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ABSTRACT

We introduce fast-decodable indexing schemes for edit distance which
can be used to speed up edit distance computations to near-linear
time if one of the strings is indexed by an indexing string I. In parti-
cular, for every length n and every ¢ > 0, one can in near linear time
construct a string I € 3" with |2’| = O,(1), such that, indexing
any string S € X", symbol-by-symbol, with I results in a string
S’ € 3" where X"/ = ¥ x 3’ for which edit distance computations
are easy, i.e., one can compute a (1 + ¢)-approximation of the edit
distance between S’ and any other string in O(npoly(log n)) time.

Our indexing schemes can be used to improve the decoding
complexity of state-of-the-art error correcting codes for insertions
and deletions. In particular, they lead to near-linear time decoding
algorithms for the insertion-deletion codes of [Haeupler, Shahrasbi;
STOC ‘17] and faster decoding algorithms for list-decodable insertion-
deletion codes of [Haeupler, Shahrasbi, Sudan; ICALP ‘18]. Interes-
tingly, the latter codes are a crucial ingredient in the construction
of fast-decodable indexing schemes.
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1 INTRODUCTION

Error correcting codes have revolutionized how information is
stored and transmitted. The main two parameters of interest for
an error correcting code are: (1) its rate-distance trade-off, i.e., how
much redundancy is added in comparison to how many errors the
code can correct and (2) its computational efficiency, i.e., how fast
one can encode or decode. Ideal families of codes, so called near-
MDS codes, over large finite alphabets achieve an (almost) perfect
rate distance trade-off, i.e,, attain a rate of 1 — § — ¢ while correcting
any /2 fraction of errors (or § fraction of erasures, insertions, or
deletions) for any § € (0,1) and are encodable and decodable in
(near) linear time.

1.1 (Near) Linear-Time Codes

The seminal works of Shannon, Hamming, and others in the late
40s and early 50s established a good understanding of the opti-
mal rate/distance tradeoffs achievable existentially and over the
next decades, near-MDS codes achieving at least polynomial time
decoding and encoding procedures were put forward. Since then,
lowering the computational complexity has been an important goal
of coding theory. Particularly, the 90s saw a big push, spearhea-
ded by Spielman, to achieve (near) linear coding complexities: in
a breakthrough in 1994, Sipser and Spielman [35] introduced ex-
pander codes and derived linear codes with some constant distance
and rate that are decodable (but not encodable) in linear time. In
1996 Spielman [36] build upon these codes to derive asymptotically
good error correcting codes that are encodable and decodable in
linear time. As for codes with better rate distance trade-off, Alon
et al. [4] obtained near-MDS error correcting codes that were de-
codable from erasures in linear time. Finally, in 2004, Guruswami
and Indyk [19] provided near-MDS error correcting codes for any
rate than can be decoded in linear time from any combination of
symbol erasures and symbol substitutions.

1.2 Codes for Insertions and Deletions

Similar questions on communication and computational efficiencies
hold for synchronization codes, i.e., codes that correct from symbol
insertions and symbol deletions. As a matter of fact, an analogous
flow of progress can be recognized for synchronization codes. The
study of synchronization codes started with the work of Levensh-
tein [31] in the 60s. In 1999, Schulman and Zuckerman [34] gave
the first (efficient) synchronization code with constant distance
and rate. Only recently, synchronization codes with stronger com-
munication efficiency have been found. Guruswami et al. [20, 21]
introduced the first synchronization codes in the asymptotically
small or large noise regimes by giving efficient codes which achieve
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a constant rate for noise rates going to one and codes which provide
a rate going to one for an asymptotically small noise rate. Last year,
Haeupler and Shahrasbi [22] were able to finally achieve efficient
synchronization codes with the optimal (near-MDS) rate/distance
tradeoff, for any rate and distance. These codes build on a novel
tool called synchronization strings which are also used in [24] to
design efficient list-decodable codes from insertions and deletions.

