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Remote attestation (RA) is a popular means of detecting malware in embedded and IoT devices. RA is usually

realized as an interactive protocol, whereby a trusted party (verifier) measures software integrity of a poten-

tially compromised remote device (prover). Early work focused on purely software-based and fully hardware-

based techniques, neither of which is ideal for low-end embedded devices. More recent results yielded hybrid

(SW/HW) architectures with a minimal set of features to support efficient and secure RA on low-end devices.

All prior techniques require on-demand operation, i.e., RA is performed in real time. We identify some

drawbacks of this general approach in the context of unattended devices: First, it fails to detect mobile malware

that enters and leaves prover between successive RA instances. Second, it requires prover to engage in a

potentially expensive (in terms of time and energy) computation, which can be harmful for mission-critical

or real-time devices.

To address these drawbacks, we introduce the concept of self-measurement, whereby prover periodically

and securely measures and records its own software state, based on a pre-established schedule. A (possibly un-

trusted) verifier occasionally collects and verifies these measurements. We present the design of a concrete

technique, called Efficient Remote Attestation via Self-Measurement for Unattended Settings, (ERASMUS),

justify its features and evaluate its performance. In the process, we also define a new metric, Quality of At-

testation (QoA). We believe that ERASMUS is well suited for time-sensitive and/or safety-critical applications

that are not served well by on-demand RA. Finally, we show that ERASMUS is a promising stepping stone

toward handling attestation of multiple devices (i.e., a group or swarm) with high mobility.
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1 INTRODUCTION

In recent years, embedded and cyber-physical systems (CPS), under the guise of Internet-of-Things
(IoT), have entered many aspects of daily life, including: homes, office buildings, public venues,
factories and vehicles. This trend of adding computerized components to previously analog devices
and then inter-connecting them brings many obvious benefits. However, it also greatly expands
so-called “attack surface” and turns these newly computerized gadgets into natural and attractive
attack targets. In particular, as the 2016 Mirai botnet demonstrated, IoT devices can be infected with
malware and used as bot-controlled zombies in Distributed Denial-of-Service (DDoS) attacks [2].
Also, IoT-borne malware can snoop on device owners (by sensing) or maliciously control critical
services (by actuation), as happened with Stuxnet [29].

One key component in securing IoT devices is malware detection, which is typically attained
with Remote Attestation (RA). RA is a distinct security service that allows a trusted party, called
verifier, to securely verify the internal state (including memory and storage) of a remote untrusted
and potentially malware-infected device, called prover. RA is generally realized as an interactive
protocol between prover and verifier. A typical example is described in Reference [6]: (1) verifier
sends an attestation request to prover, (2) prover verifies the request1, (3) computes a cryptographic
function of its internal state, (4) sends the result to verifier, and, (5) verifier finally checks the result
and decides whether prover is infected.

This general approach is referred to as on-demand attestation and all current RA techniques
adhere to it. In this article, we identify two important limitations of such approach. First, it is a
poor match for unattended devices, since malware that “comes and goes” (i.e., mobile malware [20])
cannot be detected if it leaves prover by the time attestation is performed. Second, for a device
working under time constraints (real-time operation) or otherwise providing critical services, on-
demand attestation requires performing a possibly time-consuming task while deviating from the
device’s main function(s).

To address these issues, we design ERASMUS: Efficient Remote Attestation via Self-
Measurement for Unattended Settings. ERASMUS is based on self-measurements. In it, prover
measures and records its state at scheduled times. Measurements are stored in prover’s insecure
memory. Verifier occasionally collects and validates these measurements to establish the history
of prover’s state. In this general approach, verifier imposes only negligible real-time burden on
prover. It also offers strictly better quality-of-service than prior attestation techniques, because
verifier obtains prover’s entire history of measurements, since the last verifier request. In other
words, ERASMUS de-couples (1) frequency of prover checking, from (2) frequency of prover mea-
surements, which are equivalent in on-demand attestation. Finally, ERASMUS simplifies RA design
(in terms of required features) for prover: Authentication of verifier requests is no longer needed,
since computational DoS attacks do not arise. This differs from requirements in Reference [6] that
stipulate (potentially expensive) prover authentication of all verifier’s RA requests.

