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The Earth is a complex system comprising many interacting spatial and temporal scales. We developed a transdisciplinary data-model
integration (TDMI) approach to understand, predict, and manage for these complex dynamics that focuses on spatiotemporal modeling and
cross-scale interactions. Our approach employs human-centered machine-learning strategies supported by a data science integration system
(DSIS). Applied to ecological problems, our approach integrates knowledge and data on (a) biological processes, (b) spatial heterogeneity in
the land surface template, and (c) variability in environmental drivers using data and knowledge drawn from multiple lines of evidence (i.e.,
observations, experimental manipulations, analytical and numerical models, products from imagery, conceptual model reasoning, and theory).
We apply this transdisciplinary approach to a suite of increasingly complex ecologically relevant problems and then discuss how information

management systems will need to evolve into DSIS to allow other transdisciplinary questions to be addressed in the future.
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Unanticipated ecological changes and humans’
inability to quickly mitigate or adapt to them have caused
significant socioeconomic disruptions. Examples include the
Dust Bowl of the 1930s; Hurricanes Harvey, Irma, and Maria
in 2017; and disease outbreaks, including Zika and dengue
(MEA 2005, Jones et al. 2008, Peters et al. 2008, Carpenter
et al. 2009). These “ecological surprises” often result when
biological processes, spatial heterogeneity in land surface
properties, and environmental drivers interact across spatial
and temporal scales to influence multiple levels of biological
organization that can lead to alternative states of the system
(Bestelmeyer et al. 2011, Johnson et al. 2015). Examples of
events governed by cross-scale interactions include wild-
fires that start small (ignition of an individual tree) and
spread to encompass increasingly broader spatial extents
as a series of thresholds are crossed when dominant pro-
cesses change through time (Peters et al. 2004a). For other
surprising events, such as floods, volcanic eruptions, and
hurricanes, the high-intensity impact of the environmental

driver is applied over a broadscale to overwhelm fine-scale
heterogeneity in land-surface properties and biological pro-
cesses that homogenizes impacts and responses over large
areas (Brokaw et al. 2012). Heterogeneity can subsequently
redevelop as environmental drivers act on the underlying
landscape template (Romme et al. 2016) or subtle changes in
one or more drivers can cause dramatic, nonlinear responses
that can be difficult or impossible to reverse if thresholds are
crossed (Fagre et al. 2009). Such changes are often unantici-
pated because the sequencing and patterns of events, their
intensity of impact, or rate and pattern of spread and recov-
ery lack historical precedent (Nadeau et al. 2017).
Ecologists, biologists, and Earth-system scientists are
increasingly being asked to predict the occurrence of such
events, minimize their negative impacts, and promote system
recovery. However, predictions and management recom-
mendations are often based on knowledge of a select subset
of system components or by extrapolating data from other
locations or previous time periods (e.g., grazing management

BioScience 68: 653-669. Published by Oxford University Press on behalf of American Institute of Biological Sciences 2018. This work is written by (a) US

Government employee(s) and is in the public domain in the US.
doi:10.1093/biosci/biy069

https://academic.oup.com/bioscience

September 2018 / Vol. 68 No. 9 « BioScience 653

6102 1900100 1 U0 1sonB Aq Z810605/€59/6/89/19BISE-[ILE/SOUSIOSOI0/W0D dNO™dIWSpEoe)/:SA]JY WO} POPEOJUMOQ



Overview Article a

in the American Southwest in the late 1800s was based on
European and midwestern approaches with catastrophic
results; Bestelmeyer et al. 2006). Extrapolations based on
such simplifications and assumptions are further compro-
mised and invalidated when (a) a new driver is introduced,
such as an exotic species, or a key biological component is
ignored (Young et al. 2017); (b) nonlinear and cross-scale
interactions result in unanticipated emergent behavior that
differs from dynamics of individual components or earlier
time periods (Peters et al. 2004a, Soranno et al. 2014); (c)
spatial processes connect ecosystem components by the
flow of material, propagules, energy, or information (spa-
tial contagion) to overwhelm local processes (Peters et al.
2006, Okin et al. 2015); (d) spatial heterogeneity in the land
surface template results in variable ecological responses that
accentuate or dampen environmental driver effects (Seidl
et al. 2016); (e) legacies, lags, thresholds, and feedback loops
occur with nonlinear responses to environmental drivers
to violate linearity assumptions (Bestelmeyer et al. 2011,
Collins et al. 2014); and (f) the mean and extreme values
of one or more drivers extend beyond their historical range
of variability (i.e., nonstationarity; Milly et al. 2008). If one
or more of these conditions occurs, then extrapolation of
data or results from one location (or time period) to other
locations (or time periods) can lead to high uncertainty and
large unexplained error in the results (Miller et al. 2004,
Peters et al. 2004b, Dixon Hamil et al. 2016). Thus, alterna-
tive approaches are needed to account for these nonlinear,
complex dynamics.

New technologies are increasing awareness that the Earth
is a complex, interconnected system at many spatial and
temporal scales (Heffernan et al. 2014). Dynamics at one
scale can influence or have consequences for scales and
dynamics of interest to other disciplines through the flow
of material, energy, or information (Liu et al. 2015). These
interactions can be increasingly quantified or observed
directly with recent advances in technology (e.g., Vivoni
2012). For example, genomics, metagenomics, and micro-
biological techniques reveal fine-scale interconnections
among soil nutrients, microbial communities, and the plant
microbiome that explain patterns of adaptation and survival
observed by plant biologists and ecologists (Wullschleger
et al. 2015). The importance of scale and interactions among
scales to emergent ecological dynamics has a long history
in ecology (e.g., Levin 1992, Gurevitch et al. 2016), but an
approach that quantifies relationships among processes, pat-
terns, and drivers—within and across scales—for a system
exhibiting complex dynamics is still needed (Stegen 2018).

Advances in sensors, software, and other infrastructure
are also allowing more biological and physical processes,
environmental properties, locations, and time steps to
be detected, quantified, coordinated, and made accessible
through the Internet and other sources than at any time in
history (Hampton et al. 2013, Michener 2015). Advances
in big data sharing, analytics, and related open-source soft-
ware tools and plug-ins are facilitating open science across
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disciplines (Hampton et al. 2015). For example, the R statis-
tical language (R Development Core Team 2017) consoli-
dates a variety of user-contributed packages in one coherent
data analysis environment; similarly, proprietary software
(e.g., the ArcGIS suite of geospatial software) can be used to
collate disciplinary contributions into an integrated frame-
work (e.g., Brown 2014).