All of the codes mentioned so far have decoders with large poly-
nomial complexity between Q(n?) and 0(n©(/€)). The only known
insertion-deletion codes with subquadratic time decoders are given

in [23]. Unfortunately, these codes only work for § € (0, %) fraction

of errors while achieving a rate of 1 — 36 — ¢ (instead of the desired
1-6—¢).

In this work, we take the natural next step and address the
problem of finding near-linear time encodable/decodable (near-
MDS) codes for insertions and deletions.

1.3 Quadratic Edit Distance Computation
Barrier

Many of the techniques developed for constructing efficient regular
error correcting codes also apply to synchronization strings. Indeed,
the synchronization string based constructions in [22-25] show
that this can largely be done in a black-box manner. However, there
is a serious new barrier that arises in the setting of synchronization
errors if one tries to push computational complexities below n?.
This barrier becomes apparent once one notices that decoding an
error correcting code is essentially doing a distance minimization
where the appropriate distance in the synchronization setting is
the edit distance!. As we discuss below, merely computing the edit
distance between two strings (the input and a candidate output of
the decoder) in subquadratic time is a well known hard problem.
An added dimension of challenge in our setting is that we must first
select the candidate decoder outputs among exponentially many
codewords.

A simple algorithm for computing the edit distance of two given
strings is the classic Wagner-Fischer dynamic programming algo-
rithm that runs in quadratic time. Improving the running time of
this simple algorithm has been a central open problem in computer
science for decades (e.g. [16]). Yet to date, only a slightly faster
algorithm (O(n? /log? n)) due to Masek and Paterson [32] is known.
Furthermore, a sequence of complexity breakthroughs from recent
years suggests that a near-quadratic running time may in fact be
optimal [1-3, 8, 12] (under the Strong Exponential Time Hypothesis
(SETH) or related assumptions). In order to obtain subquadratic
running times, computer scientists have considered two directions:
moving beyond worst-case instances, and allowing approximations.

Beyond worst case. Edit distance computation is known to be easier
in several special cases. For the case where edit distance is known
to be at most k, Ukkonen [37] provided an O(nk) time algorithm
and Landau et al. [30] improved upon that with an O(n + k?) time
algorithm. For the case where the longest common subsequence
(LCS) is known to be at most L, Hirschberg [27] gave an algorithm

!We define the edit distance between two strings S, S’ as the minimum number of
character insertions and deletions required to transform S to S’. Note that this is
slightly different (but closely related) to the more standard definition which also allows
character substitutions.
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running in time O(nlogn + Ln). Following a long line of works,
Gawrychowski [17] currently has the fastest algorithm for the
special case of strings that can be compressed as small straight-
line programs (SLP). Andoni and Krauthgamer [5] obtain efficient
approximations to edit distance for the case where the strings are
perturbed a-la smoothed analysis. Goldwasser and Holden [18]
obtain subquadratic algorithms when the input is augmented with
auxiliary correlated strings.

Other special cases have also been considered (see also [13]),
but the work closest to ours is by Hunt and Szymanski [28], who
obtained a running time of O((n+r) log n) for the special case where
there are r “matching pairs”, i.e. pairs of identical characters (see
also Section 3.2). While we directly build on their algorithm, note
that there is an obstacle to applying it in our setting: for a constant
size alphabet, we expect that a constant fraction of all n? pairs of
characters will be matching, ie. r = G)(nz).

Approximation algorithms. There is a long line of works on ef-
ficient approximation algorithms for edit distance in the worst
case [6, 7, 9-11, 14]. First, it is important to note that even after
the recent breakthrough of Chakraborty et al. [14], it is not known
how to obtain approximation factors better than 3 (see also discus-
sion in [33]). Furthermore, our running time is much faster than
Chakraborty et al’s [14] and even faster than the near-linear time
approximations of [6, 7]. The best known approximation factor in
time O(npolylog(n)) is still worse than nl/3 [10].

In terms of techniques, our algorithm is most closely inspired
by the window-compatible matching paradigm introduced by the
recent quantum approximation algorithm of Boroujeni et al. [11] (a
similar idea was also used by Chakraborty et al. [14]).