We also introduce the new notion of Quality of Attestation (QoA) that captures: (1) how prover
is attested, (2) how often its state is measured, and (3) how often these measurements are verified.
It is the temporal analogue of the concept of quality of swarm attestation (QoSA) introduced in
Reference [7] in the context of attesting groups of devices.
NOTE: ERASMUS is not intended as a replacement for on-demand attestation. Clearly, for some
devices, and in some settings, real-time on-demand attestation is mandatory, e.g., immediately
before or after a software update, or in the context of secure erasure/reset. Also, on-demand

1Since attestation is a potentially expensive task, this relatively light-weight verification mitigates computational DoS

attacks.
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attestation may be more flexible, e.g., if verifier is only interested in measuring a fraction of
prover’s memory. These two approaches are not mutually exclusive and may be used together to
increase QoA, specifically, in terms of freshness of the latest measurement.

The last incentive for the self-measurement RA approach is its suitability for highly mobile
groups of devices. RA protocols developed for “swarm attestation,” e.g., References [3, 7, 13, 22], are
designed to efficiently attest groups of interconnected devices on-demand, with a single interaction
between verifier and multiple provers. However, such protocols do not work in highly mobile
swarms, since on-demand attestation requires topology to essentially remain static during the
entire attestation protocol instance, duration of which is dominated by computation on all swarm
devices. Since ERASMUS involves virtually no real-time computation for prover, it is more suitable
for high-mobility swarm settings.

After overviewing state-of-the-art in Section 2, we introduce ERASMUS and QoA in Section 3.
We then compare ERASMUS with on-demand attestation in Section 4. An implementation and
experimental results are discussed in Section 5. Issues arising in time-sensitive applications and
partial mitigation measures are discussed in Section 6. Applicability of ERASMUS to swarm attes-
tation is considered in Section 7.

2 REMOTE ATTESTATION (RA)

RA aims to detect malware presence by verifying integrity of a remote and untrusted embedded
(or IoT) device. As mentioned earlier, it is typically realized as a protocol, whereby trusted verifier
interacts with remote prover to obtain an integrity measurement of the latter’s state.

RA techniques fall into the three main categories. (1) Hardware-based attestation [23, 27] uses
dedicated hardware features such as a Trusted Platform Module (TPM) to execute attestation code
in a secure environment. Even though such features are currently available in personal computers
and smartphones, they are considered a relative “luxury” for very low-end embedded devices.
(2) Software-based attestation [24, 25] requires no hardware support and performs attestation solely
based on precise timing measures. However, it limits prover to being one-hop away from verifier, so
that round-trip time is either negligible or fixed. It also relies on strong assumptions about attacker
behavior [1] and is typically only used for legacy devices where no other RA techniques are viable.
(3) Finally, hybrid attestation [5, 10, 15], based on a software/hardware co-design, provides RA while
minimizing its impact on underlying hardware features.

SMART [10] is the first hybrid RA design with minimal hardware modifications to existing
microcontroller units (MCUs). It has the following key features:

• Attestation code is immutable: it is located in, and executed from, ROM.
• Attestation code is safe: Its execution always terminates and leaks no information other

than the attestation result (token).
• Attestation is atomic: (1) It is uninterruptible, and (2) it starts from the first instruction and

exits at the last instruction. This is realized in SMART by using hard-wired MCU access
controls and disabling interrupts on entering attestation code.

• A secret key (K ) is stored in a secure memory location where it can be accessed only
from within the attestation code: K is stored in ROM and is guarded by specialized MCU
rules.

Reference [6] extended SMART to defend against denial-of-service (DoS) attacks that try to im-
personate verifier. This extended variant (referred to as SMART+) additionally requires prover
to have a Reliable Read-Only Clock (RROC), needed to perform verifier authentication and
prevent replay, reorder, and delay attacks. To ensure reliability, RROC must not be modifi-
able by software. In SMART+, upon receiving verifier request, ROM-resident attestation code
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checks the request’s freshness using RROC, authenticates it, and only then proceeds to perform
attestation.