New technologies are also supporting the need for a
transdisciplinary research approach to understand, predict,
and manage for these complex dynamics (Plowright et al.
2008, Reid et al. 2010). For example, understanding the
multidimensional aspect of dengue spread requires collabo-
ration among physicians, epidemiologists, and ecologists
(Vasilakis et al. 2011). Although data availability and open
science within disciplines is increasing (Hampton et al.
2013, Soranno et al. 2014), there is an urgent need for cross-
disciplinary collaboration among scientists to integrate and
leverage existing data and understanding of processes to
inform the strategic collection of new data, to guide manage-
ment in undersampled locations, and to better predict future
conditions so as to minimize ecological surprises and their
impacts (Reid et al. 2010, NASEM 2016).

We propose that recent advances in technologies and
an emphasis on data and metadata standards and sharing
within and across disciplines have positioned ecologists
to reduce the probability of future ecological surprises.
Our goal was to develop an operational transdisciplinary
approach that accommodates and facilitates integration of
large and diverse types of data and knowledge to (a) reduce
the high spatial heterogeneity in sampling frequency, inten-
sity, and quality across the surface of the Earth and fill data
or knowledge gaps for underrepresented locations; (b) char-
acterize the nonstationarity of environmental drivers and
ascertain the extent to which knowledge of the past can or
cannot inform the future; and (c) inform land managers and
others in prioritizing locations.

Our transdisciplinary data-model integration (TDMI)
approach combines software technologies in human-assisted
machine learning to optimize the efficiency of the scien-
tific method with recent advances in analyses of big data,
including multimodel comparisons, multivariate dimension
reduction, and machine-learning techniques, with data and
knowledge from domain experts and other multiple lines of
evidence (figures 1 and 2). The approach is supported by a
data science integrated system (DSIS), in which data from
long-term observations and experimental manipulations,
output from analytical and numerical models, and prod-
ucts from sensors and imagery products, are standardized
and harmonized to promote integration. As applied to the
specific problems that we study, ecological dynamics in dry-
lands, we sought to extend point- or plot-based understand-
ing to landscape, watershed, and regional scales in order
to improve land management and prediction capabilities.
To accomplish this, our approach integrates biological pro-
cesses and associated patterns at multiple scales, spatial het-
erogeneity in the land surface template, and environmental
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Figure 1. Conceptual framework for complex systems. Spatial scales are linked by processes that either propagate from
finer to larger scales (upscaling, red arrows) or overwhelm finer-scale processes and patterns (downscaling, blue arrows).
Changes in the pattern—process relationships through time within locations can influence dynamics across locations via
cross-scale interactions. Data needs differ for each spatial scale: for example, local processes and biophysical properties
at fine scales; maps of spatial patterns in the soil-geomorphic templates, environmental drivers, and spatial processes

at landscape scales; and broadscale patterns in spatial processes, land surface properties, and environmental drivers
averaged through time at regional to continental scales. Modified from (Peters et al. 2008).

drivers using data and knowledge drawn from multiple
lines of evidence across multiple spatiotemporal scales. Our
TDMI approach goes beyond extrapolation, which typically
relies on projecting or extending observations into unknown
locations (Turner et al. 1989). We focus on functional
responses at multiple, interacting scales that link patterns
and processes, and allow processes to propagate across scales
of spatial heterogeneity (Cadenasso et al. 2007, Peters et al.
2007); flows of material within and among spatial units can
overwhelm or attenuate local processes (Okin et al. 2015).
Relationships are developed between observed pattern and
underlying processes within each scale, and the pattern-
process relationships connect scales to provide a mechanis-
tic understanding of dynamics that extend across scales in
space or time and lead to cross-scale emergence (Peters et al.
2007, Heffernan et al. 2014).

We apply this approach to a suite of increasingly com-
plex ecologically relevant challenges that culminate in the

https://academic.oup.com/bioscience

development of the TDMI approach. Our first example is a
simple issue to demonstrate the following concepts: (a) local
dynamics: primary production in wet versus dry periods—
then build in complexity with expanding spatial extent
to illustrate the analytical techniques; (b) landscape-scale
dynamics: Great Plains agroecosystems during historic
drought—and finally increase the scope of the problem that
requires an transdisciplinary team of scientists working
with software engineers; (c) regional- to continental-scale
dynamics: patterns of animal disease spread across the
western United States. In these examples, we use readily
available, standardized data, primarily from Web-based
sources in our DSIS. These analyses are followed by more
challenging applications of our approach, wherein we
address questions that integrate short- and long-term data
in time and space across a heterogeneous landscape. Many
of these data originate from independent, investigator-
driven experiments and observational studies with different

September 2018 / Vol. 68 No. 9 « BioScience 655

6102 1900100 1 U0 1sonB Aq Z810605/€59/6/89/19BISE-[ILE/SOUSIOSOI0/W0D dNO™dIWSpEoe)/:SA]JY WO} POPEOJUMOQ



Overview Article am

8. Conduct g 1. Observation of
experiments to test z pattern
new hypotheses 7. Refine theory for - )
wet —dry periods PPT H,: Primary
Theory development 2. Develop conceptual production
Ecosvstem dvnamics model for processesand  (ANPP) is linearly
v v drivers underlying pattern  related to annual
. L in drylands
Water drives ANPP dynamics in drylands ’ precipitation
but relationships and processes depend (b) (PPT)
on multi-year patterns in PPT a 3. Generate hypotheses to
= z / explain pattern
Dry, no trend g ,ANPP=0.3+1.2"biomass (t-1)
o (R2=0.95, p<0.0001) PPT e ~
S / g4 / Jornada database
B <0 wet Measurements, observations, model output
e 4l 2 6 through time
Previous zeal’s herbaceous biomass

(d) H,...: herbaceous biomass (plant growth) and )
litter via positive feedbacks on plant

available water, explain patterns in grass

4, Access database

to test hypotheses | time
(iterative with

human learning)

Response [Explanatory N
variables factors
ANPP PPT

Perennial grass Litter

production in wet period Y, ANPP Herbaceous
5. Conduct statistical Seed production biomass
. Conduct statistica i Transpired
6. Interpret results, analyses for pattern No. recruits w:ter
identify new . . - N //
process relationships
hypotheses
- ... —ANPP=0.3+1.2*biomass (t-1)
() 201 (iv) (iiii) '8, (R2=0.95, p<0.0001) 20 (ii) 2004-08 4100 501 (j) 2004-08 wet
= 5 |15 Transp=-2.2—- 2.9 (Year — 2003) 4 a 5 o 540
2 =7 |P=0.0017 kS e 2 b =
5 0 o Ko - =
£ =0 A z 2 100f 505 £ 20
R With %0 2004-08| |s ol I
E 2|5 ° ] 7 T ° 0
b g +Bfeedbacks 42 - 0 1970 1990 2010
0 P year’s her 1990 1995 2000 2005 2010 Year
1992 1996 2000 2004 2008 I biomass Year

