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Abstract

In this paper we propose and analyze an energy stable numerical scheme for the Cahn-
Hilliard equation, with second order accuracy in time and the fourth order finite difference
approximation in space. In particular, the truncation error for the long stencil fourth order
finite difference approximation, over a uniform numerical grid with a periodic boundary con-
dition, is analyzed, via the help of discrete Fourier analysis instead of the the standard Taylor
expansion. This in turn results in a reduced regularity requirement for the test function. In the
temporal approximation, we apply a second order BDF stencil, combined with a second order
extrapolation formula applied to the concave diffusion term, as well as a second order artificial
Douglas-Dupont regularization term, for the sake of energy stability. As a result, the unique
solvability, energy stability are established for the proposed numerical scheme, and an optimal
rate convergence analysis is derived in the ¢°°(0,T;¢?) N ¢%(0,T; H?) norm. A few numerical
experiments are presented, which confirm the robustness and accuracy of the proposed scheme.
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1 Introduction

In this article we consider an energy stable scheme for the Cahn-Hilliard equation, with second
order temporal accuracy and long stencil fourth order finite difference spatial approximation. For
any ¢ € H'(Q), with Q@ ¢ R? (d = 2 or d = 3), the energy functional is given by (see [6] for a
detailed derivation):

B 1, 1,5 1 & _ 5
Bo) = [ (0t 50+ 1 + 51907 ax (1)

where the parmeter € controls the diffuse interface width. In turn, the Cahn-Hilliard equation is
realized as the H~! conserved gradient flow of the energy functional (1.1):

¢t = Alu’u H= 6¢E = (;53 - d) - €2A¢7 (12)
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where p is the chemical potential and periodic boundary conditions are assumed. Subsequently, the
energy dissipation law follows from an inner product with (1.2) by pu: E'(t) = — [, |[Vu|?dx < 0.
Meanwhile, because it is constructed as an H~! gradient flow, the equation is mass conservative:
fQ 8,5¢>dx = 0.

The finite difference and finite element schemes to the CH equation have been extensively
studied; see the related references [1, 16, 15, 22, 20, 28, 32, 37, 39, 43, 44, 45, 46, 63, 65], et cetera.
Meanwhile, it is observed that, most finite difference works in the existing literature have been
focused on the standard second order centered difference approximation; among the finite element
works, most computations are based on either linear or quadratic polynomial elements. On the
other hand, a fourth order and even more accurate spatial discretization is highly desirable, for the
sake of its ability to capture the more detailed structure with a reduced computational cost. Of
course, the spectral/pseudo-spectral approximation is one choice; see the related references [13, 48],
etc. However, the spectral/pseudo-spectral differentiation turns out to be a global operator in space,
and this feature leads to great challenges in the numerical implementations, especially in the case
of an implicit treatment of nonlinear terms; and also, spectral /pseudo-spectral differentiation itself
is involved with O(N?1In N) float point calculations, instead of O(N?) scale for the finite difference
ones.

This article is concerned with fourth order finite difference numerical approximation to the
Cahn-Hilliard equation, with a theoretically justified energy stability and convergence. Among the
existing fourth order finite difference works, it is worthy of mentioning [49], in which the authors
considered a second order accurate in time, fourth order compact difference scheme. The error
estimate was derived, while the energy stability has not been theoretically proved. Similar works
could also be found in [47, 50, 58]. Meanwhile, we notice that, the compact difference approximation
has always been involved with an additional discrete Poisson-like operator, therefore one more
Poisson solver has to be included in the computational cost. Instead, if the long stencil fourth
order finite difference is used in the numerical scheme, such an additional Poisson solver could be
saved. In addition, the truncation error for the fourth order finite difference approximation, over
a uniform numerical grid with a periodic boundary condition, is analyzed in this article. Instead
of the classical maximum norm estimate for the truncation error, based on the standard Taylor
expansion for the test function, we provide a discrete ¢? estimate. As a result, the regularity
requirement is reduced to an H® bound for the test function, compared with the C® bound in
the classical approach. In the 1-D case, such an estimate could be derived with an application
of Taylor expansion in the integral form. In the 2-D and 3-D cases, the discrete and continuous
Fourier expansions for the test function and its higher order derivatives are applied to obtain the
discrete ¢? estimate for the truncation error, in which both the eigenvalue analysis and aliasing
error control have to be considered.

In turn, we apply the long stencil fourth order difference discretization in space, combined with
a second order accurate, energy stable temporal algorithm. There have been extensive studies on
the second order (in time) energy stable numerical approach for the Cahn-Hilliard equation, based
on the modified Crank-Nicolson version; see the related references [13, 15, 16, 17, 37, 38]. As
an alternate numerical approach with energy stability, a careful numerical experiment in a recent
finite element work [67] reveals that a modified backward differentiation formula (BDF) method
could also preserve the desired energy stability for the Cahn-Hilliard flow. Furthermore, since the
nonlinear term in the BDF method has a stronger convexity than the one in the Crank-Nicolson
approach, a 20 to 25 percent improvement of the computational efficiency is generally expected.
In addition, due to the long stencil operators involved in the fourth order spatial discretization,
such an efficiency improvement is expected to be even more prominent. Consequently, we use the
second order BDF concept to derive second order temporal accuracy, but modified so that the



concave diffusion term is treated explicitly. Such an explicit treatment for the concave part of the
chemical potential ensures the unique solvability of the scheme without sacrificing energy stability.
An additional term AAtA(¢*+! — ¢*) is added, which represents a second order Douglas-Dupont-
type regularization, and a careful calculation shows that energy stability is guaranteed, provided a
mild condition A > 1—16 is enforced. As a result of this energy stability, a uniform in time H'! bound
for the numerical solution becomes available, with the discrete H' norm defined at an appropriate
discrete level.

With such an H ,% bound at hand, we are able to derive a discrete £5 bound for the numerical
solution, uniform in time, with the help of discrete Sobolev embedding. Such an embedding analysis
could be derived from a straightforward calculation; instead, a discrete Fourier analysis, combined
with certain aliasing error estimate have to involved in the derivation. In turn, such an ¢% estimate
enables one to obtain an optimal rate (O(At?4h*)) convergence analysis for the proposed numerical
scheme, in the £>°(0,T; %) N ¢?(0,T; H,Ql) norm.

The outline of the paper is given as follows. In Section 2 we provide a discrete £2 truncation error
estimate for the long stencil fourth order finite difference approximation over a uniform numerical
grid. The fully discrete scheme is formulated in Section 3, with the main theoretical results stated.
The proof of these results is given by Section 4. The main numerical results are presented in
Section 5. Finally, some concluding remarks are made in Section 6.

2 The long stencil difference operator and the local truncation
error estimate
The long stencil fourth order finite difference formula can be derived by the Taylor expansion for

the test function. In more detail, the fourth order approximations to the first and second order
derivatives, over a uniform numerical grid, are given by
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h? —fi—a + 16fi_1 — 30fi + 16f;i 11 — fiso
2 L 2 A s Y - % [ % 1+ 1+
D3 ) fi Dy(1 = 15 D5) i TT®
= f"(x;) + O(h"), (2.2)

where D, and D? are the standard centered difference approximation to the first and second order
derivatives, respectively. See the detailed derivations in the related references [30, 31, 42, 55], etc.
These long stencil fourth order finite difference approximations have been extensively applied to
different types of partial differential equations (PDEs), such as incompressible Boussinesq equation
[53, 60], three-dimensional geophysical fluid models [52, 56], the Maxwell equation [25].