TrustLite [15] security architecture also targets RA for low-end devices. It differs from SMART
in two ways: (1) Interrupts are allowed and handled securely by the CPU Exception Engine, and
(2) access control rules can be programmed using an Execution-Aware Memory Protection Unit
(EA-MPU). TyTAN [5] adopts a similar approach while providing additional real-time guarantees
and dynamic configuration for safety- and security-critical applications.

HYDRA [11] is a hybrid RA design for medium-end devices devices with a Memory Management
Unit (MMU). It builds on a formally verified microkernel, seL4 [14], to ensure memory isolation
and enforce access control to memory regions. Using these formally and mathematically proven
features, access control rules can be implemented in software and enforced by seL4. Consequently,
HYDRA stores K and attestation code in writable memory regions (e.g., flash or RAM) and con-
figures the system such that no other process, besides the attestation process, can access those
memory regions. Access control configuration in HYDRA also involves the attestation process
having exclusive access to its thread control block as well as to memory regions used for K-related
computations. The latter ensures the key protection property. To ensure atomic execution, HYDRA
runs the attestation process as the initial user-space process with the highest scheduling priority,
while the rest of user-land processes are spawned by the attestation process, with lower priori-
ties. Finally, hardware-enforced secure boot is used to provide integrity of seL4 and the attestation
process at system initialization time.

In this article, we use SMART+ and HYDRA as the base security architecture for ERASMUS.
However, ERASMUS should be equally applicable to other on-demand RA techniques, including
aforementioned TrustLite [15] or TyTan [5].

3 SELF-MEASUREMENTS

As discussed in Section 1, all current RA techniques perform on-demand attestation. This can be a
time-consuming activity that diverts prover’s attention away from its primary mission. However,
prover performs no RA-related computation between successive verifier’s requests.

In contrast, ERASMUS divides RA into two phases. In the measurement phase, prover performs
self-measurements based on a pre-established schedule, and stores the results. In the collection
phase, verifier (whenever it chooses to do so) contacts prover to fetch these measurements. The
collection phase is very fast, since it requires practically no computation by prover. In particu-
lar, since measurements are based on a MAC computed with a key shared between prover and
verifier, no extra protection is needed when prover sends measurements to verifier. Furthermore,
unlike on-demand RA, there is no threat of computational DoS on prover, and therefore no need
to authenticate verifier’s requests.

A prover’s measurement Mt computed at time t is defined as:

Mt =< t ,H (memt ),MACK (t ,H (memt )) >,

where H is a suitable cryptographic hash (e.g., SHA-256) function and memt represents prover’s
memory at time t . Computation of H (memt ) and MAC is done in the context of the underlying RA
architecture, e.g., SMART+ or HYDRA.

From here onward,Vrf and Prv are used to denote verifier and prover, respectively. Although
ERASMUS assumes a symmetric key K shared between Vrf and Prv, a public key signature
scheme could be used instead, with no real impact on security of the scheme except for the higher
cost of measurements.
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Fig. 1. QoA illustration: Infection 1 by mobile malware is undetected; Infection 2 is detected. TM is the

time between two measurements, TC is the time between two collections, and f is the freshness of each

measurement.

3.1 Quality of Attestation

Quality of Attestation (QoA) is primarily determined by two parameters: (1) time TM between two
successive measurements on Prv and (2) timeTC between two successive requests byVrf to collect
measurements from Prv.

We assume that, in most cases, TC > TM . If happens that TC ≤ TM , then Vrf simply collects
the same measurements more than once, which is redundant. Alternatively, Vrf can explicitly

request Prv to perform a fresh measurement before the collection. In that case, Vrf’s request
would have to be authenticated and checked for freshness (as in SMART+ [6]) before the on-
demand measurement is computed. These activities clearly incur additional real-time overhead
and delays. This variant is called ERASMUS+OD and it is discussed in Section 4.