4

Figure 2. Developing the conceptual basis of transdisciplinary data-model integration: Primary production in wet versus
dry periods at local scale. We developed an eight-step framework with relatively simple statistical analyses to explain
observations of aboveground net primary production at the Jornada that were remarkably higher than expected based on
previous studies and dryland theory. An iterative approach with human learning (light pink arrow) was used to access the
long-term Jornada database multiple times to analyze different data sets as different hypotheses about grass demographic
processes were tested. A simulation model parameterized with additional Jornada data was used to refine the hypothesis
testing and to guide new experiments to be tested in the field. Dryland theory about the relationship between precipitation
and primary production was refined on the basis of grass responses in wet periods. See the text for details.

motivations, thus making spatial or temporal integration
challenging.

Transdisciplinary data-model integration approach

Our transdisciplinary data-model integration (TDMI)
approach is based on a process-based systems approach
designed to allow spatial contagion and heterogeneity, tem-
poral nonlinearities, cross-scale interactions, and multiple
levels of organization to be evaluated directly. Scales are
linked by processes leading to dynamics that can either
propagate from finer to broader spatial scales (upscaling,
red arrows) or allow for the transfer of material from larger
areas to influence and overwhelm processes and patterns at
finer scales (downscaling, blue arrows; figure 1). Changes
in environmental drivers and pattern—process relationships
through time and across space can alter system dynam-
ics within particular locations, and can change dynamics
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across locations and regions. Our approach derives from
hierarchy theory (Allen and Starr 1985) but accommodates
cross-scale interactions by identifying conditions wherein
broadscale drivers overwhelm fine-scale variability and fine-
scale processes propagate nonlinearly to influence broad
spatial extents (Peters et al. 2004a). These thresholds, feed-
back loops, and nonlinear relationships among patterns and
processes within and among scales can lead to ecological
surprises unless cross-scale interactions and multiscale pro-
cesses are accounted for.

Our examples focus on a landscape as the functional unit
for management decisions. However, the logic of an integrated
system can be applied to any spatial extent where information
is available at both finer and coarser scales. Because noncon-
tiguous areas may influence the functional unit of interest via
the provisioning of materials, information or energy, system
dynamics at a given location will also depend on the degree
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Figure 3. Developing the analytical basis of transdisciplinary data-model integration: Landscape-scale dynamics in Great
Plains agroecosystems during historic drought. We used the eight-step framework from figure 2 and developed more
detailed computational and statistical analyses beginning in step 4 that include human-guided machine learning (light
blue arrow) as well as multivariate analyses, maximum entropy, and multimodel comparisons. In this example, all data
were obtained from federated US government sources available on the Internet. The data were first standardized in space
and time (county and water year) and then harmonized to the same projection system before statistical analyses were
conducted. The results suggested that the western portion of the tallgrass prairie shifted toward the southern mixed-grass
prairie during the 1930s drought and shifted back toward tallgrass prairie after the drought (Burruss et al. 2017). Theory
about ecotonal boundaries between potential natural grasslands can be refined to be dynamic in response to and recovery
from extreme, multiyear drought. This example provides guidance on the data harmonization, multivariate analysis,
and multimodel comparison techniques, as well as the role of expert oversight at each step needed for complex regional
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analyses. See the text for details.

of connectivity and strength of these exogenous influences
and how they vary with time and distance.

Developing the conceptual basis of transdisciplinary
data-model integration: Primary production in wet
versus dry periods at local scale

We first illustrate how the conceptual basis of the TDMI
approach was developed to improve understanding of
local-scale dynamics and to refine ecological theory in
drylands using a suite of long-term data sets from the
Chihuahuan Desert Jornada Basin Long Term Ecological
Research (LTER) site (32.3 °N; 106.4 °W, 1188 m; hereafter,
the Jornada). Jornada landscapes have transitioned from

