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A B S T R A C T

Many personal computing and more specialized (e.g., high-end IoT) devices are now equipped with sophisticated processors that only a few years ago were present
only on high-end desktops and servers. Such processors often include an important hardware security component in the form of a DRTM (Dynamic Root of Trust for
Measurement) which initiates trust and resists software (and even some physical) attacks. However, despite substantial prior research on trust establishment with
secure hardware, DRTM security was always considered without any involvement of the human user, who represents a vital missing link. This prompts an important
challenge: how can a user (owner) determine whether a genuine DRTM is currently active on his or her device? We believe that, in order to address this challenge, a new
security service – called “Presence Attestation” (�� ) – is needed. While by itself, has only ephemeral value, it can be used to set up a long-term secure channel
between the device’s DRTM and another device with the user’s trust. In this paper, we outline the notion of which is based on mandatory (though, ideally minimal)
user participation, overview recent results, and discuss directions for future research.

1. Introduction

Many current computing device processors are equipped with a
dedicated hardware security feature, called DRTM: Dynamic Root of
Trust for Measurement. Typically, DRTM is itself a part of a larger and
more general-purpose security component that provides other features
and some degree of tamper-resistance, e.g., Intel TXT [8], Interl SGX,
AMD SVM [1], and ARM TrustZone [2]. Devices with such processors
include laptops, tablets and smartphones, as well as high-end IoT de-
vices. A typical DRTM is designed to withstand kernel-level attacks or
even some physical attacks. When activated at run-time, it securely
measures and launches software, which may itself further measure and
load another layer of software. Multiple iterations of measure-then-
launch operations form a trust chain rooted in DRTM, which allows a
remote entity (verifier) to establish trust in the DRTM-equipped device,
after checking integrity of the latter’s software stack.

Popularity of DRTM motivated some new directions in system se-
curity research. Several designs [4,5,10,15,17] have been proposed to
cope with kernel-level threats by using various DRTM instantiations to
ensure security of the Trusted Computing Base (TCB).

1.1. User involvement

However, most prior efforts either overlooked or side-stepped an
important factor – the human user. As noted by Parno et al. [14], it is
challenging for a user to bootstrap trust in DRTM, since she is not as-
sured that the chain of trust is indeed rooted in her DRTM. This process

of bootstrapping trust is referred to as Presence Attestation (�� ). The
main reason why �� is challenging is the difficulty for a user to au-
thenticate her own DRTM – a component that is not externalized, i.e.,
hidden from user’s view, and lacks any direct user interface. Conse-
quently, although DRTM is trusted in general, the user can not de-
termine whether her specific DRTM is active and engaged. In particular,
malware (including a compromised OS) can impersonate the user’s
DRTM using the so-called cuckoo attack [14]. This attack type, shown in
Fig. 1, assumes that the user’s device has malware, and the adversary
controls an accomplice device of the same type, which has its own
DRTM. This DRTM is not compromised, since doing so would require
much more adversarial effort, i.e., a physically invasive attack that
violates tamper-resistance features.

A stronger variant of the basic cuckoo attack is the analog cuckoo
attack, whereby the adversary deploys additional analog devices (e.g., a
display and/or a speaker) near the accomplice device, in order to mimic
the physical environment of the victim. We beliee that cuckoo attacks
are realistic, mainly because they do not require any physical presence
by the adversary, i.e., such attacks can be fully automated, with col-
laboration among malware on the user’s device and the accomplice
device.

Typically, modern DRTM architectures assign to each DRTM in-
stance a unique ID, usually associated with, or derived from, a (also
unique) public key. Each DRTM keeps the corresponding private key in
its secure storage. This provides the means to distinctly identify and
authenticate an individual DRTM, e.g., a DRTM could trivially sign a
challenge from anyone, including its user. Unfortunately, the crux of
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the problem is that there is no easy way for the human user to au-
thenticate her DRTM using public key cryptography.

1.2. Why bother with ��?

It is natural to wonder why the user should care about establishing
trust in her own device’s DRTM and resisting cuckoo attacks. For in-
stance, the user hopes to ensure that the DRTM on her phone is cur-
rently in action when performing an Over-The-Air (OTA) firmware
update. Beyond gaining an immediate (and very temporary) feeling of
security, there are few, if any, practical reasons for the user to verify
that she is “talking” to the correct DRTM. However, the main reason for
�� is that it – with the user’s aid – facilitates establishment of a long-
term authenticated and secure channel between the user device (de-
noted as Dev hereafter) and another entity already trusted by the same
user. This is a very important step, since having a secure channel serves
as the stepping-stone for other security services, such as secure reset,
secure software/firmware update, and more general secure computa-
tion.

