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ABSTRACT

Swelling soils contain high amounts of expansive clay minerals which swell upon wetting and shrink upon
drying. Urban growth across swelling soils causes billions of dollars in infrastructure damage annually
throughout the United States. Here, continuous spatial information of soil swelling properties is provided across
Colorado, a state experiencing extensive urban growth across swelling soils. The objectives were: 1) model the
spatial variability and associated uncertainty of soil swelling-related properties across Colorado; 2) generate a
continuous statewide map of soil swelling potential and associated uncertainty at 1x1km resolution; and 3)
identify urban areas prone to experience swelling conditions. A digital soil mapping (DSM) framework for ex-
tracting pedologically-relevant information from legacy maps was used to train machine learning models to
analyze multiple sources of information to represent the soil forming environment (e.g., soils, climate, organ-
isms, topography). Best predictions were based on regression trees and explain over 80% of soil swelling spatial
variability across the state (10-fold cross validation strategy). Over 20% of urbanized areas were identified as
being prone to experience swelling conditions. Special considerations must be undertaken to couple urban de-

velopment with soil functionality in order to prevent future damages and economic losses.

1. Introduction

Swelling soils, those containing specific types of expansive clay
particles which swell upon wetting and shrink upon drying, cause more
than $2.3 billion worth of structural damage throughout the nation
each year (Jones & Holtz, 1973). Consequently, swelling soils threaten
economic prosperity and infrastructure maintenance. The state of Col-
orado is one of the most threatened regions in the United States because
it is located within an arid/semi-arid region (Kottek, Grieser, Beck,
Rudolf, & Rubel, 2006) which experiences large variability in soil
moisture (e.g., contrasting drying and wetting cycles), increasing the
probability of regional swelling (Jones & Jefferson, 2012). Therefore, it
is critical to provide continuous information to provide insights for land
planning and urban development across areas dominated by swelling
soils.

Swelling occurs in soils that can absorb large amounts of water
when wetted, but also become hard, shrinking and cracking when dry.
This phenomenon is primarily related to the structure and presence of
2:1 clays (e.g., phyllosilicate minerals, such as smectite and vermicu-
lite), in which water can get into interlayer spaces within clay minerals,
causing swelling and shrinking at the molecular level (Vaught, Brye, &
Miller, 2006). The presence of cracks upon the shrinking of soil allows
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water to enter more easily upon re-wetting, thus exacerbating the
amount of water that can be absorbed. These types of soils are sensitive
to changes in soil moisture content, which is influenced by precipitation
variability, local site physical changes (e.g., construction), and/or re-
moval of vegetation cover (Jones & Jefferson, 2012). Structural en-
gineers, geotechnical engineers, and other home builders include pro-
cedures in case swelling soils are located within a construction site, but
the presence of these type of soils is not always obvious (Houston, Dye,
Zapata, Walsh, & Houston, 2011).

Shrinking and swelling behavior of soils also impacts infiltration of
water by creating and sealing cracks in the soil that act as preferential
flow paths (Stewart, Najm, Rupp, & Selker, 2016). Successive wetting
and drying cycles on swelling soil causes crack locations to alternate,
leading to more uniform wetting with depth as time goes on and a re-
duction of preferential flow paths (Wells et al., 2003). Within swelling
soils, ponding and infiltration after the first rainstorm leads to the
formation of cracks as soil dries. These cracks lead to increased ponding
time and infiltration during the next rainstorm, causing cracks to
deepen and widen, creating a positive feedback loop (Romkens &
Prasad, 2006). Eventually, cracks in heavily drained soil may not close,
even after prolonged wetting. Furthermore, soil swelling is subject to
seasonal variation of soil moisture (Beven & Germann, 1982) and
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consequently influences local hydrology. Lack of accounting for swel-
ling systems can cause estimation errors in water/solute flux, water
balance, drainage, and aquifer recharge (Kirby, Bernardi, Ringrose-
Voase, Young, & Rose, 2003; Smiles, 2000). Finally, swelling soils can
also affect biogeochemical processes as cracks in the soil can contribute
to reductions in soil organic carbon through effects on (decreasing)
plant productivity and increasing decomposition of organic matter
(Yoo, Amundson, Heimsath, & Dietrich, 2006).

Information of soil swelling potential not only provides insights for
proper construction techniques to minimize future potential structural
problems caused by soil swelling, but also provides information about
ecohydrological patterns. The advent of a spatially consistent map of
soil swelling can be used to provide a better understanding of soil-re-
lated hydrological properties and water infiltration processes.
Additionally, the soil swelling information generated here combines
soil data from the physical, organic and chemical soil phases, so it could
be used to better inform the development of soil spatial indicators of
land degradation, soil fertility, or soil quality.

The United States Geological Survey (USGS) generated in 1989 a
map of swelling clays throughout the conterminous United States
(CONUS) with a scale of 1:7,500,000. However, this product has low
spatial detail for localized use and detailed analyses and is based on the
type of bedrock present beneath the soil (Olive, Chleborad, Frahme,
Schlocker, Schneider, & Schuster, 1989). At the state level, there is
pedological and detailed information of soil swelling, but it has spatial
discontinuities (see methods section) due to the combination of dif-
ferent soil sampling methods and soil survey strategies. This informa-
tion is provided by the gSSURGO (gridded Soil Survey Geographic)
geodatabase (Soil Survey Staff, 2016). Much of the information within
the gSSURGO database appears in a grid-like pattern, indicating po-
tential discrepancies in and around those areas (see Methods section).
Grid-like patterns of values indicate potential errors, such as those that
arise from field estimations, measurement error, and protocol/mapping
distinctions between counties. Multiple spatial inconsistencies seem to
run along county lines. This important and extremely valuable database
was developed based on the official Soil Survey Geographic (SSURGO)
database, which was developed by National Cooperative Soil Survey
(NCSS) for use in regional, statewide, and/or national resource plan-
ning and soils analysis (Soil Survey Staff, 2016). This study proposes
that there is need to provide alternative products within regions of
interest (e.g., Colorado) to inform about the potential of swelling of
soils.

Here, information is provided about swelling soils through a digital
soil mapping (DSM) approach. DSM is a reference framework to model
and predict soil properties and functions in areas where no information
is available. This is achieved by coupling gridded environmental in-
formation with observational soil property data throughout statistical
models (e.g., geostatistics, machine learning). For DSM, the SCORPAN
model is used, which states that a soil attribute (or class) can be pre-
dicted as a function of the soil forming environment (McBratney,
Mendonga Santos, & Minasny, 2003).

