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Conversion of lignocellulosic biomass to fuels and chemicals has attracted immense research and development
around the world. Lowering recalcitrance of biomass in a cost-effective manner is a challenge to commercialize
biomass-based technologies. Deep eutectic solvents (DESs) are new ‘green' solvents that have a high potential for
biomass processing because of their low cost, low toxicity, biodegradability, easy recycling and reuse. This
article discusses the properties of DESs and recent advances in their application for lignocellulosic biomass

processing. The effectiveness of DESs in hydrolyzing lignin-carbohydrate complexes, removing lignin/hemi-
cellulose from biomass as well as their effect on biomass deconstruction, crystallinity and enzymatic digestibility
have been discussed. Moreover, this review presents recent findings on the compatibility of natural DESs with

enzymes and microorganisms.

1. Introduction

Lignocellulosic biomass conversion to biofuels, biochemicals, and
other value-added products has attracted global attention because it is a
readily available, inexpensive and a renewable resource (Lynd, 2017;
Satlewal et al., 2017). It primarily consists of polysaccharides, cellulose,
and hemicellulose (50-65%), and the aromatic biopolymer, lignin
(10-30%) (Agrawal et al., 2016; Wang et al., 2016). The most pro-
mising commercially viable route today for utilization of lignocellulosic
biomass is fermentation of cellulose and hemicellulose sugars into
ethanol. A conventional process design includes size reduction, pre-
treatment, enzymatic hydrolysis, fermentation, and distillation as the
major process steps. Pretreatment is essential to reduce biomass

recalcitrance for achieving high enzymatic hydrolysis efficiencies
(Dutta et al., 2018). Sugars recovered from pretreatment and enzymatic
hydrolysis can be fermented to produce ethanol or other biofuels and
commodity chemicals through biochemical and thermochemical routes.
Alternate process designs also exist such as combining enzymatic hy-
drolysis and fermentation in single step known as simultaneous sac-
charification and fermentation (SSF), or a one-pot process where the
different processes are carried out in the same vessel, for reducing the
production costs.

Deep eutectic solvents were introduced as low-cost eutectic mix-
tures, with physical and chemical properties comparable to ILs (Abbott
et al., 2004). They are prepared by combining hydrogen bonding do-
nors (HBDs) and hydrogen bonding acceptors (HBAs) to form eutectic
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Glycol; TEG, Triethylene glycol; U, Urea; LA, Lactic Acid; EAC, ethylammonium chloride; HMF, 5-hydroxymethylfurfural

* This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/

downloads/doe-public-access-plan).

* Corresponding author at: Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
E-mail addresses: sbhagia@utk.edu (S. Bhagia), sangoro@utk.edu (J. Sangoro), aragausk@utk.edu (A.J. Ragauskas).

1 Alok Satlewal and Ruchi Agrawal contributed equally as first author.

https://doi.org/10.1016/j.biotechadv.2018.08.009

Received 10 April 2018; Received in revised form 9 July 2018; Accepted 26 August 2018

Available online 05 September 2018
0734-9750/ © 2018 Published by Elsevier Inc.


http://www.sciencedirect.com/science/journal/07349750
https://www.elsevier.com/locate/biotechadv
https://doi.org/10.1016/j.biotechadv.2018.08.009
https://doi.org/10.1016/j.biotechadv.2018.08.009
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
mailto:sbhagia@utk.edu
mailto:sangoro@utk.edu
mailto:aragausk@utk.edu
https://doi.org/10.1016/j.biotechadv.2018.08.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biotechadv.2018.08.009&domain=pdf

Biotechnology Advances 36 (2018) 2032-2050

A. Satlewal et al.
800
700
600
%
c
[=]
= 500
©
2
=)
=
o 400
Y=
o
—
2
g
=
=
200
100 I I
0 I I . = = p— — —
2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2018 2008 2007 2006 2004 2005
Year
A)

i

Electrochemical, Radiational, and Thermal Energy
Pharmaceuticals
Industrial Organic Chemicals, Leather, Fats, and Waxes
Surface Chemistry and Colloids
General Organic Chemistry E
Organic Analytical Chemistry —S——
Nonferrous Metals and Alloys
Thermodynamics and Themnochemistry
Radiation and Photochemistry
Optical, Electron, and Mass Spectroscopy
Toxicology
General Biochemistry
Catalysis, Reaction Kinetics and Mechanisms
Pharmacology
Electric Phenomena
Carbohydrates
Crystallography and Liquid Crystals
Surface Active Agents and Detergents
Fertilizers, Soils, and Plant Nutrition
Nud ear Technology
Ferrous Metals and Alloys
Apparatus and Plant Equipment
Alicydic Compounds

l

) '"""'"““'“"llIIIIIl||||||||""""||||

[
o

40 60 80 100 120 140 160 180
Number of publications

B
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mixtures. DESs are preferred over conventional ILs because they are
easy to synthesize, stable, cost-competitive and typically most of them
are environmental-friendly (Mbous et al., 2017). According to one es-
timate, the cost to synthesize a DES was only 20% of that of an IL (Xu
et al.,, 2016b). In a similar study, Gorke et al. (2010) reported that
components for DESs were ten times less expensive than the compo-
nents for ionic liquids. However, the relationship between molecular
composition and the solvent properties of the resulting eutectic mix-
tures is not fully understood. Nevertheless, several promising DESs
systems have been reported in recent literature. The numbers of pub-
lications on DESs have grown exponentially during last few years
(Fig. 1a & b). It indicates their potential applications primarily in the
areas of electrochemistry, fossil fuels, fermentation and bio-industrial
chemistry, pharmaceuticals, food and feed industry and lignocellulosic
biomass processing. Biocompatibility of the DESs with biomolecules i.e.
nucleic acids, proteins, enzymes and microbes is one the most sig-
nificant properties of DESs which has attracted recent interest for their
applications in bio-pharma industries for bioorganic catalysis, bio-
transformation, and molecular extractions (Mbous et al., 2017). The
application of DESs as an alternative to ILs in dissolving the poly-
saccharides (i.e. cellulose, xylose, arabinose, starch, chitin) and lignin
present in biomass has attracted a vast interest of the scientific com-
munity globally to produce biofuels, value added products and com-
modity chemicals (Oliveira et al., 2015).

This review article focuses on properties of DESs and recent ad-
vances in their application for lignocellulosic biomass processing. It
begins with the current status of lignocellulosic biomass pretreatment
followed by discussion on synthesis and physiochemical properties of
DESs, and key findings on the effects of DES on cellulose, hemicellulose
and lignin solubilization then, biomass pretreatment and changes in
biomass crystallinity. The article then progresses to enzymatic hydro-
lysis performance of DESs pretreated solids, compatibility of DESs with
enzymes and microorganisms, and recycling potential of DESs. Finally,
it covers the comparison of DESs with ILs, and challenges and oppor-
tunities for furthering DESs use in lignocellulosic processing.

2. Current status of lignocellulosic biomass pretreatment

A wide array of pretreatment technologies has been evaluated in last
decade for lignocellulosic biomass valorization to produce biofuels and
biochemicals with high cost efficiency (Abo-Hamad et al., 2015;
Agrawal et al., 2015a). These include physical (mechanical extrusion,
milling, microwave, ultrasound), physicochemical (steam explosion,
hot-water, wet oxidation, sulfite pretreatment to overcome recalci-
trance of lignocellulose (SPORL), ammonia), biological and chemical
(dilute acid, dilute alkali, ozonolysis, organosolv, ionic liquids, in-
organic salts and recently deep eutectic solvents) (Singh et al., 2015).
The recently published reviews discussed about these comprehensively
(Capolupo and Faraco, 2016; Den et al., 2018; Seidl and Goulart, 2016).
Albeit, plethora of pretreatment processes exist but only few of them
(i.e. dilute acid, steam explosion and hydrothermal) have been de-
monstrated at pilot and commercial scale levels while; many are still
under process intensification stages or struggling for scale up (Satlewal
et al., 2018). During certain pretreatments (dilute acid, dilute alkali,
organosolv, hydrothermal, chemical pulping and ionic liquids (ILs))
especially at high severity conditions, hemicelluloses and/or lignin are
solubilized and degraded to some extent to form inhibitors such as
hydroxymethyl furfural, furfural, hydroxy acids, aliphatic carboxylic
acids. Thus, an additional step of detoxification might become in-
evitable to reduce enzyme or microbial toxicity for realizing high pro-
duct yields (Agrawal et al., 2015b; Akinosho et al., 2015). Ionic liquids
have shown high efficiency for lignin extraction, reducing cellulose
crystallinity, and improving enzymatic digestibility, under mild oper-
ating conditions. However, their industrial application has been re-
stricted by high costs, incompatibility with enzymes and microorgan-
isms and recycling challenges (Yoo et al., 2017). Thus, multiple factors
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play a critical role in selecting the right pretreatment approach for
biomass based upon nature of feedstock (i.e. hardwood, softwood,
agricultural residue, grass), capital and operational expenditures, en-
ergy investment, yields, efficiency and environmental sustainability. In
view of this, there is still a large scope to innovate and develop novel
and disruptive biomass pretreatment technologies.