1.3. �� vs. device pairing

At the first glance, it might seem that �� is the same as, or very
similar to, the well-known and thoroughly explored topic of Secure
Device Pairing (SDP) [6,13]. Basically, SDP addresses the setting where
the user needs to securely pair two (usually wireless) devices that have
no prior knowledge of each other’s credentials or identities. (Note that
“secure pairing” in SDP context is equivalent to establishment of a se-
cure channel in ours.) Key similarities between SDP and �� are:

• Goal of setting up a long-terms secure channel (association) between
two previously unfamiliar devices.

• Unavoidable user involvement, and need to minimize user burden.

• Human-imperceptible communication between devices, including
users’ inability to detect spurious or extraneous communication.

• Threats of various attacks during the process.

Despite these common features, there are some important differ-
ences:

• SDP assumes both devices are trusted by the user, while ��

assumes that only the verifier is trusted.

• SDP assumes that devices do not have a common PKI, while in ��

they might.

• SDP assumes no malware presence on either device, while �� al-
lows Dev to have malware.

• SDP assumes no hardware security features, while �� requires Dev
to have an inviolate DRTM.

• The main threat in SDP is due to so-called evil twin attacks, wherein,
a nearby adversary (in the form of any device) impersonates one of
the devices being paired. In contrast, the main threat in �� is due
to cuckoo attacks, wherein, an arbitrarily remote accomplice device
(of the same type as Dev) works in concert with malware resident on
Dev to subvert the protocol.

�� is a more difficult problem than device paring, as it considers a
stronger adversarial model. A �� scheme can be used as a building
block to construct a device paring scheme. To pair two devices, we can
instantiate two sessions of �� for each of them. As a result, both de-
vices would share a key with the verifier device, which can then act as a
middleman to set up a secure connection between them.

2. Current approaches

Two general mitigation directions for cuckoo attacks were proposed
and discussed in [14]. The first relies on a hardware-based secure
channel, e.g., a special-purpose I/O interface through which an external
verification device directly interacts with DRTM. The second estab-
lishes a cryptographically secured communication channel and requires
the user to have prior (or obtained in real time) knowledge of the public
key of her specific DRTM.

The former offers stronger security and better usability, i.e., lower
user burden. For example, a smartphone with a dedicated LED light that
is securely hard-wired to TrustZone can confirm (e.g., when blinking) to
the user that her DRTM is now active. The same blinking light can be
used as an analog channel between the new device and the user’s al-
ready trusted component, e.g., by using the camera to capture blinking
patterns.1 Alternatively, a special-purpose micro-USB port (also se-
curely hard-wired to the user device’s DRTM) would allow the user to

Fig. 1. Cuckoo attack example [14]. DRTMAlice in Alice’s Dev is not active. Malware residing in it uses DRTMAcc of the accomplice device to produce a legitimate
response to the verifier which fails to determine the origin of the response.

1 Other similar methods are possible, e.g., via NFC.
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string a cable between two devices and be assured that her device’s
DRTM is active. However, few current DRTM-equipped devices has
such features and implementing them would require cooperation of
device manufacturers. Furthermore, all such techniques require ded-
icating a human-perceptible interface (e.g., a wired micro-USB port or
LED light) exclusively to security functionality of the device. Therefore,
even if chip-makers and device manufacturers were to collaborate, it is
unclear whether the latter would want to do this.

The latter approach also requires manufacturers’ cooperation –
though to a lesser extent – in order to convey the DRTM’s public key
identifier to the user in an out-of-band fashion, e.g., by etching it on the
device exterior, printing it on the original packaging or delivering it by
post or secure email. In any case, dealing with the DRTM’s public key
represents an additional burden for the user. Furthermore, while this
approach might be viable for new devices, it is unsuitable for those that
are re-purposed or re-sold.2

Another simple and intuitive cuckoo attack mitigation approach is
to make sure that the user’s device can not communicate to any ac-
complices. In theory, this can be achieved by muffling all commu-
nication interfaces, which, on modern smartphone-class devices usually
include at least: Bluetooth, NFC, WiFi, Cellular, and maybe even
speaker and microphone.3 Besides posing a moderate burden for the
user, resident malware can simply pretend to shut down all these in-
terfaces while not actually doing so. The user can not verify either way
since radio communication is obviously imperceptible to humans. A
somewhat more drastic approach is to enclose the device in a Faraday
cage or a similar environment that inhibits communication with the
outside. This approach has been explored in [9]. It is not cheap, needs
extra equipment and is unrealistic for a general user setting. Moreover,
it has been discovered recently that even a Faraday cage or an air gap
does not protect against outside leakage [7].

