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Abstract

Annual soil moisture estimates are useful to characterize trends in the climate system, in the
capacity of soils to retain water and for predicting land and atmosphere interactions. The
main source of soil moisture spatial information across large areas (e.g., continents) is satel-
lite-based microwave remote sensing. However, satellite soil moisture datasets have coarse
spatial resolution (e.g., 25-50 km grids); and large areas from regional-to-global scales
have spatial information gaps. We provide an alternative approach to predict soil moisture
spatial patterns (and associated uncertainty) with higher spatial resolution across areas
where no information is otherwise available. This approach relies on geomorphometry
derived terrain parameters and machine learning models to improve the statistical accuracy
and the spatial resolution (from 27km to 1km grids) of satellite soil moisture information
across the conterminous United States on an annual basis (1991-2016). We derived 15 pri-
mary and secondary terrain parameters from a digital elevation model. We trained a
machine learning algorithm (i.e., kernel weighted nearest neighbors) for each year. Terrain
parameters were used as predictors and annual satellite soil moisture estimates were used
to train the models. The explained variance for all models-years was >70% (10-fold cross-
validation). The 1km soil moisture grids (compared to the original satellite soil moisture
estimates) had higher correlations (improving from r? = 0.1 to r* = 0.46) and lower bias
(improving from 0.062 to 0.057 m3/m3) with field soil moisture observations from the North
American Soil Moisture Database (n = 668 locations with available data between 1991—
2013; 0-5cm depth). We conclude that the fusion of geomorphometry methods and satellite
soil moisture estimates is useful to increase the spatial resolution and accuracy of satellite-
derived soil moisture. This approach can be applied to other satellite-derived soil moisture
estimates and regions across the world.

Introduction

Continuous national to continental scale soil moisture information is increasingly needed to
characterize spatial and temporal trends of terrestrial productivity patterns (e.g., production of
food, fiber and energy). This is because soil moisture is a key variable regulating hydrological
and biogeochemical cycles, and thus studying its spatial-temporal dynamics is crucial for
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assessing the potential impact of climate change on water resources [1-4]. Currently, the most
feasible way to obtain national to continental soil moisture information is using remote sens-
ing. Microwave remote sensing devices deployed on multiple earth observation satellites are
able to quantify the dielectric constant of soil surface and retrieve soil moisture estimates [5].
However, there are spatial gaps of satellite-based soil moisture information and its current spa-
tial resolution (> 1km grids) limits its applicability at the ecosystem-to-landscape scales to
address the ecological implications of soil moisture dynamics [5-8].

Satellite soil moisture records are an effective indicator for monitoring global soil condi-
tions and forecasting climate impacts on terrestrial ecosystems, because soil moisture estimates
are required for assessing feedbacks between water and biogeochemical cycles [9-12]. In addi-
tion, accurate soil moisture information is critical to predict terrestrial and atmospheric inter-
actions such as water evapotranspiration or CO, emissions from soils [3, 13-15]. However,
soil moisture information at spatial resolution of 1x1km pixels or less is not yet available across
large areas of the world and the coarse pixel size (>1km pixels) of available satellite soil mois-
ture records is limited for spatial analysis (i.e., hydrological, ecological) at small regional levels
(e.g., county- to state). In addition, satellite soil moisture estimates are representative only of
the first few 0-5 to 10 cm of top-soil surface [16]. Therefore, comparing multiple sources for
satellite soil moisture and field soil moisture estimates is constantly required for precise inter-
pretations of soil moisture spatial patterns [17-19].

There is an opportunity for exploring statistical relationships across different sources of
remote sensing information (e.g., topography and soil moisture) and developing alternative
soil moisture spatial datasets (i.e., grids) to improve the continental-to-global spatial resolution
of current satellite soil moisture estimates [7]. Spatially explicit soil moisture estimates can be
obtained across large areas with a coarse spatial resolution (between 25-50 km grids) from
radar-based microwave platforms deployed across different satellite soil moisture missions
[20-21]. The availability of historical soil moisture records of these sources has increased dur-
ing the last decade with unprecedented levels of temporal resolution (i.e., daily from years
1978-present) at the global scale. However, large areas constantly covered by snow, extremely
dry regions or tropical rain forests (where there is a higher content of water above ground)
lack of precise soil moisture satellite records due to sensor intrinsic limitations (e.g., saturation
or noise) across these environmental conditions [22].

One valuable product that is affected by the aforementioned environmental conditions is
the ESA-CCI (European Space Agency Climate Change Initiative) soil moisture product [20-
21]. The ESA-CCI mission makes rapidly available long-term soil moisture estimates with
daily temporal resolution from the 1978s to date, and it represents the state-of-the-art knowl-
edge tool for assessing long term trends in the climate system. Modeling, validation and cali-
bration frameworks are required for improving the spatial representation of this important
dataset, and for predicting soil moisture patterns across areas where no satellite estimates are
available.