Exactly howTC andTM are determined depends on the specifics of Prv’s mission and its deploy-
ment setting. Security impact of these parameters is intuitive. SmallerTM implies smaller window
of opportunity for mobile malware to escape detection. Smaller TC implies faster malware detec-
tion. If either value is large, then attestation becomes ineffective. Meanwhile, though low values
increase QoA, they also increase Prv’s overall burden, in terms of computation, power consump-
tion and communication.

Without loss of generality, we assume that measurements and collections occur at regular
intervals. Of course, in practice this might not work for critical or time-sensitive applications
(see Section 6). In fact, it might be advantageous to take measurements at irregular intervals,
since doing so might give Prv a bit of an extra edge against mobile malware, as discussed in
Section 3.4.

Another ERASMUS parameter is the number of measurements (referred to as k) obtained by
Vrf in each collection phase. It can range between one (only the most recent measurement) and
all. In a typical setting, Prv’s history size should be set such that each measurement is collected
exactly once. That is, k = �TC/TM �.

Finally, the collection phase involves the notion of freshness, i.e., how recent is Prv’s latest mea-
surement. Depending on the application, maximal freshness might be required, e.g., right before
or after a software update. Maximal freshness is attainable via on-demand attestation. In ERAS-
MUS, freshness of a measurement (denoted as f ) ranges between TM and 0, which correspond to
minimal and maximal freshness, respectively. On average, we expect f = TM/2.

Figure 1 shows an example with two malware infections. In the first, malware covers its tracks
and leaves before any measurement takes place. In the second, malware persists on Prv. Although
a measurement occurs perhaps soon after infection, corrective action can be taken only after col-
lection, thus illustrating the importance of a small TC . Measurements and collections are shown
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Table 1. Quality of Attestation Parameters

Notation Meaning Tradeoff between

TM
Time between two + High detection rate

consecutive measurements − High burden on Prv

TC
Time between two + Fast detection byVrf

consecutiveVrf requests − High burden on Prv andVrf

f
Freshness of + Fresh measurement

the latest measurement − High burden on Prv

as punctual events in Figure 1. Although they do take some time to complete (measurements, in
particular), they are considered negligible in Prv’s overall lifecycle (see Section 5). We summarize
QoA parameters and their security implications in Table 1.

3.2 Measurements Storage and Collection

A naïve way for Prv to store measurements is to keep track of them indefinitely. However, this
will eventually consume a lot of Prv’s storage. To this end, ERASMUS uses rolling measurements.
A fixed section of Prv’s insecure storage is allocated as a windowed (circular) buffer for n mea-
surements. The ith measurement is stored at location Li mod n . However, it is expected that Vrf

collects measurements sufficiently often, such that no measurement is over-written. That is, the
time between successive collections should be at most TC ≤ n ·TM .

The interaction between Prv and Vrf is very simple: Vrf asks for the k latest measurements,
which Prv simply reads from the buffer and transmits. The collection phase does not involve any
change of state on Prv and returned measurements are not encrypted. (However, recall that they
are authenticated since each measurement is a MAC computed using K ). It also does not trigger
any significant computation on Prv, i.e., in contrast with on-demand attestation, no cryptographic
operations are required in the collection phase.

Self-measurements can be stored in Prv’s unprotected storage. This allows malware (that is
possibly present on Prv) to tamper with measurements, by modifying, re-ordering and/or deleting
them. However, since malware (by design of SMART) cannot access K , it cannot forge measure-
ments. Thus, it is easy to see that any tampering will be detected by Vrf at the next collection
phase and hence malware presence would be noticed. For same reasons, code that handles request
parsing as well as storage and transmission of measurements does not need to be executed in a
secure environment, or stored in ROM. Code that performs self-measurement, however, must be
protected by the underlying security architecture, as in on-demand RA.

Scheduling in ERASMUS can be implemented in a very simple and stateless manner. Let t be
the time specified by RROC at measurement Mt , and let TM be the time between two successive
measurements, as configured in Prv. The windowed buffer slot Li , used to store Mt , is determined
by: i = �t/TM � mod n.