Another important aspect is that the user’s trust in her device should
not be based solely upon physical availability of a DRTM. Instead, it
should be based on availability and security of software directly mea-
sured and loaded by the DRTM, which constitutes the TCB of the device.
We refer to this initial software in the trust chain (immediately fol-
lowing DRTM) as the trust anchor or �� . Note that, if a DRTM can not
ensure runtime security of the �� , its measurements are of little value
since they only momentarily reflect static software integrity4.

As part of more recent work, Zhang et al. [16] suggested dividing
the �� procedure into two consecutive phases:

Existence Checking The user (assisted by her already trusted
verifier device) checks whether a genuine DRTM has launched the
�� and is currently interacting with her. The main goal here is to
ascertain whether any DRTM is involved in the on-going interac-
tion, not necessarily the one on the user’s device.
Residence Checking The user verifies whether the �� engaged in
the preceding step actually resides on her own device.

One important aspect of this division is that the second step is
cryptographically bound to the first by an ephemeral secret key agreed
upon by the trusted verifier and the DRTM. Also, the implicit logical
link between the two steps is based on �� ’s runtime security being
ensured by the DRTM. Indeed, this is a widely adopted trust assumption
in many DRTM-based secure systems.

The first phase is fairly straight-forward and burden-free for the
user, since it merely involves the two devices (verifier and Dev)

agreeing on a fresh ephemeral secret key. However, the second phase is
more challenging, since it requires a joint effort by the user and the
verifier to make sure that the DRTM from the first phase resides on Dev.

Based on the general approach outlined above, Zhang et al. [16]
presented three concrete �� schemes that differ in the second phase.
By taking advantage of hardware DRTM’s security assurance and the
�� ’s software capability, these schemes allow a user to establish trust
in Dev after confirming that DRTM and the �� are active there. Pro-
posed schemes are based on different physical properties: location,
scene and sight. The sight-based scheme achieves strongest security
even against the analog cuckoo attack, while the other two offer better
usability commensurate with slightly weaker security. We summarize
them below and refer to [16] for details.

The location-based scheme assumes that the accomplice device is
not in (or near) the same location as the user’s device. Under DRTM’s
protection, the �� securely measures the current GPS location of its
hosting device and reports it to the verifier via the authenticated
channel established in the first phase. The user then determines the
residence of the active �� and DRTM according to the location con-
veyed by the verifier. Note that, the �� must acquire Dev’s actual true
location, i.e., if the adversary is capable of GPS spoofing, this scheme is
insecure. Furthermore, though GPS is ubiquitous on smartphones and
other general personal devices (such as laptops, tablets), it might not be
available on all DRTM-equipped devices, e.g., smart appliances. Also,
GPS can lack precision, and GPS signal might be unavailable in indoor
settings.

The scene-based scheme assumes that the accomplice device can not
observe the user’s immediate environment. It is essentially a challenge-
response protocol, whereby the user randomly picks an object (or a set
thereof) in her vicinity as the challenge fed to Dev via the camera. The
�� securely accesses the camera buffer and reports the captured raw
image as the response to the verifier via the authenticated channel. The
latter verifies the response and displays the image (scene). The user
checks whether it matches the chosen object(s). The security pre-
requisite is that the �� must acquire the real image captured by local
hardware, i.e., not by malware. The scheme is not secure against the
analog cuckoo attack. Malware on Dev can forward the captured image
to the colluding monitor which immediately displays it to the �� on
the accomplice device. Hence, the adversary can still return a correct
response.

Finally, the sight-based scheme is essentially a challenge-response
protocol over the analog light-of-sight channel using the verifier’s
screen to send data (by displaying a barcode) and Dev’s camera to re-
ceive (by taking a photo). This approach leverages the unavoidable
latency of the analog line-of-sight channel. Considering an analog
cuckoo attack setting, if malware (instead of �� ) on Dev takes a photo
of the verifier’s screen, it needs to send this photo to an accomplice
device to display in order to impersonate the verifier. Another accom-
plice device with the same type of DRTM can take its own photo (with
the help of its �� ) and then signal the verifier over the previously
established secure channel. Thus, a cuckoo attack involves at least one
extra analog I/O operation. Since the extra photo capture (an analog
operation) incurs tens of milliseconds of additional latency, the attack
can be detected by the verifier.