Currently, there is an increasing availability of fine-gridded information sources and
modeling approaches that could be used for increasing the spatial resolution (hereinafter
downscaling) of the ESA-CCI satellite soil moisture estimates (e.g., soil moisture predictions
across <1x1lkm grids). Downscaling (and subsequently gap-filling) satellite soil moisture esti-
mates has been the objective of empirical modeling approaches based on sub-grids of soil
moisture related information such as soil texture [23]. Other approaches followed environ-
mental correlation methods and generated soil moisture predictions for satellite soil moisture
estimates using both data-driven or hypothesis driven models and multiple sub-grids of ancil-
lary information [24-26]. These sub-grids of information usually include vegetation related
optical remote sensing imagery, gridded soil information, land cover classes and landforms
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[27-30]. Most of these approaches have been tested for specific study sites. Other studies have
focused on applying a digital soil mapping approach (a reference framework for understanding
the spatial distribution of soil variability [31]) and multiple upscaling methods for predicting
soil moisture patterns at the continental scale [26, 32]. An overview of multiple approaches for
downscaling satellite soil moisture (e.g., empirically based, physically based) has been previ-
ously discussed [33]. Here, we propose that digital terrain analysis (i.e., geomorphometry) can
also be applied for empirically downscaling soil moisture satellite-based information across
continental-to-global spatial scales.

Geomorphometry is an emergent discipline in earth sciences dedicated to the quantitative
analysis of land surface characteristics and topography [34-35]. For geomorphometry, the
analysis of topography includes the generation of a diversity of hydrologically meaningful ter-
rain parameters (i.e., slope, aspect, curvature, valley depth index, topographic wetness index)
that aim to represent how the landscape physically constrains water inputs (e.g., rainwater,
irrigation, overland flow) that reaches the soil surface [35-36]. These terrain parameters are
referred as "digital" because they are usually derived from digital elevation models using Geo-
graphic Information Systems (GIS). These digital terrain parameters are hydrologically mean-
ingful because at the landscape scale, soil moisture is partially controlled by topography-
related factors (i.e., slope, aspect, curvature) that physically constrain soil water inputs and soil
hydraulic properties (e.g., soil texture, structure). Based on these geomorphometry principles
[35-39], we propose that it is possible to determine which terrain parameters are the strongest
predictors of the spatial variability of satellite soil moisture. Statistically coupling the spatial
variability of satellite soil moisture with hydrologically meaningful terrain parameters could be
an alternative way to improve the spatial resolution and accuracy of satellite soil moisture esti-
mates across scales. This is possible because topography (represented by digital terrain param-
eters) directly affects: 1) the angle of the satellite microwave signal at the soil surface; and 2)
the overall distribution of water in the landscape.

Topography is a major driver for soil moisture and topography surrogates (e.g., land form
or elevation map) have been combined with other variables (e.g., climate, soils, vegetation and
land use) for downscaling satellite soil moisture estimates [33]. Furthermore, previous studies
have shown that realistic soil moisture patterns can be obtained using topographic information
across site specific and catchment scales including physically based and empirical approaches
[40-41], However, the exclusive use of geomorphometryderived products (i.e., digital terrain
parameters) for downscaling satellite soil moisture estimates has not yet been explored in detail
from national-to-continental scales. This approach is relevant to avoid statistical redundancies
and potential spurious correlations when downscaled soil moisture is further used or analyzed
with vegetation- or climate-related variables (when these aforementioned variables were used
for downscaling of satellite derived soil moisture). In this study, we show the potential of a soil
moisture prediction framework purely based on digital terrain parameters.

Our main objective is to generate a soil moisture prediction framework by coupling satellite
soil moisture estimates with digital terrain parameters as prediction factors. Coupling the com-
plexity of topographic gradients and the multi-temporal nature of satellite soil moisture
requires an approach that should account for non-linear relationships. Machine learning
approaches could account for non-linearity based on probability and the ability of computer
systems to reproduce and ‘learn’ (i.e., decide the best solution after multiple model realiza-
tions) from multiple modeling outputs (i.e., varying model parameters of combinations of
training and testing random samples) [42]. Furthermore, machine learning is now a common
component of geoscientific research leading the discovery of new knowledge in the earth sys-
tem [43] including mapping of soil organic carbon [44], soil greenhouse gas fluxes [8, 45] and
soil moisture estimates [46].
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We postulate that the data fusion between satellite soil moisture with hydrologically mean-
ingful terrain parameters can enhance the spatial resolution, representativeness and quality
(i.e., accuracy) of current coarse satellite soil moisture grids. We focus on the conterminous
United States (CONUS) given the large availability of soil moisture records for validation pur-
poses from the North American Soil Moisture Database (NASMD) [47]. The novelty of this
research relies on proposing an alternative approach for obtaining soil moisture gridded esti-
mates with no gaps and at high spatial resolution (i.e., 1km) determined by topographic pre-
diction factors. This study is based on public sources of satellite information (derived from
ESA-CCI soil moisture product) and a data-driven framework that could be reproduced and
applied across the world.