ERASMUS collection protocol is shown in Figure 2. The underlying RA architecture is not in-
volved in the collection phase. Notation ∗Lj refers to contents of memory location Lj . A sample
memory layout is shown in Figure 3.

3.3 Security Considerations

Security of the measurement process itself is based on the underlying security architecture, e.g.,
SMART+ or HYDRA , which (1) provides measurement code with exclusive access toK , (2) ensures
non-malleability and non-interruptibility of the measurement code, and (3) performs memory-
cleanup after execution.
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Fig. 2. ERASMUS collection protocol.

Fig. 3. ERASMUS memory allocation. Example with n = 12, i = 3,k = 7.

Timestamps used in the measurement process must be obtained from RROC, which (by defi-
nition) cannot be modified by non-physical means. This is important, since malware should not
influence when measurements are taken.

If RROC values could be modified, then the following attack scenario would become possible:
malware enters at time t0 and remains active until a measurement at time t0 + δ (with δ < TM ) is
taken. Before leaving, malware discards that measurement and resets the counter to t0. Soon after
δ (so that a measurement, valid this time, has been taken for t0 + δ ), malware returns and resets
the counter to time elapsed since t0. Though this example works for one TM window, it can be
extended to arbitrarily many. It requires an additional assumption that no collection took place
during the presence of malware.

Fortunately, RROC is already a requirement for SMART+, for a totally different reason: SMART+,
RROC helps prevent replay and computational DoS attacks on Prv. Thus, ERASMUS does not
require any changes to the underlying security architecture.

As mentioned earlier, measurements need not be stored in protected memory, because tamper-
ing is detectable and indicates malware presence on Prv. Likewise, the code to support the col-
lection phase does not require any protection, since measurements are not secret (they are unique
for every device and every timestamp value), and their absence or alteration is self-incriminating.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 1, Article 11. Pub. date: December 2018.
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Fig. 4. Diagram summarizing major RA tasks of ERASMUS and on-demand RA.

3.4 Irregular Intervals

A natural extension to ERASMUS is the use of irregular measurement intervals, instead of a fixed
TM . The main motivation is that mobile malware that is aware of fixed scheduling knows when to
enter/leave Prv in order to stay undetected. One way to implement irregular intervals is via Cryp-
tographic Pseudo Random Number Generator (CPRNG) [16] initialized (seeded) with the secret
key K . Output of the CPRNG can be truncated, such that TM is upper and/or lower bounded.

For example, after computing Mti
, Prv can set the measurement timer to:

T next
M = map(CPRNGk (ti )),

where map is a function that maps CPRNG output to seconds, e.g., map : x �→ x mod (U − L) +
L, with U and L upper and lower bounds, respectively. The timer itself must be read-protected
to ensure that T next

M
is unknown to malware potentially present on Prv. CPRNG code must be

protected the same way as the measurement code.

4 ERASMUS VS. ON-DEMAND RA

We now discuss advantages and disadvantages of ERASMUS as compared to on-demand RA. We
also propose a method to combine both techniques while retaining most of their respective bene-
fits. Figure 4 summarizes the discussion throughout this section.

ERASMUS has several advantages over on-demand RA. Most importantly, it enables detection
of mobile malware on Prv. Measurements can be performed more often without increased Vrf

participation. This is an important security consideration, since frequency of (self-)measurements
determines the window of opportunity for mobile malware. Another advantage comes from the
fact that the collection phase of ERASMUS requires practically no computation onPrv. This makes
ERASMUS inherently resilient against computational DoS attacks, without explicitly authenticat-
ing Vrf’s requests. Finally, measurement scheduling in ERASMUS can be made context-aware.
This makes ERASMUS better suited for safety-critical applications; this is discussed further in
Section 6.

Despite these benefits, ERASMUS does not fully obviate the need for on-demand RA. In applica-
tions where a quick reaction to infection is crucial (e.g., immediately before or after a software up-
date or for secure erasure/reset) on-demand RA is still necessary, as it is the only way to maximize
freshness of attestation, given that verification is performed immediately after the measurement.