In the consistency analysis for these long stencil fourth order finite difference schemes, we denote
a continuous function f, with certain regularity assumption, to be the test function to demonstrate
the accuracy order of the difference operators. Note that the concept of such a test function is
different from the corresponding notation in the finite element method. The classical truncation
error estimate implies that

1Tl < CR* [ fllgs s with (11)s = Dy 4y fi — f (@), (2.3)
172l < Ch | fllgs s with (12)i = D3 4y fi = f" (i), (2.4)

in which the C™ regularity of the test function is involved. Meanwhile, for most time-dependent
PDEs, a max-norm bound of the truncation error (in the | |, norm) is not necessary in the



numerical analysis. Indeed, a discrete £? bound of the truncation error is typically sufficient in
the convergence analysis. Subsequently, a natural question arises: could a discrete £? estimate be
available for the truncation error associated with the fourth order finite difference approximation,

which only requires an H™ regularity for the test function?

This important issue is studied in this section. We begin with the analysis for the 1-D case.

2.1 A discrete /? truncation error estimate over a 1-D numerical grid

Consider a 1-D domain 2 = (0, L), a uniform grid z; = i¢h, with h = L/N*, 0 <i < N* — 1. For
any discrete grid function ¢, which is evaluated at grid points x;, 0 < i < N* — 1, the discrete £2

norm is introduced as
N*—1

2
lglz="n > g7
1=0

Proposition 2.1. For f € HS (Q):= {f € H5(Q) : f is periodic}, we have
I7lly < CH* ([ fllgs,  with 7 = D2y fi = " (22),

in which the fourth order finite difference operator Di (1) is given by (2.4).

Proof. An application of Taylor’s series in integral form shows that
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These expansions in turn yield that
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Meanwhile, an application of Holder’s inequality implies that

Tit1
/ e
1
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Its combination with (2.11) leads to
s < Hf : (2.16)
45\/7 42(901'72790#2)
In turn, a discrete £ estimate of the truncation error 7 is obtained:
N*—1
h P<ont Y |9 < 40n®|| 1O
Z |T\ Z f 2(2i_0,7i42) f 52(0 L’
Le. |[fly < Ch4 ||f||H6(0,L) ) (2.17)
in which the second step comes from the following obvious fact:
(©) <4 H 2.18
Z Hf ZQ(IZ 2,1‘14’_2) f £2 OL) ( )
Proposition 2.1 is proven. O

Remark 2.2. A detailed calculation reveals that the standard Taylor expansion results in the clas-
sical truncation error estimate as (2.4), with a C® regularity requirement for the test function;
while the Taylor expansion in the integral form gives an improved truncation error estimate (2.6),
in which only an HS reqularity requirement is set for the test function.

Remark 2.3. For the long stencil fourth order finite difference approximation (2.1) to the first
order derivative, the following discrete > truncation error estimate can be derived in a similar
manner:

I7illy < CR [ fllgs»  with (11)s = Dy 4y fi = f'(22). (2.19)
The details are skipped for brevity.

2.2 The 2-D and 3-D analyses

Consider a 2-D domain Q = (0, L)? with a uniform grid (z;,y;) = (ih, jh), h = L/N*,0 < i,j < 2N,
and periodic boundary conditions in both directions. For simplicity of presentation in the Fourier



analysis, it is assumed that N* = 2N 4 1. We also make a 2-D extension of the fourth order long
stencil finite difference operator as A, (4) = D?E @t Dz @'

& i 161~ B0+ 16fiss — fiva

D3 wyfij = Di(1 - ﬁDg)fi,j = =] ) 12h2” g JHRI 0 (2.20)
2 ~figa +16f50 — 805 +16f 01— figeo

Dy fij = Dy(1 = 5Dy fig = — BT Ll W2 (2.21)

In addition, for any discrete grid function g, which is evaluated at 2-D grid points (x;,y;), 0 <
i,j < N* — 1, the discrete £2 norm is defined as

N*—1

2
lgllz = h? Z gz?,j- (2.22)
i,j=0

Proposition 2.4. For f € HY (Q), we have
I7lly < CR* 1 fll s, with 7y = Ap ) fig — (AF) (i, 95), (2.23)
in which C' only depends on L.

Remark 2.5. Other than the long stencil difference operator (2.2), the compact fourth order dif-
ference approximations have also been widely studied in the existing literature [47, 50, 58]

h% 12 2
_ Ap + @DmDy

A +O(h%), 2.24
s, oY (2:24)
which comes from a standard Taylor expansion:
h? h?
(Ap + EDgpg)f =Af+ EAQf + O(h%). (2.25)

On the other hand, whenever a time-dependent problem is considered, with Af = g, one has to
. ‘ . 2 . . .
denote an intermediate variable g = (1 + %Ah)g at the numerical grid. In turn, two Poisson-

like equations have to be solved at the numerical level: (Ap, + %D%D;)f = g to obtain f, and

1+ %Ah)g = g to obtain g, since both f and g are usually involved in the original PDE, in
particular for the nonlinear problems. In contrast, for the the long stencil difference operator (2.2),
we only need to solve one Poisson-like equation (D§7(4) + Di(él))f = g. And also, this equation
could be very efficiently solved via an FFT-based fact algorithm, since the long-stencil difference
operator shares exact the same eigenvectors as the standard Laplacian operator Ay, with only a
minor modification in the corresponding eigenvalues.

2.3 Review of Fourier series and interpolation

For f(z,y) € L*(Q), Q = (0, L)%, with Fourier series

flay)= Y frem Gt/ with fi = / [, y)e 2 mEHL dydy, (2.26)
Q

k,l=—o00
its truncated series is defined as the projection onto the space BY of trigonometric polynomials in
x and y of degree up to N, given by

N
Prnfz,y)= Y free?metw/L, (2.27)

kl=—N



Meanwhile, an interpolation operator Zy is introduced if one wants an approximation which matches
the function at a given set of points. Given a uniform numerical grid with (2N + 1) points in each
dimension and a grid function f, where f; ; = f(z;,y;), the Fourier interpolation of the function is

defined by
N

Inf(w,y) = D (fN)ppe?mFet/L, (2.28)
hi= N

where the (2N + 1)? pseudospectral coefficients ( f(fv )k, are be computed based on the interpolation
requirement

f(zi,y5) = In f(xi, y5)

at the (2N + 1)? equidistant points [5, 33, 40]. Note that these collocation coefficients can be
efficiently computed using the fast Fourier transform (FFT). Also, observe that these interpolation
coefficients are not equal to the actual Fourier coefficients. The difference between them is known as
the aliasing error. In general, Py f(x,y) # Zn f(z,y), and even Py f(z;,y;) # In f(zi,y;), except
of course in the case that f € BN.