Sf~(s,c,o,r,p,a,n) +¢ 1

where S = swelling (or other attribute); s = other known soil attri-
butes; c = climate; o = organisms; r = relief, p = parent material;
a = age; n = space; ¢ = uncertainty. In short, soil-forming environ-
mental attributes are together able to predict soil properties by using
statistical models (f) such as hypothesis-driven models (i.e., linear
methods) and machine learning (ML) data-driven models (i.e., random
forest, RF). While linear methods are useful to explain linear relation-
ships, ML is used to uncover patterns in large data sets using computer-
based data-driven decisions (such as RF) (Heung et al., 2016). Thus,
linear models and ML algorithms can be used on DSM to produce
spatially continuous information (i.e., continuous maps) of soil swelling
properties.
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1.1. Research objectives

The objectives of this study are: 1) model the spatial variability and
associated uncertainty of soil swelling-related properties across
Colorado; 2) generate a continuous statewide map of soil swelling po-
tential and associated uncertainty at 1x1km resolution; and 3) identify
urban areas prone to experiencing swelling conditions. The following
interrelated research questions are explored: 1) which are the best en-
vironmental prediction factors for soil swelling properties?; 2) how
much spatial variability can be explained by using ML to predict the
spatial variability of these properties across Colorado?; and 3) what is
the percent of urban areas across Colorado located across soils with
high swelling potential? The novelty of this study is that different
modeling approaches are tested to predict swelling potential in soils
across Colorado to provide value-added information with high spatial
resolution (i.e., 1 x 1km grids).

2. Methodology

A DSM approach for disaggregating soil swelling polygon informa-
tion was applied as a way to predict soil swelling properties in places
where no information is available or in places with spatial dis-
continuities due to the spatial aggregation of multiple polygon maps.
Gridded environmental data sources such as remote sensing imagery,
digital terrain analysis (i.e., geomorphometry), legacy and thematic
maps (i.e., land use, soil type), and gridded climatology products (i.e.,
seasonal precipitation and temperature) were used as prediction factors
for soil swelling properties: saturated hydraulic conductivity (ksat_r),
cation exchange capacity (cec7_r), liquid limit (ILr), plasticity index
(pi_r), and total clay amount (claytotal r). First, the main relationships
of soil swelling properties and environmental conditions were quanti-
fied and then the soil swelling potential across the state of Colorado was
predicted using 1 x 1km grids. Fig. 1 summarizes the DSM framework
used.

2.1. Study area

Colorado, though known as one of the “Rocky Mountain” states, has
a large variety of landscape types, making general environmental
generalizations difficult. The eastern part of the state is mostly com-
posed of the High Plains, which become rolling hills as they move west
to approach the mountains. The mountains are found in the middle of
the state, with plateaus characterizing the western region (Doesken,
Pielke, Roger, & Bliss, 2003).

Colorado has a large heterogeneity of soils, primarily Alfisols,
Aridisols, Mollisols, and Entisols. Alfisols are found primarily in the
western half of the state, while Entisols are primarily present in the
southeastern corner and along the western border of the state. Mollisols
and Aridisols are spread throughout Colorado (United States Soil
Conservation Service, 1976). Colorado is known for having high
amounts of clay minerals in the soils. In the Front Range, for example,
smectite is mainly found in plains areas, vermiculite is usually found in
the forested areas, and a mix of clay minerals is commonly found above
the tree line (Birkeland, Shroba, Burns, Price, & Tonkin, 2003). These
mineral deposits are due to the presence of expanding claystone bed-
rock near the surface in the region, whose effects are often exacerbated
by steep dips within the bedrock layers (Chabrillat, Goetz, Krosley, &
Olsen, 2002).

Colorado’s location in an arid/semi-arid region causes an exacer-
bation of swelling activities, as each precipitation event has the ability
to dramatically alter the amount of soil moisture residing within the
soil. As soil swelling can only occur if there is a change in soil moisture,
arid regions that experience large changes in soil moisture with the
advent of rainfall should be more heavily affected (Jones & Jefferson,
2012).
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Fig. 1. Workflow designed for this study.

2.2. Digital soil mapping training data

A statewide gSSURGO geodatabase of Colorado from the US-Natural
Resource Conservation Service-Geospatial Data Gateway (https://
datagateway.nrcs.usda.gov/) (Soil Survey Staff, 2016) was used. Tab-
ular data, based on soil properties stored in the National Soil In-
formation System (NASIS), were merged with the vector-based soil
spatial information from the gSSURGO geodatabase into statewide ex-
tents. This geo dataset contains soil type polygon maps of over 150
different soil attributes. From this extensive list of soil attributes,
properties thought to relate to shrink-swell conditions were manually
selected, including saturated hydraulic conductivity (ksatr), cation
exchange capacity (cec7_r), liquid limit (11_r), plasticity index (pi_r), and
total clay amount (claytotal r) (see supplementary material S1). These
variables are associated with the shrink/swell capacity of soil properties
and were selected after literature review (Jones & Jefferson, 2012;
Nayak & Christenson, 1971; Pruska & Sedivy, 2015; Thomas, Baker, &
Zelazny, 2000). The variable lep_r was also selected, as it is identified in
the National Soil Survey Handbook as “the linear expression of the
volume difference of natural soil fabric at 1/3-bar or 1/10-bar water
content and oven dryness” (USDA, 2018). As it is a common way of
quantifying shrink/swell activity, the NRCS has assigned associated
Shrink/Swell classes to values of linear extensibility (Table 1). For this
reason, lep_r was assumed to be a direct estimate of soil swelling
(USDA, 2018). See Supplementary Material 1 for definitions of all uti-
lized gSSURGO variables.

Using conventional GIS procedures [i.e., Create Random Points and
Extract Values to Points tool in ArcGIS], the known pedological in-
formation from the chosen gSSURGO attributes was extracted to 10,000
random spatial points throughout Colorado state boundaries (Fig. 2b).
Extracting pedological information to 10,000 points simulated a
random distribution of locations that were assumed to capture the
variability of the gSSURGO map (around 26 points per squared km)

Table 1

NRCS Shrink/Swell Classes.
Shrink-Swell Class LEP’ COLE”
Low <3.0 < 0.03
Moderate 3.1-5.9 0.03-0.06
High 6.0-8.9 0.06-0.09
Very high > 8.9 > 0.09

! LEP = Linear Extensibility.
2 COLE = Coefficient of linear extensibility.

across Colorado. These random points were consistent to replicate our
results without major differences in predictions after multiple model
realizations. These points were selected randomly to maximize the
possibility of avoiding a systematic pattern of the spatial inconsistencies
(i.e., across counties) in the gSSURGO map. The spatial inconsistencies
present in the gSSURGO map are mostly comprised of zero values, so of
the original points, those falling within zero values were eliminated in
order to avoid similar inconsistent patterns in our final maps. Then, a
regression matrix was generated containing georeferenced data of
swelling-related variables (e.g., lep_r, 1L_r, pi_r, cec7_r, and claytotal r)
and an extensive set of environmental prediction factors (see Section
2.3).

