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ABSTRACT

We introduce fast-decodable indexing schemes for edit distancewhich

can be used to speed up edit distance computations to near-linear

time if one of the strings is indexed by an indexing string I . In parti-

cular, for every length n and every ε > 0, one can in near linear time

construct a string I ∈ Σ
′n with |Σ′ | = Oε (1), such that, indexing

any string S ∈ Σ
n , symbol-by-symbol, with I results in a string

S ′ ∈ Σ
′′n where Σ′′ = Σ × Σ

′ for which edit distance computations

are easy, i.e., one can compute a (1 + ε)-approximation of the edit

distance between S ′ and any other string in O(npoly(logn)) time.

Our indexing schemes can be used to improve the decoding

complexity of state-of-the-art error correcting codes for insertions

and deletions. In particular, they lead to near-linear time decoding

algorithms for the insertion-deletion codes of [Haeupler, Shahrasbi;

STOC ‘17] and faster decoding algorithms for list-decodable insertion-

deletion codes of [Haeupler, Shahrasbi, Sudan; ICALP ‘18]. Interes-

tingly, the latter codes are a crucial ingredient in the construction

of fast-decodable indexing schemes.
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· Mathematics of computing → Coding theory; · Theory of

computation → Error-correcting codes.
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1 INTRODUCTION

Error correcting codes have revolutionized how information is

stored and transmitted. The main two parameters of interest for

an error correcting code are: (1) its rate-distance trade-off, i.e., how

much redundancy is added in comparison to how many errors the

code can correct and (2) its computational efficiency, i.e., how fast

one can encode or decode. Ideal families of codes, so called near-

MDS codes, over large finite alphabets achieve an (almost) perfect

rate distance trade-off, i.e., attain a rate of 1−δ − ε while correcting

any δ/2 fraction of errors (or δ fraction of erasures, insertions, or

deletions) for any δ ∈ (0, 1) and are encodable and decodable in

(near) linear time.

1.1 (Near) Linear-Time Codes

The seminal works of Shannon, Hamming, and others in the late

40s and early 50s established a good understanding of the opti-

mal rate/distance tradeoffs achievable existentially and over the

next decades, near-MDS codes achieving at least polynomial time

decoding and encoding procedures were put forward. Since then,

lowering the computational complexity has been an important goal

of coding theory. Particularly, the 90s saw a big push, spearhea-

ded by Spielman, to achieve (near) linear coding complexities: in

a breakthrough in 1994, Sipser and Spielman [35] introduced ex-

pander codes and derived linear codes with some constant distance

and rate that are decodable (but not encodable) in linear time. In

1996 Spielman [36] build upon these codes to derive asymptotically

good error correcting codes that are encodable and decodable in

linear time. As for codes with better rate distance trade-off, Alon

et al. [4] obtained near-MDS error correcting codes that were de-

codable from erasures in linear time. Finally, in 2004, Guruswami

and Indyk [19] provided near-MDS error correcting codes for any

rate than can be decoded in linear time from any combination of

symbol erasures and symbol substitutions.

1.2 Codes for Insertions and Deletions

Similar questions on communication and computational efficiencies

hold for synchronization codes, i.e., codes that correct from symbol

insertions and symbol deletions. As a matter of fact, an analogous

flow of progress can be recognized for synchronization codes. The

study of synchronization codes started with the work of Levensh-

tein [31] in the 60s. In 1999, Schulman and Zuckerman [34] gave

the first (efficient) synchronization code with constant distance

and rate. Only recently, synchronization codes with stronger com-

munication efficiency have been found. Guruswami et al. [20, 21]

introduced the first synchronization codes in the asymptotically

small or large noise regimes by giving efficient codes which achieve
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a constant rate for noise rates going to one and codes which provide

a rate going to one for an asymptotically small noise rate. Last year,

Haeupler and Shahrasbi [22] were able to finally achieve efficient

synchronization codes with the optimal (near-MDS) rate/distance

tradeoff, for any rate and distance. These codes build on a novel

tool called synchronization strings which are also used in [24] to

design efficient list-decodable codes from insertions and deletions.

All of the codes mentioned so far have decoders with large poly-

nomial complexity between Ω(n2) andO(nO (1/ε )). The only known
insertion-deletion codes with subquadratic time decoders are given

in [23]. Unfortunately, these codes only work for δ ∈
(
0, 13

)
fraction

of errors while achieving a rate of 1 − 3δ − ε (instead of the desired

1 − δ − ε).

In this work, we take the natural next step and address the

problem of finding near-linear time encodable/decodable (near-

MDS) codes for insertions and deletions.

1.3 Quadratic Edit Distance Computation
Barrier

Many of the techniques developed for constructing efficient regular

error correcting codes also apply to synchronization strings. Indeed,

the synchronization string based constructions in [22ś25] show

that this can largely be done in a black-box manner. However, there

is a serious new barrier that arises in the setting of synchronization

errors if one tries to push computational complexities below n2.

This barrier becomes apparent once one notices that decoding an

error correcting code is essentially doing a distance minimization

where the appropriate distance in the synchronization setting is

the edit distance1. As we discuss below, merely computing the edit

distance between two strings (the input and a candidate output of

the decoder) in subquadratic time is a well known hard problem.

An added dimension of challenge in our setting is that we must first

select the candidate decoder outputs among exponentially many

codewords.

A simple algorithm for computing the edit distance of two given

strings is the classic Wagner-Fischer dynamic programming algo-

rithm that runs in quadratic time. Improving the running time of

this simple algorithm has been a central open problem in computer

science for decades (e.g. [16]). Yet to date, only a slightly faster

algorithm (O(n2/log2 n)) due to Masek and Paterson [32] is known.

Furthermore, a sequence of complexity breakthroughs from recent

years suggests that a near-quadratic running time may in fact be

optimal [1ś3, 8, 12] (under the Strong Exponential Time Hypothesis

(SETH) or related assumptions). In order to obtain subquadratic

running times, computer scientists have considered two directions:

moving beyond worst-case instances, and allowing approximations.

Beyond worst case. Edit distance computation is known to be easier

in several special cases. For the case where edit distance is known

to be at most k , Ukkonen [37] provided an O(nk) time algorithm

and Landau et al. [30] improved upon that with an O(n + k2) time

algorithm. For the case where the longest common subsequence

(LCS) is known to be at most L, Hirschberg [27] gave an algorithm

1We define the edit distance between two strings S, S ′ as the minimum number of
character insertions and deletions required to transform S to S ′. Note that this is
slightly different (but closely related) to the more standard definition which also allows
character substitutions.

running in time O(n logn + Ln). Following a long line of works,

Gawrychowski [17] currently has the fastest algorithm for the

special case of strings that can be compressed as small straight-

line programs (SLP). Andoni and Krauthgamer [5] obtain efficient

approximations to edit distance for the case where the strings are

perturbed a-la smoothed analysis. Goldwasser and Holden [18]

obtain subquadratic algorithms when the input is augmented with

auxiliary correlated strings.

