
c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

MTRA: Multi-Tier randomized remote

attestation in IoT networks

Hailun Tan

a , ∗, Gene Tsudik

b , Sanjay Jha

a

a School of Computer Science and Engineering, the University of New South Wales, Australia
b Computer Science Department, University of California, Irvine, United States

a r t i c l e i n f o

Article history:

Received 8 July 2018

Revised 15 September 2018

Accepted 19 October 2018

Available online 15 November 2018

Keywords:

Remote attestation

Internet of Things

Network security

Embedded systems

Network attack

a b s t r a c t

Large numbers of Internet of Things (IoT) devices are increasingly deployed in many aspects

of modern life. Given their limited resources and computational power, verifying program

integrity in such devices is a challenging issue. In this paper, we design MTRA, a Multiple-

Tier Remote Attestation protocol, by exploiting differences in resources and computational

power among various types of networked IoT devices. More powerful devices equipped with

a Trusted Platform Module (TPM) are verified through trusted hardware while others are

verified through software-based attestation. In addition, a randomized memory region for

attestation is used in MTRA to increase the entropy of the attestation responses. MTRA is a

flexible means of program integrity verification for heterogeneous IoT devices.

© 2018 Elsevier Ltd. All rights reserved.

(
d
t
t
h
a
d
a
w
t
m
t
c
s

t
a
m

n

w
f
d

t
b
t

T
t
s
a

v
w
w
t

h
0

A wide range of applications makes the Internet of Things
IoT) an attractive new paradigm. Various types of wireless
evices, such as household appliances and office or automa-
ion devices, can connect with each other. The majority of
he smart devices in IoT are resource-constrained and they
ave also processing and communication capabilities as well
s they possess a locatable Internet protocol address (IP ad-
ress, Challa et al., 2017) . The smart devices can be remotely
ccessed and controlled using existing network infrastructure
hich allows a direct integration of computing systems with

he phisical environment. This facility further reduces hu-
an involvement, and also improves accuracy and efficiency

hat result in economic benefit . The smart devices in IoT fa-
ilitate the day-to-day life of people. In critical IoT settings
uch as defense, healthcare, and industrial process control,
here is a clear need to ensure that some critical devices, such

s door locks and vehicle smart control systems, cannot be
aliciously manipulated from Internet. Fig. 1 shows that IoT
∗ Corresponding author.
E-mail addresses: hailun.tan@unsw.edu.au , thailun@cse.unsw.edu.au

(S. Jha).
ttps://doi.org/10.1016/j.cose.2018.10.008
167-4048/© 2018 Elsevier Ltd. All rights reserved.
etworks is composed by various types of networks devices,
hich have different capabilities and responsibilities. There-

ore, the security protocol design in IoT should also accommo-
ate such differences accordingly.

In this paper, we propose MTRA, a Multiple-Tier Remote At-
estation protocol, for IoT networks. Since IoT devices tend to
e heterogeneous in terms of computational and communica-
ion capabilities, some are equipped with additional hardware,
rusted Platform Modules (TPMs), to assist with remote attes-
ation. Simpler, smaller and cheaper devices might lack any
uch hardware. Accordingly, different attestation techniques
re appropriate for different types of IoT devices.

The rest of the paper is organized as follows. Section 1 sur-
eys the literature in remote attestations for wireless net-
orks. Section 2 outlines the system and threat models on

hich this paper is based. Section 3 details MTRA to verify
he code image of the devices. Section 4 discusses the poten-
 (H. Tan), gts@ics.uci.edu (G. Tsudik), sanjay.jha@unsw.edu.au

https://doi.org/10.1016/j.cose.2018.10.008
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.10.008&domain=pdf
mailto:hailun.tan@unsw.edu.au
mailto:thailun@cse.unsw.edu.au
mailto:gts@ics.uci.edu
mailto:sanjay.jha@unsw.edu.au
https://doi.org/10.1016/j.cose.2018.10.008

c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3 79

Fig. 1 – A generic architecture of IoT Challa et al. (2017) .

tial attacks that an adversary could launch against our scheme
and the related countermeasures. Section 6 evaluates the per-
formance of our scheme and our conclusions are offered in
Section 7 .

1. Related work

Seshadri et al. (2004) proposed SoftWare-based ATTestation
technique (SWATT), a code attestation protocol which is ex-
ecuted solely through software. Seshadri et al. also proposed
another technique called SCUBA (Seshadri et al., 2006) to re-
cover the sensor nodes after a compromise. This protocol
uses two authenticated channels between a node and a base-
station. Both protocols depend on accurate time measure-
ments and optimal program codes to detect malware.

Recently, many hardware attestation techniques (Krauss
et al., 2007; Tan et al., 2011) have been proposed, relying on the
presence of a Trusted Platform Module (TPM) (Group, last ac-
cess on 29/01/2016). A TPM can protect the computer system
from malicious system activities and unauthorized changes.
The tamper-proof memory of the TPM cannot be accessed by
any entity other than the TPM itself. Each TPM has an Endorse-
ment Key (EK) that uniquely identifies it. It is typically a public-
private key pair; the private key is embedded in the TPM and
never leaves it. Each TPM has the unique feature of secure
Platform Configuration Registers (PCRs). These store metrics
to measure the integrity of any code prior to its execution.
This code can be the bootloader or application code. When-
ever there are any alterations to this code, PCR values are ex-
tended with the hash digest of the changes, which can result
in operation failures on some TPM functions. These functions
are TPM _ Seal and TPM _ Unseal, which will be adopted in this
paper to check the code image integrity. Tan et al. demon-
strated that it is feasible to equip each sensor node with TPM
and that the attestations can be coducted progressively from
a base-station (Tan et al., 2011). However, (Tan et al., 2011) as-
sumed that all devices are homogeneous and equipped with
TPMs. This assumption does not hold for heterogeneous IoTs
networks. Agrawal et al. recently proposed to verify program
flash integrity in wireless sensor networks with cluster-heads
equipped with TPMs (Agrawal et al., 2015). However, (Agrawal
et al., 2015) only considered the single-hop setting and did not
take into account of network attacks, e.g.,wormhole (Hu et al.,
2006).

Tigist et al. proposed a Control-FLow ATtestation for Em-
bedded Systems Software (C-FLAT) to defend against the run-
time buffer overflow attack (Abera et al., 2016). Their attesta-
tion scheme is effective but C-FLAT cannot accommodate the
control flow where there is an infinite loop as it will iteratively
change the attestation response as the number of the loops in-
creases. In MTRA, we compute the entire firmware as a hashed
checksum. Therefore, even with an infinite loop in the control
flow, it will not yield the same issue in MTRA.

Wazid et al. formulated authentication using three-way au-
thentications for secure communication among the IoT nodes
(Wazid et al., 2018). They adopted three components for au-
thentication: user smart card, password and user biometrics.
Except password, the overhead of smart card and user biomet-
rics is too heavy for the embedded devices such as sensors. As
to password, it is not secure to apply the same password to all
the IoT devices. In addition, it is not scalable to manage the
password if they are different from device to device.

Alqassem et al. further analysed the security and privacy
requirements for IoT and surveyed a number of IoT appli-
cations in the context of security (Alqassem and Svetinovic,
2014). Most of these applications assume that the networks
contain two types of devices: devices to interact with human

80 c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3

Fig. 2 – General Remote Attestation process.

a
g
m
b

m
(
(

w
m
i
v
c
f

f
t

I
t

p
(
l
v

2

W
v
c
d
u
b

T
h
w
t
n
a
e
s

2
t

T

i

t
c
t
s

r

fi
c
O

a
g
d
e
d
i
c
m
e

r
a
t

nd environment or devices serving as a gateway for data ag-
regation. We argued that the possible scenarios are much

ore complicated and the different security measures should

e imposed in it.
Carpent et al. proposed a remote attestation via self-

easurement in an unattended environment (ERAMUS)
 Carpent et al., 2018b) and a further enhanced version

 Carpent et al., 2018a). They adopted Sel4 (Klein et al., 2009),
hich is a bug-free operating system kernel, to assist the re-
ote attestation when the self-measurement was processeed

n Sel4. ERAMUS is efficient for the resource-constraint de-
ices. However, it is an OS-dependent approach. If Sel4 is not
ompatiable with the IoT device, ERASMUS cannot be adopted

or such IoT devices.
Hong et al. put forth an attestation protocol with Intel SGX

or remote terminal and IoT (Wang et al., 2018). Such attesta-
ion protocol is tailored for a particular microcontroller (i.e.,
ntel SGX) and it is not a generic model that can be extended

o other IoT devices.
Feng et al. developed a light-weighted remote attestation

rotocol called AAOT for low-resource IoT networks and CPS
 Feng et al., 2018). It focuses on the power conservation but
acks the design to fully exploit the resources on the IoT de-
ices with more computational resources.