DESs offer several advantages over the conventional solvents and
ionic liquids yet overcome many of their drawbacks such as easy to
synthesize without any purification and waste generation step at mild
temperature and atmospheric pressure, renewable in nature, wide
availability and cost effectiveness of its components (for example ChCl
is available as chicken feed while, urea is commonly used as fertilizer),
biocompatibility and biodegradability(Loow et al., 2018). DESs are
widely being exploited in electrochemical and organic synthesis areas
and recently huge interest has been generated for their application in
biorefinery due to their unique physicochemical properties (Xing et al.,
2017).

DESs were reported to dissolve and extract high-quality lignin
with > 90% purity, and nearly 60 = 5% (w/w) of the total lignin
present in rice straw (Kumar et al., 2016; van Osch et al., 2017), but
negligible cellulose solubility was observed (Oliveira et al., 2015). In a
few recently published reports, selected DESs have been reported to
work efficiently during biomass pretreatments such as ethylammonium
chloride:ethylene glycol (EAC:EG) for oil palm trunk (OPT) fiber pre-
treatment with 74% glucose production (74%) (Zulkefli et al., 2017),
choline chloride:oxalic acid and choline chloride:urea for rice straw to
achieve a glucose yield of 90.2% (Hou et al., 2017a), choline chlor-
ide:formic acid for corn stover with a hydrolysis yield of 99% (Xu et al.,
2016b). Similarly, a high glucan conversion (92%-95%) was achieved
after pretreatment of corn cob with ChCl:glycerol and ChCl:imidazole,
respectively (Procentese et al., 2015). Even though DESs possess more
benefits than ILs, they are still not widely used because they are rela-
tively new in biomass processing and more research is needed for their
application (Loow et al., 2017). The next few sections in this review will
provide insights about the physicochemical properties of DESs and their
application in biomass processing.

3. Deep eutectic solvents and their physicochemical properties

Typically, deep eutectic solvents consist of large, non-symmetric
ions that have low lattice energy and hence, low melting points (Smith
et al., 2014). They are usually prepared by mixing a hydrogen bond
acceptor (HBA) (such as quaternary ammonium salts) and a hydrogen
bond donor (HBD) such as amides, carboxylic acids, and alcohols at
moderate temperatures (60°C to 80°C) to form eutectic mixtures
(Fig. 2) (Sarmad et al., 2017). Hydrogen bonding results in charge
delocalization between the HBA and HBD and consequently, the
freezing point of the eutectic mixture is much lower as compared to the
individual compounds. For an example, the melting point of a
ChCl:urea mixture (1:2) is 12 °C which is far lower than 302 °C and
133°C for ChCl and urea, respectively (Xu et al., 2017). The thermal
phase behavior of a deep eutectic solvent system prepared by mixing
together the lidocaine and decanoic acid in varied composition range
was evaluated by differential scanning calorimetry (Griffin et al., 2014).
It clearly showed the melting transitions of crystalline solids i.e. lido-
caine (Tm = 341K or 67.85°C) and decanoic acid (Tm = 307K or
33.85°C) but no crystallization or melting was observed for the lido-
caine:decanoic acid mixture which remains as liquid at room tem-
perature with a glass transition at Tg = 207 K or — 66.15 °C (Fig. 3).
Since, different types of DESs exist as liquids at temperatures below
100 °C thus a suitable classification system is required for their identi-
fication as discussed in the next section. (Garcia et al., 2015).

3.1. Classification of deep eutectic solvents

DESs have been classified based on the combinations of their
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Fig. 2. Typical structures of hydrogen bond donors (HBDs) and bond acceptors (HBAs) for DES synthesis.
This figure is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). The
original figure was taken from Xu et al., 2017 without any changes (https://doi.org/10.1186/540643-017-0165-5)

3501 o — T
o -
.\. —— =
\. T
300 - . _ -
—~ $ @
< ! !
- :
250 A : ”Deep : T
i Eutectic" !
: ¢ R
200 L— ; : i :
0 20 40 60 80 100

Lidocaine (LID) mole % acid Decanoic Acid (DA)

Fig. 3. Phase characteristics of Lidocaine-Decanoic acid mixtures illustrating
the formation of deep eutectic mixtures.

chemical constituents (Table 1). Type I DESs have limited application in
biomass processing due to the high melting points of the non-hydrated
metal halides while, Type II DESs are more viable for industrial pro-
cesses because of the relatively lower costs of the hydrated metal ha-
lides (Smith et al., 2014). However, Type III DESs are the most studied
due to their quick and easy preparation, non-reactivity with water,
biodegradable nature and cost effectiveness (Loow et al., 2017; Smith
et al., 2014). Finally, Type IV DESs incorporate the use of inorganic
transition metals with urea to form eutectic mixtures, even though
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Table 1

General formula for the classification of DESs. (Adapted with permission from
Loow et al., 2017).

The original table was adapted from Smith et al., 2014 under the terms of the
ACS AuthorChoice Licence (https://pubs.acs.org/doi/10.1021/cr300162p).

Type Components General formula Example
1 Metal salt organic salt ~ Cat®™ X~ zMClx; M = Zn, ZnCl, + ChCl
Sn, Fe, Al, Ga, In
I Metal salt Cat* X~ zMClx.yH,0; CoCl,.6H20 + ChCl
hydrate + organic salt M = Cr, Co, Cu, Ni, Fe
111 HBD + organic salt Cat* X~ zRZ; Urea + ChCl
Z = CONH,, COOH, OH
v Zinc/aluminium MCIx + RZ = MCl,; *. ZnCl, + urea

chloride + HBD RZ + MCl " x,; M = Al,

Zn & Z = CONH,, OH

Cat*, any ammonium, phosphonium, or sulfonium cation; X, a Lewis base,
generally a halide anion; Y, a Lewis or Bronsted acid; z, number of y molecules
that interact with the anion.

metal salts would not normally ionize in non-aqueous media (Loow
et al., 2017; Smith et al., 2014).

The understanding of physiochemical characteristics of DESs is es-
sential for its industrial applications. The key properties of DESs such as
freezing point, density, viscosity, surface tension and conductivity are
discussed as follows:


http://creativecommons.org/licenses/by/4.0/
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Table 3