Other special cases have also been considered (see also [13]),

but the work closest to ours is by Hunt and Szymanski [28], who

obtained a running time ofO((n+r ) logn) for the special case where
there are r łmatching pairsž, i.e. pairs of identical characters (see

also Section 3.2). While we directly build on their algorithm, note

that there is an obstacle to applying it in our setting: for a constant

size alphabet, we expect that a constant fraction of all n2 pairs of

characters will be matching, i.e. r = Θ(n2).

Approximation algorithms. There is a long line of works on ef-

ficient approximation algorithms for edit distance in the worst

case [6, 7, 9ś11, 14]. First, it is important to note that even after

the recent breakthrough of Chakraborty et al. [14], it is not known

how to obtain approximation factors better than 3 (see also discus-

sion in [33]). Furthermore, our running time is much faster than

Chakraborty et al.’s [14] and even faster than the near-linear time

approximations of [6, 7]. The best known approximation factor in

time O(npolylog(n)) is still worse than n1/3 [10].
In terms of techniques, our algorithm is most closely inspired

by the window-compatible matching paradigm introduced by the

recent quantum approximation algorithm of Boroujeni et al. [11] (a

similar idea was also used by Chakraborty et al. [14]).

A new ray of hope. In this work we combine both approaches:

namely we allow for (arbitrarily good) approximation, and also

restrict our attention to the special case of computing the edit

distance between a worst case input and a codeword from our code.

The interesting question thus becomes if there is a way to build

enough structure into a string (or a set of strings/codewords) that

allows for fast edit distance computations. Given the importance

and pervasiveness of edit distance problems we find this to be a

question of interest way beyond its applicability to synchronization

codes. An independent work of Kuszmaul [29] also employs the

combination of the two approaches and provides a near-linear time

algorithm for approximating the edit distance between a pseudo-

random string and an arbitrary one within a constant factor.

2 OUR RESULTS

In this paper, we introduce a simple and generic structure that achie-

ves this goal. In particular, we will show that there exist strings over

a finite alphabet that, if one indexes any given string S with them,

the edit distance of the resulting string to any other string S ′ can
be approximated within a 1 + ε factor in near-linear time. This also

leads to breaking the quadratic decoding time barrier for insertion-

deletion codes with near-optimal communication efficiency.

We start with a formal definition of string indexing followed by

the definition of an indexing scheme.

Definition 2.1 (String Indexing or Coordinate-Wise String Concate-

nation). Let S ∈ Σ
n and S ′ ∈ Σ

′n be two strings of length n over
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alphabets Σ and Σ
′. The coordinate-wise concatenation of S and S ′

or S indexed by S ′ is a string of length n over alphabet Σ×Σ
′ whose

ith element is (Si , S ′i ). We denote this string with S × S ′.

Definition 2.2 (Indexing Scheme). The pair (I , ẼDI ) consisting of

string I ∈ Σ
n
Index

and algorithm ẼDI is an ε-indexing scheme if for

any string S ∈ Σ
n and S ′ ∈ [Σ×ΣIndex]n , ẼDI (S×I , S ′) outputs a set

of up to (1+ ε)ED(S × I , S ′) symbol insertions and symbol deletions

over S × I that turns it into S ′. The ED(·) notation represents the

edit distance function.

The main result of this work is on the existence of indexing

schemes that facilitate approximating the edit distance in near-

linear time.

Theorem 2.3. For any ε ∈ (0, 1) and integer n, there exist a string
I ∈ Σ

n
Index

and an algorithm ẼDI where (I , ẼDI ) form an ε-indexing

scheme, |ΣIndex | = exp
(
log(1/ε )

ε3

)
, ẼDI runs inOε (npoly(logn)) time,

and I can be constructed in Oε (npoly(logn)) time.

2.1 Applications

One application of indexing schemes that we introduce in this work

is in enhancing the design of insertion-deletion codes (insdel codes)

from [22, 24]. The construction of codes from [22, 24] consist of

indexing each codeword of some appropriately chosen error cor-

recting code with symbols of a synchronization string which, in

the decoding procedure, will be used to recover the position of

received symbols. As we will recapitulate in Section 7, this proce-

dure of recovering the positions consists of several longest common

subsequence computations between the utilized synchronization

string and some other version of it that is altered by a number

of insertions and deletions. This fundamental step resulted in an

Ω(n2) decoding time complexity for codes in [22, 24].

Using the ε-indexing schemes in this paper, we will modify con-

structions of [22, 24] so that the above-mentioned longest common

subsequence computations can be replaced with approximations of

the longest common subsequence (using Theorem 2.3) that run in

near-linear time. The following theorem, that improves the main

result of [22] with respect to the decoding complexity, gives an

insertion-deletion code for the entire range of distance that approa-

ches the Singleton bound and is decodable in near-linear time.

Theorem 2.4. For any ε > 0 and δ ∈ (0, 1) there exists an encoding
map E : Σk → Σ

n and a decoding map D : Σ∗ → Σ
k , such that,

if ED(E(m),x) ≤ δn then D(x) = m. Further, kn > 1 − δ − ε , |Σ| =
exp

(
ε−4 log(1/ε)

)
, and E and D are explicit and can be computed in

linear and near-linear time in terms of n respectively.

A very similar improvement is also applicable to the design of

list-decodable insertion-deletion codes from [24] as they also utilize

indexed synchronization strings and a similar position recovery

procedure along with an appropriately chosen list-recoverable code.

(See Definition 3.4) In this case, we obtain list-decodable insertion-

deletion codes that match the fastest known list-recoverable codes

in terms of decoding time complexity.

Theorem 2.5. For every 0 < δ , ε < 1 and ε0,γ > 0, there

exists a family of list-decodable codes that can protect against δ -

fraction of deletions and γ -fraction of insertions and achieves a rate

of at least 1 − δ − ε over an alphabet of size Oε0,ε,γ (1). There ex-
ists a randomized decoder for these codes with list size Lε0,ε,γ (n) =
exp (exp (exp (log∗ n))), O(n1+ε0 ) encoding and decoding complexi-

ties, and decoding success probability 2/3.

Both Theorems 2.4 and 2.5 are built upon the fact that if one

indexes a synchronization string with an appropriate indexing

scheme, the resulting string will be a synchronization string that is

decodable in near-linear time.

2.2 Other Results, Connection to List-Recovery,
and Organization of the Paper

In the rest of the paper, we first provide some preliminaries and

useful lemmas from previous works in Section 3. In Section 4, we

introduce the construction of our indexing schemes and prove

Theorem 2.3. The construction of these indexing schemes utilize

insertion-deletion codes that are list-decodable from large fractions

of deletions and insertions. We use list-decodable codes from [24]

for that purpose, which themselves use list-recoverable codes as

a core building block. Therefore, the quality of indexing schemes

that we provide, namely, time complexity and alphabet size, greatly

depend on utilized list-recoverable codes and can be improved

following the prospective advancement of list-recoverable codes in

the future.

In Section 5, we enhance the structure of the indexing scheme

from Theorem 2.3 and provide Theorem 5.1 that describes a con-

struction of indexing schemes using (ε, 1ε ,L)-list-recoverable co-
des as a black-box. This result opens the door to potentially re-

duce the polylogarithmic terms in the time complexity of indexing

schemes from Theorem 2.3 by future developments in the design

of list-recoverable codes. For instance, finding near-linear time

(ε, 1ε , poly(logn))-list recoverable codes leads to indexing schemes

that run in O(npoly(log logn)) time via Theorem 5.1.

