COMPUTERS & SECURITY 81 (2019) 78-93

Available online at www.sciencedirect.com

Computers

ScienceDirect Py

Security

journal homepage: www.elsevier.com/locate/cose

™ MTRA: Multi-Tier randomized remote |

attestation in IoT networks

Hailun Tan%*, Gene Tsudik®, Sanjay Jha®

Check for
updates

@School of Computer Science and Engineering, the University of New South Wales, Australia
b Computer Science Department, University of California, Irvine, United States

ARTICLE INFO ABSTRACT

Article history:

Received 8 July 2018

Revised 15 September 2018
Accepted 19 October 2018
Available online 15 November 2018

Keywords:

Remote attestation
Internet of Things
Network security
Embedded systems
Network attack

Large numbers of Internet of Things (IoT) devices are increasingly deployed in many aspects
of modern life. Given their limited resources and computational power, verifying program
integrity in such devices is a challenging issue. In this paper, we design MTRA, a Multiple-
Tier Remote Attestation protocol, by exploiting differences in resources and computational
power among various types of networked IoT devices. More powerful devices equipped with
a Trusted Platform Module (TPM) are verified through trusted hardware while others are
verified through software-based attestation. In addition, a randomized memory region for
attestation is used in MTRA to increase the entropy of the attestation responses. MTRA is a
flexible means of program integrity verification for heterogeneous IoT devices.

© 2018 Elsevier Ltd. All rights reserved.

A wide range of applications makes the Internet of Things
(IoT) an attractive new paradigm. Various types of wireless
devices, such as household appliances and office or automa-
tion devices, can connect with each other. The majority of
the smart devices in IoT are resource-constrained and they
have also processing and communication capabilities as well
as they possess a locatable Internet protocol address (IP ad-
dress, Challa et al., 2017) . The smart devices can be remotely
accessed and controlled using existing network infrastructure
which allows a direct integration of computing systems with
the phisical environment. This facility further reduces hu-
man involvement, and also improves accuracy and efficiency
that result in economic benefit . The smart devices in IoT fa-
cilitate the day-to-day life of people. In critical IoT settings
such as defense, healthcare, and industrial process control,
there is a clear need to ensure that some critical devices, such
as door locks and vehicle smart control systems, cannot be
maliciously manipulated from Internet. Fig. 1 shows that IoT

* Corresponding author.

networks is composed by various types of networks devices,
which have different capabilities and responsibilities. There-
fore, the security protocol design in IoT should also accommo-
date such differences accordingly.

In this paper, we propose MTRA, a Multiple-Tier Remote At-
testation protocol, for IoT networks. Since IoT devices tend to
be heterogeneous in terms of computational and communica-
tion capabilities, some are equipped with additional hardware,
Trusted Platform Modules (TPMs), to assist with remote attes-
tation. Simpler, smaller and cheaper devices might lack any
such hardware. Accordingly, different attestation techniques
are appropriate for different types of IoT devices.

The rest of the paper is organized as follows. Section 1 sur-
veys the literature in remote attestations for wireless net-
works. Section 2 outlines the system and threat models on
which this paper is based. Section 3 details MTRA to verify
the code image of the devices. Section 4 discusses the poten-

E-mail addresses: hailun.tan@unsw.edu.au, thailun@cse.unsw.edu.au (H. Tan), gts@ics.uci.edu (G. Tsudik), sanjay.jha@unsw.edu.au

(S.Jha).
https://doi.org/10.1016/j.cose.2018.10.008
0167-4048/© 2018 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.cose.2018.10.008
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.10.008&domain=pdf
mailto:hailun.tan@unsw.edu.au
mailto:thailun@cse.unsw.edu.au
mailto:gts@ics.uci.edu
mailto:sanjay.jha@unsw.edu.au
https://doi.org/10.1016/j.cose.2018.10.008

COMPUTERS & SECURITY 81 (2019) 78-93 79

@@ '/:". ) 0 ‘

.1rk|ma
f‘f@

“ Environment !

— Security ' R etail
. Entertainment Em»runu etal
\ Traffic services 1) Surveillance
i
Q I |0le itice 'md : "D' Transport ¥ Community
b .ppllamu ' | it I !
 _ Health ' Bistics /
K. Hu.h\\a)x ' 1 Factory /
T (izne»\a\ e % Smart y
Tt ee- G.slc.\\..n \ metering
» . G.m.\m\ ’
E }‘R Internet on Things - -
Doctor/ Sensing. analytics and

L/// \

Home user

»
3

Pnhu makers

visualizing tools

Industrialists

- e}
’ e Utilities

4 Inlrdslruuun A
Gateway

Naliundl 2 ,’

'
o - ’
| Smart ,’
grid . °
- kunnu mamru(mb -

. DL fense |

Fig. 1 - A generic architecture of IoT Challa et al. (2017).

tial attacks that an adversary could launch against our scheme
and the related countermeasures. Section 6 evaluates the per-
formance of our scheme and our conclusions are offered in
Section 7.

1. Related work

Seshadri et al. (2004) proposed SoftWare-based ATTestation
technique (SWATT), a code attestation protocol which is ex-
ecuted solely through software. Seshadri et al. also proposed
another technique called SCUBA (Seshadri et al., 2006) to re-
cover the sensor nodes after a compromise. This protocol
uses two authenticated channels between a node and a base-
station. Both protocols depend on accurate time measure-
ments and optimal program codes to detect malware.
Recently, many hardware attestation techniques (Krauss
etal., 2007; Tan et al., 2011) have been proposed, relying on the
presence of a Trusted Platform Module (TPM) (Group, last ac-
cess on 29/01/2016). A TPM can protect the computer system
from malicious system activities and unauthorized changes.
The tamper-proof memory of the TPM cannot be accessed by
any entity other than the TPM itself. Each TPM has an Endorse-
ment Key (EK) that uniquely identifies it. It is typically a public-
private key pair; the private key is embedded in the TPM and
never leaves it. Each TPM has the unique feature of secure
Platform Configuration Registers (PCRs). These store metrics
to measure the integrity of any code prior to its execution.
This code can be the bootloader or application code. When-
ever there are any alterations to this code, PCR values are ex-
tended with the hash digest of the changes, which can result
in operation failures on some TPM functions. These functions
are TPM_Seal and TPM_Unseal, which will be adopted in this
paper to check the code image integrity. Tan et al. demon-

strated that it is feasible to equip each sensor node with TPM
and that the attestations can be coducted progressively from
a base-station (Tan et al., 2011). However, (Tan et al., 2011) as-
sumed that all devices are homogeneous and equipped with
TPMs. This assumption does not hold for heterogeneous IoTs
networks. Agrawal et al. recently proposed to verify program
flash integrity in wireless sensor networks with cluster-heads
equipped with TPMs (Agrawal et al., 2015). However, (Agrawal
etal., 2015) only considered the single-hop setting and did not
take into account of network attacks, e.g.,wormhole (Hu et al.,
2006).

Tigist et al. proposed a Control-FLow ATtestation for Em-
bedded Systems Software (C-FLAT) to defend against the run-
time buffer overflow attack (Abera et al., 2016). Their attesta-
tion scheme is effective but C-FLAT cannot accommodate the
control flow where there is an infinite loop as it will iteratively
change the attestation response as the number of the loops in-
creases. In MTRA, we compute the entire firmware as a hashed
checksum. Therefore, even with an infinite loop in the control
flow, it will not yield the same issue in MTRA.

Wazid et al. formulated authentication using three-way au-
thentications for secure communication among the IoT nodes
(Wazid et al., 2018). They adopted three components for au-
thentication: user smart card, password and user biometrics.
Except password, the overhead of smart card and user biomet-
rics is too heavy for the embedded devices such as sensors. As
to password, it is not secure to apply the same password to all
the IoT devices. In addition, it is not scalable to manage the
password if they are different from device to device.

Algassem et al. further analysed the security and privacy
requirements for IoT and surveyed a number of IoT appli-
cations in the context of security (Algassem and Svetinovic,
2014). Most of these applications assume that the networks
contain two types of devices: devices to interact with human



80 COMPUTERS & SECURITY 81 (2019) 78-93

1. Compute verifier
the c[halleng
Attestation

prover
4. Compute

Attestation

2. Challenge

/’ protocol

verification

\ +—5. Attestation respons%Q
6. Response

response \\

3. Check |
firmware

protocol

fimware

Fig. 2 - General Remote Attestation process.

and environment or devices serving as a gateway for data ag-
gregation. We argued that the possible scenarios are much
more complicated and the different security measures should
be imposed in it.

Carpent et al. proposed a remote attestation via self-
measurement in an unattended environment (ERAMUS)
(Carpent et al, 2018b) and a further enhanced version
(Carpent et al., 2018a). They adopted Sel4 (Klein et al., 2009),
which is a bug-free operating system kernel, to assist the re-
mote attestation when the self-measurement was processeed
in Sel4. ERAMUS is efficient for the resource-constraint de-
vices. However, it is an OS-dependent approach. If Sel4 is not
compatiable with the IoT device, ERASMUS cannot be adopted
for such IoT devices.