The consistency and accuracy of the Fourier projection and interpolation have been well estab-
lished in the existing literature. As long as f € H;’;T(Q), the convergence of the derivatives of the
projection and interpolation is given by

[0°f —0°Pnfll < Clf™|pmTlel for 0 <ol < m,

d
10%f —0°Infl < C|f|amh™ 1, for 0<|a| <m, m> 2 (2.29)

where || - || denotes the standard £2 norm and d is the dimension. For more details, see the discussion
of approximation theory by Canuto and Quarteroni [7] .
2.4 Proof of Proposition 2.4

Assume that f € Hg

. has a Fourier expansion

fl@y)= > feexp (2mi(kz +1y)/L). (2.30)

kl=—c0

The Parseval equality shows that

o
.2
17115 =22 > ’fk,l‘ (2.31)
kl=—o0
Similarly, for the derivatives, we have
m - 2902 2\™ 7 .
AT fay) = > (TR0 +12) " fraexp (2rike + 1y)/L). (2.32)
k,l=—oc0
for mg > 1, and the corresponding Parseval equality gives
) o0 47_[_2 2mo 2

lamsp=rt Y (et [ (2.33)

kl=—o0



In particular, we see that

2 _ 72 = ﬁ 2, 52 L
ag = 2y (Maren) Jhlf
kl=—o0
> 47? 6. 2
a1 = 2 3 (@ en) i 2.31)
k,l=—o00

We also note that for any (periodic) discrete grid function over (z;,y;), 0 < 4,7 < 2N, with a
discrete Fourier expansion

N

9i5 = Z Qk’lexp (27['i(k$i + lyj)/L) s (235)
k,l=—N

the corresponding discrete Parseval equality is valid:

N N
R giglP =12 > ael®. (2.36)
ij=0 ki=—N

Meanwhile, we observe that the discrete Fourier expansion of f over the uniform grid (z;,y;),
0 <i4,j < 2N, is not the projection of (2.30), due to the appearance of aliasing errors. A more
careful calculation reveals that

N ~ ~ 00
fiJ' = Z fkﬂlexp (27Ti(kxi + lyj)/L) s With fk,l = Z fk+k1N*,l+l1N* . (237)
k,l=—N k1,li=—00

(See the related derivations in [59].) In turn, taking the centered difference D? (1)’ Dz (1) on f and
making use of the fact that exp (2mi(kz; + ly;)/L) is also an eigenfunction of the discrete operator
Ap, (4) lead to the following formulas:

N y
Ap ) fij = Z (Aka(4) + Mg, a)) Srgexp (2mi(kz; + ly;) /L) (2.38)
kl=—N
where
h? h? —4sin®(kmh/L) —4sin?(Ixh/L)
Aka,(4) = Ak — ﬁ)‘ka Ay, (4) = Al — E)\p Mg = 12 VS — 7z (2.39)
Moreover, a differentiation of the Fourier expansion (2.30) leads to
> —471'2 2 2 P .
Af(ry)= Y (2 W +1) ) fraexp 2mi(ke +1y)/L), (2.40)
k,l=—oc0
and its interpolation at (z;,y;) gives
N o
A2 .
(AP)ig= Y fulexp (@ni(kai +1y;)/L). (2.41)
kl=—N



with

:15,21) _ i <—4(k + mzv*)%;- A(1+ le*>%2> P (2.42)
k1,l1=—00
Therefore, the difference between (2.38) and (2.42) gives
N . -
Tig = D0 (O + M) Jit = J3 ) exp (2milhas + 1y;) /L) (243)
k=—N
As a result, an application of discrete Parseval equality yields
N 2
1713 =223 | Ocay + ) fra = 17| (2.44)
kl=——N

Moreover, a detailed comparison between (2.37) and (2.42) results in

(2) k‘2 2 l? 2
(Ak,a) + Ay, (4 )fkl*f = Mea,(a) 55— |+ [ Ay, 4) Fr

> 4kz+kN*27r2
+ D {(Am,mﬁ( le) )

k1,l1=—o0
(k1,11)#(0,0)

[+ N*)2n?
+ <)‘ly7(4) + (zz)> }fk+k1N A+l N*- (2.45)

The estimates of the above terms are given by the following lemmas. The proofs will be provided
in the appendix.

Lemma 2.6. We have, for some C1 > 0,

2n2 4 [ 2k 1?72 4 [ 27 6
)\kz,(4)+ < Cih (L) , >‘ly,(4)+ 72 < Cih <L> , YVO<ZEKILZN
(2.46)
Lemma 2.7. We have
2
N 00
Ak + ki N*)2m2\
S 1Y (it T S| < ot 1
kl=—N| kilj=—c0
(k1,11)#(0,0)
2
N 00
A1+ LLN"272\ &
Z Z (Aly,(ﬂx) + (Lg) Frvraneganne| < Coh®| e (2.47)
k7l:7N ky,li=—00
(k1,11)7#(0,0)

where Co > 0 is a constant that only depends on L.

A direct consequence of Lemma 2.6 shows that

Y 4k2n? )
> (Akx,w I ) ( 5 Clhs( ) G| < O 151
N

kl=— kl=—N

N 41272
Z (Aly,(4) 1.2 >

kl=—N

> 01h8< ) G < GBI, a8)

kl=—



o
LQ’

()

with C} = in which we used the estimate (2.34)

oo 12 12
fk,l‘2 < Z <<2Z7r) + <2ZT> ) )fk,lr < % HASJCHQ.

k,l=—00
(2.49)
A combination of (2.45), (2.48) and Lemma 2.7 indicates that
- P i)
Z ‘(Aka:,(4) + Niy,@) Frd — fi ‘
kl=—N
N 2 2
4k%7? 41272 P
S 4 Z {((Akx7(4)+L2 ) + <)\ly’(4)+L2 ) ) fk,l‘
kl=—N
2
> A(k 4+ ki N*)272\ .
+ Z (Akz,(4) + ( L12 ) ) Jrt ki N 1 N+
iAo
2
> 4(1 4 L N*)?72\
+ Z ()\zy,(4) + (z2)> Skt by N* 11 N* }
(700
< Cob®||fIIe » (2.50)

where Cy = 8Cy + 8C5. Observe that the Cauchy inequality
lay + az + ag + as|* < 4(Ja1]? + |az|* + |as|® + |as]?)

was applied in the first step.
Finally, a substitution of (2.50) into (2.44) results in (2.23), with the constant C' given by

C =1/CsL. (2.51)

This completes the proof of Proposition 2.4.

2.5 An extension to a 3-D domain

Similarly, consider a 3-D domain Q = (0, L)3 with a uniform grid (z;,y;,2x) = (ih, jh,kh), h =
L/N*, (N* = 2N + 1), 0 < i,j,k < 2N, and periodic boundary conditions in both x, y and z
directions. The 3-D extension of the fourth order long stencil finite difference operator as Ay, (4) =
D§7(4) + D;(At) + DZ(4) can be defined in the same way as (2.20)-(2.21). For any 3-D discrete grid
function g, at grid points (z;,y;, 2x), 0 < 4,7,k < N* — 1, the discrete ¢? norm is given by

N*—1

1
lally = (7 32 oix) " (2:52)

1,5,k=0

The discrete ¢2 truncation error estimate can be performed in a similar fashion as in the 2-D
case. Both the continuous Fourier expansion for the test function and the discrete expansions of
its higher order derivatives interpolated at the numerical grid points have to be analyzed. Lemma

10



2.6 is still valid, which provides a detailed eigenvalue comparison and analysis between Ay, (4) and
A. Furthermore, Lemma 2.7 can be established in a similar way, and the convergence property of
the following triple series plays a key role:

[e.9]

1
Z 1\2 1\2 19\ B0’ (2'53)
mtmie—oo  (([B1] = 3)2 4 (] = 5)2 + (Jma| = 5)?)

(k1,11,m1)#(0,0,0)

with By = 2 is convergent, where 5y = % = 2, with the accuracy order Ky = 4.

As a result, the following theorem could be established. Its detailed proof is skipped for brevity.
Proposition 2.8. For f € HY,.(Q), with Q = (0, L)*, we have

Irlly < Ch (1 fll o s with Tijp = DpayFige = (AF) (i, gz, 21), (2.54)
in which C only depends on L.