As of the time of writing this paper, no such list-recoverable code

is known. However, a recent work of Hemenway, Ron-Zewi, and

Wootters [26] presents list-recoverable codes with O
(
n1+ε0

)
time

probabilistic decoders for any ε0 > 0 that are appropriate for the

purpose of being utilized in the construction of indexing schemes

as outlined in Theorem 5.1. In Section 6, we use such codes with the

indexing scheme construction method of Theorem 5.1 to provide

a randomized indexing scheme with O(n logε0 n) time complexity

for any chosen ε0 > 0.

Then, in Section 7, we discuss the application of indexing sche-

mes in the design of insertion-deletion codes. We start by Theo-

rem 7.1 that enhances synchronization strings by using them along

with indexing schemes and, therefore, enables us to reduce the

time complexity of the position recovery subroutine of the deco-

ders of codes from [22, 24] to near-linear time. In Section 7.2, we

discuss our results for uniquely-decodable codes and prove The-

orem 2.4. At the end, in Section 7.3, we address construction of

list-decodable synchronization codes using indexing schemes. We

start by Theorem 7.4 that gives a black-box conversion of a given

list-recoverable code to a list-decodable insertion-deletion code by

adding only a near-linear time overhead to the decoding complex-

ity and, therefore, paves the path to obtaining insertion-deletion

codes that are list-decodable in near-linear time upon the design
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of near-linear time list-recoverable codes. We use this conversion

along with list-recoverable codes of [26] to prove Theorem 2.5.

3 PRELIMINARIES AND NOTATION

In this section, we provide definitions and preliminaries that will

be useful throughout the rest of the paper.

3.1 Synchronization Strings

We start by some essential definitions and lemmas regarding sy-

nchronization strings. Synchronization strings are defined as fol-

lows [22].

Definition 3.1 (ε-Synchronization Strings). String S ∈ Σ
n is an

ε-synchronization string if for every 1 ≤ i < j < k ≤ n + 1 we have

that ED(S[i, j), S[j,k)) > (1 − ε)(k − i).
An important property of such strings is that they cannot have

pairs of long identical disjoint subsequences.

Theorem 3.2 (Theorem 6.2 of [22]). Let S be an ε-

synchronization string of length n and 1 ≤ i1 < i2 < · · · < il ≤ n

and 1 ≤ j1 < j2 < · · · < jl ≤ n be integers so that S(ik ) = S(jk ) but
ik , jk for all 1 ≤ k ≤ l . Then l ≤ εn.

We will also make use of the following construction of synchro-

nization strings that is developed in [15, 23].

Theorem 3.3 (Theorem 1.3 from [15]). For any ε ∈ (0, 1) and
integer n, one can construct an ε-synchronization string of length n

over an alphabet of size O
(
ε−3

)
in linear time.

Haeupler et al. [24] suggest a construction of list-decodable

insertion-deletion codes by indexing the codewords of a

list-recoverable code with symbols of a synchronization string. As

we will use similar techniques and ideas throughout this paper, we

formally define list-recoverable codes and review the main result

of [24] in the rest of this section.

Definition 3.4 (List-recoverable codes). Code C with encoding

function Enc : Σnr → Σ
n is called (α , l ,L)-list recoverable if for

any collection of n sets S1, S2, · · · , Sn ⊂ Σ of size l or less, there are

at most L codewords for which more than αn elements appear in

the list that corresponds to their position, i.e.,

|{x ∈ C | |{i ∈ [n] | xi ∈ Si }| ≥ αn}| ≤ L.

Theorem 3.5 (Theorem 1.1 from [24]). For every 0 < δ , ε < 1

and γ > 0, there exist a family of list-decodable insdel codes that

can protect against δ -fraction of deletions and γ -fraction of insertions

and achieves a rate of 1 − δ − ε or more over an alphabet of size
(
γ+1

ε2

)O
(
γ +1

ε3

)

= Oγ ,ε (1). These codes are list-decodable with lists

of size Lε,γ (n) = exp (exp (exp (log∗ n))), and have polynomial time

encoding and decoding complexities.

By choosing δ = γ = 1−ϵ and ε = ϵ/2 in Theorem 3.5, we derive

the following corollary.

Corollary 3.6. For any 0 < ε < 1, there exists an alphabet Σε
with size exp(ε−3 log 1/ε) and an infinite family of insertion-deletion

codes, C, that achieves a rate of ε
2 and is L-list-decodable from any

(1 − ε)n deletions and (1 − ε)n insertions in polynomial time where

L = exp(exp(exp(log∗ n))).

3.2 Non-crossing Matchings

The last element that we utilize as a preliminary in this paper is

an algorithm provided in a work of Hunt and Szymanski [28] to

compute the maximum non-crossing matching in a bipartite graph.

LetG be a bipartite graph with an ordering for vertices in each part.

A non-crossing matching inG is a matching in which edges do not

intersect.

Definition 3.7 (Non-CrossingMatching). LetG be a bipartite graph

with ordered verticesu1,u2, · · · ,um andv1,v2, · · · ,vn in each part.

A non-crossing matching is a subset of edges of G like
{
(ui1 ,vj1 ), (ui2 ,vj2 ), · · · , (uil ,vjl )

}

where i1 < i2 < · · · < il and j1 < j2 < · · · < jl .

In this paper, we use an algorithm by Hunt and Szymanski [28]

that essentially computes the largest non-crossing matching in a

given bipartite graph.

Theorem 3.8 (Theorem 2 of Hunt and Szymanski [28]). Let

G be a bipartite graph with n ordered vertices in each part and r

edges. There is an algorithm that computes the largest non-crossing

matching of G in O ((n + r ) log logn).

4 NEAR-LINEAR EDIT DISTANCE
COMPUTATIONS VIA INDEXING

We start by a description of the string that will be used in our

indexing scheme. Let C be an insertion-deletion code over alphabet

ΣC , with block length N , and rate r that is L-list decodable from

any N (1−ε) deletions and N (1−ε) insertions inTDecC (N ) for some

sufficiently small ε > 0. We construct the indexing sequence I by

simply concatenating the codewords of C. The construction of such

indexing sequence resembles long-distance synchronization strings

from [23].

Throughout this section, we consider string S of length N ·
|ΣC |Nr that consists of coordinate-wise concatenation of a content

stringm and the indexing string I . In other words, Si = (mi , Ii ). We

will provide algorithms that approximate the edit distance of S to a

given string S ′.
Consider the longest common subsequence between S and S ′.

One can represent such common subsequence by amatchingMLCS

with non-crossing edges in a bipartite graph with two parts of size

|S | and |S ′ | where each vertex corresponds to a symbol in S or S ′

and each edge corresponds to a pair of identical symbols in the

longest common subsequence.

Note that one can turn S into S ′ by simply deleting any symbol

that corresponds to an unmatched vertex in S and then inserting

symbols that correspond to the unmatched vertices in S ′. Therefore,
the edit distance between S and S ′ is equal to the number of non-

connected vertices in that graph. To provide a (1 + ε) edit distance
approximation as described in Theorem 2.3, one only needs to

compute a common subsequence, or equivalently, a non-crossing

matching between S and S ′ in which the number of unmatched

vertices does not exceed a 1 + ε multiplicative factor ofMLCS ’s.