Fortunately, ERASMUS may be combined with on-demand RA to retain advantages of both ap-
proaches. This variant, ERASMUS+OD, records Prv’s state history to detect mobile malware, and
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Fig. 5. ERASMUS+OD protocol.

uses on-demand attestation to obtain better freshness. Freshness is particularly relevant whenever
real-time attestation is mandatory.

The measurement phase is unmodified, while the collection phase is combined with on-demand
attestation request as follows: First, as part of each attestation request,Vrf computes and includes
an authentication token and specifies k . As in SMART+ [6], authentication of Vrf protects Prv

against computational DoS. Then, only after checking that a request is valid, Prv computes a new
measurement. Finally, this real-time measurement is sent toVrf, along with k previous measure-
ments. This protocol is shown in Figure 5.

5 IMPLEMENTATION

We implemented ERASMUS on two security architectures: SMART+ and HYDRA. The main differ-
ence is that the former targets low-end devices, and the latter medium-end devices with a memory
management unit (MMU).

5.1 Implementation on SMART+

Figure 6 shows the implementation of ERASMUS atop SMART+ architecture. As in SMART+, mea-
surement code andK reside in ROM. However, the code is invoked periodically and autonomously,
whenever a scheduled timer interrupt occurs. We now examine ROM size, hardware costs and
runtime.
ROM Size: This greatly depends on the choice of the MAC algorithms. We implement ROM-
resident code in “C” using three MAC functions: HMAC-SHA1 [9],2 HMAC-SHA256 [19], and
keyed BLAKE2S [21]. We then use open-source MSP430-gcc compiler [28] to compile the “C” code
into an MSP430 executable. Table 2 shows the ROM size for each SMART+-based approach. As
expected, ERASMUS requires slightly less ROM than on-demand RA.

2Note that HMAC-SHA1 is only used for comparison purposes. We exclude it in our actual implementations due to a recent

collision attack on SHA1 [26].
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Fig. 6. Memory organization and access rules of SMART+-based RA. r denotes exclusive read-only access.

Table 2. Size of Attestation Executable

MAC Impl.
SMART+ HYDRA

On-Demand ERASMUS On-Demand ERASMUS

HMAC-SHA1 4.9KB 4.7KB — —
HMAC-SHA256 5.1KB 4.9KB 231.96KB 233.84KB
Keyed BLAKE2S 28.9KB 28.7KB 239.29KB 241.17KB

Table 3. Hardware Cost on MSP430

H/W Original On-demand ERASMUS

Register 579 655 655
Look-up Table 1,731 1,969 1,969

Hardware Cost: We implement the hardware part of ERASMUS by modifying the MSP430 archi-
tecture, using the open-source OpenMSP430 core [12]. We modify the memory backbone module
in the OpenMSP430 core to support atomic execution of ROM code and exclusive access to K .
RROC is realized as a peripheral using a 64-bit register incremented for every clock cycle. To
ensure write-protection, a write-enable wire is removed from the RROC module. For timer com-
ponents, we use the unmodified version of the omsp_timerA module provided by OpenMSP430.
Note that we do not consider hardware timers as additional hardware cost, because they are com-
mon and crucial components of most embedded systems. Indeed, it is unusual to find an embedded
device not equipped with at least one timer. Finally, we use Xilinx ISE 14.7 [30] to synthesize our
modifications of the OpenMSP430 core from a hardware description language to a combination of
registers and look-up tables in an FPGA.

As expected, synthesized results in Table 3 show that ERASMUS utilizes the same number of
registers and look-up tables as on-demand RA. Compared to the unmodified OpenMSP430 core,
ERASMUS requires roughly 13% and 14% additional registers and look-up tables, respectively.
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Fig. 7. Measurement Runtime on MSP430-based device @ 8MHz.

Fig. 8. Memory organization of HYDRA-based on-demand attestation and ERASMUS.

Measurement Runtime: Figure 7 illustrates runtime of the measurement phase for various mem-
ory sizes. Not surprisingly, it is linearly dependent on memory size and roughly equivalent to that
of on-demand RA.