. System, threat model & our contributions

e assume that an IoT network contains three types of de-
ice. The first is a trusted third party that issues attestation

hallenges to the rest of the network (i.e., base-station). The
evice, directly controlled by the network administrator, has
nlimited computational power and cannot be compromised

y an adversary. There is only one such device in a network.
he second type of device could accommodate tamper-proof
ardware (e.g., TPM) but is vulnerable to some forms of net-
ork attacks. The third type has limited resources and lacks

amper-proof hardware. Thus, it is vulnerable to all forms of
etwork attack. Moreover, we assume that the type-3 devices
re one-hop neighbors of either the base-station or a TPM-
nabled devices. This can be guaranteed with the cluster-head

election algorithm in wireless networks (Abbasi and Younis,
007). In MTRA, the TPM-enabled devices are assumed to be
he cluster-head to verify its one-hop neighbors without TPM.
herefore, MTRA is for the networks with fixed topology.

The general attestation process is shown in Fig. 2 . The ver-
fier computes the challenge according to the specified attes-
ation protocol design, and sends it to the prover. The prover
hecks the firmware, computes the response and sends it back
o the verifier. The verifier checks this response. If the re-
ponse matches the expected result, the attestation succeeds.

We assume that an adversary can manipulate the software
unning on the second or third type of device but not on the
rst type. However, we also assume that an adversary cannot
ompromise devices physically, which means that the Read-
nly Memory (ROM) and bootloader cannot be tampered with,
s physical node compromise is not scalable for an adversary
iven a large number of devices in the same network. We also
o not consider other types of Denial of Service (DoS) attacks
xcept verifier-based DoS attacks (Brasser et al., 2016) (further
iscussed in Section 4.5), as the main goal of an adversary

n remote attestation is to circumvent the program integrity
heck with malware running. Other DoS attacks such as jam-
ing will result in the failure of attestation and reveal the

xistence of an adversary. However, adversary can intercept,
eplay, delay, forge or rush either the challenges as verifier or
ttestation response as prover against the second type of third

ype of device.
Our contributions are:

• A new two-tier attestation protocol for heterogeneous IoT net-
works: In prior work (Agrawal et al., 2015; Asokan et al.,
2015; Seshadri et al., 2006; Seshadri et al., 2004; Tan et al.,
2011), protocols were not designed in the context of het-
erogeneous IoT networks.

• Countermeasures against rainbow and interference attacks: In

the challenge-response attestation protocol, the adversary
attempts to send an arbitrary challenge to probe the re-
sponse from the prover, which can be exploited for the
Time-Of-Use to Time-Of-Check (TOUTTOC) attack with-
out manipulating the prover’s firmware. This is rainbow

attack . In addition, an adversary can interfere with the
challenge-response attestation protocol as a Man-In-The-
Middle (Song et al., 2011). To the best of our knowledge,
we are the first to adopt a one-way hash chain to defend

against rainbow attacks. Each hash key is updated after the
challenge is successfully completed. Therefore, the hash

key used for one challenge is different from the key for the
next challenge. This is further analyzed in Section 4 .

• Defense against wormhole attacks: The wormhole attack is a
notorious network attack that can allow an adversary to
retrieve information earlier than expected for other types
of attack (Hu et al., 2006). In our approach, a local one-way
hash chain is proposed to invalidate the efforts of worm-

c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3 81

Table 1 – Notations.

Notation Meaning

h (M) The one-way hashed result on message M

A sends a packet P to B
A → B: M ← P packet P’s content is copied to M

Encryption of message
E Key (M) M with Key
D Key (M) Decryption of M with Key
| P | The length of message P
P || M Message P is concatenated with message M

The remainder of message M 1 divided by M 2 .
M 1 % M 2 The result will vary from 0 to M 2 − 1 .

1 Shown as V k in Fig. 3 , where k denotes the upper limit of the
number of attestations in the entire lifetime of the network.
hole attacks. Section 4.3 details how our approach can de-
fend against it. To the best of our knowledge, we are the
first to defend against wormhole attacks in remote attes-
tation.

• New approach to detect Time-Of-Check-To-Time-Of-Use (TOCT-
TOU) attacks: An adversary might have the correct firmware
to respond to attestation challenges and have malware
running in another period in a TOCTTOU attack. We deploy
an online-offline notification mechanism to defend against
TOCTTOU attacks in Section 4.4 .

• Randomization of flash regions to be verified: In order to cir-
cumvent the remote attestation, adversary attempts to
generate the correct attestation responses in advance for
verification. We introduced a nonce in a challenge from
verifier so that the response will not be the same. However,
Song et al. introduced the MiM attack so that adversary can
still construct the correct attestation response with nonces
(Song et al., 2011). In MTRA, not only do we randomize the
attestation response with the nonce, we also randomize
the flash regions according to the value of nonces. In our
earlier conference version (Tan et al., 2017), the randomiza-
tion on memory region to be attested is not considered and
evaluated. In this paper, we include this memory random-
ization technique in MTRA, which increased the entropy
of the attestation responses. To the best of our knowledge,
we are the first to propose the randomization on the flash
regions to be verified in remote attestation design. In this
way, adversary cannot forge or collect the possible correct
attestation responses off-line to assist the TOCTTOU at-
tack.

3. Remote attestation design

There are two stages for the proposed attestation protocol:

• Offline (preparation stage) , when none of the devices have
been deployed for operations and related additional hard-
ware (i.e., TPMs) is initialized and installed on the compu-
tationally powerful devices. As no network has not been
established, no adversary can launch an attack.

• Online (operative stage) , when all devices have been de-
ployed and are operational. The remote attestations are
performed and an adversary can launch attacks.

3.1. Notations

The notation in the rest of this paper are shown in Table 1 .

3.2. Offline (Preparation stage)

In this stage, we assume that it is secure to distribute ini-
tial shared secrets among all nodes prior to deployment. For
example, we assume that a trusted key distribution server is
available to distribute the cryptographic information securely.
The initial code image is installed on all devices.

The TPMs on the TPM-enabled devices are initialized with
the asymmetric key pair, L pub and L pri , which is bound to PCRs
and stored in the TPM. The configurations of the devices are
extended into the PCR. The related TPM operations will fail if
the configurations of the devices (e.g., the contents in program
flash) are altered. The hash of firmware is sealed with the L pri

in TPM. A trusted server can distribute L pub .
A one-way hash chain is created (see Fig. 3) Hu et al. (2005) .

The last hash key (i.e., the committed value of hash chain, V k
1)

is distributed to all devices. V k −i is to authenticate the (i + 1) th

challenge from the verifier. Only the base-station keeps all the
elements in this hash chain.

The number of key chain elements should be sufficient to
cover the lifetime of the IoT network. However, if the num-
ber of key chain elements is not sufficient, a new key chain
is generated in the base-station and its committed value can
be distributed to all the devices. he committed element of the
one-way key chain (i.e., V 0 in Fig. 3) can be made known to pub-
lic as only the base-station has previous key (e.g., V 1 in Fig. 3)
for key verification.

After the application code image is installed, the free space
in the program flash of devices without TPMs is filled with
unique, random incompressible bits (Fig. 4). Each device is
filled with a unique bit pattern (Agrawal et al., 2015).

3.3. Online (Operative stage)

In this stage, all the devices are deployed and become oper-
ative. When the base-station needs to verify code images for
the networks, it first contacts one of the one-hop neighbours
with TPM equipped as an initiator for attestation. The chal-
lenge is E V k −i +1

(N i || V k −i) (line in Algorithm 1) where N i is a fixed-
length random nonce generated by the verifier and i denotes
that it is the i th attestation since deployment and k is number
of keys in one-way hash chain in Fig. 3 .

On receipt of the challenge, the prover will decrypt the
packet with an unsealed hash key (line in Algorithm 1). If
it matches the one-way hash property, the prover will fur-
ther unseal the hashed result of the code image. If the pro-
gram flash had been altered, the unseal operation in line
in Algorithm 1 will fail, since the PCRs in TPM will have
been extended with the changes in program flash. In MTRA,
only partial program flash is checked. The range of the pro-
gram flash to be verified is between Nonce%(flash size) and
h (Nonce)%(flash size), which are the remainders of nonce and

82 c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3

Fig. 3 – One-way hash chain.

Fig. 4 – Program flash distribution in devices without TPMs: the rest of the free space is filled with unique random

incompressible bits. A and B are filled with different bit pattern in the free space i.e., S A 1 �= S B 1 and S A 2 �= S B 2 .