Solubility of lignin and cellulose in various deep eutectic solvents.
Hydrogen bond donor Hydrogen bond acceptor Ratio T [*C] Lignin [wt%] Cellulose [wt%] Hemicellulose [wt%)] Reference
Lactic acid Proline 3.3:1 60 9 <1 <1 (Lynam et al., 2017)
Lactic acid Proline 2:1 60 7.56 0 - (Francisco et al., 2012)
Lactic acid Choline chloride 2:1 60 5.38 0.00 - (Francisco et al., 2012)
Lactic acid Choline Chloride 10:1 60 13 <3 <5 (Lynam et al., 2017)
Lactic acid Choline chloride 5:1 60 7.77 0 - (Francisco et al., 2012)
Lactic acid Choline chloride 10:1 60 11.82 0.13 - (Francisco et al., 2012)
Lactic acid Glycine 9:1 60 8.77 0.00 - (Francisco et al., 2012)
Lactic acid Alanine 9:1 60 8.47 0.00 - (Francisco et al., 2012)
Lactic acid Betaine 2:1 60 9 <1 <1 (Lynam et al., 2017)
Lactic acid Betaine 2:1 60 12.03 0 - (Francisco et al., 2012)
Lactic acid Glycine 9:1 60 11.88 0.13 - (Francisco et al., 2012)
Formic acid Choline Chloride 2:1 60 14 <1 <1 (Lynam et al., 2017)
Acetic acid Choline Chloride 2:1 60 12 <1 <1 (Lynam et al., 2017)
Malic acid Proline 1:3 60 14.90 5.90 - (Francisco et al., 2012)
Oxalic acid dihydrate Choline chloride 1:1 60 3.62 2.5 - (Francisco et al., 2012)
Urea Choline chloride 2:1 110 - < 0.2 - (Zhang et al., 2012a)
Zinc chloride Choline chloride 2:1 110 - <0.2 - (Zhang et al., 2012a)
Urea Choline chloride 2:1 110 - 1.43 - (Ren et al., 2016b)
Imidazole Choline chloride 7:3 110 - 2.48 - (Ren et al., 2016b)
Ammonium thiocyanate Choline chloride 1:1 110 - 0.85 - (Ren et al., 2016b)
Caprolactum Choline chloride 1:1 110 - 0.16 - (Ren et al., 2016b)
Acetamide Choline chloride 2:1 110 - 0.22 - (Ren et al., 2016b)
Oxalic acid Allyl triethyl ammonium chloride 1:1 110 - 6.48 - (Ren et al., 2016a)

3.2. Freezing point

Although, DESs have lower freezing point as compared to their
parent compounds but a few of them such as ChCl:glucose/sucrose/
inulin/fructose possess high freezing point i.e. above 80 °C and remain
as solids at room temperature which restricts their mixing and mass
transfer efficiency and chemical interactions with solid substrates like
lignocellulosic biomass at low temperatures (Oliveira et al., 2015).
However, some of the DESs have freezing point below 50 °C and re-
mained as liquids at room temperatures and attracted wide interest as
solvents in industries and biomass processing applications (Table 2). In
case of halide ion based DESs, charge delocalization due to hydrogen
bonding with HBD leads to reduction in the freezing point. The re-
duction in freezing point is accompanied by disruption of crystalline
structure by hydrogen bonding between quaternary ammonium salt
and HBD (Dominguez De Maria, 2014; Loow et al., 2017). Generally,
the freezing point of the DESs decrease with increasing hydrogen
bonding strength within the mixture (Espino et al., 2016).

3.3. Density

Most DESs are denser than water with densities in the range of 1.0
to 1.35g/cm® but metallic salts based DESs like ZnCly:urea and
ZnCl,:ethylene glycol have high densities in the range of 1.3-1.6 g/cm®
(Garcia et al., 2015) (Table 2). The density of DESs is affected by the
packing arrangement of the molecular components and testing tem-
perature (Garcia et al., 2015). As expected, an increase in the tem-
perature or water content in DESs leads to lower densities (Garcia et al.,
2015; Shahbaz et al., 2011). In addition, the density also decreases with
increasing alkyl chain length of DES components as well as the relative
ratio of salt to HBD is increased (Chen et al., 2017; van Osch et al.,
2017). Apart from this, an increase in the water content of a DES mo-
lecule also results into decrease in density (Garcia et al., 2015).

3.4. Viscosity

The viscosity of DESs is determined by their intermolecular inter-
actions which could be influenced by numerous factors including the
chemical nature of their constituents such as the type of HBD and HBA,
molar ratio of HBD and HBA, temperature and water content (Smith
et al., 2014). For instance, the viscosity of ChCl based DESs decreases
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with increasing temperature and ChCl content in certain composition
ranges (Abo-Hamad et al., 2015; Alomar et al., 2016; Smith et al.,
2014). DESs with lower viscosity are desirable for industrial and bio-
mass processing applications (Loow et al., 2017). It is generally ob-
served that there is a linear correlation between the molar conductivity
of DESs and their fluidity (reciprocal of viscosity) (Smith et al., 2014).
DESs have a broad demand as replacements for conventional organic
solvents because of their high stability and biodegradable nature de-
spite poor conductivity (Li et al., 2016; Smith et al., 2014). Thus highly
viscous DESs are reported to have poor conductivity which increases at
elevated temperatures (Table 2) (Abo-Hamad et al., 2015).

3.5. Surface tension

The surface tension of DESs is highly dependent upon the dominant
intermolecular forces and the type of cation (Garcia et al., 2015; Vigier
et al., 2015). It was observed that the hydroxyl group in the cation leads
to higher surface tension due to their hydrogen-bonding ability (Garcia
et al., 2015; Vigier et al., 2015). Thus, surface tension of glucose-based
DESs was higher than those reported for carboxylic acids-based DESs
(Hayyan et al., 2013a). An increase in temperature has been reported to
decrease the surface tension of DESs. This phenomenon is explained by
the gain of energy in the salt, which causes the reduction of inter-
molecular forces (Alomar et al., 2016).

One of the significant benefits of DESs is to fine tune its properties
by precisely selecting the hydrogen bond donor and acceptor and
varying their molar ratios depending upon the application (van Osch
et al., 2017; Yoo et al., 2017; Zahn, 2017). The preferred DESs for a
biomass processing industry should possess low freezing point
(< 50 °C) to remain as liquids at room temperatures with low viscosity
for better mixing and heat and mass transfer efficiency. Nevertheless,
both of these properties are also dependent upon temperature as well.
With this basic understanding about DESs synthesis, their classification
and physio-chemical properties it is now easier to understand their
application in lignocellulosic biomass processing as discussed in next
few sections.

4. Cellulose, hemicelluloses and lignin solubilization in DESs

Currently the major roadblock for the commercial feasibility bio-
based refineries is the separation of lignin from polysaccharides at low
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costs for the production of fermentable sugars and other high-value
products from both sugars and lignin. DESs are capable of donating and
accepting protons and this characteristic enables the formation of hy-
drogen bonds with other compounds which enhances its solvation
properties (Pandey et al., 2017). The recent advancements in solubili-
zation of the lignocellulosic biopolymers (cellulose, hemicelluloses and
lignin) in DESs are discussed here (Table 3).

Zhang et al. (2012a) reported that microcrystalline cellulose (i.e.
Avicel PH-105) was not soluble in ChCl:urea (molar ratio 1:2) and
ChClL:ZnCl, (molar ratiol:2) even after treatment at high temperature
(110 °C) for a prolonged time period (12h) however, in another report,
amorphous cellulose (cotton linter pulp) was solubilized by 1.43 wt%
and 2.48 wt% in ChCl:urea and ChCl:imidazole, respectively (Ren et al.,
2016a; Ren et al., 2016b). Pulp solubility was further enhanced to
4.57 wt% in ChCl:imidazole by addition of 5 wt% polyethylene glycol
(PEG) as co-solvents, which served as surfactant to reduce the hydro-
phobicity of cellulose (Ren et al., 2016a; Ren et al., 2016b; Tang et al.,
2017). It showed that cellulose solubility is inversely proportional to
the crystallinity of the substrate. Alike cellulose, hemicellulose was also
sparingly soluble in DESs (Table 3).

In contrast to both cellulose and hemicellulose, DESs; especially
acidic DESs i.e. lactic, malic and oxalic based DESs) were found highly
effective for lignin dissolution (Table 3). Vigier et al. (2015) suggested
that one of the reasons for selective solubilization of lignin over cellu-
lose is that, both cellulose and DESs possess strong hydrogen bonding
networks, and dissolving cellulose in a DES requires the two hydrogen-
bond networks to be dissociated and reorganized to form a thermo-
dynamically more stable system. However, the cohesive energy of cel-
lulose is so strong that it may hamper its dissolution in any DES. It was
also found that lignin isolated from rice straw was solubilized to a
greater extent in comparison to lignin embedded in rice straw structure
(in its native state) (Kumar et al., 2016). The most plausible reason for
this might be the disintegration of highly cross-linked architecture of
biomass and strong bonding between lignin carbohydrate complexes
(LCCs) (Kumar et al., 2016).