Hong et al. put forth an attestation protocol with Intel SGX
for remote terminal and IoT (Wang et al., 2018). Such attesta-
tion protocol is tailored for a particular microcontroller (i.e.,
Intel SGX) and it is not a generic model that can be extended
to other IoT devices.

Feng et al. developed a light-weighted remote attestation
protocol called AAOT for low-resource IoT networks and CPS
(Feng et al., 2018). It focuses on the power conservation but
lacks the design to fully exploit the resources on the IoT de-
vices with more computational resources.

2. System, threat model & our contributions

We assume that an IoT network contains three types of de-
vice. The first is a trusted third party that issues attestation
challenges to the rest of the network (i.e., base-station). The
device, directly controlled by the network administrator, has
unlimited computational power and cannot be compromised
by an adversary. There is only one such device in a network.
The second type of device could accommodate tamper-proof
hardware (e.g., TPM) but is vulnerable to some forms of net-
work attacks. The third type has limited resources and lacks
tamper-proof hardware. Thus, it is vulnerable to all forms of
network attack. Moreover, we assume that the type-3 devices
are one-hop neighbors of either the base-station or a TPM-
enabled devices. This can be guaranteed with the cluster-head
selection algorithm in wireless networks (Abbasi and Younis,
2007). In MTRA, the TPM-enabled devices are assumed to be
the cluster-head to verify its one-hop neighbors without TPM.
Therefore, MTRA is for the networks with fixed topology.

The general attestation process is shown in Fig. 2. The ver-
ifier computes the challenge according to the specified attes-

tation protocol design, and sends it to the prover. The prover
checks the firmware, computes the response and sends it back
to the verifier. The verifier checks this response. If the re-
sponse matches the expected result, the attestation succeeds.

We assume that an adversary can manipulate the software
running on the second or third type of device but not on the
first type. However, we also assume that an adversary cannot
compromise devices physically, which means that the Read-
Only Memory (ROM) and bootloader cannot be tampered with,
as physical node compromise is not scalable for an adversary
given a large number of devices in the same network. We also
do not consider other types of Denial of Service (DoS) attacks
except verifier-based DoS attacks (Brasser et al., 2016) (further
discussed in Section 4.5), as the main goal of an adversary
in remote attestation is to circumvent the program integrity
check with malware running. Other DoS attacks such as jam-
ming will result in the failure of attestation and reveal the
existence of an adversary. However, adversary can intercept,
replay, delay, forge or rush either the challenges as verifier or
attestation response as prover against the second type of third
type of device.

Our contributions are:

« A new two-tier attestation protocol for heterogeneous IoT net-
works: In prior work (Agrawal et al., 2015; Asokan et al,,
2015; Seshadri et al., 2006; Seshadri et al., 2004; Tan et al.,
2011), protocols were not designed in the context of het-
erogeneous IoT networks.

Countermeasures against rainbow and interference attacks: In
the challenge-response attestation protocol, the adversary
attempts to send an arbitrary challenge to probe the re-
sponse from the prover, which can be exploited for the
Time-Of-Use to Time-Of-Check (TOUTTOC) attack with-
out manipulating the prover’s firmware. This is rainbow
attack. In addition, an adversary can interfere with the
challenge-response attestation protocol as a Man-In-The-
Middle (Song et al., 2011). To the best of our knowledge,
we are the first to adopt a one-way hash chain to defend
against rainbow attacks. Each hash key is updated after the
challenge is successfully completed. Therefore, the hash
key used for one challenge is different from the key for the
next challenge. This is further analyzed in Section 4.
Defense against wormhole attacks: The wormhole attack is a
notorious network attack that can allow an adversary to
retrieve information earlier than expected for other types
of attack (Hu et al., 2006). In our approach, a local one-way
hash chain is proposed to invalidate the efforts of worm-



COMPUTERS & SECURITY 81 (2019) 78-93 81

hole attacks. Section 4.3 details how our approach can de-
fend against it. To the best of our knowledge, we are the
first to defend against wormhole attacks in remote attes-
tation.

New approach to detect Time-Of-Check-To-Time-Of-Use (TOCT-
TOU) attacks: An adversary might have the correct firmware
to respond to attestation challenges and have malware
running in another period in a TOCTTOU attack. We deploy
an online-offline notification mechanism to defend against
TOCTTOU attacks in Section 4.4.

Randomization of flash regions to be verified: In order to cir-
cumvent the remote attestation, adversary attempts to
generate the correct attestation responses in advance for
verification. We introduced a nonce in a challenge from
verifier so that the response will not be the same. However,
Song et al. introduced the MiM attack so that adversary can
still construct the correct attestation response with nonces
(Song et al.,, 2011). In MTRA, not only do we randomize the
attestation response with the nonce, we also randomize
the flash regions according to the value of nonces. In our
earlier conference version (Tan et al., 2017), the randomiza-
tion on memory region to be attested is not considered and
evaluated. In this paper, we include this memory random-
ization technique in MTRA, which increased the entropy
of the attestation responses. To the best of our knowledge,
we are the first to propose the randomization on the flash
regions to be verified in remote attestation design. In this
way, adversary cannot forge or collect the possible correct
attestation responses off-line to assist the TOCTTOU at-
tack.

3. Remote attestation design
There are two stages for the proposed attestation protocol:

« Offline (preparation stage), when none of the devices have
been deployed for operations and related additional hard-
ware (i.e., TPMs) is initialized and installed on the compu-
tationally powerful devices. As no network has not been
established, no adversary can launch an attack.

* Online (operative stage), when all devices have been de-
ployed and are operational. The remote attestations are
performed and an adversary can launch attacks.

3.1. Notations
The notation in the rest of this paper are shown in Table 1.
3.2 Offline (Preparation stage)

In this stage, we assume that it is secure to distribute ini-
tial shared secrets among all nodes prior to deployment. For
example, we assume that a trusted key distribution server is
available to distribute the cryptographic information securely.
The initial code image is installed on all devices.

The TPMs on the TPM-enabled devices are initialized with
the asymmetric key pair, Lp,;, and Ly, which is bound to PCRs
and stored in the TPM. The configurations of the devices are
extended into the PCR. The related TPM operations will fail if

Table 1 - Notations.

Notation Meaning

h(M) The one-way hashed result on message M
A sends a packet P to B

A > B:M<«P packet P’s content is copied to M
Encryption of message

Exey(M) M with Key

Diey (M) Decryption of M with Key

|P| The length of message P

P||M Message P is concatenated with message M
The remainder of message M; divided by M.

M1%M, The result will vary from 0 to M, — 1.

the configurations of the devices (e.g., the contents in program
flash) are altered. The hash of firmware is sealed with the L
in TPM. A trusted server can distribute Lp,;,.

A one-way hash chain is created (see Fig. 3) Hu et al. (2005).
The last hash key (i.e., the committed value of hash chain, V; ')
is distributed to all devices. V}_; is to authenticate the (i + 1)t"
challenge from the verifier. Only the base-station keeps all the
elements in this hash chain.

The number of key chain elements should be sufficient to
cover the lifetime of the IoT network. However, if the num-
ber of key chain elements is not sufficient, a new key chain
is generated in the base-station and its committed value can
be distributed to all the devices. he committed element of the
one-way key chain (i.e., Vp in Fig. 3) can be made known to pub-
lic as only the base-station has previous key (e.g., V; in Fig. 3)
for key verification.

After the application code image is installed, the free space
in the program flash of devices without TPMs is filled with
unique, random incompressible bits (Fig. 4). Each device is
filled with a unique bit pattern (Agrawal et al., 2015).

pri

3.3. Online (Operative stage)

In this stage, all the devices are deployed and become oper-
ative. When the base-station needs to verify code images for
the networks, it first contacts one of the one-hop neighbours
with TPM equipped as an initiator for attestation. The chal-
lengeisEy, . , (Njl|Vi_;) (line in Algorithm 1) where N; is a fixed-
length random nonce generated by the verifier and i denotes
that it is the i" attestation since deployment and k is number
of keys in one-way hash chain in Fig. 3.

On receipt of the challenge, the prover will decrypt the
packet with an unsealed hash key (line in Algorithm 1). If
it matches the one-way hash property, the prover will fur-
ther unseal the hashed result of the code image. If the pro-
gram flash had been altered, the unseal operation in line
in Algorithm 1 will fail, since the PCRs in TPM will have
been extended with the changes in program flash. In MTRA,
only partial program flash is checked. The range of the pro-
gram flash to be verified is between Nonce%(flashsize) and
h(Nonce)%(flash size), which are the remainders of nonce and

1 Shown as Vy in Fig. 3, where k denotes the upper limit of the
number of attestations in the entire lifetime of the network.



82 COMPUTERS & SECURITY 81 (2019) 78-93

H(V2)

Vi1

H(vo /T \H<VK1>H(VK)/V%

Committed value

Initial value

Fig. 3 - One-way hash chain.