Remark 2.9. For simplicity of presentation, we use periodic boundary condition for the test func-
tion and its discrete version. On the other hand, if other type physical boundary conditions, such
as homogeneous Neumann boundary condition is considered, the corresponding analysis for the long
stencil difference approximation (2.1), (2.2), could be derived in the same manner, under the as-
sumption of the same Neumann boundary condition for its Laplacian operator. Such an assumption
is valid in many physically interesting phase field models, such as the Cahn-Hilliard equation in the
next section. The details of these estimates will be left in the future works.

3 The numerical scheme for the Cahn-Hilliard equation

For simplicity, we focus our attention on a 2-D domain. The extension to the 3-D case is expected
to be straightforward.
3.1 The spatial discretization and the related notations

As defined in the previous section, it is assumed that assume Q = (0, L)2. We write L = m - h,

where m is a positive integer. The parameter h = % is called the mesh or grid spacing. We define

the following uniform, infinite grid with grid spacing h > 0: E := {x; | i € Z}, with z; := (i — 3)h.
Consider the following 2-D discrete periodic function spaces:

Vper = {I/ ExE—R | Vij = Vitam,j+Bm:s Vi, j,a,B € Z}
We also define the mean zero space
. h? &
Vper = Vevper v Z Vivj:O

I

The 4th order 2-D discrete Laplacian, Ay, 4) 1 Vper = Vper, is given by

A1) = D3y + Dy -

Now we define the following discrete inner products:

v, €)2 =030 vigtig, Vs € € Voer.

11



Suppose that ¢ € f)per, then there is a unique solution T[] € f)per such that —Ay, 4y Ta[(] = ¢.

We often write, in this case, T,[(] = —Aﬁ 4)C . The discrete analog of the H};} inner product is
defined as

((75)*1 = (gaTh[f])Q = (Th[C]a€)27 Ca E S f)per-

With the above machinery, if v € f/per, then ||VH2_17h = (v,v)-1. If v € Vper, then ||V||§ = (v, v);
||1/||Z = (lvP,1)2 (1 <p<o0),and ||V = maxi<i<m |vi 4l
SJsn

For ¢, ¢ € f}per, the following summation by parts formulas are available:

h2
—(&, A @)z = — (B9 )2 = (Vg Va)a + 15 (And, Apyh)a, (3.1)

(Tho, (=Ap,))¥)2 = (9, ¥)2. (3.2)

In turn, we denote the following norm for the discrete gradient, corresponding to the long stencil
difference:

h2
IV fll5=1IVifll5 + EHAth%- (3.3)
In addition, the discrete || - || o and || - || 2 MOTms are given by
2 2 2 2 2 2
1712 o= 1712+ IVAIZ, IF0e = 1A + A2, (34

For any periodic grid function ¢, the discrete energy is introduced as

1 1 1 g2
En(¢) = 1H¢>||ﬁ - §II¢H§ + ZIQI + §||Vh,(4)¢||%’ (3.5)

The following result, a discrete Sobolev embedding from H }IL to £5, could be derived in the same
manner as Lemma 2.1 in [13], and Lemma 5.1 in [26]. The details are left to interested readers;
also see the related analyses in [27].

Lemma 3.1. For any periodic grid function f, we have

1Flle < CUIfll2 + VA fll2), (3.6)

for some constant C' only dependent on (1.

The inequalities in the next lemma will play an important role in the energy stability and
optimal rate convergence analysis. A direct calculation is not able to derive these inequalities;
instead, a discrete Fourier analysis has to be applied in the derivation; the details will be left in
Appendix A.

Lemma 3.2. We have

LA < W fll=1h - IVh@ Fll2s Vf € Voers (3.7)
HAthZ < HAh,(4)fH27 Vfe Vper- (38)
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3.2 The fully discrete scheme and the main theoretical results

A modified second order BDF temporal discretization is applied to the Cahn-Hilliard equation,
combined with long stencil fourth order difference approximation in space:

3 b1 ko1 k-1
36— 29 4 19
2 AL 2 = Ap @t (3.9)

= (6T = 208 + oM — A )@t — AAEA (4 (@7 = ¢Y). (3.10)

In comparison with the standard BDF algorithm, the concave diffusion term is updated explicitly,
for the sake of unique solvability. In addition, a second order Douglas-Dupont-type regularization
term is added in the chemical potential. Similar ideas could be found in [67], with the finite element
approximation in space, and [27], in which the epitaxial thin film growth model is analyzed.

Remark 3.3. For the rectangular domains considered in this article, other than the fourth order
finite difference algorithm, the implementation of higher order finite element method is also feasible,
while with more involved details. The use of C°-cubic elements for ¢ and the chemical potential
would be relatively straightforward, and the fourth order numerical accuracy in space could be care-
fully obtained, with at least H* reqularity assumption for ¢, ¢; and ¢y. On the other hand, most
computational challenges in this approach are focused on the numerical evaluation of the integrals
for the nonlinear terms, since one would have to develop a quadrature rule to handle the nonlinear
integrals. In addition, one could also do various cross-product finite element spaces with C*-cubic
elements or, again, just CO-cubic elements.

We denote ¢ as the exact solution for (1.2), and the initial value is taken as (;52]. = O(x;,y;,t =
0). In addition, it is noticed that (3.9)-(3.10) is a two-step numerical method, so that a “ghost”
point extrapolation for ¢! is needed. To preserve the second order accuracy in time, we apply the
following approximation:

07! =00 — AtAy gy, with g = (¢°)° = ¢° — €24y, (40 (3.11)
A careful Taylor expansion indicates an O(At? 4 h*) accuracy for such an approximation:
¢~ — @2 < (AL + hY). (3.12)

Theorem 3.4. Given ¢F,¢*~1 € Vper, with OF = @F—1, there exists a unique solution ¢F1 € Vper
for the numerical scheme (3.9)-(3.10). And also, this scheme is mass conservative, i.e., ¥ = @0 :=

Bo, for any k > 0.
Theorem 3.5. For k > 1, we introduce
1

k+1 1 ky ._ k+1
gh(¢+ 7¢)‘_Eh(¢+ )+4At

1
¥t = 61121 + §H¢k“ - ¢"3. (3.13)
For A > %, a modified energy-decay property is available for the numerical scheme (3.9)-(3.10):

En(¢Th, 0%) < En(e", ¢F ). (3.14)

Remark 3.6. The energy stability for a gradient flow has always played an essential role in the
accuracy of long time numerical simulation. Originated from the pioneering references [22, 24], the
related works could also be found for many related physical models, such as the phase field crystal
(PFC) equation and the modified version [3, 4, 41, 62, 66]; epitazial thin film growth models [8, 11,
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57, 61]; non-local gradient model [34, 35, 36]; the Cahn-Hilliard model coupled with fluid flow [10,
14, 29, 54, 64]; etc. Meanwhile, most of these works are associated with either the second order
centered difference or finite element spatial approximations; this article is the first work to justify the
energy stability for a fourth order finite difference scheme, combined with a second order temporal
accuracy.

Remark 3.7. The pioneering numerical algorithm of second order accurate (in time), energy stable
scheme for the Cahn-Hilliard equation could be found in the work of Du & Nicolaides [17], with
many subsequent follow-ups. Such a numerical approach is based on the standard Crank-Nicolson
approximation, with a slight modification in the nonlinear approximation. One challenge associated
with this numerical scheme is the theoretical justification of the unique solvability, which comes
from the Crank-Nicolson approximation to the concave diffusion term. In more details, the unique
solvability for this numerical scheme is ensured under a time step constraint: At < Ch?, because
of the implicit treatment of the concave term. A few more recent works [13, 87| have used a second
order explicit extrapolation formula for the concave term, so that the unique solvability and energy
stability could be both satisfied. Another computational challenge in the numerical implementation of
the scheme reported in [17] comes from a special quadrature rule needed in the nonlinear integration,
which is associated with its Galerkin feature. In comparison, the finite difference implementation
of the nonlinear terms in (3.9)-(3.10) is more straightforward, due to its collocation feature.