Algorithm 1 The i th Remote Attestation for TPM-enabled de-
vices.
Require: A knows V k −i and B knows V k −i +1

1: A → B: M ← E V k −i +1
(N i || V k −i)

2: B : TPM _ Unseal(V k −i +1 , L pri)
3: B: N

′
i , V

′
k −i ← D V k −i +1

(M)
4: if H(V

′
k −i) � = V k −i +1 then

5: B → A: M ← E V k −i +1
(N

′
i) || ’key chain error’

6: else
7: B : TPM _ UnSeal(h (firmware B) , L pri)
8: if TPM _ UnSeal is successful then

9: B: remove V k −i +1 , keep V k −i

10: B: Firmware ← Flash (Nonce %(flash size) ,
h (Nonce)%(flash size))

11: B → A : M ← E V k −i
(N

′
i || h (Firmware))

12: B : TPM _ SEAL (V k −i , L puc)
13: A: N

′
i , h (firmware B) ′ ← D V k −i

(M)
14: if N

′
i = N i and h (firmware B) ′ matches with expected result

then

15: attestation of B succeeds
16: else
17: if “key chain error” nessage is received then

18: restart the attestation.
19: else
20: attestation of node B fails
21: end if
22: end if
23: else
24: B → A: M ← E V k −i +1

(N i || “attestation fails”)
25: end if
26: end if
27: if A does not receive any response from B for an extended pe-

riod of time then

28: attestation of B fails
29: end if

i
n
fl

i
e

A

R

1
1
1
1
1
1
1
1
1
1

2
2

a
i
b
d

s

a
e
b
ts hashed value, divided by the memory size. This mecha-
ism confines the memory section boundary between 0 and

ash size − 1 so that the range of flash regions being checked
s randomized by challenge nonce and it will be different in

ach attestation (line and in Algorithms 1 and 2). In this way,

lgorithm 2 The ith Remote Attestation for non-TPM devices.

equire: A knows V k −i and B knows V k −i +1

1: A → B: M ← E V k −i +1
(N i || V k −i)

2: B: N

′
i , V

′
k −i ← D V k −i +1

(M)
3: if H(V

′
k −i) � = V k −i +1 then

4: B → A: M ← E V k −i +1
(N

′
i) || “key chain error”

5: else
6: B: Firmware ← Flash (Nonce %(flash size) ,

h (Nonce)%(flash size))
7: A N

′
i , h (firmware) ← D V k −i

(M)
8: if N

′
i = N i and h (firmware) ′ matches the expected result

then

9: B: remove V k −i +1 , keep V k −i

0: attestation of B succeeds
1: else
2: if “key chain error” nessage is received then

3: A: restart the attestation.
4: else
5: A: attestation of B fails
6: end if
7: end if
8: end if
9: if A does not receive any response from B for an extended pe-

riod of time then

0: attestation of B fails
1: end if

dversary is not able to compute a correct firmware response
n advance as the flash regions to be verified are not known

efore challenges are sent out. In the rest of this section pse-
uocodes, node A is the verifier and node B is the prover unless
pecified.

The new hashed key is updated and sealed for the next
ttestation (lines - in Algorithm 1). The prover will send the
ncrypted nonce and hashed digest of the entire code image
ack to the verifier for attestation (line in Algorithm 1). If the

c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3 83

Fig. 5 – The remote attestation structure in heterogeneous embedded devices: Nodes A, B and C are equipped with TPMs
while node A/B/C n are without TPM.

Algorithm 3 prover device joins or leaves the networks after
the ith successful attestations for k times.
Require: A knows V k −i and B knows V k −i

1: B is to be offline: B → A: M ← E V k −i
(Nonce k || offline message)

2: if A is not waiting for an attestation response from B then

3: A : Nonce ′ k , offline message ← D V k −i
(M)

4: if N once ′ k = N once k then

5: A: Store Nonce ′ k
6: else
7: A: B is not authenticated
8: end if
9: else

10: A: B is compromised or abnormal
11: end if
12: ...
13: B is online: B → A: M ← E V k −i

(Nonce k || Online message)
14: if A is not waiting for an attestation response from B then

15: A : Nonce ′ k , online message ← D V k −i
(M)

16: if N once ′ k = N once k then

17: A: Store Nonce ′ k
18: else
19: A: B is not authenticated
20: end if
21: else
22: A: B is compromised or abnormal
23: end if

decrypted nonce is the same as the one in the challenge and
the hash digest of the code image is as expected, the attesta-
tion succeeds (line in Algorithm 1).

In addition, if the verifier does not receive any response
from the prover for an extended period, the verifier will as-
sume that the prover might have been compromised or might
not be operational. Therefore, the attestation will fail. The ini-
tiator can further verify other TPM-enabled nodes, as was pro-
posed in Asokan et al. (2015) . The above process can be itera-
tively expanded to all other TPM-enabled devices (see Fig. 5),
until all TPM-enabled devices have been attested.

For provers without TPM, the verifier could send them the
same challenge 2 . The prover will follow a process similar to
that described in Algorithm 1 . However, without TPM func-
tions, The flash regions to be verified are randomized based on
the nonce (line in Algorithm 2). Therefore, the attacker cannot
hide malware in the program flash of the compromised de-
vice as the memory where the malware is located could be
checked by the verifier. An adversary cannot manipulate the
program counter to point to the healthy code image during at-
testation (Time-Of-Check case) and return to malware (Time-
Of-Use case) at other periods. The same nonce , concatenated
with the hash digest of the code image, is sent back to the ver-
ifier, encrypted with the updated hash key. Instead of comput-
ing the hash digest of the code image, the verifier will check
the hash digest of the entire program flash for these devices
without TPM. Algorithm 2 illustrates this attestation process.

Each device without TPM is attested by its TPM-enabled
neighbors until all devices have been verified.

When a device is connected or disconnected from the net-
work, it must perform the operations in Algorithm 3 . Each de-
vice must report to its previous verifier if it is put online or
taken offline. This procedure is deployed to defend against
TOUTTOC attack with additional devices, which is further dis-

cussed in Section 4.4 .

2 The challenge is revised to defend against wormhole attack,
which is described in Section 4.3 .

4. Security analysis

4.1. Man-In-the-Middle Attack (MIM attack)

As shown in Fig. 6 , an attacker can intervene between the
verifier and prover, which is known as a Man-In-the-Middle at-
tack. It can lead to two potential threats during the attestation
process: rainbow attacks and interference attacks . In a rainbow
attack, an adversary keeps sending arbitrary challenges to
the prover for correct responses so that it can construct a
challenge-response pair table (Fig. 6 a). An interference attack
disturbs the challenge-response process by leading the prover
to send an incorrect response to the verifier (Fig. 6 b).

84 c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3

Fig. 6 – Man-in-the-Middle attacks.

c
e
e
a
s
f

I
t
m

V
n
a
t

u
c
t
f
v
a

w
l
t
k
t
S

4

I
l
w
c
b
f
m
a
s
c
s
p

M
g

4

T
S
b
V
o
a

(

b
t
v
c
a

w

a
w
d

c
o
h

w

n
T
l
E

a
b
v
i

enabled device will hold a different local hash chain so the

3 An adversary can still capture a TPM-enabled device but the
system-related TPM commands will fail and the attestation result
will expose the capture of the TPM-enabled device.
Song et al. proposed a One-way Memory Attestation Proto-
ol (OMAP) to eliminate the challenges from the verifier (Song
t al., 2011). An adversary cannot forge the challenges. How-
ver, OMAP is subject to a false attestation response attack. An

dversary can readily intercept the correct attestation check-
um from a prover and replay it to circumvent the attestations
or other compromised network devices without the nonces.
n our approach, we adopt the one-way hash key to encrypt
he challenge (line in Algorithm 1). Even though an adversary

ight learn about the hash key to encrypt the challenge (i.e.,
 k −i +1 in Algorithm 1) by compromising the devices in the IoT

etwork, it still cannot construct a valid challenge to request
 response from a prover, as V k −i is not known to any nodes
o construct a valid challenge (E V k −i +1

(N i || V k −i) in Algorithm 1)
ntil the next challenge is sent out. The prover will ignore the
hallenges if the one-way hash relationship cannot hold be-
ween E V k −i +1

and E V k −i
(line in Algorithm 1). It can also de-

end against a replay attack, in which an adversary stores a
alid attestation challenge or response and replays it later
t a time of its own choosing (Kil et al., 2009), as the one-
ay key will have been updated later (line in Algorithm 1 and

ine in Algorithm 2). Therefore, replaying an outdated attes-
ation challenge or response cannot circumvent the one-way
ey chain check. An adversary might launch a wormhole at-
ack to replay the challenge remotely, which is discussed in

ection 4.3 .

.2. Impersonation & replay attack

n MTRA, a challenge is encrypted with a session key (V k −i +1 in

ine of Algorithm 2 or line of Algorithm 1). The key is replaced

ith its next element in the one-way hash chain so a captured

hallenge cannot be replayed as the next attestation request
ecause the key to decrypt the challenge is different. There-
ore, replay attack is not feasible in MTRA. In addition, the

emory to be attested is different in each attestation. So the
ttestation response is different. The impersonation attack is
imilar to Man-in-the-Middle attack as the verifier or prover
an be a d masqueraded user but they cannot forge a valid ses-
ion key for the challenge (as a verfier) or the response (as a
rover). Therefore, neither attack cannot be launched against
TRA unless the session key and the ransomized memory re-
ions to be attested are known in advance.