Bootloader code

Bootloader code

Bootloader code

Application Code

Application Code

Application Code

Free Space

Incompressible bit string (Sas)

Incompre ssible bit string (Sg1)

Flash Downloader

Flash Downloader

Flash Downloader

Free Space

Incompressible bit string (Saz)

Incompre ssible bit string (Sgz)

Fig. 4 - Program flash distribution in devices without TPMs: the rest of the free space is filled with unique random
incompressible bits. A and B are filled with different bit pattern in the free space i.e., Sa1 # Sp1 and Sas # Sga.

Algorithm 1 The ith Remote Attestation for TPM-enabled de-
vices.
Require: A knows V,_; and B knows Vj_;, ¢

1: A— B:M « Ey,_, (Nil[Vi)

2: B : TPM_Unseal (Vi_i;1, Lpri)
3: B:N,,V, ; < Dy, ,(M)
4: if H(V,_;) # Vi—is1 then
5. B— A:M < Ey,, (N})||'’key chain error’
6: else
7 B:TPM_UnSeal(h(firmwareg). L)
8:  if TPM_UnSeal is successful then
9: B: remove V,_;, 1, keep V}_;
10: B: Firmware < Flash(Nonce%(flash size),
h(Nonce)%(flash size))
11: B — A : M < Ey,_ (N/||h(Firmware))
12: B : TPM_SEAL(Vi_i, Lpuc)
13: A:NJ, h(firmwareg)’ < Dy, , (M)
14: if N/ = N; and h(firmwareg) matches with expected result
then
15: attestation of B succeeds
16: else
17: if “key chain error” nessage is received then
18: restart the attestation.
19: else
20: attestation of node B fails
21: end if
22: end if
23:  else
24: B — A:M <« Ey,_, (Nj||“attestation fails”)
25:  endif
26: end if

27: if A does not receive any response from B for an extended pe-
riod of time then

28:  attestation of B fails

29: end if

its hashed value, divided by the memory size. This mecha-
nism confines the memory section boundary between 0 and
flash size — 1 so that the range of flash regions being checked

is randomized by challenge nonce and it will be different in
each attestation (line and in Algorithms 1 and 2). In this way,

Algorithm 2 The ith Remote Attestation for non-TPM devices.

Require: A knows V,,_; and B knows V}_;, ¢

1: A—- B:M « Evkﬂﬂ (Nillvk—i)
2: BN}, V{_, < Dy,_,,,(M)
3: if H(Vy_;) # Vi1 then
4 B— A:M < Ey_,, (N})||“key chain error”
5: else
6:  B:Firmware < Flash(Nonce%(flash size),
h(Nonce)%(flash size))
AN}, h(firmware) < Dy, (M)

8 if NJ = N; and h(firmware) matches the expected result
then
9: B: remove Vj_i,, keep Vi._;
10: attestation of B succeeds
11: else
12: if “key chain error” nessage is received then
13: A: restart the attestation.
14: else
15: A: attestation of B fails
16: end if
17:  endif
18: end if

19: if A does not receive any response from B for an extended pe-
riod of time then

20:  attestation of B fails

21: end if

adversary is not able to compute a correct firmware response
in advance as the flash regions to be verified are not known
before challenges are sent out. In the rest of this section pse-
duocodes, node A is the verifier and node B is the prover unless
specified.

The new hashed key is updated and sealed for the next
attestation (lines - in Algorithm 1). The prover will send the
encrypted nonce and hashed digest of the entire code image
back to the verifier for attestation (line in Algorithm 1). If the



COMPUTERS & SECURITY 81 (2019) 78-93 83

Hardwarg—basedgitestaﬁon Base station
Node A Node C
with TPM |—— ) — )
P Hardware-based attestation Node B Hardware-based attestation with TPM
(Initiator) —y N
with TPM
7

/
Software-based attgs/laﬁon

//
Node Node e
A-1 A-2

Fig. 5 - The remote attestation structure in heterogeneous embedded devices: Nodes A, B and C are equipped with TPMs

while node, /¢, are without TPM.

decrypted nonce is the same as the one in the challenge and
the hash digest of the code image is as expected, the attesta-
tion succeeds (line in Algorithm 1).

In addition, if the verifier does not receive any response
from the prover for an extended period, the verifier will as-
sume that the prover might have been compromised or might
not be operational. Therefore, the attestation will fail. The ini-
tiator can further verify other TPM-enabled nodes, as was pro-
posed in Asokan et al. (2015). The above process can be itera-
tively expanded to all other TPM-enabled devices (see Fig. 5),
until all TPM-enabled devices have been attested.

For provers without TPM, the verifier could send them the
same challenge?. The prover will follow a process similar to
that described in Algorithm 1. However, without TPM func-
tions, The flash regions to be verified are randomized based on
the nonce (line in Algorithm 2). Therefore, the attacker cannot
hide malware in the program flash of the compromised de-
vice as the memory where the malware is located could be
checked by the verifier. An adversary cannot manipulate the
program counter to point to the healthy code image during at-
testation (Time-Of-Check case) and return to malware (Time-
Of-Use case) at other periods. The same nonce , concatenated
with the hash digest of the code image, is sent back to the ver-
ifier, encrypted with the updated hash key. Instead of comput-
ing the hash digest of the code image, the verifier will check
the hash digest of the entire program flash for these devices
without TPM. Algorithm 2 illustrates this attestation process.

Each device without TPM is attested by its TPM-enabled
neighbors until all devices have been verified.

When a device is connected or disconnected from the net-
work, it must perform the operations in Algorithm 3. Each de-
vice must report to its previous verifier if it is put online or
taken offline. This procedure is deployed to defend against
TOUTTOC attack with additional devices, which is further dis-
cussed in Section 4.4.

2 The challenge is revised to defend against wormhole attack,
which is described in Section 4.3.

Algorithm 3 prover device joins or leaves the networks after
the ith successful attestations for k times.

Require: A knows V;_; and B knows V_;

1: Bis to be offline: B — A: M « Ey, ,(Nonceg||offline message)

2: if A is not waiting for an attestation response from B then
3:  A:Noncey, offline message < Dy, (M)
4. if Noncej, = Nonce;, then

5: A: Store Noncey,

6: else

7: A: B is not authenticated

8: endif

9: else

10:  A:Bis compromised or abnormal
11: end if

12:

13: Bis online: B — A: M <« Ey, ,(Nonce||Online message)

14: if A is not waiting for an attestation response from B then
15: A :Nonce, online message < Dy, (M)

16:  if Nonce, = Nonce, then

17: A: Store Nonce,,

18: else

19: A: B is not authenticated

20: end if

21: else

22:  A:Bis compromised or abnormal
23: end if

4. Security analysis

4.1.  Man-In-the-Middle Attack (MIM attack)

As shown in Fig. 6, an attacker can intervene between the
verifier and prover, which is known as a Man-In-the-Middle at-
tack. It can lead to two potential threats during the attestation
process: rainbow attacks and interference attacks. In a rainbow
attack, an adversary keeps sending arbitrary challenges to
the prover for correct responses so that it can construct a
challenge-response pair table (Fig. 6a). An interference attack
disturbs the challenge-response process by leading the prover
to send an incorrect response to the verifier (Fig. 6b).



84 COMPUTERS & SECURITY 81 (2019) 78-93

Prover

Verifier

Adversary

* Fake challenge

checksum
calculation

" True response ¥
“True challenge

Fake response - -4

(a) Rainbow Attack.

Prover Verifier

Adversary

¢ ‘True challenge
checksum

calculation
f * Fake challenge

checksum

. y- - Incorrect response - |
calculation

incorrect response

(b) Interference Attack.

Fig. 6 - Man-in-the-Middle attacks.

Song et al. proposed a One-way Memory Attestation Proto-
col (OMAP) to eliminate the challenges from the verifier (Song
et al., 2011). An adversary cannot forge the challenges. How-
ever, OMAP is subject to a false attestation response attack. An
adversary can readily intercept the correct attestation check-
sum from a prover and replay it to circumvent the attestations
for other compromised network devices without the nonces.
In our approach, we adopt the one-way hash key to encrypt
the challenge (line in Algorithm 1). Even though an adversary
might learn about the hash key to encrypt the challenge (i.e.,
Vi_i41 in Algorithm 1) by compromising the devices in the IoT
network, it still cannot construct a valid challenge to request
a response from a prover, as Vj_; is not known to any nodes
to construct a valid challenge (Ey, ;. , (Nil[Vy_;) in Algorithm 1)
until the next challenge is sent out. The prover will ignore the
challenges if the one-way hash relationship cannot hold be-
tween Ey, ., and Ey, , (line in Algorithm 1). It can also de-
fend against a replay attack, in which an adversary stores a
valid attestation challenge or response and replays it later
at a time of its own choosing (Kil et al., 2009), as the one-
way key will have been updated later (line in Algorithm 1 and
line in Algorithm 2). Therefore, replaying an outdated attes-
tation challenge or response cannot circumvent the one-way
key chain check. An adversary might launch a wormhole at-
tack to replay the challenge remotely, which is discussed in
Section 4.3.