Thus, developing and synthesizing a novel DESs having a strong
capability to solubilize cellulose and hemicellulose remains a grey area.
Other significant issues for the industrial application of deep eutectic
solvents based biomass processing is their recyclability and thermal
stability (Yoo et al., 2017). The recovery and reuse of deep eutectic
solvents after biomass processing is a cost and energy intensive process.
The release of trimethylamine from ChCl based solvents at high tem-
peratures (i.e., Hoffman elimination reaction) is a detrimental compo-
nent for the industrial viability of this technology. These limitations
must be overcome before DESs could be broadly implemented in an
industrial scale for biomass processing (Vigier et al., 2015).

5. Biomass pretreatment by DESs
5.1. Lignin removal

Pretreatment of biomass is essential for achieving high enzymatic
saccharification yields from biomass. Lignin restricts enzymatic hy-
drolysis of biomass by acting as a physical barrier and restricting the
enzyme access and by non-productive/non-specific enzyme binding
(Bhagia et al., 2016; Dumitrache et al., 2017; Li et al., 2016). Orga-
nosolv, alkali, and ionic liquids are quite effective in lignin removal, but
during high severity conditions it leads to hemicellulose degradation
and inhibitor formation, moreover; ILs are quite expensive in nature
(Tian et al., 2017). The solubility of lignin in DESs has provided a new
alternative for biomass pretreatment under mild conditions. A sche-
matic representation of hydrogen bonding between hydroxyl groups of
lignin units and chloride anions of ChCl:urea is shown in Fig. 4A. Re-
cently, several studies varied the ratios of hydrogen bond donor and
hydrogen bond acceptor of DESs for studying their effects on biomass
delignification at different temperatures (Table 4). It suggested that
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acidic DESs have delignified with =90% lignin removal of almost all
types of lignocellulosic biomass (corncob, rice straw, wheat straw, po-
plar, douglas fir) (Tang et al., 2017) (Zhang et al., 2016). However, a
recent study showed that pretreatment with DES (ChCl:glycerol) alone
was not effective with date palm residues unless a hydrothermal pre-
treatment was carried out to reduce date palm recalcitrance prior to the
DES pretreatment (Fang et al., 2017). Hence, the efficacy varied ac-
cording to the type of biomass, its inherent recalcitrant nature and
physiochemical properties. Such information from the recent state of
the art is indispensable for selecting the right type of DESs and pre-
treatment conditions and ultimately the better yields.

In a recent study, by Kim et al. (2018) a new class of renewable
DESs were developed with lignin-derived phenols as HBDs and ChCl as
HBA like 4-hydroxybenzyl alcohol (ChCl:HBA), catechol (ChCl:CAT),
vanillin (ChCl:VAN) and p-coumaric acid (ChCl:PCA) for delignification
of switchgrass. The highest delignification of 60.8% was observed with
ChCI:PCA followed by ChCl:VAN (52.5%) and ChCl:CAT (49%). In yet
another recent study by Procentese et al. (2018), different agro-in-
dustrial food wastes like apple residues, potato peels, coffee silverskin,
and brewer's spent grains were pretreated with two different DESs,
choline chloride:glycerol and choline chloride:ethylene glycol for fer-
mentable sugar production by enzymatic hydrolysis. Maximum de-
lignification of 62% was observed with apple residues and minimum of
33% in potato peels (Procentese et al., 2018). They also reported that
concentrations of inhibitors like hydroxymethyl furfural and furfural
was lower than 0.015 g L.~ ! while, gallic acid, ferulic acid and coumaric
acid were smaller than the minimum detectable value (0.1 gL~ 1 which
was lower than the typical inhibition thresholds for enzymatic hydro-
lysis and fermentation. Therefore, no detoxification strategy was re-
quired after DESs based biomass pretreatments (Procentese et al.,
2018).

Thus, delignification and pretreatment efficiency of DESs is highly
dependent upon the recalcitrant nature of biomass, selected DES and
the pretreatment conditions. DESs offer a new approach of pretreating
multiple feedstocks with high efficiency at mild temperatures without
any significant inhibitors formation. Further, the renewable and bio-
mass derived DESs offered another excellent opportunity to improve
cost-efficiency through closed-loop biorefinery concept where, biomass
derived DESs were employed for its own delignification (Kim et al.,
2018).

5.2. Hemicellulose removal

Lignin-carbohydrate complexes (LCCs), are chiefly responsible for
biomass recalcitrance arising from the cross linking of lignin with car-
bohydrates (especially hemicellulose) via strong covalent and hydrogen
bonding network with benzyl ester, benzyl ether, and phenyl glycoside
functional groups (Yongzhuang et al., 2017). Thus, most of the pre-
treatment approaches are based upon LCCs disintegration to remove
hemicellulose for enhanced enzyme accessibility and hydrolysis yields.
DESs hydrolyze the LCC linkages by disrupting the existing bonding
interactions between carbohydrates and lignin and developing new and
competing hydrogen bonds between the chloride ions of the DESs and
hydroxyl groups present in the carbohydrates and lignin (Fig. 4B). But
the extent of hemicellulose removal depends upon the DESs and the
physicochemical conditions, as discussed in the section below.

In contrast to dilute sulfuric acid pretreatment where, most of the
hemicellulose (~ 80%) was hydrolyzed into soluble monomeric sugars
(i.e. xylose, arabinose mannose, galactose) at temperatures above
120 °C and acidic pH (~1.5 to 2) in < 30 min (Agrawal et al., 2015b),
but no hemicellulose hydrolysis was observed even after prolonged
DESs pretreatment (ChCl:lactic acid and betaine:lactic acid having pH
~2) at 60 °C for 12h (Kumar et al., 2016) and only ~20% reported at
120°C for 12h with weekly basic DES i.e. ChCl:urea (Hou et al.,
2017b). However, 95.8% of the hemicellulose got hydrolyzed within
4h at 120 °C with strongly acidic DES (ChCl:oxalic acid) (Hou et al.,
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Fig. 4. Schematic representation of reaction between DES (ChCl:Urea) and lignin (A) and; lignin carbohydrate complexes (B) (Adapted with permission from

(Yongzhuang et al., 2017).

2017b). Hence, elevated temperature = 120 °C for a longer duration
(=4h) is required to remove hemicellulose in strongly acidic DESs
while, marginal hemicellulose removal was observed in mildly acidic
DESs. Thus, depending upon the pretreatment conditions and the type
of DESs, appropriate enzyme preparation also needs to be employed.
For example, hemicellulase rich enzyme preparations shall be required
for xylan rich pretreatment residues and vice versa for low lignin
containing residues after pretreatment.
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5.3. Biomass crystallinity after DES pretreatment