.3. Wormhole attack

o circumvent the hash value check in challenges in

ection 4.1 , the adversary captures the challenges from the
ase-station, obtains V k −i by challenge decryption using the
 k −i +1 through node compromise, tunnels it to another area
f the network, where V k −i is not disclosed, and reconstructs
 valid challenge. It is called wormhole attack (Hu et al., 2006)
 Fig. 7).

In the IoT, it is easier to defend against wormhole attacks
etween TPM-enabled devices only. An adversary cannot re-
rieve the hash key through compromising a TPM-enabled de-
ice because of the tamper-proof hardware 3 . It can only inter-
ept the challenge packets and brute-force the hash key online
s the hash key is updated with the next element in the one-
ay hash chain upon the verification of challenges. However,

n adversary could compromise non-TPM devices to launch a
ormhole attack. We propose a local one-way hash chain to
efend against wormhole attacks as follows:

Each TPM-enabled device maintains another distinct lo-
al one-way hash chain, denoted as L . This hash chain is
nly used between the given TPM-enabled device and its one-
op neighbors. The committed value of this hash chain is L k ,
here k is the length of the chain. L k is distributed when the
on-TPM devices establish the one-hop neighbourship with

PM-enabled devices. The key for encrypting the ith chal-
enge (P i) becomes V k −i +1 � L k −i +1 , The encrypted challenge is
 P i (N i || V k −i || L k −i) . The non-TPM device can decrypt this pack-
ge and retrieve L k −i to check the one-way hash relationship

etween L k −i and L k −i +1 before generating the response. An ad-
ersary can retrieve L k −i but it is not a valid local hash key
f it is used in another area of the network. A different TPM-

c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3 85

Fig. 7 – Wormhole attack: two adversaries establish a low-latency tunnel to exchange the packets they overhead for replay.

tunnel will not facilitate rainbow or interference attacks, re-
motely. The response will also be encrypted with V k −i �L k −i so
that the replayed attestation response through the tunnel in
the other area will not be accepted, as L k −i would be different
if the packets were tunnelled to a different network area.

4.4. Time-Of-Check-To-Time-Of-Use (TOCTTOU) Attack

In a TOCTTOU attack, an adversary will use the legitimate
firmware to compute the correct checksum for the response
on the receipt of the challenge (TOC case) and run the malware
at other time (TOU case). When a TPM-enabled device is com-
promised, the key to unseal the checksum of the code image
will fail as the system configuration has been changed (line
in Algorithm 1). If the TPM-enabled device is compromised,
the sealed secrets cannot be retrieved to construct a correct
response. For non-TPM devices, the program flash, except for
the code image section, is filled with random pre-set bytes. No
extra room is available for malware.

An adversary could deploy an additional device to store the
correct firmware for attestation, given that no memory space
is available for malware on the compromised device. On re-
ceipt of the challenge, the adversary puts the compromised
devices with malware offline and sets the additional device
running with correct firmware online (Time-Of-Check case).
There is an ID conflict if two devices with the same ID (one
with malware and another with correct firmware) are pre-
sented in the network at the same time. The device will send
out the message confirming it is online (line in Algorithm 3).
The verifier will know the prover is back online before receiv-
ing the attestation response. This prover is marked as ’com-
promised’ as the notification of being online is not expected
during the challenge-response process. If an adversary modi-
fies the codes so that the online notification is not sent, the
checksum of the firmware could not pass the verification.
Therefore, even though the adversary is able to deploy addi-
tional hardware to respond to the attestation challenge cor-
rectly, the substitution cannot evade detection by the verifier.
It is the same procedure when the device with the correct
firmware is offline (line in Algorithm 3), although an adver-
sary could readily switch off the device before it sends out the
offline message. However, switching off the compromised de-
vice will not help pass the attestation; if the verifier does not
receive any response from a prover within a given period, the
verifier will assume that the prover is faulty or compromised
(line in Algorithm 1).

4.5. Verifier-based DoS attack

Ferdinand et al. recently proposed that an adversary could
send an excessive number of attestation challenges to other
legitimate resource-constrained devices, that are then fully
occupied in fulfilling the attestation challenges, rather than
performing the expected functions such as sensing or actu-
ating (Brasser et al., 2016). Such a Denial of Service (DoS) at-
tack is called a verifier-based DoS attack. This attack is based
on the assumption that the overhead of preparing an attesta-
tion challenge is significantly smaller than that of preparing
an attestation response. In our scheme, the malicious verifier
must find the correct one-way hash key to make the prover
run the entire attestation process. (i.e., V k −i in Algorithm 1 for
the TPM-enabled device for the i + 1 th challenge). The prover
will not process the attestation challenges if the verification
of one-way hash key does not pass (i.e., ‘key chain error’ in
Algorithm 1). The prover only requires one hash operation and
symmetric decryption to check, so it cannot incur much over-
head to cause the DoS effects. Even with an excessive number
of attestation challenges, the impact of verifier-based DoS at-
tacks is minimal as the symmetric decryption and hash oper-
ations are light-weight.

86 c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3

5

I
m
p
t
o
a
t

i

t
i

6

W
p
O
p
c
s
T
a

w
l
(
A
g
m
a
T
c

a
S
u
c
t
m
c
i
t
2
m

. Implementation details

n the conference version (Tan et al., 2017), the TPM imple-
entation details were not discussed in details due to limited

ages available. In this manuscript, we would further detail
he TPM commands adopted in MTRA. There are three types
f TPM commands: the shared commands used by verifiers
nd provers, the TPM commands used by verifiers only and

hose used by provers only.
The following are the common commands executed by ver-

fiers and provers during remote attestation.

• Tspi_Context_Create() generates the TrouSerS context to
communicate with TPM

• Tspi_Context_Connect() connects TPM with TrouSerS
• Tspi_Policy_GetPolicyObject() returns the respective TPM

policy of the root key to generate the Attestation Identity
Key (AIK) to encrypt or decrypt the challenge or attestation

response.
• Tspi_TPM_CreateObject() creates an object that can be

stored in the hard drive for the verifier or prover. It refers
to the data exchanged between the verifier and prover.

• Tspi_TPM_PCRRead() returns the value of the Platform

Configuration Registers(PCRs). If the firmware is altered,
the value in a PCR is updated with a new value. The attes-
tation response is bound to the PCR, so any changes in the
firmware will lead to a mismatch between the PCR values
of the verifier and prover and the attestation response.

• Tspi_Hash_GetHashValue computes the hashed checksum

of the firmware. It is called when the challenge is success-
fully decrypted and verified with the one-way hash func-
tion between V k −i and V k −i +1 .

• Tspi_Policy_LoadKey() returns the key object from the
given policy.

• Tspi_TPM_Unseal() decrypts the messages associated with

the specified PCR values. The verifier executes this com-
mand to check the attestation response while the prover
retrieves the firmware hash internally.

• Tspi_Context_FreeMemory() frees the memory of the
TrouSerS context. it is only executed when the TPM com-
mands have been all completed.

• Tspi_Context_Close() closes the TrouSerS session.

These common commands have the same overheads for
he verifier and prover if they are executed on Odroid Xu4. Ver-
fiers and provers have their own sets of commands.

The following commands are executed by the verifier only.

• Tspi_Policy_SetSecret() creates the shared secret between

the verifier and prover. In our scheme, it is the initial value
to generate the one-way hash key chain (i.e., V 0 in Fig. 3).
After it is hashed T times, the committed value of the hash

chain is transmitted to the prover.
• Challenge encryption for the nonce and the hashed

key used for the next challenge (i.e., E V k −i +1
(N i || V k −i) in

Algorithm 1). The symmetric encryption is not included in

TPM operations so they can be implemented in other cryp-
tographic package.
• Tspi _ Key _ Createkey() creates the AIK. The private key is
used to sign the challenge from the verifier while the pub-
lic key is attached to the challenge so that the prover can

encrypt the attestation response.
• Tspi _ Key _ RegisterKey() registers the public key from AIK

with the specific data object. This data object is transmit-
ted to the prover, which can retrieve the public key with

Tspi _ Key _ GetPubKey().

The following commands are executed by the prover only.

• Challenge decryption for the nonce and the hashed key
used for the next challenge (i.e., D V k −i +1

(M) in Algorithm 1).
• Tspi _ Key _ GetPubKey() retrieves the public key from the

verifier for the seal command

• Tspi _ TPM _ Seal() encrypts the attestation response, associ-
ated with the specific PCRs.

• Tspi _ TPM _ UnSeal() unseals the sealed commands used by
the prover to generate the attestation response back to the
verifier. The unseal command is used internally to retrieve
the hashed firmware image associated with system state
when it is sealed.

• Tspi _ PCR _ Extend() updates the PCR values accordingly so
that the attestation response cannot be replayed by an ad-
versary even if the one-way hash chain is compromised.
This operation is not reversed.