A new ray of hope. In this work we combine both approaches:
namely we allow for (arbitrarily good) approximation, and also
restrict our attention to the special case of computing the edit
distance between a worst case input and a codeword from our code.
The interesting question thus becomes if there is a way to build
enough structure into a string (or a set of strings/codewords) that
allows for fast edit distance computations. Given the importance
and pervasiveness of edit distance problems we find this to be a
question of interest way beyond its applicability to synchronization
codes. An independent work of Kuszmaul [29] also employs the
combination of the two approaches and provides a near-linear time
algorithm for approximating the edit distance between a pseudo-
random string and an arbitrary one within a constant factor.

2 OUR RESULTS

In this paper, we introduce a simple and generic structure that achie-
ves this goal. In particular, we will show that there exist strings over
a finite alphabet that, if one indexes any given string S with them,
the edit distance of the resulting string to any other string S’ can
be approximated within a 1 + ¢ factor in near-linear time. This also
leads to breaking the quadratic decoding time barrier for insertion-
deletion codes with near-optimal communication efficiency.

We start with a formal definition of string indexing followed by
the definition of an indexing scheme.

Definition 2.1 (String Indexing or Coordinate-Wise String Concate-
nation). Let S € 3™ and $” € '™ be two strings of length n over
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alphabets > and 3. The coordinate-wise concatenation of S and S’
or S indexed by S’ is a string of length n over alphabet 3 x 3" whose
ith element is (S;, S}). We denote this string with § x §’.

Definition 2.2 (Indexing Scheme). The pair (I, ED)) consisting of
string I € 27 , ~ and algorithm ED; is an e-indexing scheme if for
any string S € 2" and $’ € [EX Spndex]™ ED7(SXI, §7) outputs a set
of up to (1 + €)ED(S X I, ") symbol insertions and symbol deletions
over S x I that turns it into S”. The ED(-) notation represents the
edit distance function.

The main result of this work is on the existence of indexing
schemes that facilitate approximating the edit distance in near-
linear time.

THEOREM 2.3. For any ¢ € (0,1) and integer n, there exist a string
I € 31 1o and an algorithm EDy where (I,EDy) form an e-indexing
log(1/ 8))
53

scheme, |Zindex| = €xp ( ,EDy runs in O, (npoly(log n)) time,

and I can be constructed in O(npoly(log n)) time.

2.1 Applications

One application of indexing schemes that we introduce in this work
is in enhancing the design of insertion-deletion codes (insdel codes)
from [22, 24]. The construction of codes from [22, 24] consist of
indexing each codeword of some appropriately chosen error cor-
recting code with symbols of a synchronization string which, in
the decoding procedure, will be used to recover the position of
received symbols. As we will recapitulate in Section 7, this proce-
dure of recovering the positions consists of several longest common
subsequence computations between the utilized synchronization
string and some other version of it that is altered by a number
of insertions and deletions. This fundamental step resulted in an
Q(n?) decoding time complexity for codes in [22, 24].

Using the e-indexing schemes in this paper, we will modify con-
structions of [22, 24] so that the above-mentioned longest common
subsequence computations can be replaced with approximations of
the longest common subsequence (using Theorem 2.3) that run in
near-linear time. The following theorem, that improves the main
result of [22] with respect to the decoding complexity, gives an
insertion-deletion code for the entire range of distance that approa-
ches the Singleton bound and is decodable in near-linear time.

THEOREM 2.4. Foranye > 0and§ € (0, 1) there exists an encoding
map E : K — 3" and a decoding map D : * — ¥, such that,
if ED(E(m), x) < dn then D(x) = m. Further, % >1-6-¢|2] =
exp (e7*log(1/e)), and E and D are explicit and can be computed in
linear and near-linear time in terms of n respectively.