We start by an informal intuitive justification of the algorithm.

The algorithm starts by splitting the string S ′ into blocks of length

N in the same spirit as S . We denote ith such block by S ′(i) and
the ith block of S by S(i). Note that the blocks of S are codewords
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Note that the matching obtained by the above-mentioned

removal procedure is aw-window-limited matching and, the-

refore, has at least EDW unmatched vertices by the definition

ofMW . Hence, Eq. (1) is proved.

(2) In the second step, we show that

EDALG ≤ (1 + 7ε)EDW . (2)

Similar to Step 1, consider the largest w-window-limited

matchingMW and then modify it by removing all the edges

connected to any block S ′(i) that has less than εN edges

to any block in S . Again, we prove an approximation ratio

by exclusively assigning some of the unmatched vertices in

MW to each S ′(i) that we choose to remove its edges.

Consider some S ′(i) that has less than εN edges to any block

in S . We assign all unmatched vertices in S ′(i) and all unma-

tched vertices in the projection of S ′(i) as the approximation

budget for eliminated edges. Let B be the number of blocks

in S that are contained or intersect with projection of S ′(i).
As S ′(i) has less than εN edges to any block in S , the total

number of removed edges is less than NBε . This gives that

there are at least N −NBε unmatched vertices within S ′ and
max{B − 2, 0} ·N (1− ε) unmatched vertices in its projection

that are assigned to 2NBε new unmatched edges appearing

as a result of removing S ′(i)’s edges. Therefore, this process
does not increase the number of unmatched vertices by amul-

tiplicative factor more than 1+ 2NBε
(N−NBε )+max{B−2,0}·N (1−ε ) .

If B = 1 or 2, the above approximation ratio can be bounded

above by 1 + 2NBε
(N−NBε ) ≤ 1 + 4ε

1−2ε ≤ 1 + 5ε for ε ≤ 1
10 .

Unless, B ≥ 3, therefore the approximation ratio is less than

1+ 2NBε
(B−2)N (1−ε ) ≤ 1+ 6ε

1−ε ≤ 1+ 7ε for ε ≤ 1
7 . Therefore, the

edge removal process in Step 2 does not increase the number

of unmatched vertices by a factor larger than 1 + 7ε .

Note that the matching obtained after the above-mentioned

procedure is a w-window limited one in which any block

of S ′ that contains at least one edge, has more than Nε ed-

ges to some block in S within its projection. Therefore, this

matching is a subgraph of G. Since MALG is defined to be

the largest non-crossing matching in G, the number of un-

matched vertices in MALG , EDALG is not larger than the

ones in the matching we obtained in Step 2. Hence, proof of

Eq. (2) is complete.

Combining Eqs. (1) and (2) implies the following approximation

ratio.

EDALG ≤ (1 + 3ε)(1 + 7ε)ED(S, S ′) ≤ (1 + 11ε)ED(S, S ′) (3)

The last inequality holds for ε ≤ 1
21 . �

4.2 Proof of Theorem 2.3

Proof. To prove this theorem, take ε ′ = ε
11 . Further, take C

as an insertion-deletion code from Theorem 3.5 with block length

N = c0 · logn ·ε ′3
(1−2ε ′) log(1/ε ′) and parameters δC = γC = 1 − ε ′, εC = ε ′.

(constant c0 will be determined later)

According to Theorem 3.5, C is Oε (exp(exp(exp(log∗ n))))-list
decodable from (1− ε ′)N insertions and (1− ε ′)N deletions, is over

an alphabet of size qC = ε ′−O (1/ε ′3)
= exp

(
log(1/ε ′)

ε ′3

)
, and has rate

rC = 1 − 2ε ′.
Construct string I according to the structure described in the be-

ginning of Section 4 using C as the required list-decodable insertion-

deletion code. Note that |I | = N · qrCNC = N · exp (c0 ·O(logn)).
Choosing an appropriate constant c0 that cancels out the constants

hidden in O-notation that originate from hidden constants in the

alphabet size will lead to |I | = Nn = O(n logn). Truncate the extra
elements to have string I of length n. As C is efficiently encodable,

string I can be constructed in near-linear time.

Further, define algorithm ẼDI as follows. ẼDI takes S × I and

S ′ and runs an instance of Algorithm 1 with S × I , S ′, N , and the

decoder of C as its input. Theorem 4.4 guarantees that ẼDI (S×I , S ′)
generates a set of at most (1+11ε ′)ED(S×I , S ′) = (1+ε)ED(S×I , S ′)
insertions and deletions over S × I that converts it to S ′. Finally,
Theorem 4.1 guarantees that ẼDI runs in

O

(
n

N
·TDecC (N ) + NL

ε
· n log logn

)

= Oε

(
nTDecC (logn)

logn
+ n logn log logn exp(exp(exp(log∗ n)))

)

= Oε (npoly(logn))

time. �

5 ENHANCED INDEXING SCHEME

In Section 4, we provided an indexing scheme, using which, one can

essentially approximate the edit distance by a (1 + ε) multiplicative

factor for any ε > 0. Note that if code C that was used in that

construction has some constant rate r = Oε (1), then |S | = N ·
|ΣC |Nr and, therefore, N = Θε (logn/r ). This makes the running

time of Algorithm 1 from Theorem 4.1 O(nr/logn · TDecC (logn)
+ logn · L/ε · n log logn). As described in the proof of Theorem 2.3,

using the efficient list-decodable codes from Corollary 3.6, one can

obtain edit distance computations in Oε (n · poly(logn) + n logn ·
log logn · exp (exp(exp(log∗ n)))) = Oε (n · poly(logn)).

In this section, we try to enhance this running time by reducing

the poly-logarithmic terms. To this end, we break down the factors

in our construction and edit distance computation that contribute

to the poly-logarithmic terms in the decoding time complexity.

(1) Edges in graph G: The number of edges in graph G can

be as high as Θ (nNL/ε) = Θ(n logn · poly(log logn))
which, as discussed above, leads to an additive

n logn · log logn · exp (exp(exp(log∗ n))) component. In

Section 5.1, we will show that this component can be

reduced to O(n · poly(log logn)) by having two layers of

indices via indexing each codeword of C with an indexing

scheme as described in Section 4 (constructed based on

some code of block length O(log logn)).
(2) Decoding complexity of C from Corollary 3.6

(TDecC (·)): As described in Section 3.1, list-decodable insdel

codes from Theorem 3.5 are obtained by indexing codewords

of a list-recoverable code with a synchronization string and

their decoding procedure consist of (1) calculating a constant

number of longest common subsequence computations, and

(2) running the decoder of the list-recoverable code.
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Proof. The algorithm uses the decoder of C1, n
N1

times and the

decoder of C2, n
N2

times. G can have up to n
N · L1ε · N1

N2
· L2ε · N 2

2 =

N2L1L2
ε2

· n edges. Therefore, the use of Hunt and Szymanski’s [28]

algorithm (Theorem 3.8) will take O
(
N2L1L2/ε2 · n log logn

)
time.