. Performance evaluation

e implemented MTRA on two types of single-board com-
uter. For TPM-enabled devices in Fig. 5 , we employed an

droid-XU4 single-board computer. It gives excellent com-
uting power for its size. This versatile 8-core ARM-Linux
omputer runs a fully fledged Ubuntu, which can support a
oftware-based TPM emulator (Strasser and Stamer, 2008) and

rouSerS (Trusted Computing Software Stack) (Tro, 2008, last
ccessed: 13/09/2016). For the devices without TPMs in Fig. 5 ,
e used Raspberry PI Model B+ Anderson (2014) , a 4-core ARM-

inux single-board computer. We adopted BouncyCastle (BC)
 bou, 2009, last accessed on 16/09/2016) as our cryptographic
PI for the non-TPM devices (i.e., Raspberry PIs). The crypto-
raphic operations we use are the hash commands and sym-
etric encryption and decryption. We also use these oper-

tions for hash and symmetric cryptographic operations for
PM-enabled devices (i.e., Odroid-XU4) as they are used to en-
rypt the challenges for provers.

We measured the execution time of each TPM command

nd cryptographic operation on both types of device in

ection 6.1 . Then we simulated MTRA for large-scale networks
sing the Network Simulator 3 (NS3) (NS3, Feb. 2011, last ac-
essed on 18/04/2017). We implemented MTRA at the applica-
ion layer and employed the latencies based on the measure-

ents in Section 6.1 for the simulations of the corresponding
ryptographic operations to evaluate the scalability of MTRA

n Section 6.3 . The communication data rate for the links be-
ween two devices (either TPM or non-TPM ones) was set to
50 Kbps, which is the defined data rate of Zigbee, a com-
on protocol used among the IoT devices . Then we further

c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3 87

Fig. 8 – Remote attestation command execution times in TPM-enabled devices.

Fig. 9 – Scalability Test of MTRA: the attestation process is more cost-efficient in tree topology than the fixed number of
neighbors.

simulated and evaluated the prover-based attack (i.e., TOT-
TOU attack) in Section 6.4 and the verifier-based attacks (i.e.,
MIM attack, wormhole attack and Verifier-based DoS attack)
in Section 6.5 . In addition, we have computed the communi-
cation overhead and compared MTRA with other remote at-
testation protocols in Section 6.7 .

6.1. Hardware execution time

Fig. 8 shows the execution time for each operation during
remote attestation in our scheme. For commands available
in both devices, the Odroid-XU4 (TPM-enabled devices) re-
quires 50% more time than the Raspberry Pi (Non-TPM de-
vices). The latency in TPM-enabled devices is attributed to the
communications between the processes of the TPM emula-
tor and TrouSerS, an interface between TPM and application.
The TPM-enabled devices have more commands to execute
due to the TPM environment setup (e.g., TrouSerS context cre-
ation). The exceptions among these commands are nonce cre-
ation and encryption, as both types of devices use the same set
of BouncyCastle APIs and Odroid-XU4 is more powerful than
raspberry Pi. TPM devices therefore perform better than non-
TPM ones. The total execution time required is in the order of
milliseconds. In MTRA, the verifier is required to perform more
tasks than the prover. The verifier-based DoS attack (Brasser
et al., 2016) is more difficult to launch since the assumption
of the verifier’s overhead being much lighter than that of the
prover does not hold.

6.2. Communication overhead

During the i th remote attestation with a k -element key chain,
the followings messages are exchanged:

• In the initialization phase, the verifier and prover will es-
tablish the shared secret for the one-way hash key chain
(i.e., V k) as the committed value of the key chain. The
length of this hash value is 20 bytes (SHA , 2001, last ac-
cessed on 16/09/2016).

• E V K−i +1 (N i || V k −i)
in Algorithm 1 , which is a challenge sent to

prover. The nonce and the one-way hash key each require
20 bytes (SHA , 2001, last accessed on 16/09/2016). There-

88 c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3

m
i
2
o
t
v

w
h
m
w
t
b

6

W
c
s
w
t
a
o
d
t
n
t
t
o
t
w
w
t
t
fi
m
n
f

6

T
e
m
o
t

Fig. 10 – Time to identify the TOTTOU attack in MTRA.

w

T
f
a
w
s
v
c
s
a
w
t
c
o
f
d
t
p
i
i
w
e
t
d
b
a

m
w

6

M
a
b
M
t
n
i
t
s
k

t
t
t

fore, the communication overhead is 40 bytes. It is the
same with or without TPM.

• If a key chain does not match, the prover will send

back a key chain error message, as well as the nonce
(E V k −i +1

(N

′
i || ′ keychainerror ′)). The size of the packet is 21

bytes (i.e., the prover and verifier agree to use a one-byte
operation code to denote these errors, in addition to the
20-byte nonce).

• After the prover computes the checksum of the firmware,
it will send back the attestation response. The size of
the response is 40 bytes (i.e., E V k −i

(N

′
i || h (firmware)) in

Algorithm 1). There is one 20-byte nonce in addition to a
20-byte firmware hash.

Therefore, for one successful attestation process, the com-
unication overhead is 40 bytes in total. For devices leav-

ng or joining the networks, the communication overhead is
1 bytes. Consequently, MTRA has minimal communication

verhead compared to algorithms that use the ECDSA signa-
ure (the signature alone is more than 256 bytes) scheme to
erify the program hash (Asokan et al., 2015). We use the one-
ay property to ensure an adversary cannot retrieve the next
ash key before it is used. This makes our attestation protocol
ore suitable for power-constrained embedded devices. Even

ith a separate hash chain to defend against wormhole at-
acks, the additional communication overhead is another 20
ytes for the hash value, which makes the overhead 60 bytes.

.3. Scalablity test

e simulated MTRA with different network topologies, in-
luding trees, assuming that the root of the tree is the base-
tation and the fan-out degree is 2,4,8 and 12 or the networks
ith a fixed number of one-hop neighbors (4,8 and 12). In both

opologies, the ratio between non-TPM devices and TPM en-
bled devices was the same as the fan-out degree or number of
ne-hop neighbors (e.g., in a 500-device network with fan-out
egree of 4, the number of TPM enabled devices was 100, while
he number of non-TPM devices was 400). We also varied the
etwork size from 10 to 8000 devices. We measured the run-
ime from when the base-station initialized the remote attes-
ation process until the remote attestation process completed

n all devices. The simulation results showed that the attesta-
ion latency was logarithmic in relation to the size of the net-
ork. In particular, the remote attestation in the tree topology
as completed with 10 − 15% less latency than it was in the

opology with a fixed number of neighbors. The reason was
hat the attestation process of MTRA was similar to breadth-
rst search. Thus, the attestation process in tree topology was
ore cost-efficient than the topology with a fixed number of

eighbors, where the challenges were sent to the same device
rom different neighbors.

.4. TOCTTOU attack evaluation

OTTOU attacks assume a malicious prover. We were inter-
sted in how long the base-station can identify the compro-
ised prover(s). Therefore, we focused on how the percentage

f compromised provers would affect the time taken to iden-
ify these compromised provers. In our simulation, the net-
ork size was fixed at 1,000 devices and we varied the ratio of
PM devices and non-TPM devices. We measured the latencies

rom the time when the base-station initialized the remote
ttestation until the time when all the compromised provers
ere identified by either TPM-enabled verifiers or the base-

tation. If the compromised prover were a TPM-enabled de-
ice, its attestation response could not be retrieved from TPM

orrectly due to the configuration change of the compromised

ystem. A TOCTTOU attack could then be identified immedi-
tely. For the non-TPM devices, the adversary puts the mal-
are offline for check and online for use, which would trigger

he on-off messages sent to the verifier, who can identify the
ompromised provers. This would incur some communication

verhead. We varied the percentage of compromised provers
rom 10% to 90% and those compromised devices were ran-
omly distributed during the simulation. Figure 10 shows the
ime taken to identify the compromised provers in terms of
ercentage of TPM-enabled devices and compromised devices

n the networks. When the percentage of TPM-enabled devices
s more than 40%, MTRA can identify the compromised prover
ith a negligible latency. Given the same percentage of TPM-

nabled devices, identifying 10% compromised provers took
he most time as those compromised provers were sparsely
istributed in the networks, delaying on-off messages sent
ack to verifier (line and in Algorithm 3). When the percent-
ge of compromised devices reaches 90% in the networks,
ore on-off message transmissions were triggered in net-
orks,incurring significant identification latency.