As a direct consequence of the energy stability, a uniform in time H} bound for the numerical
solution is given as follows.

Corollary 3.8. Suppose that the initial data are sufficiently reqular so that
At At? -
En(¢°) + T||vh,(4)ﬂ(}1”% + 7||Ah,(4)M2H% < Co,

for some Cy that is independent of h, and A > %. Then we have the following uniform (in time)
H,% bound for the numerical solution:

l™ gy < C1, ¥m 21, (3.15)

in which Cy only depends on Q, ¢ and Cy, independent on h, At and final time.

With an initial data with sufficient regularity, we could assume that the exact solution has
regularity of class R:

®cR:=H30,T;C% N H*0,T; H*) N L>(0,T; H®). (3.16)

Theorem 3.9. Given initial data ®y € HS,.(Q), suppose the exact solution for Cahn-Hilliard

per

equation (1.2) is of regularity class R. Then, provided At and h are sufficiently small, for all
positive integers n, such that nAt < T, we have

12" = ¢"[l2 + (2A8 Y [|AR(@™ — ¢™)[3)'/? < C(AL + 1Y), (3.17)

m=1

where C' > 0 is independent of At and h.
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4 The detailed proof

4.1 Proof of Theorem 3.4: unique solvability
Proof. We see that the scheme (3.9)-(3.10) can be rewritten as

Mol = f, (4.1)
3 1
with Nj[¢] := —A,;@) <2¢ —2¢% + 2¢’H> + Atg® — At(AAL + P Ay (10,
o= 20868 + AtgF T+ AAC A, (48"

Meanwhile, the nonlinear equation (4.1) can be recast as a minimization problem for the following
discrete energy functional:

113 1 2
Fplg] == 3 H2¢ — 20" + §¢k_1

—1,h

H¢>H4 (AAt—i-s th(4)¢H2 [ 8)2, (4.2)

for any ¢ € Vper. In turn, the strong convexity of Fj, (in terms of ¢), over the hyperplane of & = Po,
implies a unique numerical solution for (3.9)-(3.10).

By taking a discrete summation of (3.9), and making use of the fact that Ay 4)u k+ =0, as

well as the mass conservation of the previous time steps: ¢% = ¢F—1 = 3y, we are able to conclude
that ¢k+1 = By, for any k > 0. O

4.2 Proof of Theorem 3.5: energy stability

Proof. Since ¢*1—¢k € Vyer, we take a discrete inner product with (3.9) by (—A @) L (@F T —g"),
with the following inequalities derived:
Spktl _opk 4 L pk—1
<2¢ e () (¢ - ¢k>)
2
1
- = (2 qukﬂ (ka ¢ R ¢k)_l>
1 k41 _ gk k k-1
> (il oL, 4H¢ -,) (43
(=2 (6, (= ) (6 — <Z>’“)>2
1
i CanRT A R Cas PR T ! (4.4)
(A;zl,(z;)(ﬁk“, (—Ap) (" - ¢k)>2 = <_Ah,(4)¢k+1v¢k+1 - ¢k)2
1
= 5 (190w I = IVh, @ 1 + 1V (6" = 9)]12) (4.5)

At (A7 1)@ = 08), (=2 ) (@ = 1) = At Ta (" = G (46)
(Bn(26" = 6571, (A0 6 = ¢h)) = — (205 = oh oM —ob)

1 1
—5 (19" 13 = 19813) — 5lle" — 6113 (4.7)

v
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Meanwhile, an application of Cauchy inequality indicates the following estimate:
Ll ks kH2 k41 k(2
— — AAL||V -
A [0 =+ ABITL (6 = 6B
> 242 {|¢" = 6|y IV (87T = @)z = 24129 — 673, (4.8)

in which (3.7) (in Lemma 3.2) has been used in the second step. In turn, a combination of (4.3)-(4.7)
and (4.8) yields

1 _
En(6*1) = Bu(@") + o (165 = 681200 — 16 — 0 1)2.,)
4At
1 n n n n— 1 n n .
b3 (6 =g~ 16" — 6" B) < (~242 4 D)6 - $MF <0, A k. (49)
Then we arrive at (3.14), provided that A > Tlﬁ‘ This completes the proof of Theorem 3.5. O

4.3 Proof of Corollary 3.8: uniform in time H;} bound

Proof. As a result of (3.14), the following energy bound is available:

_ _ 1 B 1 _
Ep(¢™) < (9™, 0™ ) < En(8” ¢ = En(¢”) + mHéf)O — ¢ P+ §||</50 — ¢ '3
At At? -
= Ep(¢°) + Z”Vh,(4)/~L2H§ + THAh,(ZL)N?zH% <Cy, Vm>1. (4.10)

On the other hand, the point-wise quadratic inequality, %¢4 — %gf)g > —%, implies that
1 1 1
SllgmId = S1e™ 1 > ~3 19, (111)
Its substitution into (4.10) yields
Lompz € my2 < A4 S m||2 m||2 RN
§”¢ I3+ §|Wh,(4)¢ I < Co+ Z‘Q” so that [|¢™(|3 + [[Vi,@¢™ (2 < 2e7(Co + Z\QD- (4.12)
In turn, we arrive at
9, = 3
6™ 17y < 1&™113 + 1V06™ 15 < 1675 + [IVa,8™ 15 < 267%(Co + 1)),
. 3 1/2 .
so that  [|¢™| ;1 < 5—1(2(00 + Z'QD) = C1, Ym>1, (4.13)

in which the second step comes from an obvious fact that [|[V¢™ (|2 < ||V}, (4)¢™ |l2. This completes
the proof of Corollary 3.8. O

Remark 4.1. As a combination of the uniform in time H} bound (3.15) and the discrete Sobolev
embedding inequality (3.6), we arrive at a uniform in time {5 estimate for the numerical solution:

6™ l6 < CC1,  Vm > 1. (4.14)

This estimate will be useful in the convergence analysis presented below.
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4.4 Proof of Theorem 3.9: the ¢*(0,T;¢*) N ¢*(0,T; H?) convergence analysis

Before the ¢2(0,T;¢?) N ¢2(0,T; H?) convergence analysis, we recall a modified version of discrete
Gronwall inequality, excerpted from [15]; this result will be used in the convergence estimate, due
to the 2nd order BDF stencil.