Crystallinity is amongst the most discussed and widely measured
parameters during pretreatment which is believed to play a critical role
in bioconversion of the lignocellulosic biomass (Karimi and
Taherzadeh, 2016). Biomass crystallinity is a function of cellulose
content as hemicellulose and lignin are amorphous in nature and their
removal during pretreatment could result in increasing the apparent
crystallinity of the biomass sample if the crystallinity of cellulose is not
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Table 4
Biomass delignification with deep eutectic solvents.
Biomass Hydrogen bond donor Hydrogen bond acceptor Ratio Temperature (°C) Lignin removal (%) Reference
Corncob Imidazole Choline chloride 2:1 115 70 (Procentese et al., 2015)
Corncob Imidazole Choline chloride 2:1 150 88 (Procentese et al., 2015)
Corncob Urea Choline chloride 2:1 115 24.8 (Procentese et al., 2015)
Corncob Glycerol Choline chloride 7:3 115 4.4 (Procentese et al., 2015)
Corncob Lactic acid Choline chloride 2:1 90 64.7 (Zhang et al., 2016)
Corncob Lactic acid Choline chloride 5:1 90 77.9 (Zhang et al., 2016)
Corncob Lactic acid Choline chloride 10:1 90 86.1 (Zhang et al., 2016)
Corncob Lactic acid Choline chloride 15:1 90 93.1 (Zhang et al., 2016)
Corncob Glycolic acid Choline chloride 2:1 90 56.4 (Zhang et al., 2016)
Corncob Levulinic acid Choline chloride 2:1 90 43.0 (Zhang et al., 2016)
Corncob Malonic acid Choline chloride 1:1 90 56.5 (Zhang et al., 2016)
Corncob Glutaric acid Choline chloride 1:1 90 34.3 (Zhang et al., 2016)
Corncob Oxalic acid Choline chloride 1:1 90 98.5 (Zhang et al., 2016)
Corncob Malic acid Choline chloride 1:1 90 22.4 (Zhang et al., 2016)
Corncob Ethylene glycol Choline chloride 1:1 90 87.6 (Zhang et al., 2016)
Corncob Glycerol Choline chloride 1:1 90 71.3 (Zhang et al., 2016)
Rice straw Lactic acid Choline chloride 2:1 60 51.0 (Kumar et al., 2016)
Rice straw Lactic acid Choline chloride 5:1 60 60.0 (Kumar et al., 2016)
Rice straw Lactic acid Choline chloride 9:1 60 59.0 (Kumar et al., 2016)
Wheat straw Lactic acid Choline chloride 91 60 14.6 (Jablonsky et al., 2015)
Wheat straw Lactic acid Choline chloride 10:1 60 29.1 (Jablonsky et al., 2015)
Wheat straw Oxalic acid.2 H,O Choline chloride 1:1 60 57.9 (Jablonsky et al., 2015)
Wheat straw Malic acid Choline chloride 1:1 80 21.6 (Jablonsky et al., 2015)
Wheat straw Malonic acid Choline chloride 1:1 3.8 (Jablonsky et al., 2015)
Wheat straw Lactic acid Choline chloride 10:1 60 87.9 (Jablonsky et al., 2015)
Corn stover Formic acid Choline chloride - 130 23.8 (Xu et al., 2016b)
Poplar Lactic acid Betaine 2.5:1 130 52.4 (Tian et al., 2017)
Poplar Lactic acid Choline chloride - 145 78 (Alvarez-Vasco et al., 2016)
Douglas fir Lactic acid Choline chloride - 145 58 (Alvarez-Vasco et al., 2016)
Date Palm Residues Glycerol Choline chloride 2:1-6:1 70 Not significant (Fang et al., 2017)
Switchgrass 4-hydroxybenzyl alcohol Choline chloride 1:1 100 6.5 (Kim et al., 2018)
Switchgrass Catechol Choline chloride 1:1 100 49 (Kim et al., 2018)
Switchgrass Vanillin Choline chloride 2:1 100 52.5 (Kim et al., 2018)
Switchgrass p-coumaric acid Choline chloride 1:1 100 60.8 (Kim et al., 2018)
Apple residues Glycerol Choline chloride 32:1 150 62 (Procentese et al., 2018)
Potato peels Glycerol Choline chloride 32:1 150 33 (Procentese et al., 2018)
lowered appreciably by the pretreatment conditions or solvent. Thus, The decrease in crystallinity index (CrI) has been frequently linked
the focus of this section is to investigate the role of DESs pretreatment earlier with improved biomass conversion yields due to enhanced
in affecting the substrate or biomass crystallinity (Table 5). availability of substrate binding sites (Loow et al., 2018; Procentese
Table 5
Crystallinity index (Crl) of lignocellulosic biomass after DES pretreatment.
Biomass Pretreatment Crl Reference
Corn cob Untreated 30.07 (Procentese et al., 2015)
Corn cob ChCl glycerol, 150 °C 44.81 (Procentese et al., 2015)
Corn cob ChCl urea, 115°C 36.54 (Procentese et al., 2015)
Corn cob ChCl imidazole, 115°C 40.08 (Procentese et al., 2015)
Corn cob ChCl imidazole, 150 °C 49.22 (Procentese et al., 2015)
Corn cob Untreated 31.6 (Zhang et al., 2016)
Corn cob ChCl lactic acid, 90 °C 38.6 (Zhang et al., 2016)
Corn cob ChCl Glycolic acid, 90 °C 30.8 (Zhang et al., 2016)
Corn cob ChCl Levulinic acid, 90 °C 32 (Zhang et al., 2016)
Corn cob ChCl Malonic acid, 90 °C 29.5 (Zhang et al., 2016)
Corn cob ChCl Glutaric acid, 90 °C 30.8 (Zhang et al., 2016)
Corn cob ChCl Oxalic acid, 90 °C 31.6 (Zhang et al., 2016)
Corn cob ChCl Malic acid, 90 °C 31.7 (Zhang et al., 2016)
Corn stover Untreated 31.1 (Xu et al., 2016b)
Corn stover ChCl formic acid, 130 °C 57.2 (Xu et al., 2016b)
Rice straw Untreated 37.9 (Hou et al., 2012)
Rice straw Cholinium lysine, 90 °C 62.8 (Hou et al., 2012)
Rice straw Cholinium glycine, 90 °C 65.4 (Hou et al., 2012)
Rice straw Cholinium serine, 90 °C 68.9 (Hou et al., 2012)
Oil palm empty fruit bunch Untreated 38.27 (Nor et al., 2016)
0il palm empty fruit bunch ChCl urea, 110°C 34.99 (Nor et al., 2016)
Oil palm empty fruit bunch ChCl urea, 80 °C 39.23 (Nor et al., 2016)
Date palm residues Untreated 27.44 (1.01)" (Fang et al., 2017)
Date palm residues ChCl glycerol, 70 °C 31.89 (0.91) @ (Fang et al., 2017)
Date palm residues Hydrothermal pretreatment followed by ChCl glycerol, 70 °C 33.57 (0.76) * (Fang et al., 2017)

@ Crystallinity considering glucan content(Fang et al., 2017).
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et al., 2018). Some ionic liquids have been reported to efficiently de-
crystallize cellulose and reduce biomass crystallinity significantly, and
cause complete solvation of the whole biomass (Li et al., 2018). How-
ever, this was not always found to be true and sometimes either no
relation or inverse correlation has also been observed between biomass
crystallinity and conversion yields (such as dilute acid and hydro-
thermal pretreatments) (Agrawal et al., 2015b; Hashmi et al., 2017).

In a study by Zhang et al. (2012a), the impact of choline derived
solvents for pure cellulose (Avicel) decrystallization at 110 °C for 12h
but no significant reduction in cellulose crystallinity was observed after
ChCl:urea and ChCl:ZnCl, pretreatment. Procentese et al. (2015) re-
ported that corn cobs pretreated in three different DESs (ChCl:glycerol,
ChCl:urea and ChCl:imidazole) at different temperatures (80, 115, and
150 °C) efficiently removed lignin and some hemicelluloses resulting in
enhanced overall crystallinity of the pretreated biomass while the
crystallinity of the cellulose fraction was reduced. The crystallinity of
the pretreated corn cob rose with increasing temperature from 80 °C to
150 °C. Interestingly, Nor et al. (2016) found that low crystallinity oc-
curs at high-temperature pretreatment of oil palm with ChCl:urea (2:1
molar ratio, 110 °C for 1h) as compared to native oil palm while high
crystallinity is evident at a relatively lower temperature (80 °C for 1 h).
This was attributed to the hydrolysis of para-crystalline cellulose
whereas using a relatively low pretreatment temperature only amor-
phous hemicellulose and lignin were removed while crystalline cellu-
lose remained intact (Nor et al., 2016). Thus, the overall crystallinity of
the biomass generally increased after DESs pretreatment due to the
removal of amorphous hemicellulose as well as lignin.

5.4. Enzgymatic hydrolysis and DES pretreatment

The sections above have provided thorough insights of the physi-
cochemical nature of DESs, mechanism of biomass pretreatment, and
how it affects the biomass composition, biopolymers solubility (i.e.
lignin, hemicellulose and cellulose) and crystallinity. The primary ob-
jectives of any lignocellulosic biomass pretreatment approach is to re-
duce its recalcitrance with subsequent increase in the fermentable sugar
yields via enzymatic hydrolysis. Here, current status of bioconversion of
different biomass via DESs pretreatment and enzymatic hydrolysis
discussed (Table 6). It showed that enzymatic hydrolysis yields varied
significantly depending upon the type of biomass/substrate and DES,
pretreatment temperature, molar ratio of hydrogen bond donor and
acceptor. A few examples depicting the role of each one of them is
discussed below in brief for more clarity.