Therefore, the time complexity is as claimed. �

Theorem 5.3. For 0 < ε < 1
121 , Algorithm 2 computes a set of up

to (1 + 23ε) · ED(S, S ′) insertions and deletions that turn S into S ′.

Proof. In the proof of Theorem 4.4, we proved that for the graph

G in Algorithm 1, EDALG ≤ (1 + 11ε)ED(S, S ′). In other words, the

number of unmatched vertices in the largest non-crossing matching

in that graph is at most (1+11ε) times the number of unmatched ver-

tices in the bipartite graph that corresponds to the longest common

subsequence between S and S ′.
As graph G in Algorithm 2 is the same as the one in Algo-

rithm 1 with some extra edges removed, we only need to show

that removing the extra edges does not increase the number of non-

matched vertices in the largest non-crossing matching by more

than a (1 + O(ε)) multiplicative factor. This can be directly con-

cluded from Theorem 4.4 since the extra removed edges are elimi-

nated by doing the same procedure between pairs of codewords

of C2 that is done between the strings in the statement of Theo-

rem 4.4. In fact, using similar budget-based arguments as in Eqs. (1)

and (2), the extra edge removal step will only increase the edit

distance by a (1 + 11ε) factor. This leads to an upper bound of

(1 + 11ε)(1 + 11ε)ED(S, S ′) ≤ (1 + 23ε)ED(S, S ′) on the approxima-

tion ratio of Algorithm 2 for ε < 1
121 . �

5.2 Proof of Theorem 5.1

Proof. Let ε ′ = ε/46. Thus, the given family of codes is

(ε ′, 6/ε ′,L(·))-list recoverable.
Take the code C1 as a code with block length N1 from the given

family of codes where N1 is large enough so that N1 · |Σ|r/2·N1 ≥ n.

Similarly, take C2 with block length N2 so that N2 · |Σ|r/2·N2 ≥ N1.

For a large enough n, rates of C1 and C2 are at least r/2. We reduce

the rates of C1 and C2 to r/2 by arbitrarily removing codewords

from them.

We now use Theorem 7.4 with parameters εconv = ε ′ andγconv =
1− 2ε ′ to convert list-recoverable codes C1 and C2 to list-decodable
insertion-deletion codes C̃1 and C̃2 by indexing their codewords

with appropriately chosen indexing sequences from Theorem 2.3

and synchronization strings. Note that we can do this conversion

using Theorem 7.4 sinceγconv = 1−2ε ′ ≤ lCi ·εconv
3 −1 = 6/ε ′ ·ε ′

3 −1 =
1. Also, C̃i can L(Ni )-list decode from any γconv = 1 − 2ε ′ fraction
of insertions and any 1−αCi − εconv = 1− ε

46 − ε ′ = 1− 2ε ′ fraction
of deletions in TDec(Ni ) +O (Nipoly(logNi )).

Also, it is known how to construct εs -synchronization strings and

εI -indexing schemes needed in Theorem 7.4. εs -synchronization

strings can be constructed in linear time in terms of their length

over an alphabet of size ε
−O (1)
s and εI -indexing sequences from

Theorem 2.3 can be constructed in near-linear time over an alphabet

of size exp
(
log(1/εI )/ε3I

)
. Therefore, the alphabets of C̃1 and C̃2

will be of size |Σ| × exp
(
log(1/ε ′)/ε ′3

)
.

We now use codes C̃1 and C̃2 in the structure described in the

beginning of Section 5.1 to obtain an indexing sequence I of length

n. Since the conversion of each codeword of Ci to C̃i consumes near-

linear time in terms of Ni , if the codes Ci are efficiently encodable,

string I can be constructed in near-linear time. Also, the above-

mentioned discussion on alphabet sizes of C̃i entails that I will be
a string over an alphabet of size |Σ|2 × exp

(
log(1/ε ′)/ε ′3

)
.

We now have to provide an algorithm that produces a (1 + ε)-
approximation for the edit distance using I . In the same spirit as

the algorithm provided in the proof of Theorem 5.1, we define

algorithm ẼDI as an algorithm that takes S × I and S ′ and runs an

instance of Algorithm 2 with S × l , S ′, N1, N2, and decoders of C̃i
as its input.

As codes C̃i list decode from 1 − 2ε ′ fraction of insertions and

deletions, Theorem 5.3 guarantees that ẼDI generates a set of at

most (1 + 23 · 2(ε ′))ED(S × I , S ′) = (1 + ε)ED(S × I , S ′) insertions
and deletions over S × I that converts it to S ′.

Finally, sinceN1 = O(logn),N2 = O(log logn) and C̃i list decode
inTDec(Ni )+O (Nipoly(logNi )) time, Theorem 5.2 guarantees that

ẼDI runs in

O

(
n

N1
·TDecC̃1 (N1) +

n

N2
·TDecC̃2 (N2) +

N2L1L2

ε2
· n log logn

)

time. This gives the running time in the theorem statement. �

6 RANDOMIZED INDEXING

In this section, we will prove the following theorem by taking

similar steps as in the proof of Theorem 5.1 to construct an indexing

scheme according to the structure introduced in Section 5.1.

Theorem 6.1. For any ε0 > 0, ε1, ε2 ∈ (0, 1), and integer n,

there exists a randomized indexing scheme (I , ẼDI ) of length n where

ẼDI (S × I , S ′) runs in O(n logε0 n) time and proposes a set of in-

sertions and deletions that turns S × I into S ′ and contains up to

(1 + ε1)ED(S × I , S ′) + ε2 |S ′ | operations with probability 1 − 1
nO (1) .

Note that, as opposed to the rest of the results in this paper,

Theorem 6.1 provides an approximation guarantee with both mul-

tiplicative and additive components.

To construct such an indexing scheme using the structure intro-

duced in Section 5.1, we will use a list-decodable insertion-deletion

code of block length O(log logn) from Corollary 3.6 and use Theo-

rem 7.4 to obtain a list-decodable insertion-deletion code of block

length O(logn) from the following list recoverable codes of [26].

Theorem 6.2 (Corollary of Theorem 7.1 of Hemenway et

al. [26]). For any ρ ∈ [0, 1], ε > 0, and positive integer l , there

exist constants q0 and c0 so that, for any c < c0 and infinitely many

integers q ≥ q0, there exists an infinite family of codes achieving the

rate ρ over an alphabet Σ of size |Σ| = q that is encodable in n1+c

time and probabilistically (ρ + ε, l ,L(n))-list recoverable in n1+c time

with success probability 2/3 and L(n) = Oε,ρ (exp(exp(exp(log∗ n))))
where n denotes the block length.

Before providing the proof of Theorem 6.1, we mention a couple

of necessary lemmas.

Lemma 6.3. Let (α , l ,L(n))-list-recoverable code C have a probabi-

listic decoder that runs inTDec(n) and works with probability p. Then,
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for any integer k , C can be (α , l ,k · L(n))-list-recovered in kTDec(n)
time with 1 − (1 − p)k success probability.

Proof. Use a decoding procedure for C that repeats the given

decoder k times and outputs the union of the lists produced by

them. The final list size will be at most kL(n) long, the running time

will be kTDec(n), and the failure probability, i.e., the probability

of the output list not containing the correct codeword is at most

(1 − p)k . �

Another required ingredient to the proof of Theorem 6.1 is to

show how a probabilistic decoder affect the approximation guaran-

tee of Algorithm 2. To this end, we provide the following lemma

as an analogy of Theorem 5.3 when the decoder of code C1 is not
deterministic.