2.3. Prediction factors for soil swelling

Prediction factors were represented by environmental information
from worldgrids.org (last accessed Jan. 2018), an initiative of ISRIC Soil
Information (Reuter & Hengl, 2012). A total of 118 1km X 1km en-
vironmental predictors were downloaded and masked to the Colorado
state boundaries in order to quantitatively represent the soil-forming
environment (i.e., climate, topography, living organisms, parent ma-
terial). The worldgrids predictors come from three sources: remote
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Fig. 2. (A) Original information linked and displayed from the gSSURGO database. Grid-like patterns of values indicate potential errors, such as those that arise from
field estimations, measurement error, and protocol/mapping distinctions between counties. (B) gSSURGO database information extracted to 10,000 random points
throughout the state of Colorado. The color scale indicates swelling percentage of soils, from 0.1% (low) to 9.7% (very high). Potential errors from distinctions
between counties seemed to be composed of mostly zero values, so points with zero values were removed for analysis.

sensing, climate surfaces, and digital terrain analysis (see complete list
and description of layers in Appendix C).

Additional environmental predictors included terrain parameters
(e.g., terrain slope, aspect, channel network base level, topographic
wetness index, length-slope factor, analytical hillshading, elevation,
cross-sectional curvature, longitudinal curvature, convergence index,
closed depressions, flow accumulation, vertical distance to channel
network, valley depth, and relative slope position) calculated by run-
ning a basic digital terrain analysis on a USGS-Colorado DEM (1 x 1km
pixels) in SAGA GIS (System for Automated Geo-scientific-Analysis
Geographical Information System) (Conrad et al., 2015). These para-
meters are indicators of the spatial variability of soil swelling proper-
ties, since they control the overall distribution of water across the
landscape, the potential incoming solar radiation, and the overland
flow from rain or irrigation water. Organic matter content was not in-
cluded as a potential modifier of soil swelling because it represents the
irreversible component of soil swelling, whereas shrink/swell through
LEP is reversible (Seybold & Libohova, 2017).

2.4. Prediction of linear extensibility and model evaluation

The informational discontinuities in the gSSURGO variables were
corrected using a modeling strategy based on environmental correlation
methods following the SCORPAN reference framework for digital
mapping.

First, the regression matrix (i.e., training data and prediction factors
for those locations of training data) was used to calculate descriptive
statistics. Second, a correlation analysis was performed to identify and
explore “key” gSSURGO variables associated with lep_r. Once each of
these variables were selected, they became the focus of a model using
GLM, RF, or QRF, with eight worldgrids predictor variables chosen based
on a subsequent correlation analysis. Then, two different models, a
generalized linear model (GLM) and random forest (RF) model, were
used to make predictions based on the best correlated environmental
predictors. A GLM is a linear model used to test a response variable to
predict the response under a wide range of independent variables
(Lane, 2002). RF uses a combination of tree predictors, in which at-
tributes at each node are randomly split to find the best predictions for
that group of attributes (Breiman, 2001).

Each RF model was built using the eight best correlated environ-
mental predictors (including topographic and worldgrids covariates) for
each soil swelling variable. While the best correlated environmental
predictors were similar across the selected gSSURGO variables, they
were not exactly the same (see Section 3). A Quantile Regression Forest
(QRF) model was used to map the RF model uncertainty for each soil
swelling variable. Like RF, QRF is based on a combination of tree
predictors with randomly split nodes. However, QRF considers the
spread of values of the response variable at each node, instead of just
the mean as RF does. This means QRF allows estimates of the dis-
tribution of the full response of training data to the prediction factors.
In this study, QRF was used to provide a measure of model uncertainty
and reliability. It has been shown that these models are robust for use in
soil mapping applications with multiple sampling designs (Vaysse &
Lagacherie, 2017). Finally, model performance was assessed using 10-
fold cross validation to calculate the 12 (i.e., explained variance) and the
root mean squared error (RMSE). All analyses were performed using R
software (R Core Team, 2016).

2.5. Integration of soil swelling predicted properties into a soil swelling map

First, the mean of all soil swelling predicted variables was scaled in
a zero centered basis. Then a Principal Component Analysis (PCA) was
used in order to integrate the 1 X 1 km predicted variables that dictate
soil swelling properties across Colorado. According to McBratney et al.
(2003), PCA is used when there are a large number of correlated pre-
dictor variables in order to arrange the original inputs linearly. Here,
the PCA was used to reduce the soil swelling related variables to a
single soil swelling potential map which combines information of all the
variables included in the analysis (i.e., first principal component
[PC1]). Inputs to the PCA were the outputs of five RF models of lep_r
and its best correlated factors; those that are also included in the
gSSURGO database (e.g., pir, ll.r, cec7r, and claytotal r). The PCA
reduced variable redundancy in a potentially highly correlated multi-
variate space (e.g., correlated variables explaining soil swelling condi-
tions). The resulting PC1 was characterized by quartiles in order to
translate the scale from the PC1 unitless values to a comparative scale
in order to distinguish between low and high soil swelling potential.
Thus, swelling potential was able to be expressed as a linear
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combination/integration of multiple variables in order to “rank” swel-
ling areas.

2.6. Urban swelling risk

Remote sensing technologies allow scientists to monitor changes of
human activity, and remote sensing of night lights has been used for
decades to inventory the global distribution of human activity (Kruse &
Elvidge, 2011). The predicted soil swelling map was overlapped with a
night lights map across Colorado (worldgrids.org system; LN1DMS re-
presenting the first principal component of the long-term lights at night
images; Fig. 7), to identify areas where urban development is prone to
experience soil swelling conditions. The original lights at night data
were gathered from 1992 to 2013 as cloud-free composites of DMSP-
OLS (Defense Meteorological Satellite Program — Operational Linescan
System) smooth resolution data collected by the Earth Observation
Group of the National Oceanic and Atmospheric Administration.