5.4.1. Type of biomass and DES

In a systematic study, Jablonsky et al. (2015) suggested that the
increase in hydrolysis yields after DESs pretreatments was primarily
due to the disruption of crystalline cellulose and delignification. A re-
cent study compared the enzymatic hydrolysis yields of kraft dissolving
eucalyptus pulp, cellulose, wheat straw and spruce saw dust before and
after pretreatment with three DESs ChCl:boric acid (5:2), ChCl:glycerol
(1:1) and betaine:glycerol (1:1) (Wahlstrom et al., 2016). It showed that
prior to pretreatment maximum hydrolysis yields obtained with kraft
dissolving eucalyptus pulp (62%) followed by cellulose (MCC) (49%),
native wheat straw (18%) and spruce saw dust (8%) (Table 6). Al-
though, DES pretreatment improved the enzymatic hydrolysis yields of
all the substrates but still the trends remained the same, obtaining the
maximum hydrolysis yields with dissolving pulp (~100%) followed by
cellulose (~65%), wheat straw (33%) and only marginal increase with
saw dust (Table 6). This study showed that mild DESs pretreatment
were effective with agricultural residues (i.e. wheat straw, corn cob,
switchgrass etc.) and other low recalcitrant substrates (i.e. amorphous
cellulose, kraft pulp etc.) but more research is still needed to develop
and demonstrate the utility of DESs for other highly recalcitrant woody
biomass such as spruce saw dust, date palm etc. Another finding of this
study was better efficiency of acidic DES (ChCl:boric acid (5:2)) in
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comparison of glycerol based DESs (i.e. ChCl:glycerol (1:1) and betaine
glycerol (1:1)). In another critical study, different ChCl:acid based DESs
(listed here in the order of decreasing acidity; formic acid (high acidic
strength with pKa 3.75) > lactic acid (pKa 3.86) > acetic acid (least
acidic strength pKa 4.75)) were compared on a single feedstock (pine
residues) for delignification and enzymatic hydrolysis yields (Lynam
et al., 2017). This study revealed that the highest lignin solubility (14%
w/w) and hydrolysis yields (70%) were obtained with ChCl:formic acid
in comparison to others. Similarly, 57.9% delignification of wheat
straw achieved by highly acidic ChCl:oxalic (pKa 1.2) as compared to
ChCl:lactic acid (Jablonsky et al., 2015). Hence, DESs with strong
acidity were found to be more effective for lignin solubilization and
enzymatic hydrolysis yields.

5.4.2. Effect of temperature

The effect of temperature on pretreatment and enzymatic hydrolysis
was evaluated by Procentese et al. (2015), they reported that hydrolysis
yields of corncob were enhanced from 39.9% to 91.5% with an increase
in pretreatment temperature from 80°C to 150°C when using
ChCl:glycerol as a DES. Similarly, hydrolysis yields improved from 51%
to 58.6% with an increase in pretreatment temperature with ChCl:urea,
however, no significant increase with temperature was observed with
ChCl:imidazole as it worked equally well (92.3%) even at lower tem-
perature of 80 °C (Table 6). In a similar study, Zhang et al. (2016) also
reported that high delignification and enzymatic hydrolysis yields were
observed with the increase in pretreatment temperature from 70 °C to
110 °C but this increase in hydrolysis yields (77.8-79.7%) was marginal
after reaching 90 °C. Thus, generally enzymatic digestibility improved
with an increase in temperature from 80 °C to 150 °C.

5.4.3. Molar ratio of HBA/HBD

Many of the reports cited here showed that acidity of DESs play a
critical role in biomass pretreatment and delignification efficiency and
generally the yields improve with increasing acidity. For example,
lignin solubility improved with the increase in the acid content of
ChCl:lactic acid from a molar ratio of 1:1 to 1:9 when a synthetic blend
of cellulose and lignin was used as a substrate (Francisco et al., 2012),
similarly higher lignin solubilization i.e. 51% to 60% was observed with
increased acid ratio from 1:2 to 1:5, respectively using rice straw as a
substrate (Kumar et al., 2016). In another recent study, increasing the
molar ratio of ChCl:lactic acid from 2:1 to 15:1 improved the lignin
extraction (64.7-93.1%) of corncob but no significant increase in en-
zymatic hydrolysis yield takes place (79.1-83.5%). Moreover, 70%
lignin removal from corn cob was sufficient for achieving the optimum
hydrolysis yield (Zhang et al., 2016). This value of 70% for lignin re-
moval is in accordance with the recent finding that about 65-70% of
lignin in biomass is easier to remove if lignin re-deposition is prevented
(Bhagia et al., 2016). Moreover, previous reports indicated that com-
plete removal of lignin is not necessary to achieve better enzymatic
hydrolysis (Fu et al., 2010; Hou et al., 2013). Fang et al. (2017) which
found that liquid hot water pretreatment followed by ChCl:glycerol
pretreatment (70 °C for 6 h) of date palm residues had 1.7 times higher
enzymatic digestibility as compared to liquid hot water pretreatment
only. There was no significant increase in hydrolysis with ChCl:glycerol
pretreatment of date palm residues. It was suggested that removal of
lignin and xylan by DES were responsible for the enhancement of en-
zymatic digestibility rather than lowering the cellulose crystallinity
(Fang et al., 2017).

Recently, an important study by Kim et al. (2018) demonstrated that
novel DESs developed from biomass derived lignin phenolics were as
effective as other DESs produced by using acids (oxalic acid, levulinic
acid, malonic acid, etc.), alcohols (glycerol, ethylene glycol, etc.), and
amines (urea) in improving the enzymatic hydrolysis of switchgrass. As
shown in Table 6, the maximum glucose yields of 85.7% and 79.8%
were observed with ChCl:p-coumaric acid and ChCl:vanillin, respec-
tively while; the lowest efficiency (32%) was observed with ChCl:4-
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Table 6

Enzymatic hydrolysis efficiency after DES pretreatment.
Substrate/Biomass DES Pretreatment conditions Enzymatic hydrolysis efficiency Reference
Rice husk Nil 50°C, 0.5h 0.2 mM (Gunny et al., 2015)
Rice husk ChCl ethylene glycol 115°C, 3h 0.7 mM (Gunny et al., 2015)
Corncob Untreated - 32.8% (Procentese et al., 2015)
Corncob ChCl glycerol 80°C, 15h 39.9% (Procentese et al., 2015)
Corncob ChCl glycerol 115°C, 15h 79.1% (Procentese et al., 2015)
Corncob ChCl glycerol 150°C, 15h 91.5% (Procentese et al., 2015)
Corncob ChCl urea 80°C, 15h 51% (Procentese et al., 2015)
Corncob ChCl urea 115°C, 15h 58.6% (Procentese et al., 2015)
Corncob ChCl imidazole 80°C, 15h 92.3% (Procentese et al., 2015)
Corncob ChCl imidazole 115°C, 15h 94% (Procentese et al., 2015)
Corncob ChCl imidazole 150°C, 15h 94.6 (Procentese et al., 2015)
Corncob Untreated - 22.1 (Zhang et al., 2016)
Corncob ChCl lactic acid 90°C,24h 83.5% (Zhang et al., 2016)
Corncob ChCl glycolic acid 90°C,24h 67.3% (Zhang et al., 2016)
Corncob ChCl levulinic acid 90°C,24h 62% (Zhang et al., 2016)
Corncob ChCl malonic acid 90°C,24h 61.5% (Zhang et al., 2016)
Corncob ChCl glutaric acid 90°C,24h 40.7% (Zhang et al., 2016)
Corncob ChCl oxalic acid 90°C,24h 45.2% (Zhang et al., 2016)
Corncob ChCl malic acid 90°C,24h 37.4% (Zhang et al., 2016)
Corncob ChCl ethylene glycol 90°C, 24h 85.3% (Zhang et al., 2016)
Corncob ChCl glycerol 90°C, 24h 96.4% (Zhang et al., 2016)
Corn stover ChCl formic acid 130°C, 3h 99% (Zhang et al., 2016)
Rice straw ChCl lactic acid 60°C, 12h 36% (Kumar et al., 2016)
Oil palm trunk Nil - 25% (Zulkefli et al., 2017)
0Oil palm trunk Ethylammonium chloride ethylene glycol 100°C, 48h 74% (Zulkefli et al., 2017)
Pine Untreated - 10% (Lynam et al., 2017)
Pine ChCl formic acid 155°C, 2h 70% (Lynam et al., 2017)
Microcrystalline cellulose Untreated - 49% (Wahlstrom et al., 2016)
Microcrystalline cellulose ChCl betaine 80°C, 24h 49% (Wahlstrom et al., 2016)
Microcrystalline cellulose ChCl glycerol 80°C, 24h ~65% (Wahlstrom et al., 2016)
Microcrystalline cellulose Betaine glycerol 80°C, 24h ~65% (Wahlstrom et al., 2016)
Eucalyptus dissolving pulp Untreated - 62% (Wahlstrom et al., 2016)
Eucalyptus dissolving pulp ChCl glycerol 80°C, 24h ~100% (Wahlstrom et al., 2016)
Eucalyptus dissolving pulp ChCl betaine 80°C, 24h ~100% (Wahlstrom et al., 2016)
Eucalyptus dissolving pulp Betaine glycerol 80°C, 24h ~100% (Wahlstrom et al., 2016)
Wheat straw Untreated - 18% (Wahlstrom et al., 2016)
Wheat straw ChCl betaine 80°C, 24h 33% (Wahlstrom et al., 2016)
Wheat straw ChCl glycerol 80°C, 24h < 20% (Wahlstrom et al., 2016)
Wheat straw Betaine glycerol 80°C, 24h < 20% (Wahlstrom et al., 2016)
Spruce saw dust Untreated - 8% (Wahlstrom et al., 2016)
Spruce saw dust ChCl glycerol 80°C, 24h < 20% (Wabhlstrom et al., 2016)
Spruce saw dust ChCl betaine 80°C, 24h < 20% (Wabhlstrom et al., 2016)
Spruce saw dust Betaine glycerol 80°C, 24h < 20% (Wahlstrom et al., 2016)
Switchgrass ChCl 4-hydroxybenzyl alcohol 160°C, 3h 32% (Kim et al., 2018)
Switchgrass ChCl catechol 160°C, 3h 77% (Kim et al., 2018)
Switchgrass ChCl vanillin 160°C, 3h 79.8% (Kim et al., 2018)
Switchgrass ChCl p-coumaric acid 160°C, 3h 85.7% (Kim et al., 2018)