Materials and methods

Our downscaling approach relied on a Digital Elevation Model (DEM), and satellite soil mois-
ture records. Soil moisture information was acquired from the ESA-CCI [20-21]. The develop-
ment and reliability (i.e., validation) of this remote sensing soil moisture product has been
documented by previous studies [20-21, 48]. Our framework includes prediction factors for
soil moisture from digital terrain analysis. These terrain predictors were derived across
CONUS using 1km grids. Machine learning was used for generating soil moisture predictions
(annual, 1991-2016) and the satellite soil moisture estimates provided by the ESA-CCI were
used as training data. Field soil moisture observations from the North American Soil Moisture
dataset were used for validating the soil moisture predictions based on digital terrain analysis

(Fig 1).

Datasets and data preparation

The downscaled dataset were obtained from the ESA-CCI satellite soil moisture estimates
between 1991 and 2016, and the validation dataset were field soil moisture measurements
from the NASMD (S1 Fig). The downscaling framework is explained in the following sections.
The ESA-CCI soil moisture product has a daily temporal coverage from 1978 to 2016 and a
spatial resolution of ~27 km (S2 Fig). Among several remotely sensed soil moisture products
[16, 49-53], we decided to use the ESA-CCI soil moisture product because it covers a larger
period of time compared with other satellite soil moisture products (e.g., NASA SMAP). We
highlight that satellite soil moisture information is used for training a machine learning model
for each year, and independent field soil moisture records area only used for validating the
downscaled soil moisture predictions.

For externally validating, we used the NASMD because it has been curated following a strict
quality control calibrated for CONUS [44] (S1 Fig). This data collection effort consists of a har-
monized and quality-controlled soil moisture dataset with contributions from over 2000 mete-
orological stations across CONUS described in previous studies [47]. The NASMD also
includes records of soil moisture registered in the International Soil Moisture Network
(ISMN) [47, 54]. The NASMD provides processed data from each station location in each net-
work following a standardization framework focused in North America [47-19]. We used soil
moisture records at 5 cm of depth (n = 5541 daily measurements) from 668 stations with avail-
able (from the aforementioned sources) soil moisture estimates at this depth because radar-
based soil moisture estimates are representative for these first few centimeters of topsoil sur-
face [16].

As prediction factors for soil moisture, we calculated hydrologically meaningful terrain
parameters for CONUS (S1 Table) using information from a radar-based DEM [55-56]. These
terrain parameters are quantitative spatial grids representing the topographic variability that
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Fig 1. Soil moisture prediction framework. The folders are the inputs and outputs and the ovals are methods for data
preparation (data bases harmonization), modeling (for prediction) and validation (for assessing the reliability of soil
moisture maps). The field data from the North American Soil Moisture Database (NASMD) was only used for
validation purposes (i.e., not for training the model).

https://doi.org/10.1371/journal.pone.0219639.9001

directly influence the water distribution across the landscape [35], which supports the physical
link between soil moisture and topography. These parameters were the basis for downscaling
satellite soil moisture records to 1km grids. This spatial resolution captures the major variabil-
ity of topographic features across CONUS and is commonly used on large-scale ecosystem
studies and soil mapping efforts [56-57].

For the calculation of soil moisture prediction factors, we used automated digital terrain
analysis using the System for Automated Geographical Analysis-Geographical Information
System (SAGA-GIS) [36]. The automated implementation of SAGA-GIS for Geomorphome-
try (module for basic terrain analysis) includes a preprocessing stage to remove spurious sinks
and reduce the presence of other artifacts in the elevation gridded surface (e.g., false pikes or
flat areas). After preprocessing the DEM, fifteen hydrologically meaningful terrain parameters
were generated for the CONUS from elevation data including primary (i.e., slope, aspect) and
secondary parameters (i.e., cross-sectional curvature, longitudinal curvature, analytical hill-
shading, convergence index, closed depressions, catchment area, topographic wetness index,
length-slope factor, channel network base level, vertical distance to channel network, and val-
ley depth index; Fig 2).

Primary terrain parameters are direct descriptions of elevation data, for example slope and
aspect, which are respectively the first and second derivative of elevation data. Secondary
parameters are generated by combining a primary terrain parameter with a mathematical for-
mulation to describe process controlled by topography that are directly related to soil moisture
variability [34-35, 37], such as the overland flow accumulation. The topographic wetness
index for example, indicates areas where water tend to accumulate by effect of topography and
is a secondary index derived by the combination upslope area draining through a certain point
per unit contour length and the local terrain slope [34-35]. The values of these terrain parame-
ters (S1 Table) were extracted for each one of the ESA-CCI soil moisture pixels using as refer-
ence the central coordinates of each ESA-CCI pixel (Fig 1 inputs).

Data exploration

We used a principal component analysis (PCA) prior to modeling for data exploration and
description of general relationships between soil moisture values and topography (represented
by the aforementioned terrain parameters). The purpose was to simplify the dimensionality of
the data set to identify the main relationships (between soil moisture and topographic parame-
ters) driving our downscaling framework (Fig 1 methods). The PCA was implemented as in
previous work [58], based on a reference value representing the 0.95-quantile of the variability
obtained by randomly simulating 300 data tables of equivalent size on the basis of a normal
distribution. This analysis was applied to the terrain parameters at the locations of the field sta-
tions in order to compare the relationship of the first PCA and the values of soil moisture from
the ESA-CCI grids and from the field data.