3. Results
3.1. Descriptive statistics

The mean value of lep_r was relatively low in relation to the max-
imum, indicating that high amounts of swelling were probably mostly
concentrated in a few select areas (Table 2). Ksat_r had the largest range
of values, along with the largest standard deviation of the soil swelling
properties. Lep_r and pi_r had the lowest range of values, along with the
lowest standard deviations. Descriptive statistical covariate information
can be found in Table 2. Ksat_r was expected to be a variable with
potential influence on soil swelling, but it was found to not be closely
correlated with lep_r.

3.2. Prediction factors for soil swelling

First, gSSURGO generated variables were tested against lep_r to find
the best correlations and attributes related to swelling. The four vari-
ables with the highest correlations were claytotal r (0.795), pir
(0.787), 1l.r (0.651), and cec7_r (0.587). Since these highly correlated
gSSURGO variables come from the same source, they have similar
spatial discontinuities as found in lep_r. Thus, each of these variables
was evaluated through the SCORPAN model to achieve continuous
predictions.

We tested the relationship between worldgrids.org and topographic
variables with lep_r and all soil swelling related variables (i.e., clayto-
tal_r, pi_r, ll.r, cec7_r) to find the best predictor variables and reduce
model complexity. This was needed because the soil-forming environ-
ment was represented by variables from worldgrids.org and topographic
variables in order to represent prediction factors at the available 1x1
km spatial resolution (Table 3). The environmental and topographic
variables tested showed significant but low correlations (r < 0.3). For
worldgrids variables, those associated with temperature were frequently

Table 2

Descriptive Statistics of each gSSURGO variable. Number of observations (n),
quartiles (Qu), median, mean and the standard deviation (Sdev) of the cov-
ariates. Lep_r = linear extensibility (%); ksat_r = saturated conductivity (um
s7; lIr = liquid limit (%); claytotal r = % total clay; cec7_r = cation ex-
change capacity (meq 100 g’l); pi_r = plasticity index (%).

Covariate n Min 1stQu Median Mean 3rdQu Max SDev
lep.r 5609 0.10 1.50 1.50 2.01 1.60 9.70 1.45
ksat_r 5609 0.01 9.00 9.17 28.30 28.22  423.07 51.91
1ILr 5238 0.00 26.00 27.50 28.53 34.00 63.00 10.24
claytotalr 5587 0.00 14.00 20.00 19.72  23.50 52.50 9.44
cec7.r 5488 0.00 10.00 14.50 14.75 18.80 175.00 7.46
pir 5238 0.00 7.50 7.50 9.48 13.30  36.00 6.41
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among the most significant variables, such as “Mean value of the 8-day
MODIS day-time LST time series data” for “-Apr/May,” “-Jun/Jul,”
“-Aug/Sep,” and “-Oct-Nov” (tx3mod3a, tx4mod3a, tx5mod3a,
tx6mod3a); “Mean value the 8-day MODIS day-time LST time series
data” (tdmmod3a); and “Standard deviation of the 8-day MODIS day-
time LST time series data” (tdsmod3a). Other frequently correlated
variables included soil-based variables, such as “Percent coverage
Podzols” (gpzhws3a), “Percent coverage Leptosols” (glphws3a), and
“Geological ages based on the surface geology” (geaisg3a). Appendix C
provides a complete list of worldgrids.org covariates, acronyms, and
descriptions.

3.3. Model evaluation and explained variance

Using the best correlated prediction factors (Table 3), predictions
from a generalized linear model (GLM) and a random forest (RF) model
were compared. The RF model was able to explain at least 88% of
variance for each soil swelling-related variable. The GLM showed lower
levels of explained variance (between 25.0 and 39.6%), as it does not
account for non-linear relationships. RF performed better than the GLM
model and was able to explain higher amounts of spatial variability
with lower RMSE values (Table 4). Lep_r showed the highest amount of
explained variance at 92.1%, while 1l r showed the lowest amount of
explained variance, at 88%.

Fig. 3 shows a visual representation of attribute predictions using
the RF model. Generally, higher predicted amounts of each attribute
were found in the southeastern and southwestern quadrants of the state,
and sporadically along the western border. However, there were high
amounts of 1_r and cec7_r throughout the state.

Fig. 4 shows selected areas for comparison of the gSSURGO lep_r
polygon map and the RF lep_r prediction map. While gSSURGO has a
higher resolution, RF reduced spatial inconsistencies present, especially
those that follow strict county lines. By initially removing the zeros that
generate spatial inconsistencies, the RF prediction was able to over-
come (i.e., gap fill) these inconsistencies.

Supplementary Fig. 1 shows a rasterized differences map between
the original gSSURGO lep_r map and the lep_r RF prediction. Small
areas with higher differences are spread throughout the landscape, but
with larger differences aggregated in the northwestern and south-
eastern portions of the study area. The spatial artifacts in the original
gSSURGO map are highlighted by the differences map, but the RF
prediction eliminated these inconsistencies.

3.4. Spatial patterns of model prediction uncertainty

Statewide maps of the model prediction uncertainty (i.e., the var-
iance of all the trees in the random forest ensemble) were generated for
each attribute per pixel (Fig. 5). LLr and claytotal_r showed the highest
amount of variability, followed by lep_r and pi_r. Cec7_r showed the
lowest amount of variability. Overall, higher amounts of model pre-
diction uncertainty for the different attributes were mostly con-
centrated within the southeastern quadrant of the state. Additional high
values were present along the western border of Colorado, especially
near the north and southwestern corners.

Root mean square error (RMSE) was calculated for each best cor-
related attribute for all models. For the QRF model, RMSE had a wide
range of values, from 1.32% for lep_r (below the first quantile, Table 2)
to 9.82% for 1l_r (below the first quantile, Table 2). Claytotal r had the
second highest RMSE of 8.72% (below the first quantile, Table 2), while
cec7_r has a slightly lower RMSE of 8.35meq 100g~" (below the first
quantile, Table 2), and pi_r has the second lowest RMSE of 5.71%
(below the first quantile, Table 2).

The RMSE values for the GLM and RF models were all below their
first quantiles (Table 2). RMSE was overall lower for the RF models than
for the GLMs. Lep_r had the lowest RMSE of 0.41%, while 11_r had the
highest, one of 3.54%.
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Table 3
Best correlated gSSURGO variables and their best correlations with worldgrids.org and topographic variables. The best correlated gSSURGO variables are found and

shown in Table 3. These are used here to find the best environmental correlations. Numbers in parentheses indicate correlation values ranging from —1 to 1 between
each variable and the best correlated predictors (i.e., Best Correlated Variable (Correlation)). Explained variance (6] represents the median explained model variance
for each variable. RMSE represents the root mean square error associated with the QRF model for each variable.