Lemma 6.4. Let the decoder of code C1 (DecC1 (·)) be a randomized

algorithm that L1-list decodes the code C1 with probability 1−p. Then,

with probability 1 − e
− 2|S′ |p

3N1 , Algorithm 2 will generate a set of up to

(1 + 23ε)ED(S, S ′) + 2p |S ′ | insertions and deletions that turn S into

S ′.

Proof. If DecC1 (·) worked with probability 1, the outcome of

A would contain up to (1 + 23ε1) insertions and deletions. Each

time that DecC1 fails to correctly list-decode a block of length N1

(C ′
i ), up to N1 edges fromMALG might be lost and, consequently,

there can be up to 2N1 units of increase in the number of insertions

and deletions generated by A.

There are a total of n = |S ′ |/N1 list decodings and each might

fail with probability p. Using the Chernoff bound,

Pr(more than 2np failures) ≤ e−2np/3 = e
− 2|S′ |p

3N1 .

Thus, with probability 1 − e
− 2|S′ |p

3N1 , the output of A contains (1 +
23ε)ED(S, S ′)+2npN1 = (1+23ε)ED(S, S ′)+2p |S ′ | or less insertions
and deletions. �

We are now adequately equipped to prove Theorem 6.1.

6.1 Proof of Theorem 6.1

Proof. Our construction closely follows the steps taken in the

proof of Theorem 5.1. Let ε ′ = ε1/46. Take C1 from the Theorem 6.2

with parameters εC1 = ε ′, ρC1 = 2ε ′, lC1 = 6/ε ′, cC1 = ε0, and block

length N1 where N1 is large enough so that N1 · qρC1/2·N1

C1 ≥ n

where qC1 is the size of the alphabet of the family codes.

According to Theorem 6.2, C1 is probabilistically

(ε ′, ε ′/6,L(N1))-list recoverable in Oε1 (N
1+ε0
1 ) time where

L(N1) = exp(exp(exp(log∗ N1))) and success probability is 2/3. We

use Lemma 6.3 with repetition number parameter k = log3
2
ε2

to

obtain a (ε ′, ε ′/6,O (log(1/ε2) · L(N1)))-list recovery algorithm for

C1 that succeeds with probability 1 − ( 13 )k = 1 − ε2
2 and runs in

Oε1

(
N
1+ε0
1 /ε2

)
time.

We now use Theorem 7.4 with parameters εconv = ε ′ and
γconv = 1−2ε ′ to convert list-recoverable code C1 to a list-decodable
insertion-deletion code C̃1 by indexing its codewords with an

appropriately chosen indexing sequence from Theorem 2.3 and a

synchronization string. Note that we can do this conversion using

Theorem 7.4 since γconv = 1 − 2ε ′ ≤ lC1 ·εconv
3 − 1 =

6/ε ′ ·ε ′
3 − 1 = 1.

Also, C̃1 can O
(
log 1

ε2
L(N1)

)
-list decode from any γconv = 1 − 2ε ′

fraction of insertions and any 1−αC1 − εconv = 1− ε
46 − ε ′ = 1− 2ε ′

fraction of deletions in Oε1,ε2

(
N
1+ε0
1 + N1poly(logN1)

)
.

We further take code C̃2 from Corollary 3.6 with parameter ε C̃2 =

2ε ′ and block length N2 large enough so that N2 · qε
′/2·N2

C̃2
≥ N1.

C̃2 is exp(exp(exp(N2)))-list decodable from any 1 − 2ε ′ fraction of

insertions and 1 − 2ε ′ fraction of deletions.

String I for the indexing scheme is constructed according to the

structure described in Section 5.1 using C̃1 and C̃2.
We define algorithm ẼDI as an algorithm that takes S × I and

S ′ and runs an instance of Algorithm 2 with S × I , S ′, N1, N2, and

decoders of C̃i as its input. As codes C̃i list decode from 1 − 2ε ′

fraction of insertions and deletions, Lemma 6.4 guarantees that

ẼDI generates a set of insertions and deletions over S × I that

converts it to S ′ and is of size (1+ 23 · 2ε ′)ED(S × I , S ′)+ 2 · ε22 |S ′ | =
(1 + ε)ED(S × I , S ′) + ε2 |S ′ | or less with probability 1 − e

− ε2
3N1 =

1 − e
−O

(
ε2

logn

)

= 1 − 1

nOε1,ε2 (1)
.

Finally, since N1 = O(logn), N2 = O(log logn), C̃1 is

list-decodable in O(N 1+ε0
1 + N1poly(logN1)) time and C̃2 is

efficiently list-decodable, Theorem 5.2 guarantees that ẼDI runs in

Oε1,ε2

(
nTDecC̃1

(N1)
N1

+

nTDecC̃2
(N2)

N2
+ N2L1L2 · n log logn

)

= Oε1,ε2

(
n

logn
·TDecC̃1 (logn) +

n

log logn
·TDecC̃2 (log logn)

+n log2 lognL C̃1 (N1)L C̃2 (N2)
)

= Oε1,ε2

(
n logε0 n

)

time. �

7 NEAR-LINEAR TIME INSDEL CODES

The construction of efficient (uniquely-decodable) insertion-

deletion codes from [22] and list-decodable codes from [24]

profoundly depend on decoding synchronization strings that are

attached to codewords of an appropriately chosen Hamming-type

code. The decoding procedure, which was introduced in [22],

consists of multiple rounds of computing the longest common

subsequence (LCS) between a synchronization string and a given

string. In this section, we will show that using the indexing

schemes that are introduced in this paper, one can compute

approximations of the LCSs instead of exact LCSs to construct

insertion-deletion codes of similar guarantees as in [22, 24] that

have faster decoding complexity.

Specifically, for uniquely-decodable insertion-deletion codes,

[22] provided codes with linear encoding-time and quadratic

decoding-time that can approach the singleton bound, i.e., for

any 0 < δ < 1 and 0 < ε < 1 − δ can correct from δ -fraction of

insertions and deletions and achieve a rate of 1 − δ − ε . Further,

same authors [23] provided codes with linear encoding complexity

and near-linear decoding complexity can can correct from δ < 1/3
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fraction of insertions and deletions but only achieve a rate of

1 − 3δ − ε . In Theorem 2.4 we will provide insertion-deletion codes

that give the best of the two worlds, i.e., approach the Singleton

bound and can be decoded in near-linear time.

Further, in Theorem 7.4, we show that the same improvement

can be made over list-decodable insertion-deletion codes of [24].

However, this improvement brings downs the complexity of all

components of the decoding procedure to near-linear time except

the part that depends on the decoding of a list-recoverable code that

is used as a black-box in the construction from [24]. Even though

this progress does not immediately improve the decoding time of

list-decodable codes of [24], it opens the door to enhancement of

the decoding complexity down to potentially a near-linear time by

the future advances in the design of list-recoverable codes.