Model building

For this study we built a model for each annual mean of satellite soil moisture grids. We used a
machine learning kernel-based model (kernel weighted nearest neighbors, kknn) [59-60] to
generate predictions and downscale satellite soil moisture grids (Fig 1 methods). The training
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Fig 2. Elevation and hydrologically meaningful terrain parameters at 1x1km of spatial resolution derived using
the standard SAGA-GIS basic terrain parameters module. These maps were normalized (between 0-1) and then
used as prediction factors to downscale soil moisture across CONUS.

https://doi.org/10.1371/journal.pone.0219639.9002

dataset for each model/year were the annual mean values of the ESA-CCI soil moisture prod-
uct. The kknn model has two main model parameters: the optimum number of neighbors (k)
and the optimal kernel function (okf). First, we defined k, which is the number of neighbors to
be considered for the prediction. Second, we selected the okf, which is a reference (e.g., trian-
gular, epanechnikov, Gaussian, optimal) for the probability density function of the variable to
be predicted. The okf is used to convert distances (i.e., Minkowski distance) into weights used
to calculate the k-weighted average. These kknn model parameters (k and okf) were selected
by the means of 10-fold cross validation as previously recommended [61]. Cross-validation is a
well-known re-sampling technique that divides data into 10 roughly equal subsets. For every
possible parameter value (e.g., k from 1 to 50 and okf [triangular, epanechnikov, Gaussian,
optimal]), 10 different models are generated, each using 90% of the data then being evaluated
on the remaining 10%. To predict soil moisture information at 1 km of spatial resolution for
each year (between 1991 and 2016), we selected the combination of optimal k and okf that lead
to the highest correlation (between observed and predicted data) with the lowest root mean
squared error (RMSE) after the cross-validation strategy. Thus, for each year we were able to
predict soil moisture across 1x1 km grids (Fig 1 outputs).

Validation using field observations across CONUS

Downscaled soil moisture grids were compared against field measurements and we computed
the explained variance (r%) using a linear fit (observed vs predicted) for each field soil moisture
location. Given the relatively low density and sparse spatial distribution of field data for vali-
dating (S1 Fig), we bootstrapped the independent validation using different sample sizes (from
10 to 100% of data with increments each 10%) to avoid systematic bias associated with the spa-
tial distribution and density of field soil moisture information. We sampled (n = 1000) repeat-
edly the original and the downscaled soil moisture grids aiming to identify their correlation
with the aforementioned validation dataset (i.e., observed vs predicted).
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We also computed the spatial structure (spatial autocorrelation) of the explained variance
(correlation between geographical distance and variance of r* values) for estimating an r* map
using an interpolation technique known in geostatistics as Ordinary Kriging [62]. Ordinary
Kriging is a well-known method for spatial interpolation based on the spatial structure or spa-
tial autocorrelation of the variable of interest (the r* values between the field observations and
the predicted soil moisture values). The spatial autocorrelation is defined by the relationship
between geographical distances and variance of values at a given distance, and it is commonly
characterized using variograms. We followed an automated variogram parameterization (the
optimal selection for the variogram parameters nugget, sill and range required to perform
Ordinary Kriging) proposed in previous work [63].

As implemented in the automap package of R [63], the initial sill is estimated as the mean
of the maximum and the median values of the semi-variance. The semi-variance is defined by
the variance within multiple distance intervals. For modeling the spatial autocorrelation this
algorithm iterates over multiple variogram model parameters selecting the model (e.g., spheri-
cal, exponential, Gaussian) that has the smallest residual sum of squares with the sample vario-
gram. The initial range is defined as 0.10 times the diagonal of the bounding box of the data.
The initial nugget is defined as the minimum value of the semi-variance. Thus, the parameters
used for obtaining a continuous map showing spatial trends in the r* were: a Gaussian (nor-
mal) model form, a nugget value of 0.06 m> m™, a sill of 0.08 m* m™ and an approximate
range of 428.7 km. This map was generated because it could provide insights about overall
sources of modeling errors (e.g., environmental similarities in multiple areas showing low or
high explained variance) and their spatial distribution. All analyzes were performed in R [64]
using public sources of data. Our protocol and R code used for generating the soil moisture
predictions at 1km grids is available online (http://dx.doi.org/10.17504/protocols.io.6cahase)
for reproducibility of this research [65].

Results

The exploratory PCA showed that the first two PCs explained 33% of the total dataset variability
(S3A Fig), where the first PC explained 18% of total variability and at least five PCs were needed
to explain 70% of total variability. The first PC was best correlated with elevation (r = 0.82) and
with the vertical distance to channel network (r = 0.88). Elevation varied negatively with soil mois-
ture, as well as other secondary terrain parameters such as the base level channel network eleva-
tion (distance from each pixel to the closer highest point), while the valley depth index varied
positively with soil moisture (S3B Fig). The relative slope position (indicating the dominance of
flat or complex terrain) and the topographic wetness index (which indicates areas where water
tends to accumulate) were also correlated with soil moisture across the first 5 PCs. Thus, multiple
terrain parameters varied positively and negatively with soil moisture values (S1 Appendix).