Explained Variance RMSE

Variable Best Correlated Variable (Correlation)
@«

lep.r txémod3a (0.311); tx3mod3a (0.297); tdmmod3a (0.296); tx4mod3a (0.293); tx5mod3a (0.279); tx2mod3a (0.276); tdhmod3a 0.210 1.321
(0.271); geaisg3a (—0.255)

claytotal r  tx4mod3a (0.292); tx5mod3a (0.288); tx6mod3a (0.285); tx3mod3a (0.274); gpzhws3a (—0.273); geaisg3a (—0.273); glphws3a 0.219 8.718
(—0.263); tnsmod3a (0.254)

pir geaisg3a (—0.295); txbmod3a (0.265); tx4mod3a (0.245); glphws3a (—0.243); gpzhws3a (—0.241); tx3mod3a (0.240); tx5mod3a  0.243 5.709
(0.237); tdmmod3a (0.231)

1r geaisg3a (—0.224); tx4mod3a (0.194); tnsmod3a (0.194); tx5Smod3a (0.182); tdsmod3a (0.173); gflhws3a (0.172); gpzhws3a 0.176 9.823
(—0.168); txbmod3a (0.167)

cec7.r VerticalDistanceToChannelNetwork (—0.219); g12igb3a (0.207); glligb3a (0.197); geaisg3a (—0.185); tx6émod3a (0.180); 0.123 8.354
RelativeSlopePosition (—0.178); 101igh3a (—0.177); DEM (—0.176)

Table 4 3.5. Principal component analysis

Evaluated machine learning methods with r* and RMSE values. A RF (Random

Forest) model was compared to a GLM (generalized linear model). This integrated map of swelling potential follows the expected areas

of high lep_r values as predicted by the RF models, especially in the

Variable Method Var explained RMSE
southeast quadrant and patterns throughout the midwestern part of the
lep_r GLM 25.1% 1.26 state (Fig. 6). It was found that the first PC (i.e., PC1) of all the highly
pir giM 2;1:2 g:gzs correlated gSSURGO variables was able to explain nearly 80% of
- RF 90.6% 1.97 variability. This first PCA was classified in quantiles to characterize the
claytotal_r GLM 34.8% 7.63 soil swelling potential. Thus, the values of the predicted gSSURGO
RF 88.6% 3.19 variables (e.g., lep_r, pir, ll.r, cec7_r, and claytotal r) were classified
Ir GLM 39.6% 7.95 according to overall swelling potential, comparatively ranking present
cecT r E{M 221(1)22 22; soils” swelling capability from “low” to “very high.” Overall trends of
) RF 91.5% 2.18 both areas of increased swelling and of little/to no swelling seem to

follow those seen in the lep_r RF model predictions. Areas of high lep_r
included much of the southeastern quadrant as well as in the southwest,
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Fig. 3. Predictions of soil swelling related variables. Prediction maps calculated with the RF method for each soil swelling-related variable: (A) = prediction for lep_r;
(B) = prediction for pi_r; (C) = prediction for 1l_r; (D) = prediction for claytotal r; (E) = prediction for cec_r. (A)-(D) are measured by %, while (E) is measured by
—-1.
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Fig. 4. Zoomed Comparisons between gSSURGO and Lep_r RF prediction. (A) gSSURGO lep_r polygon map, zoomed in at three areas that show spatial incon-
sistencies. (B) Lep_r RF prediction map, selected areas for comparison in the same three areas. Spatial inconsistencies are reduced by using RF.

and in distinct areas along the western border.

3.6. Swelling risk across urban areas

The lights at night map across Colorado (worldgrids.org; LN1DMS
first principal component of the long-term lights at night images;
Fig. 7a), was used as a filter for the PCA model in order to identify areas
where urban development is prone to experience soil swelling condi-
tions (Fig. 7b). Results show that over 20% of the state of Colorado
urbanized areas (i.e., where night lights indicate urban human activity)
are prone to experience swelling conditions. The majority of these
swelling-prone urbanized areas indicate very high swelling potential,
indicated by dark green (Fig. 7b).

4. Discussion

A DSM framework was developed to generate continuous informa-
tion about swelling soils to overcome spatial inconsistencies (e.g., un-
realistic spatial patterns) on current available information. The spatial
variability of soil swelling properties was modeled, and continuous
predictions were provided across Colorado in a 1x1km grid, including a
spatially continuous measure of model uncertainty. High amounts of
lep_r are most likely concentrated across a few select areas suggesting
that more detailed surveys and analyses are needed within these “hot-
spots”.

The results regarding the best correlated attributes support trends
identified in previous research. For example, clay total and PI are
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Fig. 5. Uncertainty maps. Standard deviation (per pixel) of the full conditional distribution of each swelling variable derived from the quantile random forest (QRF)
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Principal Component Analysis
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Fig. 6. Integrated PCA map of swelling potential in the first quartile using swelling attributes. This map linearly integrates attributes to show an overall re-
presentation of the soil swelling risk across Colorado. Over 80% of swelling potential was explained in the 1st principal component (see Supplementary Figs. 2 & 3).

known to be highly correlated with LEP, and the highest correlated
gSSURGO attributes were found to be claytotal_r (r* = 0.795) and pi_r
(r* = 0.787). Previous work has reported high correlation between
swelling and PI, usually in conjunction with other identified highly
correlated attributes (Nayak & Christenson, 1971; Jayasekera &
Mohajerani, 2003; Kariuki & van der Meer, 2004). Furthermore, CEC
has been reported to have a strong correlation with swelling percent
(Christidis, 1998; Kariuki, Woldai, & Meer, 2004; Thomas et al., 2000;
Yilmaz, 2006). However, it is important to distinguish between clay and
carbonate clay contributors to CEC (carbonate clays do not have as
much of an influence), which affects CEC contribution to LEP (Seybold
& Libohova, 2017). The results showed that cec7_r was the fourth most
significant attribute, but with a lower correlation of 0.587. Overall, the
results follow general trends of high correlations between soil swelling
and PI, clay content, LL, and CEC as identified in previous research.