7.1 Enhanced Decoding of Synchronization
Strings via Indexing

Synchronization strings, as introduced in [22], are strings that sa-

tisfy Definition 3.1. Let S be an ε-synchronization string that is com-

municated through a channel that suffers from a certain fraction of

insertions and deletions. A decoding algorithm DecS for synchroni-

zation string S under such channel is an algorithm that takes string

that is arrived at the receiving end of the channel, and for each

symbol of that string, guesses its actual position in S . We measure

the quality of the decoding algorithm DecS by a metric named as

misdecodings. A misdecoding in the above-mentioned decoding

procedure is a symbol of S that (1) is not deleted by the channel and

(2) is not decoded correctly by DecS . (formal definitions in [22])

The important quality of synchronization strings that is used

in the design of insertion-deletion codes in [22, 24] is that there

are decoders for any ε-synchronization string that run in quadratic

timeO(n2/ε) and guaranteeO(n
√
ε)misdecodings. In this paper, by

indexing synchronization strings with indexing sequences introdu-

ced in Theorem 2.3, we will show that one can obtain a near-linear

decoding that provides similar misdecoding guarantee.

In the rest of this section, we first present and prove a theorem

that shows an indexed synchronization string can be decoded in

near-linear time with guarantees that are expected in Theorem 6.14

of [22] and Lemma 3.2 of [24]. We then verify that the steps taken

in [22, 24] still follow through.

Theorem 7.1. Let S be a string of length n that consists of the

coordinate-wise concatenation of an εs -synchronization string and an

εI -indexing sequence from Theorem 2.3. Assume that S goes through

a channel that might impose up to δ · n deletions and γ · n symbol

insertions on S for some 0 ≤ δ < 1 and 0 ≤ γ and arrives as S ′ on the

receiving end of the channel. For any positive integer K , there exists

a decoding for S ′ that runs in O(Knpoly(logn)) time, guarantees up

to n
(

1+γ
K (1+εI ) +

εI (1+γ /2)
1+εI

+ Kεs

)
misdecodings, and does not decode

more than K received symbol to any number in [1,n].
Before proceeding to the proof of Theorem 7.1, we present and

prove the following simple yet useful lemma.

Lemma 7.2. Let us have a set of insertions and deletions that con-

verts string S1 to string S2 which is of size EDAPP ≤ (1+ε)ED(S1, S2).
The common subsequence between S1 and S2 that is implied by such

a set (LCSAPP ) is of size (1 + ε)|LCS| − ε
2 (|S1 | + |S2 |) or larger.

Proof.

|LCSAPP | =

|S1 | + |S2 | − EDAPP

2

≥ |S1 | + |S2 | − (1 + ε)ED(S1, S2)
2

= (1 + ε)|LCS| − ε

2
(|S1 | + |S2 |)

�

Proof of Theorem 7.1. The global decoding algorithm intro-

duced in [22] and used in [24], consists of K repetitions of the

following steps:

(1) Find the longest common subsequence (LCS) of S and S ′.
(2) For any pair (S[i], S ′[j]) in the LCS, decode S ′[j] as ith sent

symbol.

(3) Remove all members of the LCS from S ′ (not in S).

Finally, the algorithm declares a special symbol ⊥ as the decoded

position of all elements of S ′ that are not included in any of the K

LCSs.

To derive a decoding algorithm as promised in the statement of

this lemma, we implement similar steps except we make use of the

indexing scheme and compute an approximation of LCS instead of

the LCS itself. This crucial step reduces the quadratic time required

in the global decoding from [22] to near-linear time.

In [22], it has been shown that any assignment from Item 2 that

is derived from any common subsequence between S and S ′ (not
necessarily a LCS) does not contain more than nεs misdecodings,

i.e., successfully transmitted symbols of S that are decode incor-

rectly. (see 3.2). Therefore, after K repetitions, among symbols of S

that are not deleted, there are at most Knεs ones that are decoded

incorrectly.

To find an upper bound for the misdecodings of this algorithm,

we need to bound above the number of successfully transmitted

symbols that are not included in any LCS, i.e., decoded as ⊥ as

well. Let r be number of successfully transmitted symbols of S that

remain undecoded after K repetitions of the matching procedure

described above. Note that these symbols form a LCS of length r

between S and the remainder of S ′ after all symbol eliminations

throughout K repetitions. Indeed, this implies that the size of the

LCS at the beginning of each repetition is at least r . Therefore, by

Lemma 7.2, the size of the approximate longest common sequence

found in each matching is at least (1 + εI )r − εI /2(|S | + |S ′ |) ≥
(1 + εI )r − εIn(1 + γ/2). Note that sum of the size of all K common

subsequences plus the remaining vertices cannot exceed |S ′ | ≤
(1 + γ )n. Therefore,

K · [(1 + εI )r − εIn(1 + γ/2)] ≤ (1 + γ )n

⇒ r ≤ n ·
[

1 + γ

K(1 + εI )
+

εI (1 + γ/2)
1 + εI

]
(4)

Using (4) along with the fact that there are at most Knεs incorrectly

decoded symbols of S gives that the overall number of misdecodings

is at most n ·
[

1+γ
K (1+εI ) +

εI (1+γ /2)
1+εI

+ Kεs

]
.

Further, as algorithm consists of K computations of the approxi-

mated longest common subsequence as described in Section 4, the

running time complexity is O(Knpoly(logn)).

706



Near-Linear Time InsDel Codes and (1+ε)-Approximating Edit Distance via Indexing STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Finally, note that in each of the K rounds, there is at most one

element that gets decoded as each number in [1,n]. Therefore,
throughout the course of the algorithm, for each i ∈ [1,n], there
are at most K elements of S ′ that are decoded as i . �

7.2 Near-Linear Time (Uniquely-Decodable)
Insertion-Deletion Codes

The construction of Singleton-bound-approaching uniquely-

decodable insertion-deletion codes of [22] is consisted of a

Singleton approaching error correcting code and a synchronization

string. More precisely, for a given δ and ε and a sufficiently

large n, [22] takes a synchronization string S of length n and a

Singleton-bound-approaching error correcting code C with block

length n (from [19]) and indexes each codeword of C, symbol by

symbol, with symbols of S . If S is over alphabet ΣS and C is over

alphabet ΣC , the resulting code would be over ΣC × ΣS .

As for the decoding procedure, note that the input of the decoder

is some code word of C, indexed with S , that might be altered by up

to δ ·n insertions and deletions. Such insertions and deletions might

remove some symbols, adds some new ones, or shift the position

of some of them. The decoder uses the synchronization portion of

each symbol to guess its actual position (in the codeword prior to

n · δ insertions and deletions) and then uses the decoder of code C
to figure out the sent codeword.

Before proceeding to the proof of Theorem 2.4, we represent the

following useful theorem from [22].

Theorem 7.3 (Implied by Theorem 4.2 from [22]). Given a

synchronization string S over alphabet ΣS , an (efficient) decoding

algorithm DS with at most k misdecodings and decoding complexity

TDS
(n) and an (efficient) ECC C over alphabet ΣC with rate RC ,

encoding complexityTEC , and decoding complexityTDC that corrects

up to nδ + 2k half-errors, one obtains an insdel code that can be (effi-

ciently) decoded from up tonδ insertions and deletions. The rate of this

code is at least
RC

1+log |ΣS |/log |ΣC | . The encoding complexity remains

TEC , the decoding complexity is TDC +TDS
(n) and the complexity

of constructing the code is the complexity of constructing C and S .