https://academic.oup.com/bioscience

perennial grasslands to dominance by unpalatable, drought-
tolerant, woody plants (Buffington and Herbel 1965). This
transition exemplifies land transformations in drylands
globally, and is often accompanied by soil and nutrient
redistribution that fundamentally changes ecosystem pro-
cesses (e.g., Eldridge et al. 2011). More recently, transitions
from shrublands toward grasslands and novel ecosystems
are challenging traditional paradigms (Peters et al. 2015).
Consequently, concepts and theories of state change dynam-
ics, uncertainties under global change, and macrosystems
dynamics (Bestelmeyer et al. 2011, Sala et al. 2012), are more
pertinent to these landscapes than desertification dynamics
(Reynolds and Stafford-Smith 2002).
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Our first step was to graph long-term observations of grass
aboveground net primary production (ANPP) in degraded
shrublands at the Jornada as a function of annual pre-
cipitation (PPT; figure 3a). In step 2, we expected that grass
would be a linear function of PPT based on dryland theory
(Noy-Meir 1973) and empirical studies from other sites (e.g.,
Sala et al. 1988, 2012; see our figure 3b). Because long-term
Jornada data did not fit the expected pattern (figure 3a, red
circle and blue triangles), we sought alternative mechanistic
explanations. A closer examination of PPT records revealed
that unusually high ANPP values corresponded to a 5-year
period of high rainfall (figure 3c.i, blue circle; Peters et al.
2012). In step 3, we used this pattern to generate hypoth-
eses pertaining to demographic processes underlying grass
recovery that we evaluated in step 4 using multiple long-term
data sets on grass recruitment. In steps 5 and 6, our analyses
and results showed that the nonlinear ANPP response could
not be explained by seed production, seed germination,
or seedling establishment (Peters et al. 2014b). In iterative
accesses of the databases, we hypothesized that increases in
litter cover associated with increases in perennial grass and
other herbaceous biomass would reduce evaporation losses
and create a positive feedback to increase plant available
water (PAW) to grasses. Additional data from another study
in the same location supported this hypothesis by finding
abrupt and nonlinear increases of biomass and litter (figure
3c.ii), and a significant relationship between previous year’s
herbaceous biomass and current year’s grass ANPP during
the wet period (figure 3c.iii). We then used a soil water simu-
lation model (SOILWAT; Peters et al. 2010) to examine the
mechanistic underpinning for our hypothesis. We conducted
two simulations with the same input conditions, except
one had additional inputs of herbaceous biomass and litter
comparable to those that occurred in 2004-2008 (with feed-
back mechanisms). Because the simulations with increased
biomass and litter resulted in an increase in PAW (and tran-
spiration; figure 3c.iv), we have a new hypothesis that can be
field-tested in step 8 as a mechanism for grass recovery in wet
periods. In addition, we concluded that although the linear
relationship between annual PPT and ANPP holds for shrub-
lands during relatively dry and no trend rainfall periods, a
new understanding of nonlinear dynamics and refinement
of theory is needed in wet periods that accounts for grass
establishment and growth over several years (step 7). This
new understanding was made possible by a team of ecolo-
gists, their collective understanding of relevant processes, the
availability of multiple long-term data sets from one location
at the Jornada, and a small set of tools (regression analyses,
simulation model). More importantly, the sequence of steps
in developing the pattern—process relationships in our con-
ceptual model (observe pattern — generate hypothesis —
test hypothesis — develop conceptual model — access data
base < develop relationships < identify new hypotheses
— refine theory) with iteration and human learning among
steps (shown as pink arrows in figures) became part of the
approach employed in our next examples.
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Developing the analytical basis of transdisciplinary
data-model integration: Landscape-scale dynamics in
Great Plains agroecosystems during historic drought
We next describe how the analytical components of the TDMI
approach were developed. Here, we sought to determine
whether boundaries between natural vegetation types are
static and related to climate and fine-scale patterns in soils, as
was expected based on ecological theory (e.g., Kiichler 1964),
or are dynamic and related to other factors associated with
extreme weather. We used historic data during (1933-1940)
and after (1941-1948) the extreme drought of the 1930s to
examine potential dynamics in the boundaries between grass-
land types in the central Great Plains of the United States. We
examined boundaries on potential vegetation maps between
the tallgrass prairie (TP) and the southern (SMP) or the
northern mixed-grass prairies (NMP), and between the SMP
and NMP (figure 4a, step 1). We then developed a conceptual
model on the basis of ecotones (step 2) and hypothesized that
boundaries were either related to long-term conditions or
to variable rainfall and temperature, topographic relief and
water redistribution, soil texture, and land use (figure 4b,
step 3). Because this drought predated modern agriculture
in the United States and the advent of genetic manipulation
(Hatfield and Walthall 2015), we used historic corn yield (Zea
mays) as a surrogate for perennial grass production. Data
obtained from online US government sources for explanatory
and response variables were standardized in units (county,
annual), and maps were harmonized to the same projection
system (step 4; Burruss et al. 2017). In step 5, highly correlated
variables (p > .70) were identified using univariate statistics
and subsequently removed from the analysis. Machine learn-
ing and multivariate analyses were used to compare multi-
dimensional relationships. A suite of models consistent with
our hypotheses was fit to the data. The best model was chosen
by a combination of quantitative information criterion in
machine learning and subjective expert opinion (i.e., Fieberg
and Johnson 2015; see our figure 4c). In step 6, results indi-
cate the western portion of the tallgrass prairie shifted toward
vegetation characteristic of the southern mixed-grass prairie
during the drought, then shifted back toward tallgrass prairie
after the drought (figure 4d). In step 7, we refined our theory
that the boundaries between natural grassland subtypes are
dynamic and responsive to extreme climatic events. From our
TDMI perspective, this example illustrates how data harmo-
nization and multivariate analysis with human learning, and
multimodel comparisons with machine learning and expert
oversight can be integrated for complex landscape to regional
analyses. Machine learning is shown as light blue arrows in
all figures.

Developing a transdisciplinary team and a data
science integrated system: Regional- to continental-
scale dynamics in the patterns of animal disease
spread across the western United States

In our third example, we describe how we develop a trans-
disciplinary team and a DSIS in the TDMI to identify and
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Figure 4. Developing a transdisciplinary team in transdisciplinary data-model integration: Regional- to continental-

scale dynamics in the patterns of animal disease spread in the western United States. We developed a geospatial, iterative
framework with human and human-guided machine learning based on the eight steps in figure 2 and the computational
analyses in figure 3. We used this framework as a predictive approach to integrate large amounts of diverse data in an
attempt to explain multiyear patterns in the occurrence of vesicular stomatitis (VS), a vector-borne disease in livestock that
occurs across the western United States. Vesicular stomatitis cannot be explained by one or a few biophysical or climatic
factors. We enhanced the eight steps from figures 2 and 3 by adding the formation of a transdisciplinary team as part of
the initial step and developing a systems diagram (figure 5) as part of step 2. This diagram was needed to show how the
processes are related to each other and to their environment (yellow boxes and details in figure 5) before the hypotheses
could be generated and variables selected in step 3. The next enhancement was the use of a series of linked pattern-process
relationships (i.e., ecotransfer functions) based on the systems diagram combined with data on vector and host responses
to their environment and environmental data to develop new hypotheses. This process in step 3 also identified the
variables to be selected for analysis from the many possible variables in an environmental driver data set. These data then
underwent standardization and harmonization that required close collaboration among scientists and software engineers
to ensure that the most appropriate data sets and calculations were used for each variable. This iterative human-learning
procedure ensured that data sets or calculations were examined for accuracy, reliability, and comparability with other
data sets. A suite of analyses was then conducted depending on the spatial and temporal scale of the question that included
human-learning and human-guided machine-learning techniques involving feedback with the transdisciplinary team. See
the text for details. This example shows the development of the transdisciplinary approach with mostly federated data that
are accessible on the Internet. The data sets within each driver type (blue boxes) have been standardized and harmonized
to each other; the challenge is harmonizing across the different types of data sets that are guided by the question.

analyze the environmental factors and biological processes  database exists beginning in the year 2000 (www.aphis.usda.
explaining the invasion of North America by vesicular  gov). We used this data set within our TDMI approach to
stomatitis (VS) virus, a vector-borne, zoonotic RNA virus  explore the complexity of the VS disease system (vector-
that affects livestock. Vesicular stomatitis is a reportable  host-virus—environment), and to identify the processes and
disease for national and international trade reasons, and a  environmental variables governing its spatial or temporal
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patterns. Use of the TDMI in this context would test its util-
ity in transdisciplinary, continental-scale complex systems
in which diverse data and knowledge are available but not
integrated.