QRF models of each gSSURGO variable all show high concentrations
of large values in the southeastern portion of Colorado. Furthermore,
very low values are concentrated over the Rocky Mountains, which are
expected due to the large amounts of impervious rock characteristic of
mountain ranges. These high concentration areas of low and high va-
lues are reflected in the final map derived from the PCA. High amounts
of uncertainty in predicted attributes are also present in the south-
eastern quadrant, such as for claytotal_r and 1_r for the QRF model. This
may indicate that further research may be needed to reduce the un-
certainty of these attributes with soil swelling. One important im-
plication of the present study is the demonstration that pedologically
relevant information contained in soil polygon maps can be extracted
and coupled with other sources of information to continuously predict
swelling conditions using statistical models (i.e., Random Forest).

The presence of swelling soils can cause large economic losses
dealing with infrastructure damage, so spatial information of soil
swelling conditions provides insights to inform urban development
strategies. Previous studies related to swelling soils within Colorado
have focused on the urban Front Range, instead of a more compre-
hensive view of the entire state (Chabrillat et al., 2002; Noe, 1997). The
average cost of building a single-family home in Colorado is $1152/m?
(Siniavskaia, 2014). There are 10,000 square meters in one hectare,
meaning each hectare has a maximum potential economic loss of over
$11.5 million if swelling is not accounted for. Private home and land
owners, as well as state contractors can use this map in order to de-
termine if further site testing for swelling soils would be advisable.

Beyond the direct implication in urban growth, soil swelling also
has important ecological/hydrological implications, regulating the
amount of water in the soils and its capacity to infiltrate it to deeper
layers or its availability for plant growth. Thus, soil swelling also affects
land productivity and hydrological process such as aquifer recharge.
Not taking swelling into account can cause errors in measurements of
aquifer recharge, water storage, water/solute flux, drainage, and other
hydrological variables (Kirby et al., 2003; Smiles, 2000). Large amounts
of error in these variables can cause large uncertainties of available
human water supplies.

This study was able to provide a complementary addition to
gSSURGO lep_r maps by generating a continuous map that adjusts un-
realistic spatial artifacts present in the original gSSURGO database.
That said, this study has a coarser spatial resolution of 1km, but it
could be improved if higher resolution environmental covariates are
available for the region of interest. As the original gSSURGO map is a
model in itself, the results here cannot be better than the original
model. Ground-truth data and information within soil swelling “hot-
spots” and across gSSURGO missing information will provide the means
for a full validation and improvement of our approach.

Future work could include consideration of the clay mineralogy (as
in Seybold & Libohova, 2017), as certain clay minerals swell more than
others — e.g., smectite and illite, with 2:1 clay crystalline structures,
swell more than kaolinite, a clay mineral with a 1:1 structure (Goetz,
Chabrillat, & Lu, 2001; Yitagesu, van der Meer, & Werff van der, 2009;
Kariuki et al., 2004; Taboada, 2004). In addition, spatially detailed
trends in regional soil moisture should be taken into consideration, as
changes in soil moisture are the absolute determinant in actual amount
of swelling that takes place. The research framework can be im-
plemented at a state level throughout the United States as a comple-
ment to the valuable gSSURGO lep_r state maps, and theoretically on a
larger, country-wide scale as well.

5. Conclusion

This study provides a pedologically-driven DSM framework to re-
present the state-level information of soil swelling and provide insights
about potential links between swelling and various environmental at-
tributes. The framework can be used to gap-fill and generate continuous
maps of swelling soils at the state level. Through this framework, the
swelling potential across Colorado was able to be characterized,
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Long-term Lights at Night in Colorado
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Fig. 7. Soil swelling across a long-term night lights map based on satellite imagery (In1dms3a, from worldgrids.org). (A) Lights at night (In1dms3a) over Colorado.
This map is a surrogate of human activity and urban areas (population density); (B) Inldms3a was overlaid with the swelling map and essentially used as a filter for
the PCA model. The colors show the quantiles of the first principal component of the soil swelling integration. In dark green, the fourth quantile dominated areas are
more vulnerable to swelling across areas dominated by human settlements and production activities representing nearly 20% of the total state land area. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

removing unrealistic spatial artifacts of nationwide available products.
A random forest machine learning approach was able to predict over
80% of spatial variability in swelling attributes. The areas with highest
swelling risks were spread throughout the southeast, southwest, and
western portions, with a large spatial match with urban development
(> 20%). This information is important for both ecohydrological im-
plications and to inform urban development. Prevention through
planning, when applied strategically, can prevent ecological damages

and economic losses by identifying suitable conditions or risks for urban
development.
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doi.org/10.1016/j.landurbplan.2019.103599.

References

Beven, K., & Germann, P. (1982). Macropores and water flow in soils. Water Resources
Research, 18(5), 1311-1325. https://doi.org/10.1029/WR018i005p01311.

Birkeland, P. W., Shroba, R. R., Burns, S. F., Price, A. B., & Tonkin, P. J. (2003).
Integrating soils and geomorphology in mountains—An example from the Front
Range of Colorado. Geomorphology, 55(1), 329-344. https://doi.org/10.1016/S0169-
555X(03)00148-X.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.
1023/A:1010933404324.

Chabrillat, S., Goetz, A. F. H., Krosley, L., & Olsen, H. W. (2002). Use of hyperspectral
images in the identification and mapping of expansive clay soils and the role of
spatial resolution. Remote Sensing of Environment, 82(2), 431-445. https://doi.org/10.
1016/S0034-4257(02)00060-3.

Christidis, G. E. (1998). Physical and chemical properties of some bentonite deposits of
Kimolos Island Greece. Applied Clay Science, 13(2), 79-98. https://doi.org/10.1016/
50169-1317(98)00023-4.

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., ... Béhner, J. (2015).
System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model
Development, 8(7), 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015.

Doesken, Nolan J., Pielke, Sr., Roger, A., & Bliss, Odilia A. P. (2003). Climate of Colorado.
Colorado Climate Center, Atmospheric Science Department, Colorado State
University Retrieved from http://ccc.atmos.colostate.edu/pdfs/
climateofcoloradoNo.60.pdf.

United States Soil Conservation Service. (1976). General Soil Map Colorado. Map.
1:1500000. Retrieved from https://esdac.jrc.ec.europa.eu/images/Eudasm/US/us_
18.jpg.

Goetz, A. F. H., Chabrillat, S., & Lu, Z. (2001). Field reflectance spectrometry for detection
of swelling clays at construction sites. Field Analytical Chemistry & Technology, 5(3),
143-155. https://doi.org/10.1002/fact.1015.

Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., & Schmidt, M. G. (2016). An
overview and comparison of machine-learning techniques for classification purposes
in digital soil mapping. Geoderma, 265, 62-77. https://doi.org/10.1016/j.geoderma.
2015.11.014.

Houston, S. L., Dye, H. B., Zapata, C. E., Walsh, K. D., & Houston, W. N. (2011). Study of
expansive soils and residential foundations on expansive soils in Arizona. Journal of
Performance of Constructed Facilities, 25(1), 31-44. https://doi.org/10.1061/
(ASCE)CF.1943-5509.0000077.

Jayasekera, S., & Mohajerani, A. (2003). Some relationships between shrink-swell index,
liquid limit, plasticity index, activity and free swell index. Retrieved from Australian
Geomechanics: News Journal of the Australian Geomechanics Society. 38(2), 53-58.
https://www.researchgate.net/publication/282820933_Some_relationships_
between_shrink-swell index liquid_limit_plasticity_index_activity_and_free swell_
index.

Jones, D. E., & Holtz, W. G. (1973). Expansive soils — The hidden disaster. Journal of
Materials in Civil Engineering, 43(8), 49-51 https://trid.trb.org/view/133235.

Jones, L. D., & Jefferson, Ian F. (2012). Expansive soils. In J. Burland, T. Chapman, & H.
Skinner (Eds.). ICE manual of geotechnical engineering: Volume 1, geotechnical en-
gineering principles, problematic soils and site investigation (pp. 413-441). ICE
Publishing Retrieved from https://www.researchgate.net/publication/
267764450_Expansive_soils.

Kariuki, P. C., Woldai, T., & Meer, F. V. D. (2004). Effectiveness of spectroscopy in
identification of swelling indicator clay minerals. International Journal of Remote
Sensing, 25(2), 455-469. https://doi.org/10.1080/0143116031000084314.

Kariuki, P. C., & van der Meer, F. (2004). A unified swelling potential index for expansive
soils. Engineering Geology, 72(1), 1-8. https://doi.org/10.1016/50013-7952(03)
00159-5.

Kirby, J. M., Bernardi, A. L., Ringrose-Voase, A. J., Young, R., & Rose, H. (2003). Field
swelling, shrinking, and water content change in a heavy clay soil. Australian Journal
of Soil Research, 41(5), 963. https://doi.org/10.1071/SR02055.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Képpen-
Geiger climate classification updated. Meteorologische Zeitschrift, 259-263. https://
doi.org/10.1127/0941-2948/2006,/0130.

Kruse, F. A., & Elvidge, C. D. (2011). Identifying and mapping night lights using imaging

10

Landscape and Urban Planning 190 (2019) 103599

spectrometry. IEEE1-6 https://doi.org/10.1109/AER0O.2011.5747396.

Lane, P. W. (2002). Generalized linear models in soil science. European Journal of Soil
Science, 53(2), 241-251. https://doi.org/10.1046/j.1365-2389.2002.00440.x.

McBratney, A. B., Mendonca Santos, M. L., & Minasny, B. (2003). On digital soil mapping.
Geoderma, 117(1), 3-52. https://doi.org/10.1016/50016-7061(03)00223-4.

Nayak, N. V., & Christenson, R. W. (1971). Swelling characteristics of compacted, ex-
pansive soils. Clays and Clay Minerals, 19(4), 251-261. https://doi.org/10.1346/
CCMN.1971.0190406.

Noe, D. C. (1997). Heaving-bedrock hazards, mitigation, and land-use policy; Front Range
Piedmont, Colorado. Environmental Geosciences, 4(2), 48-57 Retrieved from https://
store.coloradogeologicalsurvey.org/product/heaving-bedrock-hazards-mitigation-
land-use-policy-front-range-piedmont-colorado/.

Olive, W. W., Chleborad, A. F., Frahme, C. W., Schlocker, J., Schneider, R. R., & Schuster,
R. L. (1989). Swelling clays map of the conterminous United States (USGS Numbered
Series No. 1940). Retrieved from http://pubs.er.usgs.gov/publication/i1940.

Pruska, J., & §ediv3’l, M. (2015). Prediction of soil swelling parameters. Procedia Earth and
Planetary Science, 15, 219-224. https://doi.org/10.1016/j.proeps.2015.08.052.

R Core Team (2016). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing http://www.R-project.org/.

Reuter, H.I. & Hengl, T. (2012). Global Soil Information Facilities-Component Worldgrids.
org. EGU General Assembly Conference Abstracts. Retrieved 9 September, 2018 from
https://www.researchgate.net/publication/233540147_Global Soil Information_
Facilities-Component_ Worldgrids_org.

Romkens, M. J. M., & Prasad, S. N. (2006). Rain Infiltration into swelling/shrinking/
cracking soils. Agricultural Water Management, 86(1), 196-205. https://doi.org/10.
1016/j.agwat.2006.07.012.

Seybold, C. A., & Libohova, Z. (2017). Soil survey: Pedotransfer function of linear ex-
tensibility percent for soils of the United States. Soil Science, 182(1), 1. https://doi.
org/10.1097/SS.0000000000000191.

Siniavskaia, Natalia. (2014). “Regional Differences in New Homes Started in 2013,”
Special Studies, National Association of Home Builders. Retrieved from https://www.
nahb.org/en/research/housing-economics/special-studies/regional-differences-in-
new-homes-started-in-2013.aspx.

Smiles, D. E. (2000). Hydrology of swelling soils: A review. Australian Journal of Soil
Research, 38(3), 501. https://doi.org/10.1071/SR99098.

Soil Survey Staff (2016). Gridded Soil Survey Geographic (§SSURGO) Database for Colorado.
United States Department of Agriculture, Natural Resources Conservation Service
Retrieved from https://gdg.sc.egov.usda.gov/. (FY2016 official release).

Stewart, R. D., Najm, M. R. A, Rupp, D. E., & Selker, J. S. (2016). Modeling multidomain
hydraulic properties of shrink-swell soils. Water Resources Research, 52(10),
7911-7930. https://doi.org/10.1002/2016WR019336.

Taboada, M.A. (2004). Soil shrinkage characteristics in swelling soils (INIS-XA-989).
Skidmore, E.L. (Ed.). International Atomic Energy Agency (IAEA). Retrieved from
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/100/
38100131.pdf.