hydroxybenzyl alcohol as no substantial delignification was observed
after pretreatment with it thus, enzyme accessibility was significantly
reduced.

6. Compatibility of DES with enzymes and microorganisms

The two most popular process designs for biomass to ethanol pro-
duction are pretreatment followed by separate hydrolysis and fermen-
tation (SHF), or simultaneous saccharification (hydrolysis) and fer-
mentation (SSF). If the pretreatment solvent is toxic to enzymes and
microbes, it will be needed to be removed from pretreated solids by
extensive washing or by other methods for achieving high yields by SHF
or SSF. On the other hand, some studies that used ionic liquid pre-
treatment performed a one-pot process in which the three stages are
carried out in the same vessel. Thus, biocompatibility is critical concern
for one-pot processes where pretreatment slurry undergoes hydrolysis
and fermentation. Since many ionic liquids can cause high enzyme in-
hibition and cytotoxicity, recent works developed IL systems to address
these issues (Liszka et al., 2016). A single-pot process design containing
pretreatment, enzymatic hydrolysis and fermentation was made pos-
sible through use of aqueous choline-based ILs that allowed near 75%
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ethanol yield and over 40 g L. ™! ethanol titer from fed batch process at
high 30-34% solids loading of corn stover but at high enzyme loading
of 20 mg/g glucan (Xu et al., 2016a). It is known that the constituents of
DES, like choline chloride and urea, have the ability to inactivate
proteins (Gorke et al., 2008). Remarkably, when combined to form a
DES, inactivation can be reduced several-fold. This was observed in the
case of lipase-catalyzed transesterification where conversions with
certain DESs like, choline chloride:(glycerol or urea), were comparable
to that in toluene indicating excellent stability of certain lipases in DES
(Gorke et al., 2008).

Some recent studies have evaluated the impact of DES on cellulase
activity. Gunny et al., (2015) incubated cellulase from Aspergillus sp.
with choline chloride based DES having glycerol or ethylene glycol or
malonic acid as the hydrogen bond donors (HBD) in 1:2 ratio for 48 h.
Results showed 10% reduction in filter paper activity after 48h in
control (i.e. without any DESs) whereas, 60% loss of relative filter paper
activity was observed within 24 h in the presence of DES containing
malonic acid (Fig. 5). In contrast, only marginal reduction in cellulase
activity was observed with glycerol or ethylene glycol containing DES.
Hydrolysis of Avicel with cellulase resulted in only minor decrease of
~1mM in the glucose concentration with 10% v/v choline chloride:
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Fig. 5. Cellulase activity in the presence of DESs with HBA as choline chloride and HBD as ethylene glycol (EG), glycerol (GLY) or malonic acid (MA) at various
concentrations after (A) 24h and (B) 48 h incubation times (Adapted with permission from (Gunny et al., 2015)).

(glycerol or ethylene glycol). This study proved that malonic acid is
highly inhibitory to cellulase as compared to the other two HBDs
(glycerol or ethylene glycol).

Wahlstrom et al. (2016) recently studied the effect of high con-
centrations of DESs on enzyme activity and hydrolysis yields for feasi-
bility of a single-pot biomass deconstruction process. For enzyme ac-
tivity, they purified and tested cellobiohydrolase Cel7A,
endoglucanases Cel5A and Cel7B, and xylanase Xynll from T. reesei
individually in three DES at 85% concentration at pH5.0 in citrate
buffer and at 50°C with choline chloride:boric acid (5:2), choline
chloride:glycerol (1:1), and betaine:glycerol (1:1). The popular cellu-
lose solubilizing ionic liquid 1-ethyl-3-methylimidazolium acetate
([EMIM]Ac) was also included in this study. This ionic liquid was
highly inhibitory as the activity of all enzymes dropped to nearly zero
in about 4h whereas, choline chloride:glycerol (1:1) was mild in-
hibitory to enzymes which might be expected because glycerol is con-
sidered an enzyme stabilizer (Agrawal et al., 2017b). The betaine:gly-
cerol (1:1) appeared to stabilize the enzymes after an initial (24h to
72h) decline in activity. In fact, residual enzyme activity of the two
endoglucanases was significantly higher after 144 h in betaine:glycerol
than in buffered solution without any DES. However, choline chlor-
ide:boric acid (5:2) was highly inhibitory amongst all of the DESs
evaluated here, with complete loss of enzymatic activity occurred
within 48 h. This study showed that, not only the glycerol component
but also the hydrogen bond acceptor played a significant role in af-
fecting the enzyme stability and betaine acted as more enzyme-com-
patible than choline chloride (Wahlstrom et al., 2016). On the other
hand, enzymes can be engineered to increase tolerance of such
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unconventional solvents. Lehmann et al. (2012) developed a high-
throughput assay based on a fluorescent cellobiose substrate for di-
rected evolution of DES tolerant endoglucanase (CelA2). They dis-
covered cellulase variants that had 23-fold higher cellulolytic activity in
high ionic strength mediums such as DES, ionic liquid or NaCl due to
activation of a salt bridge (Lehmann et al., 2014).

There are few studies on compatibility of DESs with microbes.
Hayyan et al. (2013c) performed filter paper diffusion assay for 24 h on
four common bacteria: Bacillus subtilis, Staphylococcus aureus, Escher-
ichia coli, and Pseudomonas aeruginosa, for toxicity caused by choline
chloride based DES having HBDs as glycerol, ethylene glycol, triethy-
lene glycol, and urea, as well as the pure components that formed these
DES. Their work showed that none of the bacteria were inhibited by the
four DES or their pure components. In their other study (Hayyan et al.,
2013b), phosphonium-based DES (methyltriphenylphosphonium bro-
mide) with glycerol, ethylene glycol, and triethylene glycol were stu-
died for inhibition using the same assay in similar conditions on the
same four bacteria. In this case, DES with ethylene glycol and triethy-
lene glycol HBDs inhibited all four bacteria. DES with glycerol HBD
showed a zone of inhibition only with Pseudomonas aeuriginosa. In one
study, baker's yeast was used as a whole cell biocatalyst in different
mixtures of water with DES (choline chloride:glycerol) (Maugeri and
Dominguez De Maria, 2014). By replacing 100% water with 20% water
in choline chloride:glycerol (1:2) led to 95% excess of (R) enantiomer
than 95% excess of (S) enantiomer of ethyl 3-hydroxybutyrate cata-
lyzed by baker's yeast possibly due to inhibition of S-enantioselective
oxidoreductases. Yeast was active in 50% of this DES at long reaction
times (> 200 h) (Maugeri and Dominguez De Maria, 2014).
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These early studies on this topic suggest that certain DESs are bio-
compatible with enzymes, bacteria and yeast. However, there are re-
ports where high concentration of DESs are toxic to them and for a
single-pot processes it might be desirable to dilute the pretreatment
slurry to a level at which the DES does not greatly affect sugar yields.
Further work is essential in this area of research for better under-
standing and biotechnological innovations.

