(G, N)

e · d

)

.

The graph G in [3] is (Ω(N/logN), Ω(N))-depth-robust and satisfies
st(G, N) = O(N2/logN), thus we obtain the following corollary.

Corollary 2. Fix L = 2�, W = 2w and set K := W/L. Let H2,w be the labeling
functions built in Sect. 4.1 and G = (V,E) be the 2-indegree DAG in [3] (with
N = 2n vertices). The graph labeling functions FG,H2,w

is (C‖
F ,ΔF , O(NK2))-

memory hard, where for sufficiently large ε ≤ 1, it holds that

C
‖
F (ε) ≥ Ω

(
ε · N2 · K2 · W

log N

)

, ΔF (ε) ≤ O(1).

Proof (of Theorem 5). The proof is deferred to full version. ��
28 Note that copy(v1)−Sext is non-empty because |copy(v1)∩Sext| ≤ |nodes(v1)∩Sext| <

K
4

< K = |copy(v1)| . The first inequality holds as copy(v1) ⊆ nodes(v1), the second
inequality holds because v1 /∈ S.

29 See Remark 3 for definition of first-predecessor-distinctness.
30

G has single source/sink.
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5 Instantiations and Open Problems

We defer instantiations and discussions of future work in full version.
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A Compression Arguments

Lemma 9 ([16]). Fix an algorithm A, let B be a sequence of random bits. A on
input a hint h ∈ H adaptively queries specific bits of B and outputs p indices
of B that were not queried before, along with guesses for each of the bits. The
probability (over the choice of B and randomness of A) that there exists an h ∈ H
where A(h) guesses all bits correctly is at most |H|/2p.

Lemma 10. Fix L ∈ N and an algorithm A that can make no more than q =
2L−2 oracle queries. Let ic be an ideal cipher uniformly chosen from the set IC
with domain K×{0, 1}L and image {0, 1}L.31 A on input a hint h ∈ H adaptively
makes forward/inverse queries to ic, and outputs p ≤ 2L−2 ideal primitive entries
(as well as guesses for each of the entry values) that were not queried before. The
probability (over the choice of ic and randomness of A) that there exists an h ∈ H
where A(h) guesses all permutation entries correctly is at most |H|/2p(L−1).

Proof. The proof is deferred to full version. ��
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