3. Open problems & future directions

The three schemes overviewed above represent the first real step in
cuckoo attack-resistant �� . Nonetheless, further research is needed to
design better (i.e., more usable, secure and versatile) �� schemes. One
possibility is to use so-called distance bounding (DB), a suite of protocols
that allow one entity to upper-bound physical distance to another [3]. A
DB protocol could be used in the second phase of �� (i.e., residence-
checking) to determine maximum distance from the verifier to Dev.
This would involve almost no user burden other than bringing Dev
reasonably close to the verifier and then checking whether the upper-

2 This is because the previous owner, being a potential adversary, can pre-
configure the device with malware.
3We list only wireless interfaces, since wired ones, such as USB, can be easily

muffled.
4 For the same reason DRTM is not used in the literature to directly launch the

OS, which is itself vulnerable to runtime attacks.
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bounded distance determined via DB is correct. However, DB protocols
require very precise (nanosecond-level) clocks, which are not yet a
realistic feature of most smart devices. Another possibility is to leverage
contextual security schemes [11,12] that rely on contextual information
as the basis for access control or authentication. However, �� con-
siders the kernel-privileged adversary. Hence, it is more challenging to
securely sense the ambient environment without relying on the OS. We
now summarize several other potential directions for future work.

Batch �� . Current �� schemes only consider establishment of
trust in a single device. Sequentially applying such schemes to verify
DRTM presence in multiple devices (e.g., in a populous office setting or
smart home full of various gadgets) is unscalable and inefficient. In
these settings, some type of batch �� scheme is needed to (ideally)
concurrently establish trust in multiple devices. For example, a
common challenge can be broadcast by the verifier to all participating
devices, and the verifier can use a batch verification algorithm to va-
lidate all responses. The main difficulty in designing batch �� is how
to choose a suitable challenge that suits heterogenous devices with
different sensing capabilities.

Trust propagation. The original motivation of �� is to bootstrap
the user’s trust in her device. Hence, it is reasonable to rely on a pre-
viously trusted and (assumed) secure device as the verifier. A successful
�� instance implies that the user’s trust is propagated from the verifier
to the new device. It is interesting to consider how to leverage this
newly acquired trust. One appealing direction is to use the new device
as the extension of the verifier to establish trust in other devices.
Consider an example scenario where a system administrator has a
smartphone (freshly attested via �� ) that communicates with the
verifier over a secure channel to attest WiFi access points in the office.
As a result, trust propagates from the smartphone to other devices. The
rich sensing capability of the smartphone could greatly simplify trust
propagation. Without requiring the user to check correctness of a
physical property measurement, the smartphone can compare the re-
port from the attesting device with its own measurement. This expands
the scope of suitable physical properties. For example, while a user can
not measure or compare measured wireless signal strength (RSSI), the
smartphone can easily do so.

Usability Assessment. �� schemes, similar to secure device
pairing techniques, involve varying degrees of user participation and
therefore burden. Even an ostensibly simple task (on paper) can be
confusing, unnatural or unpleasant to an average device user who is
likely not technology-savvy. Although user tasks are easy enough to
describe and compare conceptually, it is impossible to assess their us-
ability and acceptability without experimenting with actual users. To
this end, extensive user studies are necessary.

4. Conclusions

In summary, the threat of cuckoo attacks coupled with lack of a
secure DRTM-user interface makes it very challenging to determine
residence of a specific DRTM. This, in turn, limits the benefits of
DRTM’s strong security guarantees. As a countermeasure to cuckoo
attacks, presence attestation securely verifies that the DRTM of a po-
tentially compromised device (physically controlled by a user) is active.

A successful presence attestation outcome bootstraps the user’s trust on
her device, as well as facilitates initial establishment of an authenti-
cated channel between devices. Although several schemes have been
proposed, striking a good balance between security, usability and ver-
satility remains to be a challenge. Other unaddressed issues include:
how to verify DRTM presence in a batch fashion, how to extend trust
from one device to others, as well as how to evaluate and compare
usability of various presence attestation schemes.
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