Our framework to predict soil moisture based on topography and remote sensing was able
to explain, on average 79+0.1% of the variability of satellite soil moisture information as
revealed by the cross-validation strategy. The root mean squared error (RMSE) derived from
the cross-validation varied around 0.03 m’/m?, while the percentage of explained variance was
in all cases above 70% (Table 1).

By applying the model coefficients to the topographic prediction factors across CONUS, we
generated 26 cross-validated maps (for years 1991-2016) of mean annual soil moisture esti-
mates within 1x1km grids (Fig 3). The downscaled product shows a higher level of spatial vari-
ability due the increased spatial detail achieved by downscaling soil moisture to 1x1km grids
(S4 Fig). Our predictions reveal a clear bimodal distribution of soil moisture values (e.g., from
the east to the west, Fig 4) which is also evident in the original estimate (S5 Fig). The statistical
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Table 1. The cross-validation results for each year. This table shows the correlation, root mean squared error (RMSE) in m>/m°, the number of training data available
(n), the optimal kernel function (okf), and the optimal number of neighbors used for predicting to new data (k).

Model
1

O NN W N
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26

https://doi.org/10.1371/journal.pone.0219639.t001

Year
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

Correlation
0.85
0.89
0.88

0.9
0.88
0.9
0.88
0.88
0.89
0.9
0.9
0.9
0.89
0.89
0.89
0.9
0.88
0.9
0.9
0.88
0.9
0.9
0.89
0.89
0.88
0.88

RMSE
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03

n
18058
18429
18107
18367
18385
18454
18428
18540
18542
18547
18523
19170
19132
18934
19132
19131
19142
19136
19142
19245
19255
19252
19226
19227
19231
19225

okf
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular
triangular

triangular

18
16
18
16
18
15
15
16
15
15
15
16
16
16
16
16
16
16
16
18
18
16
16
16
16
16

comparison between the original product and the downscaled product shows a high level of

agreement with an r* value of 0.72.
We provided a visual comparison between the original satellite estimate and the down-

scaled results including both median (Fig 4A and 4B) and standard deviation values (Fig 4C
and 4D). We also show the uncertainty of the original soil moisture product as reported by its

developers (Fig 4E) and the r* map from the validation against field stations (Fig 4F). This r*
map (Fig 4F) is based on the spatial autocorrelation found in the variogram estimation (e.g.,
sill > nugget) applied to the r* values of the data used for validating our approach (S1 Fig).
This r* map is indicating areas with similar soil moisture conditions regulating the spatial vari-
ability of soil moisture and affecting the performance of our models, around the sites of avail-

able field data for validating our approach. The r* map shows the lowest values across the

Central Plains of the US and the lower Mississippi basin. The lower values in the r* map are

consistent with the high uncertainty values of the original satellite estimate (Fig 4E).

The r* map in Fig 4F provided insights about the relationship between soil moisture
gridded surfaces and soil moisture field data. Higher r* values were found across the east coast,

the Northern Plains and water-limited environments across the western states. We found

that our soil moisture downscaled output better correlates (nearly 25% improvement) with
NASMD field observations when compared to the original soil moisture satellite estimates

(Fig 5).
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Fig 3. Annual means of soil moisture (1991-2016) downscaled to 1x1km grids across CONUS using terrain
parameters as prediction factors.
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Fig 4. Comparison of the original (27km grids) and the downscaled (1km grids) soil moisture products. Median
(a, b) and standard deviation (c, d, sdev) values of satellite soil moisture and downscaled soil moisture values (1991-
2016). Uncertainty reported by the ESA-CCI soil moisture (e) and the explained variance map (1*) between field data
and downscaled soil moisture (f).
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This improvement was consistent after repeating it using random samples and different
sample sizes (from 10 to 90% of available validation data) from the NASMD field observations
(Fig 5). Consistently, we found a negative mean bias (surrogate of systematic error) in the
ESA-CCI when compared against field stations of the NASMD (-0.051) that is slightly lower
when comparing the downscaled soil moisture predictions against the NASMD (-0.048). The
resulting RMSE of validating against field data was also slightly lower (0.057 m3/m3) for the
downscaled estimate compared with the original product (0.062 m3/m3). However, there is a
sparse distribution of validation data and large areas of CONUS lack of field information for
validating/calibrating soil moisture predictions (Fig 6). Considering the quality-controlled rec-
ords available from the NASMD across CONUS and the coarse scale of the ESA-CCI soil mois-
ture product, our approach suggests an improvement in the spatial resolution (from 27 to 1km
grids) of soil moisture estimates while maintaining the integrity of the original satellite values.