A very similar improvement is also applicable to the design of
list-decodable insertion-deletion codes from [24] as they also utilize
indexed synchronization strings and a similar position recovery
procedure along with an appropriately chosen list-recoverable code.
(See Definition 3.4) In this case, we obtain list-decodable insertion-
deletion codes that match the fastest known list-recoverable codes
in terms of decoding time complexity.

THEOREM 2.5. For every 0 < 8,¢ < 1 and g,y > 0, there
exists a family of list-decodable codes that can protect against §-
fraction of deletions and y-fraction of insertions and achieves a rate
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of at least 1 — 8 — ¢ over an alphabet of size Og,, ¢,y (1). There ex-
ists a randomized decoder for these codes with list size Lg,, ¢,y (1) =
exp (exp (exp (log* n))), O(n'*4) encoding and decoding complexi-
ties, and decoding success probability 2/3.

Both Theorems 2.4 and 2.5 are built upon the fact that if one
indexes a synchronization string with an appropriate indexing
scheme, the resulting string will be a synchronization string that is
decodable in near-linear time.

2.2 Other Results, Connection to List-Recovery,
and Organization of the Paper

In the rest of the paper, we first provide some preliminaries and
useful lemmas from previous works in Section 3. In Section 4, we
introduce the construction of our indexing schemes and prove
Theorem 2.3. The construction of these indexing schemes utilize
insertion-deletion codes that are list-decodable from large fractions
of deletions and insertions. We use list-decodable codes from [24]
for that purpose, which themselves use list-recoverable codes as
a core building block. Therefore, the quality of indexing schemes
that we provide, namely, time complexity and alphabet size, greatly
depend on utilized list-recoverable codes and can be improved
following the prospective advancement of list-recoverable codes in
the future.

In Section 5, we enhance the structure of the indexing scheme
from Theorem 2.3 and provide Theorem 5.1 that describes a con-
struction of indexing schemes using (e, %,L)—list—recoverable co-
des as a black-box. This result opens the door to potentially re-
duce the polylogarithmic terms in the time complexity of indexing
schemes from Theorem 2.3 by future developments in the design
of list-recoverable codes. For instance, finding near-linear time
(e, % poly(log n))-list recoverable codes leads to indexing schemes
that run in O(npoly(loglog n)) time via Theorem 5.1.

As of the time of writing this paper, no such list-recoverable code
is known. However, a recent work of Hemenway, Ron-Zewi, and
Wootters [26] presents list-recoverable codes with O (n“'fo)
probabilistic decoders for any ¢ > 0 that are appropriate for the
purpose of being utilized in the construction of indexing schemes
as outlined in Theorem 5.1. In Section 6, we use such codes with the
indexing scheme construction method of Theorem 5.1 to provide
a randomized indexing scheme with O(nlog® n) time complexity
for any chosen g > 0.

Then, in Section 7, we discuss the application of indexing sche-
mes in the design of insertion-deletion codes. We start by Theo-
rem 7.1 that enhances synchronization strings by using them along
with indexing schemes and, therefore, enables us to reduce the
time complexity of the position recovery subroutine of the deco-
ders of codes from [22, 24] to near-linear time. In Section 7.2, we
discuss our results for uniquely-decodable codes and prove The-
orem 2.4. At the end, in Section 7.3, we address construction of
list-decodable synchronization codes using indexing schemes. We
start by Theorem 7.4 that gives a black-box conversion of a given
list-recoverable code to a list-decodable insertion-deletion code by
adding only a near-linear time overhead to the decoding complex-
ity and, therefore, paves the path to obtaining insertion-deletion
codes that are list-decodable in near-linear time upon the design

time
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of near-linear time list-recoverable codes. We use this conversion
along with list-recoverable codes of [26] to prove Theorem 2.5.

3 PRELIMINARIES AND NOTATION

In this section, we provide definitions and preliminaries that will
be useful throughout the rest of the paper.

3.1 Synchronization Strings

We start by some essential definitions and lemmas regarding sy-
nchronization strings. Synchronization strings are defined as fol-
lows [22].