5.2 Implementation on HYDRA

Figure 8 shows the implementations of HYDRA-based ERASMUS and on-demand RA. Both are re-
alized on an I.MX6 Sabre Lite [4] development board. RROC is implemented based on the software
clock approach, suggested by Brasser et al. [6]. Specifically, we use a short-term counter from Sabre
Lite’s General Purpose Timer (GPT) and our clock code in PrAtt to construct the RROC. When the
counter wraps around and causes an interrupt, our clock code handles it by updating higher-order
bits of the clock in PrAtt . Then, the clock value is constructed by combining these bits with the GPT
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Fig. 9. Measurement Runtime on I.MX6 Sabre Lite @ 1GHz.

Table 4. Runtime (in ms) of Collection Phase

on I.MX6-Sabre Lite

Operations ERASMUS ERASMUS+OD

Verify Request N/A 0.005
Compute Measurement3 N/A 285.6
Construct UDP Packet 0.003 0.003
Send UDP Packet 0.012 0.012
Total Collection Runtime 0.015 285.6

counter. To ensure the read-only property, PrAtt is given exclusive write-access to RROC compo-
nents. Also, we use Sabre Lite’s Enhanced Periodic Interrupt Timer (EPIT) to schedule execution
of ERASMUS measurement code

We base the code of PrAtt on open-source seL4 libraries [17]: seL4utils, seL4vka, seL4vspace, and
seL4bench. The first three provide abstractions of process, memory management, and virtual space,
respectively, while the last one is used to evaluate performance. Finally, we use Reference [18] to
implement the network stack, an Ethernet driver and timer drivers in seL4.3

Executable Size: Table 2 compares executable sizes of PrAtt in on-demand RA and ERASMUS.
Results show that ERASMUS is only about 1% larger in terms of the executable size. This overhead
mostly comes from the need for an additional timer driver.

Measurement Runtime: Measurement runtime of HYDRA-based ERASMUS in Figure 9 follows
the same trend as SMART+-based ERASMUS: (1) it is linear as a function of memory sizes, and
(2) it is roughly equal to that of on-demand RA. The same figure shows that performing self-
measurement (based on keyed BLAKE2S) takes less than 300ms on a 1GHz device with 10MB
memory.

Collection Runtime: Table 4 shows the runtime breakdown of the collection phase for each
variant. Clearly, runtime of the collection phase in ERASMUS is negligible (by at least a factor of

3On 10MB memory using keyed BLAKE2S as the underlying MAC function.
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3,000), compared to that of the measurement phase. Collection runtime in ERASMUS+OD, how-
ever, is dominated by runtime of performing on-demand attestation.

6 AVAILABILITY IN TIME-SENSITIVE APPLICATIONS

In some cases, it might be undesirable to interrupt execution of Prv’s application process to obtain
a measurement. This is particularly the case for time-sensitive or safety-critical applications. As
discussed in Section 5, measurements can take non-negligible time, e.g., 7s on an 8MHz device
with 10KB RAM. Making Prv unavailable for that long is not appropriate.

As is, pure on-demand RA is a poor match for such applications. At the same time, if Prv follows
a strict schedule, ERASMUS is also not a remedy, since it suffers from the same issue. However, it
can be made more flexible.

One partial measure is for Prv to be self-aware of when time-sensitive tasks occur. That way, it
can schedule measurements at appropriate times. If this knowledge is also available toVrf, then
on-demand attestation could be used ifVrf adapts to Prv’s schedule.

We consider another ERASMUS variant: lenient scheduling. In it,Prv is allowed to abort the mea-
surement in progress. If something causes a measurement to be aborted, then it can be rescheduled
to the end of the current measurement window. However, this comes with some caveats: First, the
security architecture needs to be adapted to allow interrupts during measurements. Protection of
keys (and cleanup, in case of an interrupt) is still required. Thus, there is still a need for some hard-
ware support. Second, it would be trivial for malware to abort computation of measurements to
avoid detection, or simply pretend, when queried by Vrf, that all attempted measurements have
been aborted. Therefore, Vrf must use some external information or policy to decide whether
there is a valid justification for each aborted measurement. For instance,Vrf can consider that a
maximum of w consecutive missing measurements are acceptable. More than that might indicate
that a malware purposely aborted measurements to remain undetected. The value ofw represents
an evident security/availability tradeoff.