The original satellite values, the downscaled product and the ISMN dataset showed a similar
correlation with the terrain predictors. For example, the first PCA (represented by the distance
to channel network and elevation), was negatively correlated with field soil moisture, the satel-
lite original product and our soil moisture predictions. The correlation values were r = -0.17,

r =-0.27, and r = -0.28 respectively. These relationships showed a similar pattern in the statisti-
cal space (Fig 7).

Discussion

Our soil moisture downscaling framework was able to improve the spatial detail of ESA-CCI
satellite soil moisture product and its agreement with field soil moisture records from the

i ssee I7km * 90% of data
= _ — 1km « 80% of data
* 70% of data
* 60% of data
* 50% of data
0 - 40% of data
30% of data
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10% of data
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O et NSNS
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r
field validation against the NASMD

Fig 5. Validation of soil moisture gridded estimates (original 27 and 1km grids) against NASMD field
observations. Dashed line represents the relationship of field stations and soil moisture gridded estimates at 27x27km,
while black line represents the relationship between field stations and the downscaled 1x1km soil moisture product. In
all cases (all sample sizes), the 1x1km product showed higher r* with the NASMD than the ESA-CCI soil moisture
estimates.

https://doi.org/10.1371/journal.pone.0219639.g005

PLOS ONE | https://doi.org/10.1371/journal.pone.0219639 September 24, 2019 11/20


https://doi.org/10.1371/journal.pone.0219639.g005
https://doi.org/10.1371/journal.pone.0219639

@ PLOS | O N E Downscaling satellite soil moisture using geomorphometry and machine learning

°® e
% ,O: o ® o°
A é ® o®
L] .’~P X
° 2 ¢, '.h. o: L \ ®e
o A oy ® ¢ ° ®
L] ? ?. - ° A (]

‘c ° ‘ ° 'C‘ °
Rt PRRE
"o ~
3‘... . ° 0.2
0.4
® 0.6
® -0.8

Fig 6. Explained variances computed for each meteorological station of the NASMD and the corresponding pixel
of our soil moisture predictions based on geomorphometry.

https://doi.org/10.1371/journal.pone.0219639.g006

NASMD. It is well known that topography has a direct influence on the overall water distribu-
tion across the landscape [38-39] and in the angle between satellite retrieval and the Earth’s
surface. Thus, we demonstrated how a coarse scale satellite-based soil moisture product
(27x27km of spatial resolution), in combination with hydrologically meaningful terrain
parameters, can be coupled using machine learning algorithms to generate a fine-gridded and
gap-free soil moisture product at the annual scale across CONUS.

We found a correlation between field soil moisture estimates and topography that is similar
to the correlation between satellite estimates and topography (Fig 7), suggesting that topogra-
phy can be an effective predictor for direct soil moisture measurements (i.e., from microwave
remote sensing). Previous studies have confirmed this correlation between topographic vari-
ability and soil moisture conditions for downscaling soil moisture across multiple catchment
scales and environmental conditions [40-41]. We recognize that our modeling approach
based on digital terrain analysis does not directly account for local variations of evaporation,
soil structure or vegetation (but indirectly). Our approach assumed that topography (described
by the shape of multiple digital terrain parameters) is also capturing some variability associated
to all factors affecting soil moisture. In contrast to previous downscaling efforts using vegeta-
tion and climate information [33, 66], we generated 26 annual soil moisture predictions
(1991-2016, 1x1 km of spatial resolution) that are independent of ecological data (i.e.,
vegetation greenness) and climate information, (i.e., precipitation and temperature). This
topography-based approach is able to maintain the original satellite soil moisture statistical
distribution (S5 Fig) and has the advantage that our modelling output could be further related
to independent datasets of ecological or climate variables [67-68] and avoid subsequent spuri-
ous relationships.

a b
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Fig 7. Relationships between the first PC of terrain parameters with soil moisture field data (a), with the ESA-CCI
satellite product (b), and with the soil moisture predictions based on terrain parameters (c).

https://doi.org/10.1371/journal.pone.0219639.9007
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We showed that this topography-based approach is able to improve the correlation of the
original estimate when compared against field data from the NASMD while maintaining the
integrity of its values (i.e., same systematic error between the NASMD and the original or the
downscaled product). Therefore, we provided a reliable (topography-based) approach to pre-
dict the satellite soil moisture patterns across finer spatial grids and in areas where no satellite
soil moisture is available.

The downscaling process of satellite soil moisture from 27 to 1km grids across CONUS is
supported on both internal (Table 1) and independent (Fig 5) validation frameworks to
describe modeling performance. The accuracy of our modeling framework showed explained
variances >70% and RMSE values considerably below (~0.03 m’ m™) the satellite soil mois-
ture mean of 0.22 m”> m >, which is suitable for many applications [66], such as the detection of
irrigation signals [69]. Similar results have been found recently for specific study sites [70].
Our results obtained by the cross-validation strategy and ground validation supports the appli-
cation of a topography-based model to predict satellite soil moisture estimates (Fig 4).