Vesicular stomatitis is the most commonly reported live-
stock vesicular disease in the Americas (Rodriguez 2002),
occurring in greater than 1.1 million square kilometers
(km?) of the western United States from 2004 to 2016. In
ruminants, VS resembles foot-and-mouth disease (FMD),
a devastating animal disease absent in the United States,
requiring rapid reporting and differential diagnostics of
VS cases. Vesicular stomatitis has been primarily studied
by epidemiologists with the assistance of veterinarians and
local, state, and federal authorities. Control of VS outbreaks
is primarily based on animal quarantines and strategies
for managing exposure to insect vectors (primarily black
flies and biting midges). Spatial patterns of disease have
been related to one or a few biophysical and climatic fac-
tors (Rodriguez et al. 1996, McCluskey et al. 2003), but VS
occurrence is expected to be strongly influenced by the
biology and genetics of its vectors and hosts interacting with
their environment (climate, soil, hydrology, vegetation).
Understanding the VS system thus requires an approach
integrating (a) transdisciplinary scientific expertise, (b) very
large, heterogeneous databases over time across the western
United States to account for insects biologies, viral phylo-
genetics, disease occurrence in livestock, environmental
heterogeneity in time and space; and (c) technical expertise
for data harmonization, integration, and analysis.

Guided by our research on data-model integration at
the Jornada (figure 3), our multimodel, iterative analytical
approaches (figure 4), and recent developments in machine
learning (Peters et al. 2014a), we developed a geospatial,
iterative TDMI approach featuring human-guided machine
learning to coherently integrate (a) fine-scale process-based
data and understanding of vector and host responses to
a pathogen and the local environment; (b) georeferenced
disease incidence and virus phylogenetic data; and (c)
fine-scale patterns of climate, hydrology, topography, soils,
vegetation, and host density over a multidecadal time period
across the continental extent of the disease (figure 5). This
approach provides an objective method for evaluating the
potential importance of individual and interacting environ-
mental variables within and across scales (local, landscape,
region) when environmental data are available but little is
known about the ecology of a complex system. Iterative
human learning among team members occurs at steps 2-4,
whereas human-guided machine learning occurs at step 5.
Machine-learning methods are used to identify structure in
complex, often nonlinear data in order to generate accurate
predictive models (Olden et al. 2008). Although parts of the
modeling process are automated through machine learning,
our human-guided approach uses expert knowledge to spec-
ify how the data are represented and to identify the variables
to be included in the model as the iterations proceed, in an
extension of the process described in (Olden et al. 2006).
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Step 1: Transdisciplinary team formation and synthesis of disease
system understanding. Our transdisciplinary team consists
of scientists with expertise in the phylogenetics of VS, the
biology of the insect vectors, and equine (host) epidemiol-
ogy interacting with ecologists with expertise to account for
interactions between the disease components and their envi-
ronment (an ecohydrologist, a range scientist, and a land-
scape ecologist). Ecoinformatics experts provide software
and hardware expertise to standardize, harmonize, and ana-
lyze the diverse data sets. A systems ecologist integrates the
scientific and technological components of the VS system.

Step 2: Synthesis of disease system understanding. Based on the
team’s expertise, general relationships were formulated to
explain spatial heterogeneity and temporal variability in
VS across the spatiotemporal occurrences of the disease. A
conceptual model of the disease system was developed to
describe how the six processes related to VS transmission
and dispersal are interrelated (figure 2). This diagram was
instrumental in synthesizing the known information about
VS and highlighting knowledge gaps. The development of
this conceptual model and associated diagram were refined
through time using human learning as the team worked
through the problem.

Step 3: Hypothesis development and variable and data-set identifi-
cation. The conceptual model was used to develop specific
hypotheses to explain the relationship between environmen-
tal drivers and biotic factors related to host density (number
of animals, number of ranch or farm properties). Online,
open-access databases were identified for each driver and
mined to retrieve information at the temporal and spatial
resolution, extent, and duration congruent with disease
occurrence data and questions being addressed by the sci-
ence team. Weekly climatic data were selected as the finest
temporal scale of resolution to account for uncertainty in the
date of occurrence of infection compared with the reported
date and a lack of detailed knowledge about certain aspects of
insect biology. Temporal aggregations (e.g., seasonal averages
of climatic variables) were conducted for the hypotheses to be
tested. The spatial resolution (1 km x 1 km) was selected to
capture uncertainty in the exact location where each animal
became infected. The spatial extent was the 10-state region
in the western United States for the entire duration where
the disease occurred, including the prior year to account
for time lags and legacy effects (2003 to 2016). We strategi-
cally selected variables for analysis by developing hypotheses
that linked biological (e.g., biting-midge egg density) and
environmental variables (e.g., soil water-holding capacity)
needed to explain vector or host lifecycle stages under natural
conditions (e.g., biting-midge eggs are found in small, shallow
puddles of water) that were expected to contribute to disease
spread (figure 5). These “pattern—process relationships” are
similar to “pedotransfer functions” that predict difficult to
measure soil properties from readily available soil profile data
(e.g., Sequeira et al. 2014). New hypotheses were specified
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Figure 5. Systems diagram. A conceptual model of the disease system was developed to describe how the six processes related
to disease transmission (yellow boxes) are related to each other. The different colored circles show either temporal (dark blue:
overwintering) or spatial processes (light blue: local; red: spatial dispersal). The red arrows indicate change from healthy
vector or host to infected vector or host. The green arrows indicate losses due to county-level quarantine and economic losses.

For many diseases, including vesicular stomatitis (VS), experimental data of vector or host response to drivers are most
often examined under controlled conditions in a laboratory (e.g., Walton et al. 1987, Kramer et al. 1990, Cupp et al. 1992).
These data-rich studies provide potential responses to a climatic driver under laboratory conditions. Geographic patterns
in the disease and its genetic lineage under natural environmental conditions (www.usda.aphis.gov) were used to develop
relationships that resulted in the initial systems diagram that was refined through time with more data.

through model-building exercises based on expert knowl-
edge of existing data on vector and host responses to their
environment combined with environmental data deemed
parsimoniously relevant. For example, the STATSGO2 soils
database contains more than 70 attribute tables with more
than 850 variables. We selected two variables (available water
holding capacity, AWC, and clay content) in the surface
horizon because midge larvae development occurs in small
puddles on the soil surface whose occurrence are related to
these variables (Mullens 1989). This approach was repeated
for each process with each driver and factor to determine the
variables to be analyzed (figure 5, yellow and blue boxes).
The processes vary in spatial scale from very fine (less than
one millimeter; vector to vector transmission) to very broad
(kilometers; dispersal by insects and transport by vehicles),
and interactions with variables across scales can lead to

https://academic.oup.com/bioscience

complex, nonlinear dynamics (figure 5). This procedure was
iterative with learning between the scientists and the software
engineers as online data sources were examined for their res-
olution, and additional data sources were obtained as needed.