Lemma 4.2. [15] Fix T > 0. Let M be a positive integer, with At < % Suppose {am}n]‘fzo,
{bm}%zo and {cm}%:_o1 are non-negative sequences such that At Zi\n/[:_ol ¢m < D1, with Dy indepen-
dent of At and M. Suppose that, for all At > 0 and for some constant 0 < a < 1,

V4 -1 m
ag+Athm§D2—l—At cmZam_jaj, V1<{ie< M, (4.15)

m=0 m=0 7=0

where Dy > 0 is a constant independent of At and M. Then, for all At > 0,

4
D
ag+Athm§(D2+aoD1)eXp< ! ) V1< /(<M. (4.16)
m=0

11—«
Proof. For ® € R, a careful consistency analysis indicates the following truncation error estimate:

%(I)/H-l o QCI)k + %@k—l
At

= Anu <((I)k+1)3 _ ok 4 k1 _ ngh7(4)¢)k+1
—AAEA, (4 (BFF — @k)) 4k (4.17)

with |71y < C(At? + h*). The derivation of (4.17) is accomplished with the help of Proposi-
tion 2.4 and other related estimates; the details are left to interested readers.
The numerical error function is defined at a point-wise level:

oF =% — ¢F ym >0, (4.18)
In turn, subtracting the numerical scheme (3.9)-(3.10) from (4.17) gives

%&k—o—l —ogk %ng—l
At

— A (Nc(q)k+1’ ¢k+1) _ 2&1@ i q51c—1 _ 52Ah7(4)<5""+1
—AALA (g (P — 95’“)) + 7R, (4.19)
with Nﬁ((I)kJrl, (z)kJrl) — (((I)k+1)2 + (Dk+1¢k+1 + (¢k+1)2)(;~5k+1. (420)

Taking a discrete inner product with (4.19)-(4.20) by #F 1, with a repeated application of
summation by parts, we get

3- 1 - . - . i
(5851 =208 + 5081 @MY ) 4 2At A 1)@ B+ ANE (A (85! = ), A3
= AL(NL@F ), Ay 3T) A, T, (4.21)

The time marching term could be analyzed as follows:

35t o7k Lok k1) S (ke gk k1) L (k. k1 Tk

<2¢ 26" + 586 )22(¢ ) o (St e),
3, ~ 1, - 3, ~ 1 - 1/ - ~ - -

> (G108 - J1648) - (200¥18 - 10948 ) + 5 (191 = M3 - 164 - 3+ 1B) a22)
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The third term on the left hand side of (4.21) could be handled as follows:

- - - 1 - -
(Bn(@+ =35, 8@ ) | = 18w 1B = 18w d° 1) (4.23)

The term associated with the local truncation error could be bounded with the help of Cauchy
inequality:

- - 1 -
(@ 5 )y < (|6 - 772 < §(H¢>’“HII§ + 75 H3). (4.24)

For the nonlinear error term, we begin with an application of discrete Holder inequality:

||N£((I)k+1’¢k+1)| 5 < ||(q)k+1)2 + (I)k+1¢k+1 + (¢k+1)2H3 . ”(ng—HHG
< C>IR" G+ 6" IBI s < C(C*) + CD)II" 6, (4.25)

in which the estimates ||®**1|s < C*, and ||¢**+!||¢ < CC; (which comes from the uniform in time
estimate (4.14) for the numerical solution, as given by Remark 4.1), have been used. On the other
hand, we make use of the discrete Sobolev embedding inequality (3.6) again, and obtain

18 s < CUIH o + IVa T I2) < CUIG Iz + V@ 12)
CUIF 2 + 16511 - | An. )@ 1157, (4.26)

IN

in which the second step comes from the fact that [|[V,¢*+1[l2 < ||V}, 4y@"+![2, while the last step
is based on the following estimate:

V@™ T3 = (8", —Ap )2 < 10" 12 || AR 40" 2. (4.27)
Consequently, a substitution of (4.26) into (4.25) yields
=, 7 7 1/2 7 1/2
VL@ 1)1y < Co(| 2 + 16541 - 1A, 08" 115, (4.28)

with Cy = C((C*)? + C?). In turn, a bound for the nonlinear error inner product term could be
derived:

(NE(‘I)k+1,¢k+1), Ah,(4)¢~)k+1>2 < ||N£((I)k+17¢k+1)H2 . ”Ah,(4)d~)k+1”2

Co(ll" Iz - 1|Anay @12 + 165157 - | Any @152

IN

A

C3,5

2
~ 6 ~
O3+ EHAh,(4)¢kHH§7 (4.29)

with the Young’s inequality applied in the last step.
Subsequently, a substitution of (4.22)-(4.24) and (4.29) into (4.21) yields

g2 ~ ~ 1 ~
G = G+ AU A @85 < (Cae+ H)AHIGHE + At 15, (4.30)
_ 3 - 1 - 1 - - A -
with  GF = ZHﬁkaH% - 1”¢ng + §H¢k+1 — "3+ §At2HAh,(4)¢k+1H%- (4.31)

Meanwhile, for the term [|¢**+1||3, the following inductive estimate is available:

. 4 1 - 4 4, 1 -
B2 < 2okl L)gkn2 < 2okt L 2ok 4 Lpgk-12
IR < 2o L3 < A4 2ot gz <
k+1
< %Z(l)"g’“”_i- (4.32)
= 3403
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This in turn leads to the following inequality

k+1

2
€ it —i
G — G+ A A I < 5(Cre Atz VORI AT (4.33)

Therefore, with an application of Lemma 4.2, and making use of the fact that |75y < C(A#? +
h*), we conclude that

k+1
G+ ALY || Ay @[5 < C(AL + hP), (4.34)
i=1

with €' independent on At and h. Furthermore, with an application of (4.32), we arrive at the
desired convergence estimate:

k+1
165z + (= QAtZ 12nd 13 ) < CCV2(AF + b, (4.35)
This completes the proof of Theorem 3.9. 0

Remark 4.3. The phase field models, such as Allen-Cahn and Cahn-Hillird equations, have a
broader impact on many scientific disciplines. A detailed study of these nonlinear gradient flows
is vital for understanding phase transformations of materials at the atomic and nanometer scales,
the complex processes in biological growth and development, etc. A coupling of phase field model
and fluid motion, such as the Cahn-Hilliard-Navier-Stokes equation [51], turns out be be even
more interesting, since its ability to describe multi-phase flows and its application in tumor growth
evolution. Many techniques in the numerical analysis for the phase field models could be applied
to these coupled systems, with more careful treatments for the nonlinear coupled convection terms.
See the related error estimates in recent years [9, 10, 14, 15, 54]; many more such works are also
expected in the future works.

Remark 4.4. Other than the finite difference analysis presented in this article, there have been
extensive works on the finite element analysis for the Cahn-Hilliard equation, such as [2, 18, 19,
21, 23], ete. In fact, many ideas in the stability and convergence estimates for these two different
numerical approaches have followed similar mathematical principles; while the technical details have
to be presented in different forms.

5 Numerical results

The numerical implementation of the proposed fourth order finite difference scheme (3.9)-(3.10)
requires a nonlinear solver. Meanwhile, since the nonlinear term corresponds to a convex functional,
as indicated by (4.2), some ideas associated with convex optimization could be efficiently applied.
We use the precondition steepest descent (PSD) iteration to implement this numerical algorithm;
such an iteration has been proposed and analyzed for the regularized p-Laplacian problem in recent
works [26, 27], and its extension to Cahn-Hilliard-type problem is straightforward.
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5.1 Precondition steepest descent (PSD) solver

The main idea of the PSD solver is to use a linearized version of the nonlinear operator as a pre-
conditioner, or in other words, as a metric for choosing the search direction. A linearized version
of the nonlinear operator Ly, : Vper —+ Vper, is defined as follows:

L[] = =4 (¥ + Aty — At(e? + AA)AT (9. (5.1)

Given the current iterate ¢(™ € Vper, we define the following search direction problem: find d™ e

o

Vper such that
L[] = f— N [p™] =,
where 7(") is the nonlinear residual of the n'" iterate ¢(™). This equation can be solved efficiently

using the Fast Fourier Transform (FFT).
In turn, the next iterate is given by

o) = ¢ g™, (5.2)
where @ € R is the unique solution to the steepest descent line minimization problem
@ := argmax Fj,[¢™) + ad™] = argzero 6 F, [¢™ + ad™](d™). (5.3)
acR a€cR

The geometric convergence analysis of the PSD solver has been established in [26], for egu-
larized p-Laplacian problem. For the Cahn-Hilliard-type problem (3.9)-(3.10), the corresponding
nonlinearity is weaker than that of the p-Laplacian problem, and the geometric convergence rate:
¢ — ¢FF1 (where ¢F*1 is the exact numerical solution to (3.9)-(3.10)), as n — oo, is expected
to be derived in a similar way; the details are left to interested readers.