4.2. Impersonation & replay attack

In MTRA, a challenge is encrypted with a session key (V;,_;, 4 in
line of Algorithm 2 or line of Algorithm 1). The key is replaced
with its next element in the one-way hash chain so a captured
challenge cannot be replayed as the next attestation request
because the key to decrypt the challenge is different. There-
fore, replay attack is not feasible in MTRA. In addition, the
memory to be attested is different in each attestation. So the
attestation response is different. The impersonation attack is
similar to Man-in-the-Middle attack as the verifier or prover
can be a d masqueraded user but they cannot forge a valid ses-
sion key for the challenge (as a verfier) or the response (as a
prover). Therefore, neither attack cannot be launched against

MTRA unless the session key and the ransomized memory re-
gions to be attested are known in advance.

4.3. Wormbhole attack

To circumvent the hash value check in challenges in
Section 4.1, the adversary captures the challenges from the
base-station, obtains Vj_; by challenge decryption using the
Vi_i41 through node compromise, tunnels it to another area
of the network, where Vj,_; is not disclosed, and reconstructs
a valid challenge. It is called wormhole attack (Hu et al., 2006)
(Fig. 7).

In the IoT, it is easier to defend against wormhole attacks
between TPM-enabled devices only. An adversary cannot re-
trieve the hash key through compromising a TPM-enabled de-
vice because of the tamper-proof hardware?. It can only inter-
cept the challenge packets and brute-force the hash key online
as the hash key is updated with the next element in the one-
way hash chain upon the verification of challenges. However,
an adversary could compromise non-TPM devices to launch a
wormhole attack. We propose a local one-way hash chain to
defend against wormhole attacks as follows:

Each TPM-enabled device maintains another distinct lo-
cal one-way hash chain, denoted as L. This hash chain is
only used between the given TPM-enabled device and its one-
hop neighbors. The committed value of this hash chain is Ly,
where k is the length of the chain. L, is distributed when the
non-TPM devices establish the one-hop neighbourship with
TPM-enabled devices. The key for encrypting the ith chal-
lenge (P;) becomes Vj,_;,; @ Ly_i,1, The encrypted challenge is
Ep, (N;l[Vk_;l|Lx_;). The non-TPM device can decrypt this pack-
age and retrieve Lj_; to check the one-way hash relationship
between Ly,_; and L,_;,, before generating the response. An ad-
versary can retrieve L,_; but it is not a valid local hash key
if it is used in another area of the network. A different TPM-
enabled device will hold a different local hash chain so the

3 An adversary can still capture a TPM-enabled device but the
system-related TPM commands will fail and the attestation result
will expose the capture of the TPM-enabled device.



COMPUTERS & SECURITY 81 (2019) 78-93 85

[N

Base statio

Hardware-based attestation

attestation

Node A
with TPM
(Initiator)

Hardware-based

Node B

tation

Fig. 7 - Wormhole attack: two adversaries establish a low-latency tunnel to exchange the packets they overhead for replay.

tunnel will not facilitate rainbow or interference attacks, re-
motely. The response will also be encrypted with Vi,_; ®L,_; so
that the replayed attestation response through the tunnel in
the other area will not be accepted, as L,_; would be different
if the packets were tunnelled to a different network area.

4.4.  Time-Of-Check-To-Time-Of-Use (TOCTTOU) Attack

In a TOCTTOU attack, an adversary will use the legitimate
firmware to compute the correct checksum for the response
on the receipt of the challenge (TOC case) and run the malware
at other time (TOU case). When a TPM-enabled device is com-
promised, the key to unseal the checksum of the code image
will fail as the system configuration has been changed (line
in Algorithm 1). If the TPM-enabled device is compromised,
the sealed secrets cannot be retrieved to construct a correct
response. For non-TPM devices, the program flash, except for
the code image section, is filled with random pre-set bytes. No
extra room is available for malware.

An adversary could deploy an additional device to store the
correct firmware for attestation, given that no memory space
is available for malware on the compromised device. On re-
ceipt of the challenge, the adversary puts the compromised
devices with malware offline and sets the additional device
running with correct firmware online (Time-Of-Check case).
There is an ID conflict if two devices with the same ID (one
with malware and another with correct firmware) are pre-
sented in the network at the same time. The device will send
out the message confirming it is online (line in Algorithm 3).
The verifier will know the prover is back online before receiv-
ing the attestation response. This prover is marked as 'com-
promised’ as the notification of being online is not expected
during the challenge-response process. If an adversary modi-
fies the codes so that the online notification is not sent, the
checksum of the firmware could not pass the verification.

Therefore, even though the adversary is able to deploy addi-
tional hardware to respond to the attestation challenge cor-
rectly, the substitution cannot evade detection by the verifier.
It is the same procedure when the device with the correct
firmware is offline (line in Algorithm 3), although an adver-
sary could readily switch off the device before it sends out the
offline message. However, switching off the compromised de-
vice will not help pass the attestation; if the verifier does not
receive any response from a prover within a given period, the
verifier will assume that the prover is faulty or compromised
(line in Algorithm 1).

4.5.  Verifier-based DoS attack

Ferdinand et al. recently proposed that an adversary could
send an excessive number of attestation challenges to other
legitimate resource-constrained devices, that are then fully
occupied in fulfilling the attestation challenges, rather than
performing the expected functions such as sensing or actu-
ating (Brasser et al., 2016). Such a Denial of Service (DoS) at-
tack is called a verifier-based DoS attack. This attack is based
on the assumption that the overhead of preparing an attesta-
tion challenge is significantly smaller than that of preparing
an attestation response. In our scheme, the malicious verifier
must find the correct one-way hash key to make the prover
run the entire attestation process. (i.e., V_; in Algorithm 1 for
the TPM-enabled device for the i + 1t challenge). The prover
will not process the attestation challenges if the verification
of one-way hash key does not pass (i.e., ‘key chain error’ in
Algorithm 1). The prover only requires one hash operation and
symmetric decryption to check, so it cannot incur much over-
head to cause the DoS effects. Even with an excessive number
of attestation challenges, the impact of verifier-based DoS at-
tacks is minimal as the symmetric decryption and hash oper-
ations are light-weight.



86 COMPUTERS & SECURITY 81 (2019) 78-93

5. Implementation details

In the conference version (Tan et al., 2017), the TPM imple-
mentation details were not discussed in details due to limited
pages available. In this manuscript, we would further detail
the TPM commands adopted in MTRA. There are three types
of TPM commands: the shared commands used by verifiers
and provers, the TPM commands used by verifiers only and
those used by provers only.

The following are the common commands executed by ver-
ifiers and provers during remote attestation.

Tspi_Context_Create() generates the TrouSerS context to
communicate with TPM

Tspi_Context_Connect() connects TPM with TrouSerS
Tspi_Policy_GetPolicyObject() returns the respective TPM
policy of the root key to generate the Attestation Identity
Key (AIK) to encrypt or decrypt the challenge or attestation
response.

Tspi_TPM_CreateObject() creates an object that can be
stored in the hard drive for the verifier or prover. It refers
to the data exchanged between the verifier and prover.
Tspi_TPM_PCRRead() returns the value of the Platform
Configuration Registers(PCRs). If the firmware is altered,
the value in a PCR is updated with a new value. The attes-
tation response is bound to the PCR, so any changes in the
firmware will lead to a mismatch between the PCR values
of the verifier and prover and the attestation response.
Tspi_Hash_GetHashValue computes the hashed checksum
of the firmware. It is called when the challenge is success-
fully decrypted and verified with the one-way hash func-
tion between Vj_; and Vj,_;, 1.

Tspi_Policy_LoadKey() returns the key object from the
given policy.

Tspi_TPM_Unseal() decrypts the messages associated with
the specified PCR values. The verifier executes this com-
mand to check the attestation response while the prover
retrieves the firmware hash internally.
Tspi_Context_FreeMemory() frees the memory of the
TrouSerS context. it is only executed when the TPM com-
mands have been all completed.

Tspi_Context_Close() closes the TrouSerS session.

.

These common commands have the same overheads for
the verifier and prover if they are executed on Odroid Xu4. Ver-
ifiers and provers have their own sets of commands.

The following commands are executed by the verifier only.

« Tspi_Policy_SetSecret() creates the shared secret between
the verifier and prover. In our scheme, it is the initial value
to generate the one-way hash key chain (i.e., Vy in Fig. 3).
Afteritis hashed T times, the committed value of the hash
chain is transmitted to the prover.

Challenge encryption for the nonce and the hashed
key used for the next challenge (ie., Ey, ,, (NilVp_) in
Algorithm 1). The symmetric encryption is not included in
TPM operations so they can be implemented in other cryp-
tographic package.

.