We make use of Theorem 7.3 from [22] along with Theorem 7.1

to prove Theorem 2.4.

Proof of Theorem 2.4. As described earlier in this section,

we construct this code by taking an error correcting code that

approaches the Singleton bound and then index its codewords with

symbols of an εs -synchronization string and an indexing scheme

from Theorem 2.3 with parameter εI . For a given δ and ε , we choose

εI =
ε
18 , εs =

ε2

288 . Furthermore, we use the decoding algorithm from

Theorem 7.1 with repetition parameter K = 24
ε . With εs , εI , and K

chosen as such, the decoding algorithm guarantees a misdecoding

count of n ·
[

1+γ
K (1+εI ) +

εI (1+γ /2)
1+εI

+ Kεs

]
≤ n ·

[
ε
12 +

ε
12 +

ε
12

]
=

nε
4

or less. (note that there can be up to δn insertions, i.e., γ ≤ δ < 1)

It has been shown in [23] that such synchronization string can

be constructed in linear time over an alphabet of size ε
−O (1)
s . Also,

the indexing sequence from Theorem 2.3 has an alphabet of size

exp
(
log(1/εI )/ε3I

)
. Therefore, the alphabet size of the coordinate-

wise concatenation of the εs -synchronization string and the index-

ing sequence is |ΣS | = exp
(
log(1/ε)/ε3

)
.

As the next step, we take code C from [19] as a code with distance

δC = δ+ ε2 and rate 1−δC−
ε
4 over an alphabet of size |ΣC | = |ΣS |4/ε .

Note that |ΣS | = exp
(
log(1/ε)/ε3

)
, therefore, the choice of |ΣC | is

large enough to satisfy the requirements of [19]. C is also encodable

and decodable in linear time.

Plugging C and S as described above in Theorem 7.3 gives an

insertion-deletion code that can be encoded in linear time, be de-

coded in O(Knpoly(logn)) time, corrects from any δn insertions

and deletions, achieves a rate of
RC

1+log |ΣS |/log |ΣC | ≥
1−δ−3ε/4
1+ε/4 ≥

1 − δ − ε , and is over an alphabet of size exp
(
log(1/ε)/ε4

)
. �

7.3 Improved List-Decodable InsDel Codes

A very similar improvement is also applicable to the design of

list-decodable insertion-deletion codes from [24] as it also utili-

zes indexed synchronization strings and a similar position reco-

very procedure. In the following theorem, we will provide a black-

box conversion of a given list-recoverable code to a list-decodable

insertion-deletion code that only adds a near-linear time overhead

to the decoding complexity. Hence, the following theorem paves the

way to obtaining insertion-deletion codes that are list-decodable in

near-linear time upon the design of near-linear time list-recoverable

codes. We will use the following theorem to prove Theorem 2.5 at

the end of this section.

Theorem 7.4. Let C : ΣnR → Σ
n be a (α , l ,L)-list recoverable

code with rate R, encoding complexity TEnc (·) and decoding com-

plexity complexity TDec (·). For any ε > 0 and γ ≤ l ε
3 − 1, by in-

dexing codewords of C with an εs =
ε2

9(1+γ ) -synchronization string

over alphabet Σs and εI =
ε

3(1+γ /2) -indexing sequence over alpha-

bet ΣI , one can obtain an L-list decodable insertion-deletion code

C′ : ΣnR → [Σ× Σs × ΣI ]n that corrects from δ < 1−α − ε fraction

of deletions andγ fraction of insertions. C′ is encodable and decodable
inO(TEnc (n)+n) andOε,γ (TDec (n)+npoly(logn)) time respectively.

Proof. We closely follow the proof of Theorem 3.1 from [24]

except that we use an indexed synchronization string to speed up

the decoding procedure.

Index the code C with an εs =
ε2

9(1+γ ) -synchronization string and
an εI =

ε
3(1+γ /2) -indexing sequence as constructed in Theorem 2.3

to obtain code C′.
In the decoding procedure, for a given word x̃ that is δn deletions

and γn insertions far from some codeword x ∈ C′, we first use the
decoding algorithm from Theorem 7.1 to decode the index portion

of symbols with parameter K = 3(1 + γ )/ε . This will give a list of
up to K = 3(1+γ )/ε ≤ l candidate symbols for each position of the

codeword x .

We know from Theorem 7.1 that all but

n

(
1 + γ

K(1 + εI )
+

εI (1 + γ/2)
1 + εI

+ Kεs

)
≤ n

(
ε

3(1 + εI )
× 2 +

ε

3

)
≤ nε

of the symbols of x that are not deleted are in the correct list. As

there are up to n(1 − δ ) deleted symbols, all but n(1 − δ − ε) > nα

of the lists contain the symbol from the corresponding position in

x . Having such lists, the receiver can use the list-recovery function

of C to obtain an L-list-decoding for C′.
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The encoding complexity follows from the fact that synchroni-

zation strings be constructed in linear time [15, 23], the decoding

complexity follows from Theorem 7.1, and the alphabet of C′ is tri-
vially Σ×Σs ×ΣI as it is obtained by indexing codewords of C with

the εs -synchronization string and the εI -indexing sequence. �

We now use Theorem 7.4 to prove Theorem 2.5.

Proof of Theorem 2.5. Take list-recoverable code C
from Theorem 6.2 with parameters ρC = 1 − δ − ε

2 , εC =
ε
4 ,

lC =
12γ+4
ε , and cC = ε0 over an alphabet Σ of adequately

large size |Σ| ≥ q0,C which we determine later. According

to Theorem 6.2, C has a rate of ρC and a randomized

(ρC + εC , lC ,L(n) = exp(exp(exp(log∗ n))))-list recovery that

works in O(n1+ε0 ) time and succeeds with probability 2/3.

We plug code C into Theorem 7.4 with parameters εconv =
ε
4

and γconv = γ to obtain code C′. We can do this because γconv ≤
lCεconv

3 − 1. According to Theorem 7.4, C′ is L(n)-list decodable
from 1 − ρC − εC − εconv = δ fraction of deletions and γ fraction

of insertions in O(n1+ε0 ). This list-decoding is correctly done if the

list-recovery algorithm works correctly. Therefore, the list decoder

succeeds with probability 2/3 or more.

Note that the εs -synchronization strings in Theo-

rem 7.4 exist over alphabets of size |Σs | = ε
−O (1)
s

and εI -indexing sequence exist over alphabets of size

|ΣI | = exp
(
log(1/εI )/ε3I

)
. Therefore, if we take alphabet

Σ large enough so that |Σ| ≥ max
{
|Σs × ΣI |2/ε ,q0,C

}
=

max
{
exp

(
log(1/ε)/ε4

)
,q0,C

}
= Oε0,ε,γ (1) the rate of the

resulting code will be
ρC

1+log( |ΣS |× |Σl |)/log |Σ | ≥
1−δ−ε/2
1+ε/2 ≥ 1−δ −ε .

Finally, the encoding and decoding complexities directly follow

from Theorem 7.4. �
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