5.2 Convergence test for the numerical scheme

In this subsection we perform some numerical experiments to support the theoretical results, using
a uniform Cartesian grid and set periodic boundary conditions. In particular, it is observed that
the search direction and Poisson-like equations can also be efficiently solved efficiently by using
the Fourier pseudo-spectral method (see the related discussions in [5, 12, 33, 40]) and Fast Fourier
Transform (FFT).

To test the convergence rate, we choose the data such that the exact solution of (1.2) on the
square domain €2 = (0,3.2) x (0,3.2):

de(z,y,t) = % sin (272/3.2) cos (27y/3.2) cos(t). (5.4)

We take a quadratic refinement path for scheme (3.9)-(3.10) , i.e. At = Ch?. The final time is
taken as T = 0.32, and we expect the global error to be O(h*) under the || - ||o and || - |2 norm, as
h, At — 0. The other parameter are given by L, = L, = 3.2, ¢ = 0.1.

To investigate the accuracy in space, we fix At = 10~% so that the temporal numerical error is
negligible, and we compute solutions with grid sizes N = 32 toN = 128 in increments of 16, and we
solve up to time 7" = 0.32. The numerical errors are displayed in Table 1; the fourth order spatial
accuracy is apparently observed for the phase variable.

To explore the temporal accuracy, we fix the spatial resolution as N = 256 so that the numerical
error is dominated by the temporal ones. We compute solutions with a sequence of time step sizes,
At = le, with Np = 100 to N = 500 in increments of 100, and the same final time T = 0.32.

Table 2 shows the discrete 2 and ¢>° norms of the errors between the numerical and exact solutions.
A clear second-order accuracy is observed for the phase variable.
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Table 1: Discrete 2 and ¢*° error norms and the convergence rates for the computed solution with
scheme (3.9)-(3.10). The time step size is fixed as At = 1074

h |¢ —Zhoello  Rate |¢ —Tpoell2  Rate
28431 x 10°% - 45964 x 1076 -

5.6591 x 10~7  3.98 9.1001 x 10~7  3.99
1.7970 x 1077 3.99 2.8843 x 10~7  3.99
7.3859 x 107® 3.98 1.1845x 1077 3.99
3.5787 x 107% 3.97 5.7364 x 10~% 3.98
1.9454 x 1078 3.96 3.1174 x 107® 3.96
1.1523 x 107%  3.94 1.8461 x 10~ 3.94

b
i

o MOO‘MN’

©o0| L0o| Lo | Lo | LoL
eleienivzied
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Table 2: Discrete £2 and £>° error norms and the convergence rates for the computed solution with
scheme (3.9)-(3.10). The spatial resolution isfixed as N = 256.

At ||¢*Ih¢e||oo Rate ||¢*Ih¢e||2 Rate
03298918 x 107 - 4.6310 x 107 -

‘i—%% 7.2833 x 107% 1.99 1.1664 x 107 1.99
032 39762 x 1078 1.97 5.2466 x 10°8  1.97
i) 1.8737 x 1078 1.95 3.0006 x 1078 1.95

4
% 1.2241 x 1078 1.92  1.9604 x 108  1.92

5.3 Numerical simulation of spinodal decomposition and energy dissipation

We simulate the spinodal decomposition of a mixed binary fluid and present the energy dissipation
in this subsection. The parameters are given by L, = L, = 12.8, ¢ = 0.03, h = 12.8/512,. The
initial data for this simulation is taken as a random field values (;5?7j =¢+0.1-(2r;; — 1), with an
average composition ¢ = 0 and ri; € [0,1]. For the temporal step size At, we use increasing values
of At in the time evolution: At = 0.01 on the time interval [0,2000] and At = 0.04 on the time
interval [2000,6000]. Whenever a new time step size is applied, we initiate the two-step numerical
scheme by taking ¢~! = ¢°, with the initial data ¢° given by the final time output of the last
time period. The snapshots of spinodal decomposition for the proposed numerical scheme, with
second order accuracy in time and fourth order accuracy in space, can be found in Figure 1. The
corresponding energy decay plot is displayed in Figure 2.

The log-log plots of energy evolution and the corresponding linear regression in Figure 2 shows
that the energy indeed decays like t~1/3 for the proposed scheme, which verifies the one-third power
law. The detailed scaling “exponent” is obtained using least squares fits of the computed data up
to time ¢ = 400. A clear observation of the a.t~% scaling law can be made, with a. = 2.3670,
be = 0.3332. In other words, an almost perfect ¢t~/3 energy dissipation law is confirmed by our
numerical simulation.

The linear regressions is only taken up to ¢ = 6000, since the saturation time would be of the
order of £72.
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Figure 1: (Color online). Snapshots of spinodal decomposition of Cahn-Hilliard equation for a
mixed binary fluid with scheme (3.9)-(3.10) in © = (0,12.8) x (0,12.8) at a sequence of time
instants: 1, 10, 100, 200, 400 and 2000. The surface diffusion parameter is taken to be ¢ = 0.03
and the time step size is At = 0.01.

100 F b

L L L
10° 10° 102 108
time

Figure 2: The evolutions of discrete energy. The parameters are given in the text and in the caption
of Figure 1. The energy decays like t~1/3, which verifies the one-third power law. More precisely,
the linear fit has the form a.t % with a. = 2.3670, b, = 0.3332.

22



6 Concluding remarks

In this article, we propose and analyze an energy stable fourth order finite difference scheme for the
Cahn-Hilliard equation, with second order temporal accuracy. As a preliminary truncation error
estimate for the long stencil difference operator, over a uniform numerical grid with a periodic
boundary condition, the discrete ¢2 estimate only requires an H™ regularity for the test function,
which in turn results in a reduced regularity requirement. In the temporal approximation, we apply
a modified BDF algorithm, combined with a second order extrapolation formula applied to the
concave term. And also, a second order artificial Douglas-Dupont regularization is included in the
numerical scheme, to ensure the energy stability at a discrete level. With such a careful construction,
the unique solvability and energy stability are proved for the proposed numerical scheme, and a
uniform in time H }% bound for the numerical solution is established. As a result of this H % bound,
we are able to derive an optimal rate convergence analysis for the proposed numerical scheme, in
the £°°(0,T; 02)N¢%(0,T; H }%) norm. In addition, a few numerical experiments have confirmed these
theoretical results, and the numerical simulations results of spinodal decomposition in a mixed
binary fluid have indicated an energy dissipation law of ¢~1/3.