Tspi_Key_Createkey() creates the AIK. The private key is
used to sign the challenge from the verifier while the pub-
lic key is attached to the challenge so that the prover can
encrypt the attestation response.

Tspi_Key_RegisterKey() registers the public key from AIK
with the specific data object. This data object is transmit-
ted to the prover, which can retrieve the public key with
Tspi_Key_GetPubKey().

The following commands are executed by the prover only.

Challenge decryption for the nonce and the hashed key
used for the next challenge (i.e., Dy, , , (M) in Algorithm 1).
Tspi_Key_GetPubKey() retrieves the public key from the
verifier for the seal command

Tspi_TPM_Seal() encrypts the attestation response, associ-
ated with the specific PCRs.

Tspi_TPM_UnSeal() unseals the sealed commands used by
the prover to generate the attestation response back to the
verifier. The unseal command is used internally to retrieve
the hashed firmware image associated with system state
when it is sealed.

Tspi_PCR_Extend() updates the PCR values accordingly so
that the attestation response cannot be replayed by an ad-
versary even if the one-way hash chain is compromised.
This operation is not reversed.

.

6. Performance evaluation

We implemented MTRA on two types of single-board com-
puter. For TPM-enabled devices in Fig. 5, we employed an
Odroid-XU4 single-board computer. It gives excellent com-
puting power for its size. This versatile 8-core ARM-Linux
computer runs a fully fledged Ubuntu, which can support a
software-based TPM emulator (Strasser and Stamer, 2008) and
TrouSerS (Trusted Computing Software Stack) (Tro, 2008, last
accessed: 13/09/2016). For the devices without TPMs in Fig. 5,
we used Raspberry P Model B+ Anderson (2014), a 4-core ARM-
linux single-board computer. We adopted BouncyCastle (BC)
(bou, 2009, last accessed on 16/09/2016) as our cryptographic
API for the non-TPM devices (i.e., Raspberry PIs). The crypto-
graphic operations we use are the hash commands and sym-
metric encryption and decryption. We also use these oper-
ations for hash and symmetric cryptographic operations for
TPM-enabled devices (i.e., Odroid-XU4) as they are used to en-
crypt the challenges for provers.

We measured the execution time of each TPM command
and cryptographic operation on both types of device in
Section 6.1. Then we simulated MTRA for large-scale networks
using the Network Simulator 3 (NS3) (NS3, Feb. 2011, last ac-
cessed on 18/04/2017). We implemented MTRA at the applica-
tion layer and employed the latencies based on the measure-
ments in Section 6.1 for the simulations of the corresponding
cryptographic operations to evaluate the scalability of MTRA
in Section 6.3 . The communication data rate for the links be-
tween two devices (either TPM or non-TPM ones) was set to
250 Kbps, which is the defined data rate of Zigbee, a com-
mon protocol used among the IoT devices . Then we further



COMPUTERS & SECURITY 81 (2019) 78-93

87

\erifier's execution time (ms)

= TPM devices & Non-TPM devices

Prover's exeaution Time (ms)

m TPM devices
= Non-TPM devices

5
B
| 4
3
3
2
2
| | I I
1
: I « 0 2a
& & & v\“f v\wb\ \?gb\ o i
& K & ‘\c‘ A N X Create TSPl GetPublic Decrypt Unsealthe hashthe PCRRead PR etend — Seal free TSPl
& & & & 7},* & Q&“ context  Key(AI) nonceand system  system attestation  context
rd « @%@ & E @“d hashkey  information information response
& < )
(a) Verifier. (b) Prover.
Fig. 8 - Remote attestation command execution times in TPM-enabled devices.
Tree topology fixed number of neighbors topology
26 T T T 30 T T T T
24 A .t
4 o+

Run-time (s)

12-ary Tree ——
8-ary Tree —<—
4-ary Tree —%—
bi‘nary tree‘ —=—

6 T Il Il Il
0 1000 2000 3000 4000 5000 6000

Number of IoT devices in networks

7000

(a) Tree Topology.

8000

Run-time (s)

12 neighbors —+— |
8 neighbors —<—
4 neighbors —x—
2 r‘weighbors‘ —=—

I I I
2000 3000 4000 5000 6000
Number of loT devices in networks

(b) Fixed number of Neighbors.

5
0 1000

7000 8000

Fig. 9 - Scalability Test of MTRA: the attestation process is more cost-efficient in tree topology than the fixed number of

neighbors.

simulated and evaluated the prover-based attack (i.e., TOT-
TOU attack) in Section 6.4 and the verifier-based attacks (i.e.,
MIM attack, wormhole attack and Verifier-based DoS attack)
in Section 6.5. In addition, we have computed the communi-
cation overhead and compared MTRA with other remote at-
testation protocols in Section 6.7.

6.1. Hardware execution time

Fig. 8 shows the execution time for each operation during
remote attestation in our scheme. For commands available
in both devices, the Odroid-XU4 (TPM-enabled devices) re-
quires 50% more time than the Raspberry Pi (Non-TPM de-
vices). The latency in TPM-enabled devices is attributed to the
communications between the processes of the TPM emula-
tor and TrouSerS, an interface between TPM and application.
The TPM-enabled devices have more commands to execute
due to the TPM environment setup (e.g., TrouSerS context cre-
ation). The exceptions among these commands are nonce cre-
ation and encryption, as both types of devices use the same set
of BouncyCastle APIs and Odroid-XU4 is more powerful than

raspberry Pi. TPM devices therefore perform better than non-
TPM ones. The total execution time required is in the order of
milliseconds. In MTRA, the verifier is required to perform more
tasks than the prover. The verifier-based DoS attack (Brasser
et al., 2016) is more difficult to launch since the assumption
of the verifier’s overhead being much lighter than that of the
prover does not hold.

6.2. Communication overhead

During the ith remote attestation with a k-element key chain,
the followings messages are exchanged:

+ In the initialization phase, the verifier and prover will es-
tablish the shared secret for the one-way hash key chain
(i.e., V) as the committed value of the key chain. The
length of this hash value is 20 bytes (SHA , 2001, last ac-
cessed on 16/09/2016).

Ev i (NiIVe_) in Algorithm 1, which is a challenge sent to
prover. The nonce and the one-way hash key each require
20 bytes (SHA , 2001, last accessed on 16/09/2016). There-



88 COMPUTERS & SECURITY 81 (2019) 78-93

fore, the communication overhead is 40 bytes. It is the
same with or without TPM.

If a key chain does not match, the prover will send
back a key chain error message, as well as the nonce
(Ev_is (N/|I'keychainerror’). The size of the packet is 21
bytes (i.e., the prover and verifier agree to use a one-byte
operation code to denote these errors, in addition to the
20-byte nonce).

After the prover computes the checksum of the firmware,
it will send back the attestation response. The size of
the response is 40 bytes (ie., Ey,_ (Nj||h(firmware)) in
Algorithm 1). There is one 20-byte nonce in addition to a
20-byte firmware hash.

Therefore, for one successful attestation process, the com-
munication overhead is 40 bytes in total. For devices leav-
ing or joining the networks, the communication overhead is
21 bytes. Consequently, MTRA has minimal communication
overhead compared to algorithms that use the ECDSA signa-
ture (the signature alone is more than 256 bytes) scheme to
verify the program hash (Asokan et al., 2015). We use the one-
way property to ensure an adversary cannot retrieve the next
hash key before it is used. This makes our attestation protocol
more suitable for power-constrained embedded devices. Even
with a separate hash chain to defend against wormhole at-
tacks, the additional communication overhead is another 20
bytes for the hash value, which makes the overhead 60 bytes.

6.3.  Scalablity test

We simulated MTRA with different network topologies, in-
cluding trees, assuming that the root of the tree is the base-
station and the fan-out degree is 2,4,8 and 12 or the networks
with a fixed number of one-hop neighbors (4,8 and 12). In both
topologies, the ratio between non-TPM devices and TPM en-
abled devices was the same as the fan-out degree or number of
one-hop neighbors (e.g., in a 500-device network with fan-out
degree of 4, the number of TPM enabled devices was 100, while
the number of non-TPM devices was 400). We also varied the
network size from 10 to 8000 devices. We measured the run-
time from when the base-station initialized the remote attes-
tation process until the remote attestation process completed
on all devices. The simulation results showed that the attesta-
tion latency was logarithmic in relation to the size of the net-
work. In particular, the remote attestation in the tree topology
was completed with 10 — 15% less latency than it was in the
topology with a fixed number of neighbors. The reason was
that the attestation process of MTRA was similar to breadth-
first search. Thus, the attestation process in tree topology was
more cost-efficient than the topology with a fixed number of
neighbors, where the challenges were sent to the same device
from different neighbors.