Step 4: Data harmonization and integration with a data science inte-
gration system. After identifying variables and their data sets,
harmonization was needed to facilitate integration. First,
the VS disease occurrence data were converted from a geo-
graphic coordinate system to an equal area projection system
(e.g., Albers Equal Area Conic) to ensure cell size remained
the same (1 km?) throughout the large spatial extent (approx-
imately 1.1 million km?) of the study area. All other vari-
ables underwent harmonization to match the projection,
geographic origin, and cell size of this VS occurrence base
map. For the raster data (e.g., gridded PPT at a 4 km x 4 km
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resolution), harmonization consisted of resampling maps to 1
km x 1 km. Vector data (e.g., points, lines, and curves) were
converted to raster, harmonized to the base layer, and then
translated into distance maps. Polygons were rasterized by
calculating average properties, then harmonized to the base
layer. All spatial data were manipulated with ArcGIS v.10.3
that assisted in this harmonization procedure. Ultimately,
the variable selection procedure resulted in 472 raster layers,
which were collated into a harmonized data cube as a DSIS
to enable calculations and predictions to be carried out in
geographical space. For analyzing processes local to the VS
occurrences, tabular, as opposed to geographic, databases
within the DSIS were devised. Tabular data sets preserved
fine-scale (weeks or months prior to a VS incident) temporal
relationships between VS occurrence and environmental
variables without masking by arbitrary classifications (e.g.,
month or season) at broad spatial scales. These tabular data
were extracted from raster maps by calculating the mean
of values extracted from a 100-point grid centered on a VS
occurrence location that covered a cell size (4 km?) to char-
acterize the environment surrounding a VS occurrence. The
harmonization of geographic and tabular data enabled analy-
ses to be carried out in a consistent manner across spatial and
temporal scales. Harmonization required close collaboration
among scientists and software engineers to ensure the most
appropriate data sets and calculations were used for each
variable. This was an iterative human-learning procedure
where data sets or calculations were examined for accuracy,
reliability, and comparability with other data sets.

Step 5: Analysis and interpretation of results. Data cube and occur-
rence data were used to construct a landscape- to regional-scale
species distribution model by a machine-learning maximum
entropy approach (Phillips et al. 2004). The model was evalu-
ated in tandem by exploratory data analysis with team expertise
using the package MaxentVariableSelection in R (Jueterbock
2015) to control model complexity, avoid collinearity among
predictor variables, and optimize parameters. Although infor-
mation-theoretic approaches can guide this evaluation (Warren
and Seifert 2011), the use of experts to identify biologically
meaningful variables is paramount (Fourcade et al. 2017). The
number of candidate variables in tabular data sets for multivari-
ate analysis was reduced to 20 for local-scale analysis using an
iterative process to identify those with the strongest univariate
relationship to VS occurrence and avoid collinearity among
predictors more than 70%. Model performance was assessed
using the corrected Akaike information criterion (AIC), which
provides a relative measure of model quality considering fit and
complexity (Peters et al. 2017).

Step 6: Test new hypotheses and feedback to conceptual model. Our
TDMI approach was successful in identifying vectors of
importance in different outbreak phases (e.g., black flies in
the first years, then biting midges as the expansion spreads;
Peters et al. 2017). The next step will be to conduct focused
experiments to test these new hypotheses emerging from
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the TDMI approach, and to improve our understanding
of the system by refining the vector-host-virus-environ-
ment interrelationships in the conceptual model (figure 2).
Because our approach harmonizes and analyzes a large suite
of diverse biotic and environmental data across multiple
scales, we generated new insights into a complex system in
which vector-host-environment relationships in the west-
ern United States were largely unknown. This new cross-
scale understanding in space and time was only possible
through the transdisciplinary team of scientists and software
engineers of working together.

Developing a knowledge landscape map integrated
with a data science integrated system

Here, we extend the TDMI approach described above to see
whether it can be used to integrate diverse, long-term envi-
ronmental data with detailed process-based data and knowl-
edge spanning multiple levels of organization obtained from
disparate locations to create a fully integrated “knowledge
landscape map.” This map would integrate multiple lines of
evidence from specific study locations and time periods in a
process-based approach by accounting for spatial heteroge-
neity in patterns and temporal nonlinearities in processes at
multiple interacting scales.

We chose the Jornada to test this application of the
TDMI approach for four reasons. First, because the Jornada
has been a US Department of Agriculture research site
since 1912 and a National Science Foundation Long Term
Ecological Research Site since 1982, there are many long-
term data sets of the biota and environmental variables
available (www.jornada.nmsu.edu/Iter), and these are com-
plimented by data from diverse long-term experiments,
simulation model outputs, imagery products, and onsite
expertise for collaboration summarized in (Havstad et al.
2006, Peters et al. 2015). Second, developing general prin-
ciples from the Jornada will be applicable to a large portion
of the Earth’s surface because this landscape is representa-
tive of drylands that cover 40% of the land surface of the
Earth (Reynolds and Stafford-Smith 2002). Third, the
Jornada landscape presents a significant challenge to the
TDMI because it is spatially heterogeneous and temporally
variable with thresholds, feedback mechanisms, lags, and
legacies (Bestelmeyer et al. 2011, Sala et al. 2012, Monger
et al. 2015). If the TDMI works here, it should also work for
other complex terrestrial landscapes.

The fourth reason is that there is tremendous need for
this type of landscape integration of data and knowledge
at the Jornada. The primary questions addressed at the
Jornada relate to the causes of variation in, and restoration
options to mitigate, the long-term transformation from
perennial grasslands to shrublands. Research approaches
have involved “disentangling” the landscape into finer-
grained components based on landforms, soil properties,
and soil-vegetation relationships, and developing state-
transition models and management strategies on the basis
of these units (e.g., Monger and Bestelmeyer 2006). This
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simplification has resulted in classifying the Jornada Basin
according to soil-geomorphic units that exhibit variation in
vegetation and soils across a hierarchy of scales that differ
with respect to the two dominant physical transport vectors
(wind, water) at broad scales (figure 6a, 6b; Monger 2006).
A third vector, animals, interacts with wind and water to
redistribute resources and create multiscale patterns (the red
circle in figure 6b insert). The resulting five ecosystem types
represent Chihuahuan Desert ecosystems, and are the basis
for the stratified sampling used in many Jornada studies
(e.g., Peters et al. 2010, Rachal et al. 2015). This disentan-
gling approach has facilitated a deep understanding of the
processes and drivers governing patterns at fine to interme-
diate spatial and temporal scales (Havstad et al. 2006).