A  Proof of Lemma 2.6

By substituting (2.38), we see that the first inequality of (2.46) is equivalent to

4 Ak>m2h? 2k7\°
—4sin®(kmh/L) — gsm‘l(/mh/L) + % < C1h° (L”) , VO<k<N. (A1)

We denote ¢y = kmwh/L. Due to the fact that h = ﬁ’ we have
ogckgg, V1<k<N. (A.2)

In turn, we need both the lower and upper bounds of —4sin®c;, — %Sin4ck + 402 to establish the
estimate (A.1). For the lower bound, the following inequality is observed:

1

hi(t) := sin’t + gsin4t < ho(t):=t*, Vit>0. (A.3)

The derivation of this inequality is based on the fact that
h1(0) = ha(0) =0,  h1(0) = hy(0) =0, (A.4)

and a careful comparison between their second order derivatives:
" 2 102 2 5 . 4 "

hi(t) =2 (cos t + sin“tcos“t — 35in t> < hy(t)=2, Vt>0. (A.5)

As a result of (A.3), we obtain the following lower bound:

-2 4.y 2
0 < —4sin“cy, — 3sin ek +4c;, VO<Ek<N. (A.6)
For the upper bound, we begin with a Taylor expansion for sint:
t3 t3

. ™
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in which the second inequality comes from the range that 0 < ¢ < 5. Subsequently, we set

¢, = kmh/L and arrive at

_ 4 S\ 4 A\ Te 25 2 1

4sin’cy, + §81n4ck >4 (ck — é“) + = 3 (ck — é“) = 4cz — 502 + §cz — 871 10 + @ 12 (A.8)
for any 0 < k£ < N. In turn, the following estimate is available:
4 7 2 2 1

—4sin%c), — gsin%k +4c < §02 — §cz + 87161160 979 c?, VO<k<N. (A.9)

Consequently, a combination of (A.6) and (A.9) results in

4 76 2 2 1

—4sin’c), — gsm cr+4ch| < 9k~ §c,§ + 8—16,1;) - @c}f, VO<k<N. (A.10)

On the other hand, by the definition ¢; = kwh/L, the following estimates can be derived:
1

8 =h8 (kn/L)° < 6—4}16 (2kw/L)®, VO<k<N, (A.11)
m—6 ]
=8 < (g) - h0 (2km/L)°, ¥m>6,0<k<N. (A.12)

Finally, a combination of (A.10), (A.11) and (A.12) implies (A.1), with an appropriate choice of
C1. The proof of the first part of Lemma 2.6 is finished. The second inequality can be derived in
the same manner.

B Proof of Lemma 2.7

We see that the expansion for HA3 f H 2 in (2.34) can be decomposed in the following way:

‘ASfH2 Z Ikl7 with

k,il=—N
6
s 2k + kN T\2 /201 +1;N*)7\? 2
S (( () +<<£>>> o ®)
k1,l1=—00

In particular, we observe that

<<2(kz+§1N*)w>2 . <2<z+zL1N*)7r>2)6
. ((2(k+§1N*)ﬂ>2+ (2(l+lL1N*)7r>2> - II,},. (B2)

Meanwhile, the following fact is obvious

2 gy
Shtky N* 11, N*

— L27

i.e.

,l-i-llN*

4(k + k1 N*)?r?

4(k + k1 N*)?r?
Az, (4) + 72

L? ’

< since Ay, (4) < 0 and [Ag, (4)| < 4k2 ) (B.3)
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Therefore, the following estimate is valid for a fixed (k,[) and (k1,11) # (0,0):

A(k 4+ ki N*)*n?\ ; 4(k + ki N*)2n?
Aka,(4) 72 Jhtky N* 141, N* I
)
2(/€+k1N*)7T 2 2(Z+Z1N*)Tr 2 I
< . ) 4+ L
- L L L?
4(N*)272 1 1\ [T
(5 (- 37+ i -57%)) 23
1 1 1
176]14#—4 /% 1 — (B.4)
(k1] = 2)% + (Ih] = 5)?)
in which the grid size h = 5575 N 7 Was recalled. Also note that we used the following estimate in the
third step

<

A+ N*

IN

IN

(k1| — 5)N* (|| — $)N*
N*|>— 2 N* > ——2
|k + ki N*| > 5 . I+ 4LNT| > 5 ,

due to the fact that |k|, |l| < N*/2. Consequently, its substitution into (2.47) shows that

for /61 75 0, l1 7’5 0, (B.5)

> Ak + ki N*)2m2\ .
Z ()‘ka:,(4) + ( 1) ) Jrt ki N 41 N+

1.2
ki,lj=—00
(k1,11)#(0,0)
o
Ak + k1 N*)?m2\ -
S Z (Akx,(@ + ( 72 ) Jretky N* 141, N+
( : 1 ;1111 );?5:))
> 1 Ikl 1 Ikl
< D Y = C"hty ) =2 (B.6)
= 2 2 2
iz 16 L2 (|| = $)2 + (In] = $)?) L
(k1,11)#(0,0)
where -
1 1
Cr=—rt > 5 (B.7)
16 oo (K1l =32+ (|1 = 3)?)
(k1,11)#(0,0)
Note that the double series
o0
1
> e e (B:3)
ky,ly=—o00 ((|]€1| - §> + (“1‘ - 5) )
(k1,11)#(0,0)
with By = 2, is convergent. In turn, we arrive at
2
N o) \ 4(k + klN*)Qﬂ.2 R
> > ki, (4) T 72 Jrekey N* 141, N*
kJl=—N | ki1,l1=—0c0
(k1,11)#(0,0)
al w278 1kl 8| A3
kl=—N kl=—N
(C*)
= Sl (B.9)
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in which the decomposition (B.1) was used in the second to the last step. Therefore, the first

inequality of Lemma 2.7 is proven by taking Cy = ( LQ) The second inequality of Lemma 2.7 can

be established in the same manner. This completes the proof of Lemma 2.7.

C Proof of Lemma 3.2

Proof. For any periodic grid function f, it has a corresponding discrete Fourier transformation:
N
fz',j _ Z fé}fmeQﬂz(Za:i+myj)/L, (Cl)
lm=—N

where x; = (i — %)h, yj=(J— %)h, and féNm are the coefficients. In turn, for an application of the
operator —Ay 4) to f, the following discrete Fourier expansion is available:

N

~Apfij= Z (ve + Vm)fe]’\fmGQﬂi(ZxHrmyj)/L? (C.2)

lm=—N
N .

*Ah,(4)fi,j = Z A&mfé\fmeZm(Easi+myj)/L7 (C.3)

fm=—N
. 4sin? &Zh h?
with v, = TL, by = 1/;3 + 121/k, Ao = e + - (C4)

For any f € f/per, we observe that févm = 0, due to the fact that f = 0. In turn, a similar expansion
could be derived for (—A, 4))7' f:

( Ah ) le,J _ Z AE mfN 2mi( €a71+myj)/L (C5)
£,m##(0,0)

On the other hand, the following identities could be derived, based on the orthonormal property
of the Fourier basis function:

A = (D) P2 =L > A Il (C.6)
£,m##(0,0)

IVhwfl3 = (f.—Dn@whH2=L> D Aemlflal (C.7)
£,m##(0,0)

for any f € f)per. Meanwhile, an application of Parseval equality to (C.1) implies that

HAP=L2 > 1> (C.8)

£;m#(0,0)

An application of discrete Cauchy-Schwarz inequality leads to

2

Do) <l X AP Y AnlfP (C.9)

£,m#(0,0) £,m#(0,0) £;m#(0,0)

which is equivalent to | f|3 < Hf||2_1’h NV, fl3, for any f € f)per. This completes the proof
of (3.7).
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The proof of (3.8) follows a similar argument. By making a comparison between (C.2) and
(C.3), combined with an application of Parseval equality, we get

N
IARFIE =12 > (et vm) 10l (C.10)
fm=—N
N
1A fla=L2 > AP (C.11)
lm=—N

Therefore, (3.8) becomes a direct consequence of the following fact:
|I/g + l/m| =vp+vy, < A&m = |Ag7m|. (0.12)

The proof of Lemma 3.2 is finished. O
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