Thomas, P. J., Baker, J. C., & Zelazny, L. W. (2000). An expansive soil index for predicting
shrink-swell potential. Soil Science Society of America Journal, 64(1), 268-274.
https://doi.org/10.2136/ss5aj2000.641268x.

U.S. Department of Agriculture, Natural Resources Conservation Service. National soil
survey handbook, title 430-VI. Retrieved September 7, 2018 from http://www.nrcs.
usda.gov/wps/portal/nrcs/detail/soils/ref/?cid = nres142p2_054242.

Vaught, R., Brye, K. R., & Miller, D. M. (2006). Relationships among coefficient of linear
extensibility and clay fractions in expansive, stoney soils. Soil Science Society of
America Journal, 70(6), 1983-1990. https://doi.org/10.2136/5s52j2006.0054.

Vaysse, K., & Lagacherie, P. (2017). Using quantile regression forest to estimate un-
certainty of digital soil mapping products. Geoderma, 291, 55-64. https://doi.org/10.
1016/j.geoderma.2016.12.017.

Wells, R. R., DiCarlo, D. A., Steenhuis, T. S., Parlange, J.-Y., Romkens, M. J. M., & Prasad,
S. N. (2003). Infiltration and surface geometry features of a swelling soil following
successive simulated rainstorms. Soil Science Society of America Journal, 67(5), 1344.
https://doi.org/10.2136/sssaj2003.1344.

Yilmaz, I. (2006). Indirect estimation of the swelling percent and a new classification of
soils depending on liquid limit and cation exchange capacity. Engineering Geology,
85(3), 295-301. https://doi.org/10.1016/j.enggeo.2006.02.005.

Yitagesu, F. A., van der Meer, F., & Werff van der, H. (2009). Prediction of volumetric
shrinkage in expansive soils (role of remote sensing). Advances in Geoscience and
Remote Sensing. https://doi.org/10.5772/8328.

Yoo, K., Amundson, R., Heimsath, A. M., & Dietrich, W. E. (2006). Spatial patterns of soil
organic carbon on hillslopes: integrating geomorphic processes and the biological C
cycle. Geoderma, 130(1), 47-65. https://doi.org/10.1016/j.geoderma.2005.01.


https://doi.org/10.1016/j.landurbplan.2019.103599
https://doi.org/10.1016/j.landurbplan.2019.103599
https://doi.org/10.1029/WR018i005p01311
https://doi.org/10.1016/S0169-555X(03)00148-X
https://doi.org/10.1016/S0169-555X(03)00148-X
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0034-4257(02)00060-3
https://doi.org/10.1016/S0034-4257(02)00060-3
https://doi.org/10.1016/S0169-1317(98)00023-4
https://doi.org/10.1016/S0169-1317(98)00023-4
https://doi.org/10.5194/gmd-8-1991-2015
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0030
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0030
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0030
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0030
https://esdac.jrc.ec.europa.eu/images/Eudasm/US/us_18.jpg
https://esdac.jrc.ec.europa.eu/images/Eudasm/US/us_18.jpg
https://doi.org/10.1002/fact.1015
https://doi.org/10.1016/j.geoderma.2015.11.014
https://doi.org/10.1016/j.geoderma.2015.11.014
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000077
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000077
https://www.researchgate.net/publication/282820933_Some_relationships_between_shrink-swell_index_liquid_limit_plasticity_index_activity_and_free_swell_index
https://www.researchgate.net/publication/282820933_Some_relationships_between_shrink-swell_index_liquid_limit_plasticity_index_activity_and_free_swell_index
https://www.researchgate.net/publication/282820933_Some_relationships_between_shrink-swell_index_liquid_limit_plasticity_index_activity_and_free_swell_index
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0060
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0060
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0065
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0065
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0065
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0065
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0065
https://doi.org/10.1080/0143116031000084314
https://doi.org/10.1016/S0013-7952(03)00159-5
https://doi.org/10.1016/S0013-7952(03)00159-5
https://doi.org/10.1071/SR02055
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0090
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0090
https://doi.org/10.1046/j.1365-2389.2002.00440.x
https://doi.org/10.1016/S0016-7061(03)00223-4
https://doi.org/10.1346/CCMN.1971.0190406
https://doi.org/10.1346/CCMN.1971.0190406
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0110
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0110
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0110
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0110
http://pubs.er.usgs.gov/publication/i1940
https://doi.org/10.1016/j.proeps.2015.08.052
https://www.researchgate.net/publication/233540147_Global_Soil_Information_Facilities-Component_Worldgrids_org
https://www.researchgate.net/publication/233540147_Global_Soil_Information_Facilities-Component_Worldgrids_org
https://doi.org/10.1016/j.agwat.2006.07.012
https://doi.org/10.1016/j.agwat.2006.07.012
https://doi.org/10.1097/SS.0000000000000191
https://doi.org/10.1097/SS.0000000000000191
https://www.nahb.org/en/research/housing-economics/special-studies/regional-differences-in-new-homes-started-in-2013.aspx
https://www.nahb.org/en/research/housing-economics/special-studies/regional-differences-in-new-homes-started-in-2013.aspx
https://www.nahb.org/en/research/housing-economics/special-studies/regional-differences-in-new-homes-started-in-2013.aspx
https://doi.org/10.1071/SR99098
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0150
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0150
http://refhub.elsevier.com/S0169-2046(18)31041-7/h0150
https://doi.org/10.1002/2016WR019336
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/100/38100131.pdf
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/100/38100131.pdf
https://doi.org/10.2136/sssaj2000.641268x
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054242
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054242
https://doi.org/10.2136/sssaj2006.0054
https://doi.org/10.1016/j.geoderma.2016.12.017
https://doi.org/10.1016/j.geoderma.2016.12.017
https://doi.org/10.2136/sssaj2003.1344
https://doi.org/10.1016/j.enggeo.2006.02.005
https://doi.org/10.5772/8328
https://doi.org/10.1016/j.geoderma.2005.01

	Soil swelling potential across Colorado: A digital soil mapping assessment
	Introduction
	Research objectives

	Methodology
	Study area
	Digital soil mapping training data
	Prediction factors for soil swelling
	Prediction of linear extensibility and model evaluation
	Integration of soil swelling predicted properties into a soil swelling map
	Urban swelling risk

	Results
	Descriptive statistics
	Prediction factors for soil swelling
	Model evaluation and explained variance
	Spatial patterns of model prediction uncertainty
	Principal component analysis
	Swelling risk across urban areas

	Discussion
	Conclusion
	Acknowledgements
	Supplementary data
	References