6.4. TOCTTOU attack evaluation

TOTTOU attacks assume a malicious prover. We were inter-
ested in how long the base-station can identify the compro-
mised prover(s). Therefore, we focused on how the percentage
of compromised provers would affect the time taken to iden-
tify these compromised provers. In our simulation, the net-

30

T T T T
10% devices compromised —+—
30% devices compromised
251 50% devices compromised —k—
\ 70% devices compromised —H—
\ 90% devices compromised

20[3 \ -

15 b \ i

N\SN |

time to identify the compromised provers (s)

10 20 30 40 50 60 70 80 90 100
Percentage of TPM devices in the networks (%)

Fig. 10 - Time to identify the TOTTOU attack in MTRA.

work size was fixed at 1,000 devices and we varied the ratio of
TPM devices and non-TPM devices. We measured the latencies
from the time when the base-station initialized the remote
attestation until the time when all the compromised provers
were identified by either TPM-enabled verifiers or the base-
station. If the compromised prover were a TPM-enabled de-
vice, its attestation response could not be retrieved from TPM
correctly due to the configuration change of the compromised
system. A TOCTTOU attack could then be identified immedi-
ately. For the non-TPM devices, the adversary puts the mal-
ware offline for check and online for use, which would trigger
the on-off messages sent to the verifier, who can identify the
compromised provers. This would incur some communication
overhead. We varied the percentage of compromised provers
from 10% to 90% and those compromised devices were ran-
domly distributed during the simulation. Figure 10 shows the
time taken to identify the compromised provers in terms of
percentage of TPM-enabled devices and compromised devices
in the networks. When the percentage of TPM-enabled devices
is more than 40%, MTRA can identify the compromised prover
with a negligible latency. Given the same percentage of TPM-
enabled devices, identifying 10% compromised provers took
the most time as those compromised provers were sparsely
distributed in the networks, delaying on-off messages sent
back to verifier (line and in Algorithm 3). When the percent-
age of compromised devices reaches 90% in the networks,
more on-off message transmissions were triggered in net-
works,incurring significant identification latency.

6.5. Verifier-based attack evaluation

MIM attacks, wormhole attacks and verifier-based DoS attacks
assume a malicious verifier. To defend against these verifier-
based attacks, the provers will authenticate the challenges. In
MTRA, we adopted the one-way hash chain to authenticate at-
testation challenges. For the verifier, it encrypts the challenge
nonce and the next hash key with the current hash key (line
in Algorithms 1 and 2). For the prover, it will firstly decrypt
the challenge, then check whether the one-way hash relation-
ship holds between the current hash key and the next hash
key (line in Algorithm 1 and line in Algorithm ). As a result,
the prover has two cryptographic operations to authenticate
the challenges: one is the symmetric decryption. The other is
the one-way hash operation. The wormhole attack is a form of



COMPUTERS & SECURITY 81 (2019) 78-93 89

80

70

T
b B B B B |
o wwn

s

60

time to complete the attestations (s)

0 10 20 30 40 50 60 70 80 90
Percentage of malicious verifiers in the networks (%)

Fig. 11 - Attestation time in presence of MIM attacks,
wormbhole attack or Verifier-based DoS attack: y indicates
how many invalid challenges the provers have received
before they will stop responding the verifier’s further
challenges.

MIM attack, tunneling the challenges to another network area.
MTRA defends against it by deploying the local one-way hash
chain. The corresponding overhead is the same as with the
MIM attack. It is also the same for the Verifier-based DoS at-
tack: the malicious verifier keeps sending out the invalid chal-
lenge to deplete the resources of provers. We simulated these
verifier-based attacks by using a set of malicious verifiers to
keep sending the arbitrary attestation challenges. Then we set
a threshold (denoted as y, varied from 1 to 5) for the num-
ber of invalid challenges before provers completely ignore the
challenges from the same verifier. We varied the percentage of
malicious verifiers from 0% to 90% within a fixed 1,000-node
networks with a tree topology whose fan-out degree is 8. We
measured the time taken to complete one attestation process
from base-station until all other legitimate devices were at-
tested except those malicious verifiers. Fig. 11 illustrates the
attestation time in simulation. The time taken to complete
attestation increases in linear scale to the percentage of the
malicious verifiers in the networks. The execution time taken
to verify one challenge is fixed in MTRA. The attestation time
only increases when the number of challenges from different
verifiers increases if the number of invalid challenges before
provers stop responding the respective verifiers’ further chal-
lenges (y in Fig. 11) is fixed. The y in these three attacks is a key
design parameter in MTRA. If we wish to achieve the best per-
formance, y should be 1 but it can introduce some false pos-
itives for verifiers, which might cause the prover to be identi-
fied as‘compromised’ if it stops responding that verifier. There
is a trade-off between defending mechanisms against the at-
tacks from provers and those from verifiers. If the provers are
more subject to attacks, y can be set to a higher value to min-
imize the false positives and vice versa.

6.6.  Memory range randomization evaluation

In this section, we further evaluated the impact of the memory
region randomizations on MTRA. In the conference version,
the memory region to be attested is always the same mem-
ory region (Tan et al., 2017). In this manuscript, the memory

region is randomized and the size of the memory region to be
attested varies in each attestation. The memory regions to be
verified are randomly chosen based on the challenge nonce.
The smaller the size of expected randomized memory region
to be verified is, the more difficult it is for adversary to guess
the correct memory regions to be verified for TOCTTOU at-
tack. For the expected memory region to be verified, we have
the following theorem:

Theorem 6.1. If the memory regions to be verified are randomly
and independently chosen, the expected average memory size to be
verified is 1/3 of the total memory size.

Proof. Let X be a random variable uniformly distributed over
[0, L], where L denotes the total size of the memory region and
0 indicates the starting address of the entire memory region.
The Probability Density Function (PDF) of F(X) is given by

1
F(X) = I X elo,1] (1)

0  Otherwise.

Let us randomly pick two memory addresses within [0,L] as
the upper and lower limit of the memory region to be verified,
denoted as X; and X,. They are random variables distributed
according to F(X) in Eq. (1). The size of the memory region be-
tween these two memory addresses are a new random vari-
able

Y = X1 — Xy 2)

Hence, we would like to find the expected value E(Y) =
E(|X1 — X3|) in relation to L. Let us introduce function g as fol-
lows:

X1—-X X12Xp
9(X1, Xp) = 1X1 — Xo| = ©)]
Xz - X]_ Xl < Xz.

Since the two memory addresses to define the memory re-
gion are picked up independently, the PDF of the memory re-
gion to be verified is the product of the PDF function for X; and
X, from Eq. (1):

F(X1, Xp) = F(X1)%F(Xy) = 2 X1,X5 €[0,1] "

0 Otherwise.

Therefore, the expected value E(Y) = E(g(X1, X3)) is given
by

E(Y)

L L
/O/OQ(XLXQ)F(XLXz)ddeM

1 L pL
= ﬁ‘[) ‘/0 \X1—X2|dX2dX1

1/L/X1( o + 2 [ [ - xi)dxad
= = X1 — Xp)dXo x1+—// Xy — X1)aXpdXq
12 Jo Jo L2 Jo Jx,

L 13
= @‘5—@:1/3*1‘ (5)

O

One of the potential attacks against the memory random-
ization in MTRA is that an adversary attempts to capture a



20 COMPUTERS & SECURITY 81 (2019) 78-93

large number of attestation responses to retrieve the complete
firmware. We further evaluate the probability that an adver-
sary is able to retrieve the entire memory regions in terms
of the number of attestation responses captured. We assume
that adversary is able to capture the combinations of two ad-
dresses (beginning address and end address) from all the at-
testations.

Lemma 6.2. If the memory regions to be verified are randomly and
independently chosen and the memory address starts from O to long
integer L—1, the probability in exact N attestations to cover the entire
memory region (f(N)) ,whose size is L , is

N

it 2 i
500 = 21 (o=5) ©)

Proof. We can use the mathematical induction to prove this.
When N = 1, the only combination of start and ending mem-
ory addresses to cover the entire region is 0 and L — 1. The
probability of this combination is C2. Therefore,

1

It matches with Eq, (6) for N = 1.

Now we assume that Eq. (6) holds for N attestations. The
probability for the (N + 1)th attestation to verify the entire
memory region is the probability of the previous N attesta-
tions failing to cover the entire memory region and the prob-
ability that the N + 1th attestation is able to cover the starting
and ending memory addresses for the entire memory region.
Therefore, f(N + 1) is

fIN+1) = (1= fF(N)=f(2)
= fO)+ ()« fF(N)«£(1)

N+1 i
— _q)\i+1 L
= S+ L (i)
N+1 i
_ )i+l 2
=3 (i) ®

Therefore, f(N + 1) holds for Eq. (6). This lemma holds for
VNeZzZ+. O

Based on Lemma 6.2, we can have the following lemma:

Lemma 6.3. If the memory regions to be verified are randomly and
independently chosen and the memory address starts from O to long
integer L — 1, the cumulative probability to cover the entire memory
region after N attestations (T(N)) is

N

T(N) = £(1) ) i(=fa)™ ©)

i=1
where f(1) is defined in Lemma 6.2:

2
0= gy

Proof. We can use the mathematical induction to prove this.
When N = 1, the cumulative probability of the first attesta-
tion to cover the entire memory region is the same as F(1) in

Eq. (7) from Lemma 6.2:

It matches with Eq. (9) for N = 1.