7. Recycling of DESs

Recycling and reuse of DESs are one of the major advantages for its
application in low cost- high volume industrial applications like bio-
mass processing (van Osch et al., 2017). DESs are considered to be
recycled more readily than ILs because their synthesis/regeneration
does not involve any chemical reactions and only it involves formation
or rupturing the hydrogen bonding network that binds these compo-
nents (HBD and HBA) (Xu et al., 2017).

The recycling of DESs in pretreatments studies has been rarely in-
vestigated but broadly acknowledged as a pressing research need for
the commercial viability of the biomass based biorefinery. Recently,
Kim et al. (2018) have evaluated the recovery, reuse and efficacy of the
DESs during pretreatment of switchgrass. They have used an easy ap-
proach to recycle DESs by separation of residual lignin through pres-
surized ultrafiltration of liquid obtained after pretreatment of switch-
grass and DES recovery by using a rotary evaporator to recycle ethanol
and water used during the process and the recovered DES was reused
for the next biomass pretreatment (Fig. 6A & B). The mass balance
analysis showed that ~95% of DES was recovered during each recycle
without losing its efficiency for 3 successive cycles (Kim et al., 2018).
We can certainly take guidance from other academic and industry
studies that have utilized DESs and recycled them in differing fields, for
example Jeong et al. (2015) utilized a ternary DES composed of gly-
cerol, 1-proline, and sucrose in 9:4:1 M ratio to extract ginseng saponins
from white ginseng. A solid phase extraction strategy based on HLB
cartridges was used to recover the ginsenosides from the DES extracts.
After extraction, lyophilization was carried out to recover and reuse the
regenerated solvent up to three times. The regenerated DES was stable
and only a slight reduction in the extraction efficiency was observed
(the recycled DES had efficiency of 91.9%, 85.4% and 82.6% after first,
second and third reuses, respectively). Lobo et al. (2012b) synthesized
N-aryl phthalimide derivatives from phthalic anhydride and primary
aromatic amines by using two DESs (ChCl:urea and ChCl:malonic acid).
After filtration of the reaction mixture solid product (N-aryl phthali-
mide) was separated and ChCl:urea was recovered and reused simply by
evaporating the water. In case of the other reaction mixtures where DES
(ChCl:malonic acid) was added as a catalyst in methanol, the filtrate
obtained after separation of the solid product was subjected to removal
of methanol by vacuum distillation and DES was recovered. Both of the
recovered DESs had no significant decrease in their catalytic activity
even after five times recycling. Recycling and reuse of DES was studied
for 5-HMF synthesis by fructose dehydration in a biphasic system
consisting of DES and organic phase (Zuo et al., 2017). Here both 5-
HMF and ChCl were first extracted in situ by acetonitrile and later ChCl
was crystallized by cooling to room temperature. The recycled ChCl was
reused for 5 successive reactions without any loss of catalytic activity.
Similarly, tetrabutyl ammonium chloride:polyethylene glycol was re-
cycled four times by washing with organic solvent (diethyl ether)
without losing its activity and stability after fuel desulfurization (Li
et al., 2013a). Although there is scant information on DESs recycled and
reused after biomass processing applications, there are a few recycling
reports available in fuel and chemical processing industries. Different
strategies published recently for DESs recycling are summarized in
Table 7. It shows how DESs recycling is dependent upon their physi-
cochemical properties, reaction conditions, and product characteristics.
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8. Comparison of DESs and ionic liquids

Both ionic liquids and deep eutectic solvents are considered as in-
novative solvents having the potential to transform the lignocellulosic
biorefining to a green and sustainable industry (Lores et al., 2017; Tang
et al.,, 2017). Both of these solvents offer several advantages over
conventional solvents because of their versatility and industrially re-
levant physio-chemical properties which could be customized by ra-
tionally selecting its constituents (van Osch et al., 2017). ILs are salts
composed of an organic cation and an organic/inorganic anion, with
melting temperatures below 100 °C and are often liquid at room tem-
perature (Raj et al., 2016; Singh et al., 2015; Yoo et al., 2017). In
comparison to ILs, DESs are novel solvents and research for their ap-
plication in biomass processing is still in its nascent stages. Although,
DESs and ILs share common characteristics but it is often claimed that
DESs might offer several advantages over ILs. A comparison of both ILs
and DESs at different parameters is summarized in Table 8.

9. Challenges and opportunities

Research in synthesis of DESs and their industrial applications is still
in its infancy, with the first paper on the subject only published in 2001
(Smith et al., 2014). However, a significant surge in the number of
research articles on this subject has been seen during the last decade
with > 1000 articles published in 2016-2017 (based on Sci-Finder
data). DESs are considered as ‘green' solvents that offer many ad-
vantages like ease of synthesis without any need of solvent and pur-
ification, low cost, biodegradability, and non-toxicity. They may solu-
bilize high amounts of lignin from biomass but little cellulose and
hemicellulose. Thus, DESs might play a critical role in selective solu-
bilization and removal of lignin from biomass while keeping cellulose
and hemicellulose intact for further processing with minimal losses of
sugars. Biomass pretreatment with selected DESs (ChCl:oxalic acid) has
been shown to remove > 90% of lignin under mild temperature and
pressure with high saccharification yields (Procentese et al., 2015;
Zhang et al., 2016). One disadvantage of DESs can be their higher
viscosity, however, there is lack of understanding on this issue relevant
to lignocellulosic biomass (van Osch et al., 2017). Future research in
this area shall provide deeper insights for developing tailored DESs with
low viscosity and high thermal stability suitable for wide industrial
applications. Preliminary evidence suggests that they are relatively easy
to recycle and maintain their catalytic activity. Life cycle analysis and
techno-economical analysis needs to be carried out for DES pretreat-
ment of lignocellulosic biomass. DESs need to be manufactured at an
industrial scale for availability as low-cost green solvents. These recent
findings suggest that deep eutectic solvents are promising alternatives
to conventional solvents for upgrading lignocellulosic biomass.
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Table 8

Biotechnology Advances 36 (2018) 2032-2050

A Comparison of deep eutectic solvents and ionic liquids (Agrawal et al., 2017a; Loow et al., 2017; Lynam et al., 2017; Tang et al., 2017; van Osch et al., 2017; Yoo

et al., 2017).

S. No.  Parameter Ionic liquids (ILs) Deep Eutectic Solvents (DESs)
1 Synthesis Tedious synthesis with multi-step reactions and purification Easy in preparation without any chemical reaction and purification step
2 Thermal stability =~ High stability and decomposition above 300 °C to 430 °C Less stable than ILs with decomposition temperature about 200 °C or below
temperature depending upon the anion
3 Density Low densities of most of the ILs (0.8-1.6 gcm™3) High density (> 1 gcm ™). Hydrophobic DESs denser than hydrophilic
4 Viscosity Low viscosity (10 mPas to 726 mPas) High viscosity (> 100 mPas) and in some cases reach up t010,000 mPas
5 Toxicity Recalcitrant, poor biodegradability and toxicity increases with the Nontoxic, biodegradable and considered as ‘green'solvents
increase in cation alkyl chain
6 Solubility Solubilize cellulose and hemicellulose (up to 25 wt%) and lignin (up  DESs can solubilize lignin (up to 25 wt%) efficiently but cellulose and
to 80 wt%) efficiently hemicellulose is sparingly soluble (< 2 wt%)
7 Recycling Difficult to recycle Easy to recycle and reuse as compared to ILs
8 Cost Expensive in nature Less expensive than ILs
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