Although this approach has led to many insights into
controls on function by ecosystem type, our ability to apply
this knowledge to other locations or time periods is con-
strained on four fronts common to long-term research sites
worldwide: (1) It ignores connectivity among geomorphic
units that might drive change and lead to ecological surprises
(Okin et al. 2015). For example, geomorphic units can be
connected by large-scale processes of wind or water that gen-
erate different dynamics in different locations (Stewart et al.
2014). On the piedmont slope sand sheet, sand is deposited
by large-scale wind processes from locations farther west
resulting in long-term shrub coppice dune development
whereas on the piedmont slope bajada, the Dofla Ana moun-
tains block the wind such that water redistribution is the
predominant driver of vegetation change leading to shrub
dominance associated with sheet erosion and an absence
of dunes (Gibbens et al. 2005, Monger 2006). (2) Inferences
developed for specific ecosystems must be reliably extended
to other locations, either at the Jornada or at other sites only
cautiously. (3) Studies established to sample or monitor rep-
resentative areas of interest for particular reasons (individual
or programmatic), do not represent the local, landscape or
regional spatial heterogeneity, and sampling locations are
not strategic or coordinated through time. Accordingly,
more than 60% of studies at the Jornada have focused on the
basin floor sand sheet (figure 6¢). Long-term observations
or monitoring of vegetation, soil, animals, and climate are
distributed across a larger part of the Jornada than many of
the experiments (figure 6d), often because observations were
located programmatically to provide baseline data for all
researchers. Large parts of the Jornada remain undersampled
and undercharacterized relative to other intensively studied
locations. This disparity is true for all research sites, but is
magnified as site extent increases. (4) Studies are an eclectic
collection of short- and long-term ad hoc investigations with
inconsistent response and explanatory variables, methods
(including sampling frequency or intensity), timings and
durations. This limits their utility for comparison, synthesis,
and integration among studies. Accordingly, the standardiza-
tion and harmonization processes in the TDMI approach will
be more challenging than when using federated data from
Internet sources (e.g., the VS example above).

https://academic.oup.com/bioscience
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Below, we describe an approach using well-defined data
from multiple ecosystem types through time, and illustrate
how general principles can be spatially distributed and
applied to new locations. We then describe how a DSIS
will be needed to support a landscape knowledge map for
large, heterogeneous, long-term study sites such as the
Jornada.

Estimating aboveground net primary production

across the Jornada Basin using our integrated
approach

In our final example, we sought to extend our previous
result of perennial grass recovery on one location (the basin
floor sand sheet) to the entire Jornada. We first translate
our simple example (figure 3) into our transdisciplinary
approach (figure 7) to address two goals: (1) improve
our understanding of the processes controlling location-
specific patterns through time to predict future dynamics,
and (2) extend these findings to other locations using a
process-based understanding of intensively studied loca-
tions. For the latter, we used perennial grass ANPP data
from creosotebush and tarbush shrubland ecosystems on
the piedmont slope bajada and transition zone geomor-
phic units, respectively (figure 7f). We then develop a
grass recovery index based on the slope of the relationship
between ANPP through the wet 2004-2008 period for each
of the nine shrubland locations using a soil property (AWC)
and initial perennial grass biomass in 2004 (figure 7g). This
index was then used to estimate ANPP in each year of the
wet period for the entire Jornada Basin (figure 7h) that
can be compared with satellite products for the same time
periods. This estimate of perennial grass recovery based on
a mappable soil property and initial grass biomass is not
specific to an ecosystem type.

This approach is not simple extrapolation because it
accounts for thresholds in grass recovery through time that
occurred between a drought (2000-2003) and the wet period
(2004-2008). In addition, the traditional classification sys-
tem of ecosystem types had to be abandoned for an approach
that allowed a continuous change in cover across the land-
scape. There could also be thresholds in space that are not
associated with ecosystem types. These nonlinearities in
time and space cannot be addressed in simple extrapolation
methods.

This relatively simple example reveals how our TDMI
approach can integrate multiple lines of evidence to produce
a landscape knowledge map for a spatially heterogeneous
research site, accounting for thresholds, legacies, and lags
(figure 7d, 7e, 7g). This example was possible because the
response data (ANPP) and the explanatory data (PPT,
AWC, and initial grass biomass) were readily standard-
ized and harmonized for these research locations. All of
these data are core data sets that are georeferenced, col-
lected, and postprocessed by the Jornada LTER in the same
way through time; thus, integration techniques focus on
harmonized data sets.

September 2018 / Vol. 68 No. 9 « BioScience 663

6102 1900100 1 U0 1sonB Aq Z810605/€59/6/89/19BISE-[ILE/SOUSIOSOI0/W0D dNO™dIWSpEoe)/:SA]JY WO} POPEOJUMOQ



Overview Article cu————

Piedmont
slope sand..
sheet "

4

Y
slope Atiaj‘aﬁda.t S

Basin floor
sand sheet

e
Foy e
‘9
o

* Transition

Piedmont ' :
slope bajada

Sensor networks

* Cimate Change Experimaent (CCE) B NPP. Phanclogy
B Crecsolebush Lagomorph Study (CLC) Nutrient & Ecosystem impacts of K
& Cross-scale Study # Aeolian Transport (NEAT) O Atmospheric deposition ® =on
® Ecatone Study 4 Permanent Chart Quadrats > Dustflux 4+ Rain gauges
¥ JORNEX Energy Batanca (ARS) % Scrape Site ’ Eddy flux «  Soil water
Livestock Exclosures * Smell Mammal Excloswe Study (SMES) * X Tromble Weir
A —— Sod Movement Transects Meteorological stations
LTER | Transect ol A Wind towers

[ uttipie Stressor Experiment (MSE)