Our results showed that higher soil moisture values could be found across lower elevations,
areas with generally large and gentle slopes mainly across valley bottoms and across catchment
areas where water tends to accumulate. This interpretation could explain the short distance in
the multivariate analysis of satellite soil moisture estimates to elevation and derived terrain
parameters such as the vertical distance (of each pixel) to the nearest channel network, the val-
ley depth index and the topographic wetness index. The multivariate analysis also suggested
some degree of statistical redundancy between the topographic prediction factors (S1 Appen-
dix) as they were derived from the digital elevation model by the means of geomorphometry
[34-39]. For example, we found that the topographic wetness index is highly correlated with
the length-slope factor (>>0.80%), and this is because they are two secondary parameters that
depend on slope (primary terrain attribute) [35]. Elevation and slope are respectively required
for calculating secondary terrain parameters such as the valley depth index and the topo-
graphic wetness index [36] and these terrain parameters varied closely with soil moisture in
the multivariate space (S1 Appendix). Thus, understanding the main relationships between
topographic prediction factors and soil moisture can be useful for reducing modeling com-
plexity while increasing our capacity to interpret modeling results.

The spatial detail of soil moisture estimates using 1km grids across the continental scale of
CONUS is consistent with the variability of soil moisture patterns between the western and
eastern United States. While drought scenarios have been recently reported for the western
states [71] evidence of precipitation increase has been reported recently in the eastern states
[72]. Our soil moisture downscaled estimates (Fig 3) revealed a soil moisture gradient across
the Central Plains of CONUS and a clear separation of two major soil moisture data popula-
tions (i.e., soil moisture values with a bimodality distribution) from the drier west, to the
humid east (S5 Fig).

The original satellite soil moisture estimates also show this bimodal distribution but with a
lesser extent (S2 Fig). The bimodal distribution of soil moisture could be explained by a nega-
tive soil moisture and precipitation feedback in the western CONUS and a positive soil mois-
ture and precipitation feedback in the eastern CONUS [68]. Furthermore, areas with soil
moisture bimodality have been recognized across global satellite observations and climate
models [73]. We identified areas of low agreement between our soil moisture predictions and
field stations (lower r* values) across the transitional ecosystems (Fig 4) from drier to humid
soil moisture environments (i.e., Central Plains and lower Mississippi basin). It is likely that
these transitional areas drive changes in water availability in surface and subsurface hydrologi-
cal systems [74]. The lower Mississippi basin, specifically the area across the surroundings of
the Mississippi delta, is an example of a transitional area experiencing aquifer depletion [75]
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where both flooding events and droughts tend to occur within shorter distances that are not
captured by the original satellite soil moisture information. These are the type areas where we
found lower values of agreement (r* values) between satellite and ground soil moisture obser-
vations. These low correlation values can be also explained by the use of multiple soil moisture
networks with different types of sensors and measurement techniques [19]. Also, the imperfec-
tions of prediction factors used for soil moisture spatial variability models represent a potential
source of uncertainty.

As any downscaling effort dependent on covariates (i.e., terrain parameters), our approach
is vulnerable to data quality limitations such as the presence of systematic errors on these
covariates. Other errors are derived from input data imperfections and difficulties meeting
modeling assumptions. These errors in soil moisture modeling inputs increase the risk of bias
and uncertainty propagation to subsequent soil moisture modeling outputs and soil mapping
applications [76-78]. For example, elevation data surfaces derived from remote sensing data
(such as the global DEM used here) could show artifacts (i.e., false pikes or spurious sinks) due
to data saturation or signal noise that can be propagated to final soil moisture predictions [79].
We minimized this issue by using SAGA-GIS [36] as it has adopted methods for preprocessing
and perform DEM quality checks [80] before deriving the topographic prediction factors used
in this study. Because input covariates could not be fully free of errors, we advocate for report-
ing information on bias and r* values to inform about accuracy (e.g., Table 1) as important
components for interpreting soil moisture predictions.

Our results suggest that the original coarse scale soil moisture product and the values of soil
moisture from the NASMD (Fig 5) are difficult to compare in terms of spatial variability, as is
highlighted in previous studies [19]. This is because a satellite soil moisture pixel from the
ESA-CCI product provides a value across a larger area (27x27km) than a field measurement at
a specific sampling location (defined by geographical coordinates). This scale dependent effect
(27x27km vs 1:1 field scale) is reduced (>25%) with soil moisture predictions across finer
grids (1km). The downscaled soil moisture maps showed a higher agreement with field soil
moisture records from the NASMD (Fig 5), supporting the applicability of this soil moisture
product for applications that required higher spatial resolution.