.5. Verifier-based attack evaluation

IM attacks, wormhole attacks and verifier-based DoS attacks
ssume a malicious verifier. To defend against these verifier-
ased attacks, the provers will authenticate the challenges. In

TRA, we adopted the one-way hash chain to authenticate at-
estation challenges. For the verifier, it encrypts the challenge
once and the next hash key with the current hash key (line

n Algorithms 1 and 2). For the prover, it will firstly decrypt
he challenge, then check whether the one-way hash relation-
hip holds between the current hash key and the next hash

ey (line in Algorithm 1 and line in Algorithm). As a result,
he prover has two cryptographic operations to authenticate
he challenges: one is the symmetric decryption. The other is
he one-way hash operation. The wormhole attack is a form of

c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3 89

Fig. 11 – Attestation time in presence of MIM attacks,
wormhole attack or Verifier-based DoS attack: γ indicates
how many invalid challenges the provers have received

before they will stop responding the verifier’s further
challenges.

Y

MIM attack, tunneling the challenges to another network area.
MTRA defends against it by deploying the local one-way hash
chain. The corresponding overhead is the same as with the
MIM attack. It is also the same for the Verifier-based DoS at-
tack: the malicious verifier keeps sending out the invalid chal-
lenge to deplete the resources of provers. We simulated these
verifier-based attacks by using a set of malicious verifiers to
keep sending the arbitrary attestation challenges. Then we set
a threshold (denoted as γ , varied from 1 to 5) for the num-
ber of invalid challenges before provers completely ignore the
challenges from the same verifier. We varied the percentage of
malicious verifiers from 0% to 90% within a fixed 1,000-node
networks with a tree topology whose fan-out degree is 8. We
measured the time taken to complete one attestation process
from base-station until all other legitimate devices were at-
tested except those malicious verifiers. Fig. 11 illustrates the
attestation time in simulation. The time taken to complete
attestation increases in linear scale to the percentage of the
malicious verifiers in the networks. The execution time taken
to verify one challenge is fixed in MTRA. The attestation time
only increases when the number of challenges from different
verifiers increases if the number of invalid challenges before
provers stop responding the respective verifiers’ further chal-
lenges (γ in Fig. 11) is fixed. The γ in these three attacks is a key
design parameter in MTRA. If we wish to achieve the best per-
formance, γ should be 1 but it can introduce some false pos-
itives for verifiers, which might cause the prover to be identi-
fied as‘compromised’ if it stops responding that verifier. There
is a trade-off between defending mechanisms against the at-
tacks from provers and those from verifiers. If the provers are
more subject to attacks, γ can be set to a higher value to min-
imize the false positives and vice versa.

6.6. Memory range randomization evaluation

In this section, we further evaluated the impact of the memory
region randomizations on MTRA. In the conference version,
the memory region to be attested is always the same mem-
ory region (Tan et al., 2017). In this manuscript, the memory
region is randomized and the size of the memory region to be
attested varies in each attestation. The memory regions to be
verified are randomly chosen based on the challenge nonce.
The smaller the size of expected randomized memory region
to be verified is, the more difficult it is for adversary to guess
the correct memory regions to be verified for TOCTTOU at-
tack. For the expected memory region to be verified, we have
the following theorem:

Theorem 6.1. If the memory regions to be verified are randomly
and independently chosen, the expected average memory size to be
verified is 1/3 of the total memory size.

Proof. Let X be a random variable uniformly distributed over
[0, L], where L denotes the total size of the memory region and
0 indicates the starting address of the entire memory region.
The Probability Density Function (PDF) of F (X) is given by

F (X) =

⎧ ⎨

⎩

1
L

X ∈ [0 , L]

0 Otherwise .
(1)

Let us randomly pick two memory addresses within [0,L] as
the upper and lower limit of the memory region to be verified,
denoted as X 1 and X 2 . They are random variables distributed
according to F (X) in Eq. (1) . The size of the memory region be-
tween these two memory addresses are a new random vari-
able

 = | X 1 − X 2 | (2)

Hence, we would like to find the expected value E (Y) =
E (| X 1 − X 2 |) in relation to L . Let us introduce function g as fol-
lows:

g(X 1 , X 2) = | X 1 − X 2 | =

{

X 1 − X 2 X 1 ≥ X 2

X 2 − X 1 X 1 < X 2 .
(3)

Since the two memory addresses to define the memory re-
gion are picked up independently, the PDF of the memory re-
gion to be verified is the product of the PDF function for X 1 and
X 2 from Eq. (1) :

F (X 1 , X 2) = F (X 1) ∗F (X 2) =

⎧ ⎪ ⎨

⎪ ⎩

1
L 2

X 1 , X 2 ∈ [0 , L]

0 Otherwise .
(4)

Therefore, the expected value E (Y) = E (g(X 1 , X 2)) is given
by

E (Y) =

∫ L

0

∫ L

0
g(x 1 , x 2) F (x 1 , x 2) dx 2 dx 1

=

1
L 2

∫ L

0

∫ L

0
| x 1 − x 2 | dx 2 dx 1

=

1
L 2

∫ L

0

∫ X 1

0
(x 1 − x 2) dx 2 dx 1 +

1
L 2

∫ L

0

∫ L

X 1
(x 2 − x 1) dx 2 dx 1

=

L 3

6 L 2
+

L 3

6 L 2
= 1 / 3 ∗L (5)

�

One of the potential attacks against the memory random-
ization in MTRA is that an adversary attempts to capture a

90 c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3

l
fi
s
o
t
d
t

L
i
i
m

P

W
o
p

p
m
t
a
a

T

∀

L
i
i
r

T

w

P

W
t

E

T

c
t

T

T
i
i
r

t

P

w

P

g

T
i

l

arge number of attestation responses to retrieve the complete
rmware. We further evaluate the probability that an adver-
ary is able to retrieve the entire memory regions in terms
f the number of attestation responses captured. We assume
hat adversary is able to capture the combinations of two ad-
resses (beginning address and end address) from all the at-
estations.

emma 6.2. If the memory regions to be verified are randomly and
ndependently chosen and the memory address starts from 0 to long
nteger L −1 , the probability in exact N attestations to cover the entire

emory region (f (N)) ,whose size is L , is

f (N) =

N ∑

i =1

(−1) i +1
(

2
L (L − 1)

)i

(6)

roof. We can use the mathematical induction to prove this.
hen N = 1 , the only combination of start and ending mem-

ry addresses to cover the entire region is 0 and L − 1 . The
robability of this combination is C

2
L . Therefore,

f (1) =

1

C

2
L

=

2
L (L − 1)

(7)

It matches with Eq, (6) for N = 1 .
Now we assume that Eq. (6) holds for N attestations. The

robability for the (N + 1) th attestation to verify the entire
emory region is the probability of the previous N attesta-

ions failing to cover the entire memory region and the prob-
bility that the N + 1 th attestation is able to cover the starting
nd ending memory addresses for the entire memory region.
herefore, f (N + 1) is

f (N + 1) = (1 − f (N)) ∗ f (1)

= f (1) + (−1) ∗ f (N) ∗ f (1)

= f (1) +

N+1 ∑

i =2

(−1) i +1
(

2
L (L − 1)

)i

=

N+1 ∑

i =1

(−1) i +1
(

2
L (L − 1)

)i

(8)

Therefore, f (N + 1) holds for Eq. (6) . This lemma holds for
 N ∈ Z + . �

Based on Lemma 6.2 , we can have the following lemma:

emma 6.3. If the memory regions to be verified are randomly and
ndependently chosen and the memory address starts from 0 to long
nteger L − 1 , the cumulative probability to cover the entire memory
egion after N attestations (T (N)) is

 (N) = f (1)
N ∑

i =1

i (− f (1)) N−i (9)

here f(1) is defined in Lemma 6.2 :

f (1) =

2
L (L − 1)

,

roof. We can use the mathematical induction to prove this.
hen N = 1 , the cumulative probability of the first attesta-

ion to cover the entire memory region is the same as F (1) in
q. (7) from Lemma 6.2 :

 (1) = f (1)

It matches with Eq. (9) for N = 1 .
Now we assume that Eq. (9) holds for N attestations. The

umulative probability for the (N + 1) th attestation to verify
he entire memory region is

 (N + 1) = T (N) + f (N + 1)

= f (1)
N ∑

i =1

i (− f (1)) N−i

+

N+1 ∑

i =1

(−1) i +1 (f (1)) i

= f (1)
(N ∑

i =1

(N − i)(− f (1)) i

+

⎛

⎝

N ∑

i =1

(− f (1)) i + 1

⎞

⎠

= f (1)

⎛

⎝

N ∑

i =1

(N − i + 1)(− f (1)) i + 1

⎞

⎠

= f (1)

⎛

⎝

N+1 ∑

i =1

(i)(− f (1)) N−i +1

⎞

⎠

So Eq. (9) holds for N +1 . This lemma holds for ∀ N ∈ Z + . �

heorem 6.4. If the memory regions to be verified are randomly and
ndependently chosen and the memory address starts from 0 to long
nteger L − 1 , the cumulative probability to verify the entire memory
egion only depends on the size of the memory region (i.e., L) when
he number of attestations is infinite. The probability (P):

 =

2
L (L − 1) + 2

here L > 2 .

roof. Eq. (6) can be organized as follows:

f (N) =

 N/ 2 � ∑

i =0

(
2

L (L − 1)

)
2 i +1 −

 N/ 2 � ∑

i =1

(
2

L (L − 1)

)
2 i (10)

As the first and second terms are both the summations of
eometry series and the common ratio ,(2

L ∗(L −1))
2

< 1 if L > 2.
here is a limit when N (i.e., number of attestations) becomes

nfinite:

im N→∞

f (N) = lim N→∞

 N/ 2 � ∑

i =0

(
2

L (L − 1)

)2 i +1

− lim N→∞

 N/ 2 � ∑

i =2

(
2

L (L − 1)

)2 i

=

2
L (L −1) (

1 − 2
L (L −1)

)2
−

(
2

L (L −1)

)2

(1 − 2
L (L −1))

2

=

2
L (L − 1) + 2

(11)

�

c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3 91

Fig. 12 – Probability to cover the entire memory region through attestation memory randomization: Adversary is not able to

retrieve the contents of the entire memory region even though it captures a number of the attestation responses.