Figure 6. Spatial heterogeneity in the Jornada landscape. (a) Four soil-geomorphic units exhibit variation in vegetation
and soils across a hierarchy of scales: basin floor sand sheet, piedmont slope sand sheet, transition zone, and piedmont
slope bajada. (b) Each unit differs with respect to the two dominant physical transport vectors (wind, yellow arrows;
water, blue arrows) at broad scales. Insert: All three vectors (including animals; red circle) redistribute resources to
result in multiscale patterns across the landscape. Feedback mechanisms between spatial variation in vegetation result
in ecosystem types with different dominant vegetation and soil properties. Five ecosystem types occur that generally
correspond to soil-geomorphic units (a): Upland grasslands dominated by black grama (Bouteloua eriopoda; green) and
mesquite-dominated shrublands (Prosopis glandulosa; red) are found primarily on the basin floor and piedmont slope
sand sheets; creosotebush-dominated shrublands (Larrea tridentata; yellow) occur on the piedmont slope bajada; tarbush-
dominated shrublands (Flourencia cernua; light green) occur in the transition zone; and playa grasslands dominated by
tobosa grass (Pleuraphis mutica; blue) occur on low-lying areas throughout the landscape. (c) Long-term experiments
and observational studies at the Jornada have been located based on study-specific objectives; most experiments occur
on the sand sheet. (d) Observational and sensor networks at the Jornada are primarily programmatic and are spatially
distributed to cover the heterogeneity of the research site.
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Figure 7. Estimating aboveground net primary production (ANPP) across the Jornada Basin using our transdisciplinary
data-model integration approach. We extended our previous result of perennial grass recovery on one location (figure 2)
to the entire Jornada using our approach in order to (a) to predict future dynamics at this location, and (b) extend these
findings to other locations across the landscape. In both cases, human and human-guided machine learning are used in
the data acquisition and analysis phases and when developing the best ecotransfer functions for this system. To make
predictions (a), we use our process-based understanding to develop relationships between precipitation and ANPP (in
this example) during wet and dry periods that can be used under future climatic conditions. To extend our results to other
locations (b), we used similar perennial grass ANPP data through time from two other ecosystem types (creosotebush
shrublands and tarbush shrublands) on other locations. We developed an index of grass recovery based on a soil property
and initial grass biomass that is not specific to an ecosystem type on the Jornada and can be tested at other dryland

locations. See the text for details.

A general transdisciplinary data-model integration
approach with multiple lines of evidence in a data
science integrated system

More complex questions will require the integration of
multiple lines of evidence that are first standardized and
harmonized for the entire Jornada Basin. For example,
observations in parts of the Jornada landscape suggest that
wind and water interact within and across scales to influence
ecosystem dynamics (Okin et al. 2018). In other parts of
the landscape, an integration of hydrological and ecological
processes across scales is needed for reconstructing the cur-
rent mosaic of plant community patterns (Vivoni 2012). For
instance, shrublands on piedmont slopes promote runoff
into channels, which can lead to the transport of water to
augment downslope precipitation, to influence vegetation

https://academic.oup.com/bioscience

state transitions and productivity in adjacent sites, and
to confound local precipitation-production relationships
(Schreiner-McGraw and Vivoni 2017). At a long-term
research site such as the Jornada, these multiple lines of evi-
dence include data from long-term observations and experi-
mental manipulations, output from analytical and numerical
models, and products from sensors and imagery products
that form the basis of a DSIS. Based on our examples (figures
2-7), an eight-step TDMI approach with human-guided
machine learning and multiple lines of evidence is pro-
posed for addressing three common phenomena: alternative
states, global change, and cross-scale interactions (figure 8).
Theoretical frameworks can organize the knowledge base
needed for understanding system behavior and pattern—
process linkages within and across scales. The key to the
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Figure 8. General transdisciplinary data-model integration approach for transdisciplinary research. Our approach

based on spatiotemporal modeling of cross-scale interactions coupled with human and human-guided machine learning
integrates (a) biological processes, (b) spatial heterogeneity in the land surface template, and (c) environmental drivers
using data and knowledge drawn from multiple lines of evidence (i.e., short- and long-term observations, experimental
manipulations, analytical and numerical models, products from imagery, conceptual model reasoning, and theory) in a
data science integrated system. The eight steps that follow from a pattern that needs to be explained are similar regardless

of the complexity of the problem.

TDMI approach is (a) site-based knowledge, (b) expertise
in multiple disciplines, and (c) a systems perspective that
enables an understanding and quantification of cross-scale
interactions through the development of pattern—process
relationships (i.e., ecotransfer functions) at multiple, inter-
acting scales and levels of biological organization.

Retooling the information management system into
a data science and integration system

We envision a DSIS that broadens traditional information
management systems that store and make accessible data
and metadata in a standard format to include suites of har-
monized explanatory and response variables for each study
location. Studies typically include response and explanatory
variables defined by investigator- rather than site-specific
objectives, thus limiting their broader utility. A standard
set of response or explanatory variables will be needed for
landscape integration based on knowledge of the system
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that goes beyond the environmental drivers. For example,
depth to a restrictive layer is a better explanatory variable
for perennial grass resilience during drought than surface
soil texture (Herbel et al. 1972, Browning et al. 2012). Thus,
depth to calcium carbonate should be measured or esti-
mated at all research locations in drylands and made acces-
sible as part of the DSIS. In addition, derived data products
and pattern—process relationships developed during each
TDMI procedure should be maintained as part of the DSIS.
Maintaining a developmental history of the integrated land-
scape data sets, similar to that of the knowledge learning
analysis system (Peters et al. 2014a), will allow users to build
on previous users experiences and extend location-based
understanding to other areas or to future points in time.

Conclusions

New technologies are increasing awareness that the Earth is
a complex, interconnected system at many interacting spatial
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and temporal scales, and that understanding, predicting, and
managing the dynamics of complex systems requires a trans-
disciplinary, data-intensive approach. Our premise was that
technological advances in analytical, numerical, and behav-
ioral approaches combined with extensive sources of readily
available federated and locally available data make a trans-
disciplinary approach increasingly feasible and tractable for
application to multiscale, complex ecological problems. The
TDMI approach proposed here exploits a wide array of exist-
ing data and expert knowledge to solve specific ecological
problems, and directs new research efforts in productive and
strategic directions. We successfully applied this approach to
a suite of examples to demonstrate how point- or plot-based
understanding can be more reliably extended to landscape
scales and therefore can better inform decisions relevant to
land management. We also developed a general landscape
knowledge map with a corresponding data science integra-
tion system that can be used for a more diverse collection
of questions. Future developments will focus on making
predictions with greater certainty, advancing toward the goal
of minimizing ecological surprises and averting unintended
consequences. The steps we proposed could be refined and
used for a wide range of large-scale ecological, social, and
Earth-system problems at other terrestrial research sites.
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