Our soil moisture predictions across 1km grids suggest that topography can be effectively
used to improve the spatial detail and accuracy of satellite soil moisture estimates. Several stud-
ies have highlighted differences in spatial representativeness between ground-based observa-
tions and satellite soil moisture products [77, 81]. Other studies have shown that the spatial
representativeness of the ESA-CCI soil moisture compared with field observations is higher
from regional-to-continental scales than from ecosystem-to-landscape scales [82-83]. There-
fore, large uncertainties of soil moisture spatial patterns (below 1km grids) needs to be
resolved for assessing and better understanding the local variability of soil moisture trends.
We argue that currently there is an increasing availability of high-quality digital elevation data
sources with high levels of spatial resolution (e.g., 1-2 to 30 to 90m grids) across large areas of
the world [84-85] that can be used to derive reliable hydrologically meaningful terrain param-
eters for predicting soil moisture. The relationship of these digital terrain parameters and field
soil moisture (i.e., meteorological stations) is similar to the relationship between terrain
parameters and satellite soil moisture gridded estimates (Fig 7).

From a single information source (a remotely sensed DEM), we downscaled satellite rec-
ords of soil moisture using a framework that theoretically is reproducible across multiple
scales. The ultimate goal of reducing the multiple information sources for predicting soil mois-
ture is to reduce the statistical redundancy in further modeling efforts (i.e., land carbon uptake
models) and large-scale ecosystem studies (i.e., ecological niche modeling) that combine simi-
lar prediction factors for soil moisture (i.e., climate or vegetation indexes). These include
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models estimating water evapotranspiration trends [86] and process based global carbon mod-
els that could also benefit from more accurate and independent soil moisture inputs [78]. To
improve the spatial representativeness of satellite soil moisture estimates, the number of stud-
ies developing new downscaling approaches based on prediction factors is rapidly expanding
[26, 28, 66, 87]. There is a pressing need to solve the current uncertainty of soil moisture esti-
mates to accurately understand how soil moisture is limiting the primary productivity of ter-
restrial ecosystems [6]. Previous studies have identified a topographic signal in satellite soil
moisture [88] supporting the reliability of our modeling approach. Therefore, our results pro-
vide an alternative applicable to continental scales for downscaling satellite soil moisture esti-
mates based on hydrologically meaningful terrain parameters.

The novelty of this approach is that it could be applicable to multiple temporal resolutions
(e.g., monthly or daily) as it generates independent models for each period of interest and at
multiple spatial scales as the availability of terrain parameters for modeling purposes has
increased substantially (i.e., meters) in the last decade. Increasing the temporal resolution of
downscaled maps (i.e., from annual to monthly predictions) is beyond the scope of this study,
will increase computational costs, but are theoretically possible following this approach. While
monthly or weekly (or even daily soil moisture datasets) are valuable sources for large scale
earth system modeling, annual averages are also valuable for detecting long term trends in the
climate-land system. Rather than focusing on temporal variability of soil moisture, our results
provide insights for improving the spatial variability and consequently the spatial representa-
tion of soil moisture gridded surfaces derived from satellite information.

Conclusion

Recent studies highlight the necessity of detailed soil moisture products to account for soil mois-
ture limitation in terrestrial ecosystems. We developed a geomorphometry-based framework to
couple satellite soil moisture records with hydrologically meaningful terrain parameters. This
approach is useful to avoid statistical redundancies when downscaled soil moisture is further
used or analyzed with vegetation- or climate-related variables not included in the downscaling
framework. We predicted (i.e., downscaled) soil moisture using 1x1km grids across CONUS at
an annual scale from 1991 to 2016. This gap-free soil moisture product improved the spatial
detail of the original satellite soil moisture grids and the overall agreement (increased by >20%)
of these grids with the NASMD field soil moisture records. Our findings suggest that digital ter-
rain analysis can be applied to elevation data sources to derive hydrologically meaningful terrain
parameters and use these parameters predict soil moisture spatial patterns. Our framework is
reproducible across the world because it is based on publicly available DEMs, ground and satel-
lite soil moisture data. Our protocol and R code is available online (http://dx.doi.org/10.17504/
protocols.io.6cahase) as well as input parameters and annual means of soil moisture at 1km
grids (https://www.hydroshare.org/resource/b8f6eae9d89241cf8b5904033460af61/).

Supporting information

S1 Appendix. This file (AppendixS1.html) contains the results of the automated PCA
report described in the methods section, for exploring relationships between soil moisture
and topography.

(HTML)

S1 Fig. Spatial distribution of the NASMD validation set with information for the first 0-
5cm depth (n 668).
(TIF)
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S2 Fig. ESA-CCI satellite soil moisture across CONUS (~27km grids).
(TIF)

S3 Fig. PCA map of the first and second principal components. The individual point cloud
across the plane between the first and second PCA (a). The orthogonal relationship of the vari-
ables with higher contribution to this plane (b). Soil moisture is represented by the dotted blue
line. An interpretation of these can be found in S1 Appendix.

(TIF)

$4 Fig. Mean soil moisture for the year 2016. Comparison between the original satellite soil
moisture (a) and soil moisture predicted at 1km grids (b).
(TTF)

S5 Fig. Bimodal distribution of satellite soil moisture (black) and the downscaled soil moisture
estimates (red).
(TIF)

S1 Table. This table (S1 Table) contains a description of primary and secondary terrain
parameters used in this study for generating soil moisture predictions.
(DOCX)
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