Table 2 – Comparison of MTRA, SCUBA (Seshadri et al., 2006), SEDA (Asokan et al., 2015), PIV (Agrawal et al., 2015), TRAP

(Tan et al., 2011) and SMARM (Carpent et al., 2018a).

MTRA SCUBA SEDA PIV TRAP SMARM

TPM enabled Partial No No Partial Yes No
Synchronisation required? No Yes No No No No
Defends against TOCTTOU attacks? Yes No Yes No Yes Yes
Defends against wormhole attacks? Yes No No No Yes No
Defends against MIM? Yes No Yes No Yes No
Defends against Verifier-based DoS attacks? Yes Yes No Yes No Yes
Communication overhead (bytes) 60 + 160 + 512 + 60 + 256 + 1,000 +

Fig. 12 shows the probability to cover the entire memory re-
gions during memory randomization in relation to the mem-
ory size (i.e., Eq. (11)). If the memory size is greater than 8 bytes,
the probability to retrieve the entire memory regions by cap-
turing a number of attestation responses is negligible.

6.7. Comparison with existing attestation protocols

Table 2 shows the differences between MTRA (the protocol
in this paper), SCUBA (Seshadri et al., 2006), SEDA (Asokan
et al., 2015), TRAP (Tan et al., 2011) and SMARM (Carpent
et al., 2018a). We implemented MTRA with the TPM emulator
(Strasser and Stamer, 2008) on powerful devices (i.e., Odroid
XU4), which are the verifiers after they pass the attestation.
MTRA does not require strict timing on the attestation pro-
cess, while SCUBA requires synchronisation between the ver-
ifier and prover. Compared to SEDA (Asokan et al., 2015), MTRA
can defend against wormhole attacks as we employed a zone-
based one-way hash chain to prevent the attestation response
being replayed in a different network area where the firmware
has not been attested. Compared to our earlier system, TRAP
(Tan et al., 2011), this protocol is more cost-efficient and adap-
tive, as not all the devices in the network are required to be
TPM-enabled. Our protocol not only reduces the deployment
costs but is also robust against verifier-based DoS attacks, as
the verifiers must perform more tasks than the provers to for-
malize an attestation. On the other hand, TRAP was not able to
address verifier-based DoS attacks as all the devices run TPM
to process the attestation challenges, which consumes more
resources. The communication overhead required to run each
protocol is universal so we also include the comparison re-
sults in Table 2 . MTRA does not send a digital signature for
attestation verification while SEDA and TRAP do. SCUBA must
perform synchronisation between the verifier and prover so
it requires more communication overhead than MTRA. PIV
(Agrawal et al., 2015) has a communication overhead similar to
MTRA, but it can only be applied in one-hop networks. There-
fore, PIV does not consider wormhole attacks and MIM attacks.

92 c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3

T

c

H
a
s
i

7

W
w
s
t
a
p
f
d
p
i
i
v
r
i

A

T
e
P
p
i
C

S

S
f

R

A

A

A

A

A

A

B

C

C

C

F

G

H

H

K

K

K

N

S

S

S

he recent remote attestation, SMARM (Carpent et al., 2018a),
an operation as usual when remote attestation is performed.
owever, it did not considered the network-based attack such

s wormhole attack and its communication overhead is the
cale of mega-bytes while MTRA’s communication overhead

s in kilo-bytes.

. Conclusions

e have proposed a remote attestation protocol for IoT net-
orks (MTRA) in this paper. In MTRA, we tailored separate

chemes for both TPM-enabled IoT devices and IoT devices
hat could not run TPMs. We discussed potential attacks
gainst our scheme and proposed countermeasures. We im-
lemented MTRA on two single-board computers, Odroid-XU4
or the TPM-enabled devices and Raspberry Pi for the non-TPM

evices, as well as the attested memory randomization. The
erformance evaluation indicates MTRA is cost-efficient and

s more suitable for resource-constrained devices than exist-
ng remote attestation protocols. In future works, we will in-
estigate the algorithms to further randomized the memory
egions to be attested and increase the expected memory size
n MTRA.

cknowledgment

his research was supported partially by the Australian Gov-
rnment through the Australian Research Council ’s Discovery
rojects funding scheme (project DP150100564). The views ex-
ressed herein are those of the authors and are not necessar-

ly those of the Australian Government or Australian Research

ouncil.

upplementary material

upplementary material associated with this article can be
ound, in the online version, at 10.1016/j.cose.2018.10.008

E F E R E N C E S

bbasi AA, Younis M. A survey on clustering algorithms for
wireless sensor networks. Comput Commun

2007;30(14–15):2826–41. doi: 10.1016/j.comcom.2007.05.024 .
bera T, Asokan N, Davi L, Ekberg JE, Nyman T, Paverd A,

Sadeghi AR, Tsudik G. C-FLAT: control-Flow Attestation for
embedded systems software, 2016 . arXiv: 1605.07763 .

grawal S, Das M, Mathuria A, Srivastava S. Program integrity
verification for detecting node capture attack in wireless
sensor network. LNCS, 9478. Springer International
Publishing; 2015. p. 419–40. doi: 101007/978-3-319-26961-0_25 .

lqassem I, Svetinovic D. A taxonomy of security and privacy
requirements for the internet of things (IOT). In: Proceedings
of the 2014 IEEE international conference on industrial
engineering and engineering management; 2014. p. 1244–8.
doi: 10.1109/IEEM.2014.7058837 .

nderson M. An a for raspberry pi b+, IEEE Spectrum, Tech talk
Blog, July 25th, 2014. URL http://spectrum.ieee.org/tech-talk/
geek- life/hands- on/an- a- for- raspberry- pi- b .
sokan N, Brasser F, Ibrahim A, Sadeghi AR, Schunter M,
Tsudik G, Wachsmann C. SEDA: scalable embedded device
attestation. In: Proceedings of CCS’15. New York, NY, USA:
ACM; 2015. p. 964–75. doi: 10.1145/2810103.2813670 .

rasser F, Rasmussen KB, Sadeghi AR, Tsudik G. Remote
attestation for low-end embedded devices: the prover’s
perspective. Proceedings of DAC’16. New York, NY, USA: ACM,
2016 . doi: 10.1145/2897937.2898083 .

arpent X, Rattanavipanon N, Tsudik G. Remote attestation of
IOT devices via SMARM: shuffled measurements against
roving malware. In: Proceedings of the HOST. IEEE Computer
Society; 2018a. p. 9–16 . doi: 10.23919/DATE.2018.8342195 .

arpent X, Tsudik G, Rattanavipanon N. ERASMUS: efficient
remote attestation via self-measurement for unattended
settings. In: Proceedings of the design, automation & test in

Europe conference & exhibition, DATE 2018, Dresden,
Germany, March 19–23, 2018; 2018b. p. 1191–4.
doi: 10.23919/DATE.2018.8342195 .

halla S, Wazid M, Das AK, Kumar N, Reddy AG, Yoon E, Yoo K.
Secure signature-based authenticated key establishment
scheme for future IOT applications. IEEE Access
2017;5:3028–43. doi: 10.1109/ACCESS.2017.2676119 .

eng W, Qin Y, Zhao S, Feng D. AAOT: Lightweight attestation and

authentication of low-resource things in IOT and CPS..
Comput Netw 2018;134:167–82 . URL http://dblp.uni-trier.de/
db/journals/cn/cn134.html#FengQZF18 .

roup T.C.. Trusted computing group - trusted platform module
(TPM) summary. http://www.trustedcomputinggroup.org/
resource/trusted- platform- module- 2- 0- a- brief- introduction ;
last access on 29/01/2016.

u Y-C, Jakobsson M, Perrig A. Efficient constructions for
One-Way hash chains. LNCS, 3531. Berlin Heidelberg:
Springer; 2005. p. 423–41. doi: 101007/11496137_29 .

u Y-c, Perrig A, Johnson DB. Wormhole attacks in wireless
networks. In: Proceedings of the IEEE JSAC, Volume 24, No. 2;
2006. p. 370–80 . URL http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.117.698 .

il C, Sezer EC, Azab AM, Ning P, Zhang X. Remote attestation to
dynamic system properties: towards providing complete
system integrity evidence. In: Proceedings of the IEEE/IFIP
ICDSN’09. IEEE; 2009. p. 115–24. doi: 10.1109/dsn.2009.5270348 .

lein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P,
Elkaduwe D, Engelhardt K, Kolanski R, Norrish M, Sewell T,
Tuch H, Winwood S. sel4: Formal verification of an os kernel.
In: Proceedings of the ACM SIGOPS 22nd symposium on

operating systems principles. New York, NY, USA: ACM; SOSP
’09; 2009. p. 207–20. doi: 10.1145/1629575.1629596 .

rauss C, Stumpf F, Eckert C. Detecting node compromise in

hybrid wireless sensor networks using attestation techniques.
In: Proceedings of ESAS ’07. Berlin, Heidelberg:
Springer-Verlag; 2007. p. 203–17 . URL http://portal.acm.org/
citation.cfm?id=1784425 .