These are certainly not ideal measures and the underlying problem seems quite difficult to ad-
dress deterministically. As is typical for security/usability compromises, real deployment would
likely involve policy-based decisions.

7 SWARM ATTESTATION

Some applications require attesting a group (or swarm) of interconnected embedded devices. In
such a setting, it is beneficial to take advantage of interconnectivity and perform collective at-
testation using a dedicated protocol. Several swarm attestation techniques have been proposed.
SEDA [3] is the first such scheme, which relies on hybrid attestation security architectures: SMART
[10] and TrustLite [15]. SEDA combines them with a request-flooding and response-gathering pro-
tocol. SEDA was improved and further specified in LISA [7]. Other related techniques deal with
report aggregation [22] or physical attacks [13].

A concept of Quality of Swarm Attestation (QoSA) was introduced in Reference [7] to capture
the level of information that Vrf obtains as a result of swarm attestation. This can range from
binary (“Is the whole swarm healthy?”) to full (state of each individual device and topology infor-
mation). QoA, as introduced in this article, is an orthogonal measure that captures the state of a
given device in time. QoA and QoSA can be used in concert with one another.

ERASMUS could be used instead of on-demand attestation in the context of swarm RA protocols.
In particular, Prv self-measurements can be coupled with a collection protocol, such as LISA-α ,
where the latter only relays reports and does not perform any computation. This would yield a
clean and conceptually simple approach to swarm attestation, with all the benefits of ERASMUS.
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An additional advantage of using ERASMUS in the swarm setting is support for high mobility.
Prior swarm RA techniques, such as SEDA, SANA and LISA require swarm topology to remain al-
most static during the whole swarm attestation instance. This process may be long and prohibitive
for applications where connectivity changes often. ERASMUS does not require external input and
its collection phase is very fast, since it does not involve any computation; only reading and send-
ing stored measurements. This makes ERASMUS a very natural and viable technique for highly
mobile swarms.

Finally, related to the discussion in Section 6, we consider the scenario where availability of at
least one in (or a part of) a group of devices is required at all times. This cannot be guaranteed
by on-demand swarm attestation, where a large part of the network may be concurrently busy.
Meanwhile, with ERASMUS, it is trivial to establish a schedule that ensures that only a fraction of
the swarm computes measurements at any given time.

8 CONCLUSION

We designed ERASMUS as an alternative to on-demand RA for low-end devices. ERASMUS pro-
vides better QoA, in that it allows Vrf to detect mobile malware, which is not possible with on-
demand techniques that only detect malware if it is currently on Prv. ERASMUS makes it harder
for malware to avoid detection. ERASMUS’s other major advantage is that it requires no cryp-
tographic computation by Prv as part of its interaction with Vrf. This is particularly relevant
in time-sensitive and critical applications, where Prv’s availability is very important. We discuss
partial mitigation measures for this problem.

We also present a new notion of Quality-of-Attestation (QoA) as a measure of temporal security
guarantees given by an attestation technique. We show that timing of measurements and timing of
verifications (that are conjoined in on-demand attestation) are two distinct aspects of QoA. They
are treated as distinct parameters in ERASMUS. We also discuss the possibility of using on-demand
RA as part of ERASMUS collection phase to obtain maximal freshness.

We implemented ERASMUS on two hybrid RA architectures, SMART+ and HYDRA, and demon-
strated its viability on both. ERASMUS does not require extra features or a larger ROM than what is
needed in SMART+, and each measurement is computed faster than on-demand attestation, since
no authentication ofVrf requests is needed. Finally, we show that ERASMUS is a promising option
for highly mobile groups/swarms of devices, for which no current RA technique works well.
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