Now we assume that Eq. (9) holds for N attestations. The
cumulative probability for the (N + 1)th attestation to verify
the entire memory region is

T(N+1) = T(N)+ f(N+1)
N
= f) Y i=fap™
i=1
N+1

+ Y (DAY
i=1

So Eq. (9) holds for N+ 1. This lemma holds for VN € Z+. O

Theorem 6.4. If the memory regions to be verified are randomly and
independently chosen and the memory address starts from O to long
integer L — 1, the cumulative probability to verify the entire memory
region only depends on the size of the memory region (i.e., L) when
the number of attestations is infinite. The probability (P):

2
P=__ -
LL-1)+2

where L > 2.

Proof. Eq. (6) can be organized as follows:

N/2] [N/2]

As the first and second terms are both the summations of
geometry series and the common ratio ,(m)z <1ifL>2.
There is a limit when N (i.e., number of attestations) becomes
infinite:

N/21

) ) 2 2i+1
limy_ o f(N) = limy_o0 g (m)

N/21 2 2
“timy 3 ()
=2
2
2
_ L(L2—1) (L(L—l))
- 2 1— 2 2
(1 - r{l)) L(L—l))
2
TLL-1)+42 (11)
O



COMPUTERS & SECURITY 81 (2019) 78-93

91

Prohahility to cover the entire memory region

100 \
0.90

0.80 \

0.70 \

-

0.50 \

|

0.30 \

0.20 \

0.10

0.00

—— Menory Size (bytes)

Fig. 12 - Probability to cover the entire memory region through attestation memory randomization: Adversary is not able to
retrieve the contents of the entire memory region even though it captures a number of the attestation responses.

Table 2 - Comparison of MTRA, SCUBA ( ), SEDA (
( ) and SMARM (
MTRA SCUBA SEDA PIV TRAP SMARM

TPM enabled Partial No No Partial Yes No
Synchronisation required? No Yes No No No No
Defends against TOCTTOU attacks? Yes No Yes No Yes Yes
Defends against wormhole attacks? Yes No No No Yes No
Defends against MIM? Yes No Yes No Yes No
Defends against Verifier-based DoS attacks? Yes Yes No Yes No Yes
Communication overhead (bytes) 60+ 160+ 512+ 60+ 256+ 1,000+

Fig. 12 shows the probability to cover the entire memory re-
gions during memory randomization in relation to the mem-
ory size (i.e., Eq. (11)). If the memory size is greater than 8 bytes,
the probability to retrieve the entire memory regions by cap-
turing a number of attestation responses is negligible.

6.7. Comparison with existing attestation protocols

Table 2 shows the differences between MTRA (the protocol
in this paper), SCUBA (Seshadri et al., 2006), SEDA (Asokan
et al,, 2015), TRAP (Tan et al., 2011) and SMARM (Carpent
et al., 2018a). We implemented MTRA with the TPM emulator
(Strasser and Stamer, 2008) on powerful devices (i.e., Odroid
XU4), which are the verifiers after they pass the attestation.
MTRA does not require strict timing on the attestation pro-
cess, while SCUBA requires synchronisation between the ver-
ifier and prover. Compared to SEDA (Asokan et al., 2015), MTRA
can defend against wormbhole attacks as we employed a zone-
based one-way hash chain to prevent the attestation response

being replayed in a different network area where the firmware
has not been attested. Compared to our earlier system, TRAP
(Tan et al., 2011), this protocol is more cost-efficient and adap-
tive, as not all the devices in the network are required to be
TPM-enabled. Our protocol not only reduces the deployment
costs but is also robust against verifier-based DoS attacks, as
the verifiers must perform more tasks than the provers to for-
malize an attestation. On the other hand, TRAP was not able to
address verifier-based DoS attacks as all the devices run TPM
to process the attestation challenges, which consumes more
resources. The communication overhead required to run each
protocol is universal so we also include the comparison re-
sults in Table 2. MTRA does not send a digital signature for
attestation verification while SEDA and TRAP do. SCUBA must
perform synchronisation between the verifier and prover so
it requires more communication overhead than MTRA. PIV
(Agrawal et al., 2015) has a communication overhead similar to
MTRA, but it can only be applied in one-hop networks. There-
fore, PIV does not consider wormhole attacks and MIM attacks.



92 COMPUTERS & SECURITY 81 (2019) 78-93

The recent remote attestation, SMARM (Carpent et al., 2018a),
can operation as usual when remote attestation is performed.
However, it did not considered the network-based attack such
as wormhole attack and its communication overhead is the
scale of mega-bytes while MTRA’s communication overhead
is in kilo-bytes.

7. Conclusions

We have proposed a remote attestation protocol for IoT net-
works (MTRA) in this paper. In MTRA, we tailored separate
schemes for both TPM-enabled IoT devices and IoT devices
that could not run TPMs. We discussed potential attacks
against our scheme and proposed countermeasures. We im-
plemented MTRA on two single-board computers, Odroid-XU4
for the TPM-enabled devices and Raspberry Pi for the non-TPM
devices, as well as the attested memory randomization. The
performance evaluation indicates MTRA is cost-efficient and
is more suitable for resource-constrained devices than exist-
ing remote attestation protocols. In future works, we will in-
vestigate the algorithms to further randomized the memory
regions to be attested and increase the expected memory size
in MTRA.

Acknowledgment

This research was supported partially by the Australian Gov-
ernment through the Australian Research Council’s Discovery
Projects funding scheme (project DP150100564). The views ex-
pressed herein are those of the authors and are not necessar-
ily those of the Australian Government or Australian Research
Council.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.cose.2018.10.008

REFERENCES

Abbasi AA, Younis M. A survey on clustering algorithms for
wireless sensor networks. Comput Commun
2007;30(14-15):2826-41. doi:10.1016/j.comcom.2007.05.024.

Abera T, Asokan N, Davi L, Ekberg JE, Nyman T, Paverd A,
Sadeghi AR, Tsudik G. C-FLAT: control-Flow Attestation for
embedded systems software, 2016. arXiv: 1605.07763.

Agrawal S, Das M, Mathuria A, Srivastava S. Program integrity
verification for detecting node capture attack in wireless
sensor network. LNCS, 9478. Springer International
Publishing; 2015. p. 419-40. doi:101007/978-3-319-26961-0_25.

Algassem I, Svetinovic D. A taxonomy of security and privacy
requirements for the internet of things (IOT). In: Proceedings
of the 2014 IEEE international conference on industrial
engineering and engineering management; 2014. p. 1244-8.
doi:10.1109/IEEM.2014.7058837.

Anderson M. An a for raspberry pi b+, IEEE Spectrum, Tech talk
Blog, July 25th, 2014. URL http://spectrum.ieee.org/tech-talk/
geek-life/hands-on/an-a-for-raspberry-pi-b.

Asokan N, Brasser F, Ibrahim A, Sadeghi AR, Schunter M,

Tsudik G, Wachsmann C. SEDA: scalable embedded device
attestation. In: Proceedings of CCS’15. New York, NY, USA:
ACM,; 2015. p. 964-75. d0i:10.1145/2810103.2813670.

Brasser F, Rasmussen KB, Sadeghi AR, Tsudik G. Remote
attestation for low-end embedded devices: the prover’s
perspective. Proceedings of DAC’16. New York, NY, USA: ACM,
2016. doi: 10.1145/2897937.2898083.

Carpent X, Rattanavipanon N, Tsudik G. Remote attestation of
10T devices via SMARM: shuffled measurements against
roving malware. In: Proceedings of the HOST. IEEE Computer
Society; 2018a. p. 9-16. doi: 10.23919/DATE.2018.8342195.

Carpent X, Tsudik G, Rattanavipanon N. ERASMUS: efficient
remote attestation via self-measurement for unattended
settings. In: Proceedings of the design, automation & test in
Europe conference & exhibition, DATE 2018, Dresden,
Germany, March 19-23, 2018; 2018b. p. 1191-4.
doi:10.23919/DATE.2018.8342195.

Challa S, Wazid M, Das AK, Kumar N, Reddy AG, Yoon E, Yoo K.
Secure signature-based authenticated key establishment
scheme for future 10T applications. IEEE Access
2017;5:3028-43. d0i:10.1109/ACCESS.2017.2676119.

Feng W, Qin Y, Zhao S, Feng D. AAOT: Lightweight attestation and
authentication of low-resource things in IOT and CPS..
Comput Netw 2018;134:167-82. URL http://dblp.uni-trier.de/
db/journals/cn/cn134.html#FengQZF18.

Group T.C.. Trusted computing group - trusted platform module
(TPM) summary. http://www.trustedcomputinggroup.org/
resource/trusted- platform-module-2-0-a-brief-introduction;
last access on 29/01/2016.

Hu Y-C, Jakobsson M, Perrig A. Efficient constructions for
One-Way hash chains. LNCS, 3531. Berlin Heidelberg:
Springer; 2005. p. 423-41. doi:101007/11496137_29.