S3: discrete-event network simulator, https://www.nsnam.org/ ,
[Accessed on 18 April 2017]; 2011.

eshadri A, Luk M, Perrig A, van Doorn L, Khosla P. SCUBA: secure
code update by attestation in sensor networks. In:
Proceedings of WISE ’06. New York, NY, USA: ACM; 2006.
p. 85–94. doi: 10.1145/1161289.1161306 .

eshadri A, Perrig A, van Doorn L, Khosla P. SWATT:
software-based attestation for embedded devices. In:
Proceedings of IEEE symposium on security and privacy; 2004.
p. 272–82 . URL http://www.netsec.ethz.ch/publications/
papers/swatt.pdf.

ong K, Seo D, Park H, Lee H, Perrig A. OMAP: one-Way memory
attestation protocol for smart meters. In: Proceedings of the
2011 ISPAW. IEEE; 2011. p. 111–18. doi: 10.1109/ispaw.2011.37 .

https://doi.org/10.13039/501100000923
https://doi.org/10.1016/j.cose.2018.10.008
https://doi.org/10.1016/j.comcom.2007.05.024
arxiv:/hep-th/160507763
https://doi.org/101007/978-3-319-26961-0_25
https://doi.org/10.1109/IEEM.2014.7058837
http://spectrum.ieee.org/tech-talk/geek-life/hands-on/an-a-for-raspberry-pi-b
https://doi.org/10.1145/2810103.2813670
https://doi.org/10.1145/2897937.2898083
https://doi.org/10.23919/DATE.2018.8342195
https://doi.org/10.23919/DATE.2018.8342195
https://doi.org/10.1109/ACCESS.2017.2676119
http://dblp.uni-trier.de/db/journals/cn/cn134.html#FengQZF18
http://www.trustedcomputinggroup.org/resource/trusted-platform-module-2-0-a-brief-introduction
https://doi.org/101007/11496137_29
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.698
https://doi.org/10.1109/dsn.2009.5270348
https://doi.org/10.1145/1629575.1629596
http://portal.acm.org/citation.cfm?id=1784425
https://www.nsnam.org/
https://doi.org/10.1145/1161289.1161306
http://www.netsec.ethz.ch/publications/papers/swatt.pdf
https://doi.org/10.1109/ispaw.2011.37

c o m p u t e r s & s e c u r i t y 8 1 (2 0 1 9) 7 8 – 9 3 93

Strasser M, Stamer H. A software-based trusted platform module
emulator. In: Proceedings of Trust’ 08. Berlin, Heidelberg:
Springer-Verlag; 2008. p. 33–47.
doi: 10.1007/978-3-540-68979-9_3 .

Tan H, Hu W, Jha S. A TPM-enabled remote attestation protocol
(TRAP) in wireless sensor networks. In: Proceedings of the
PM2HW2N ’11. New York, NY, USA: ACM; 2011. p. 9–16.
doi: 10.1145/2069087.2069090 .

Tan H, Tsudik G, Jha S. MTRA: multiple-tier remote attestation in

IOT networks. In: Proceedings of the 2017 IEEE conference on

communications and network security (CNS); 2017. p. 1–9.
doi: 10.1109/CNS.2017.8228638 .

The legion of bouncy castle [online], 2009,
http://www.bouncycastle.org, [Accessed 16 September 2016].

Trousers: The open-source TCG software stack, 2008,
http://trousers.sourceforge.net/ Trust ’08, [Accessed 13
September 2016]. 2008

US Secure Hash Algorithm 1 (SHA1),
https://tools.ietf.org/html/rfc3174 , [Accessed 16 September
2016]; 2001.

Wang J , Hong Z , Zhang Y , Jin Y . Enabling security-enhanced
attestation with intel SGX for remote terminal and iot. IEEE
Trans Integr Circuits Syst 2018;37(1):88–96 .

Wazid M, Das AK, Odelu V, Kumar N, Conti M, Jo M. Design of
secure user authenticated key management protocol for
generic IOT networks. IEEE Internet of Things J
2018;5(1):269–82. doi: 10.1109/JIOT.2017.2780232 .

Hailun Tan is a cyber-security consultant in R&D department of
NOJA PowerSwitchgear Pty Ltd since 2017. He obtained his Ph.D.
degree from the University of New South Wales (UNSW)in 2010.
Before coming to NOJA Power Switchgear Pty Ltd., He had worked
as researcher in the Australia’s Information and Communications
Technology Research Centre of Excellence (NICTA) (2006–2011) and
The Commonwealth Scientific and Industrial Research Organisa-
tion (CSIRO) (2011–2013). From 2013 to 2015, he worked as a cyber-
security consultant in Australian Federal Government. From 2016
to 2017, he was a postdoc fellow and lecturer in UNSW, focusing on
security in IoT. His main research interests are in security protocol
design in wireless networks and embedded systems.
Gene Tsudik is a Chancellor’s Professor of Computer Science at
the University of California, Irvine (UCI). He obtained his Ph.D. in
Computer Science from USC in 1991. Before coming to UCI in 2000,
he was at IBM Zurich Research Laboratory (1991–1996) and USC/ISI
(1996–2000). His research interests include many topics in secu-
rity, privacy and applied cryptography. Gene Tsudik is a Fulbright
Scholar, Fulbright Specialist (twice), a fellow of ACM, a fellow of
IEEE, a fellow of AAAS, and a foreign member of Academia Eu-
ropaea. From 2009 to 2015 he served as Editor-in-Chief of ACM
Transactions on Information and Systems Security (TISSEC, re-
named to TOPS in 2016). Gene was the recipient of 2017 ACM
SIGSAC Outstanding Contribution Award. He is also the author of
the first crypto-poem published as a refereed paper.

Sanjay K. Jha is a Professor and Head of the Networked Systems
and Security Group and Director of Cybersecurity and Privacy Lab
at the School of Computer Science and Engineering at the Univer-
sity of New South Wales. His research activities cover a wide range
of topics in networking including Wireless Sensor Networks, Ad-
hoc/Community wireless networks, Resilience and Multicasting in
IP Networks and Security protocols for wired/wireless networks.
Sanjay has published over 200 articles in high quality journals and
conferences. He is the principal author of the book Engineering In-
ternet QoS and a co-editor of the book Wireless Sensor Networks:
A Systems Perspective. He served as editor of the IEEE Transac-
tions on Mobile Computing (TMC). He currently serves as editor
of the IEEE Transactions on Dependable and Secure Computing
(TDSC).

https://doi.org/10.1007/978-3-540-68979-9_3
https://doi.org/10.1145/2069087.2069090
https://doi.org/10.1109/CNS.2017.8228638
http://www.bouncycastle.org
http://trousers.sourceforge.net/
https://tools.ietf.org/html/rfc3174
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
http://refhub.elsevier.com/S0167-4048(18)30769-7/sbref0023
https://doi.org/10.1109/JIOT.2017.2780232

	MTRA: Multi-Tier randomized remote attestation in IoT networks
	1 Related work
	2 System, threat model our contributions
	3 Remote attestation design
	3.1 Notations
	3.2 Offline (Preparation stage)
	3.3 Online (Operative stage)

	4 Security analysis
	4.1 Man-In-the-Middle Attack (MIM attack)
	4.2 Impersonation replay attack
	4.3 Wormhole attack
	4.4 Time-Of-Check-To-Time-Of-Use (TOCTTOU) Attack
	4.5 Verifier-based DoS attack

	5 Implementation details
	6 Performance evaluation
	6.1 Hardware execution time
	6.2 Communication overhead
	6.3 Scalablity test
	6.4 TOCTTOU attack evaluation
	6.5 Verifier-based attack evaluation
	6.6 Memory range randomization evaluation
	6.7 Comparison with existing attestation protocols

	7 Conclusions
	Acknowledgment
	Supplementary material

	Reference