Hu Y-c, Perrig A, Johnson DB. Wormbhole attacks in wireless
networks. In: Proceedings of the IEEE JSAC, Volume 24, No. 2;
2006. p. 370-80. URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.117.698.

Kil C, Sezer EC, Azab AM, Ning P, Zhang X. Remote attestation to
dynamic system properties: towards providing complete
system integrity evidence. In: Proceedings of the IEEE/IFIP
ICDSN’09. IEEE; 2009. p. 115-24. d0i:10.1109/dsn.2009.5270348.

Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P,
Elkaduwe D, Engelhardt K, Kolanski R, Norrish M, Sewell T,
Tuch H, Winwood S. sel4: Formal verification of an os kernel.
In: Proceedings of the ACM SIGOPS 22nd symposium on
operating systems principles. New York, NY, USA: ACM; SOSP
’09; 2009. p. 207-20. doi:10.1145/1629575.1629596.

Krauss C, Stumpf F, Eckert C. Detecting node compromise in
hybrid wireless sensor networks using attestation techniques.
In: Proceedings of ESAS ’07. Berlin, Heidelberg:
Springer-Verlag; 2007. p. 203-17. URL http://portal.acm.org/
citation.cfm?id=1784425.

NS3: discrete-event network simulator, https://www.nsnam.org/,
[Accessed on 18 April 2017]; 2011.

Seshadri A, Luk M, Perrig A, van Doorn L, Khosla P. SCUBA: secure
code update by attestation in sensor networks. In:
Proceedings of WISE ’06. New York, NY, USA: ACM,; 2006.

p- 85-94. d0i:10.1145/1161289.1161306.

Seshadri A, Perrig A, van Doorn L, Khosla P. SWATT:
software-based attestation for embedded devices. In:
Proceedings of IEEE symposium on security and privacy; 2004.
p- 272-82. URL http://www.netsec.ethz.ch/publications/
papers/swatt.pdf.

Song K, Seo D, Park H, Lee H, Perrig A. OMAP: one-Way memory
attestation protocol for smart meters. In: Proceedings of the
2011 ISPAW. IEEE; 2011. p. 111-18. d0i:10.1109/ispaw.2011.37.



https://doi.org/10.13039/501100000923
https://doi.org/10.1016/j.cose.2018.10.008
https://doi.org/10.1016/j.comcom.2007.05.024
arxiv:/hep-th/160507763
https://doi.org/101007/978-3-319-26961-0_25
https://doi.org/10.1109/IEEM.2014.7058837
http://spectrum.ieee.org/tech-talk/geek-life/hands-on/an-a-for-raspberry-pi-b
https://doi.org/10.1145/2810103.2813670
https://doi.org/10.1145/2897937.2898083
https://doi.org/10.23919/DATE.2018.8342195
https://doi.org/10.23919/DATE.2018.8342195
https://doi.org/10.1109/ACCESS.2017.2676119
http://dblp.uni-trier.de/db/journals/cn/cn134.html#FengQZF18
http://www.trustedcomputinggroup.org/resource/trusted-platform-module-2-0-a-brief-introduction
https://doi.org/101007/11496137_29
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.698
https://doi.org/10.1109/dsn.2009.5270348
https://doi.org/10.1145/1629575.1629596
http://portal.acm.org/citation.cfm?id=1784425
https://www.nsnam.org/
https://doi.org/10.1145/1161289.1161306
http://www.netsec.ethz.ch/publications/papers/swatt.pdf
https://doi.org/10.1109/ispaw.2011.37

COMPUTERS & SECURITY 81 (2019) 78-93 93

Strasser M, Stamer H. A software-based trusted platform module
emulator. In: Proceedings of Trust’ 08. Berlin, Heidelberg:
Springer-Verlag; 2008. p. 33-47.
doi:10.1007/978-3-540-68979-9_3.

Tan H, Hu W, Jha S. A TPM-enabled remote attestation protocol
(TRAP) in wireless sensor networks. In: Proceedings of the
PM2HW2N ’11. New York, NY, USA: ACM,; 2011. p. 9-16.
doi:10.1145/2069087.2069090.

Tan H, Tsudik G, Jha S. MTRA: multiple-tier remote attestation in
IOT networks. In: Proceedings of the 2017 IEEE conference on
communications and network security (CNS); 2017. p. 1-9.
doi:10.1109/CNS.2017.8228638.

The legion of bouncy castle [online], 2009,
http://www.bouncycastle.org, [Accessed 16 September 2016].

Trousers: The open-source TCG software stack, 2008,
http://trousers.sourceforge.net/ Trust '08, [Accessed 13
September 2016]. 2008

US Secure Hash Algorithm 1 (SHA1),
https://tools.ietf.org/html/rfc3174, [Accessed 16 September
2016]; 2001.

Wang J, Hong Z, Zhang Y, Jin Y. Enabling security-enhanced
attestation with intel SGX for remote terminal and iot. IEEE
Trans Integr Circuits Syst 2018;37(1):88-96.

Wazid M, Das AK, Odelu V, Kumar N, Conti M, Jo M. Design of
secure user authenticated key management protocol for
generic 10T networks. IEEE Internet of Things ]
2018;5(1):269-82. doi:10.1109/J10T.2017.2780232.

Hailun Tan is a cyber-security consultant in R&D department of
NOJA PowerSwitchgear Pty Ltd since 2017. He obtained his Ph.D.
degree from the University of New South Wales (UNSW)in 2010.
Before coming to NOJA Power Switchgear Pty Ltd., He had worked
as researcher in the Australia’s Information and Communications
Technology Research Centre of Excellence (NICTA) (2006-2011) and
The Commonwealth Scientific and Industrial Research Organisa-
tion (CSIRO) (2011-2013). From 2013 to 2015, he worked as a cyber-
security consultant in Australian Federal Government. From 2016
to 2017, he was a postdoc fellow and lecturer in UNSW, focusing on
security in [oT. His main research interests are in security protocol
design in wireless networks and embedded systems.

Gene Tsudik is a Chancellor’s Professor of Computer Science at
the University of California, Irvine (UCI). He obtained his Ph.D. in
Computer Science from USC in 1991. Before coming to UCI in 2000,
he was at IBM Zurich Research Laboratory (1991-1996) and USC/ISI
(1996-2000). His research interests include many topics in secu-
rity, privacy and applied cryptography. Gene Tsudik is a Fulbright
Scholar, Fulbright Specialist (twice), a fellow of ACM, a fellow of
IEEE, a fellow of AAAS, and a foreign member of Academia Eu-
ropaea. From 2009 to 2015 he served as Editor-in-Chief of ACM
Transactions on Information and Systems Security (TISSEC, re-
named to TOPS in 2016). Gene was the recipient of 2017 ACM
SIGSAC Outstanding Contribution Award. He is also the author of
the first crypto-poem published as a refereed paper.

Sanjay K. Jha is a Professor and Head of the Networked Systems
and Security Group and Director of Cybersecurity and Privacy Lab
at the School of Computer Science and Engineering at the Univer-
sity of New South Wales. His research activities cover a wide range
of topics in networking including Wireless Sensor Networks, Ad-
hoc/Community wireless networks, Resilience and Multicasting in
IP Networks and Security protocols for wired/wireless networks.
Sanjay has published over 200 articles in high quality journals and
conferences. He is the principal author of the book Engineering In-
ternet QoS and a co-editor of the book Wireless Sensor Networks:
A Systems Perspective. He served as editor of the IEEE Transac-
tions on Mobile Computing (TMC). He currently serves as editor
of the IEEE Transactions on Dependable and Secure Computing
(TDSC).


https://doi.org/10.1007/978-3-540-68979-9_3
https://doi.org/10.1145/2069087.2069090
https://doi.org/10.1109/CNS.2017.8228638
http://www.bouncycastle.org
http://trousers.sourceforge.net/
https://tools.ietf.org/html/rfc3174
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
https://doi.org/10.1109/JIOT.2017.2780232

	MTRA: Multi-Tier randomized remote attestation in IoT networks
	1 Related work
	2 System, threat model  our contributions
	3 Remote attestation design
	3.1 Notations
	3.2 Offline (Preparation stage)
	3.3 Online (Operative stage)

	4 Security analysis
	4.1 Man-In-the-Middle Attack (MIM attack)
	4.2 Impersonation  replay attack
	4.3 Wormhole attack
	4.4 Time-Of-Check-To-Time-Of-Use (TOCTTOU) Attack
	4.5 Verifier-based DoS attack

	5 Implementation details
	6 Performance evaluation
	6.1 Hardware execution time
	6.2 Communication overhead
	6.3 Scalablity test
	6.4 TOCTTOU attack evaluation
	6.5 Verifier-based attack evaluation
	6.6 Memory range randomization evaluation
	6.7 Comparison with existing attestation protocols

	7 Conclusions
	Acknowledgment
	Supplementary material

	Reference