Definition 3.1 (e-Synchronization Strings). String S € X" is an
e-synchronization string if for every 1 < i < j < k < n+1 we have
that ED(S[i, j), S[j, k)) > (1 — e)(k — i).

An important property of such strings is that they cannot have
pairs of long identical disjoint subsequences.

TueoreM 3.2 (THEOREM 6.2 OF [22]). Let S be an e-
synchronization string of lengthn and1 < iy <ip <---<ij<n
and1 < ji < j2 <--- < j; < n beintegers so that S(i.) = S(ji.) but
i #jx foralll <k <1 Thenl < en.

We will also make use of the following construction of synchro-
nization strings that is developed in [15, 23].

THEOREM 3.3 (THEOREM 1.3 FROM [15]). For any ¢ € (0,1) and
integer n, one can construct an e-synchronization string of length n
over an alphabet of size O (5_3) in linear time.

Haeupler et al. [24] suggest a construction of list-decodable
insertion-deletion codes by indexing the codewords of a
list-recoverable code with symbols of a synchronization string. As
we will use similar techniques and ideas throughout this paper, we
formally define list-recoverable codes and review the main result
of [24] in the rest of this section.

Definition 3.4 (List-recoverable codes). Code C with encoding
function Enc : =" — 3" is called (a, I, L)-list recoverable if for
any collection of n sets S1, Sa,- -+, Sy C X of size [ or less, there are
at most L codewords for which more than an elements appear in
the list that corresponds to their position, i.e.,

{xeC||{ie[n]|x;i€Si} >an} <L

THEOREM 3.5 (THEOREM 1.1 FROM [24]). For every0 < §,¢e < 1
and y > 0, there exist a family of list-decodable insdel codes that
can protect against §-fraction of deletions and y -fraction of insertions
and achieves a rate of 1 — 8§ — ¢ or more over an alphabet of size
(2 )O(%l

EZ
of size L¢, (n) = exp (exp (exp (log™ n))), and have polynomial time
encoding and decoding complexities.

) = Oy, e (1). These codes are list-decodable with lists

By choosing § = y = 1—€ and ¢ = €/2 in Theorem 3.5, we derive
the following corollary.

COROLLARY 3.6. Forany0 < ¢ < 1, there exists an alphabet X,
with size exp(e 3 log 1/¢) and an infinite family of insertion-deletion
codes, C, that achieves a rate of § and is L-list-decodable from any
(1 — €)n deletions and (1 — ¢€)n insertions in polynomial time where
L = exp(exp(exp(log” n))).
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3.2 Non-crossing Matchings

The last element that we utilize as a preliminary in this paper is
an algorithm provided in a work of Hunt and Szymanski [28] to
compute the maximum non-crossing matching in a bipartite graph.
Let G be a bipartite graph with an ordering for vertices in each part.
A non-crossing matching in G is a matching in which edges do not
intersect.

Definition 3.7 (Non-Crossing Matching). Let G be a bipartite graph
with ordered vertices uy, ug, - -+ ,um and vy, vy, - - - , v, in each part.
A non-crossing matching is a subset of edges of G like

{(ui,, vj,), (wiys vj,), -+ (i, v,)}

where iy <ip <---<ijandj; <j2 <--- <j.

In this paper, we use an algorithm by Hunt and Szymanski [28]
that essentially computes the largest non-crossing matching in a
given bipartite graph.

THEOREM 3.8 (THEOREM 2 OF HUNT AND SZYMANSKI [28]). Let
G be a bipartite graph with n ordered vertices in each part and r
edges. There is an algorithm that computes the largest non-crossing
matching of G in O ((n + r)loglog n).

4 NEAR-LINEAR EDIT DISTANCE
COMPUTATIONS VIA INDEXING

We start by a description of the string that will be used in our
indexing scheme. Let C be an insertion-deletion code over alphabet
3¢, with block length N, and rate r that is L-list decodable from
any N(1-¢) deletions and N(1 - ¢) insertions in Tpec, (N) for some
sufficiently small ¢ > 0. We construct the indexing sequence I by
simply concatenating the codewords of C. The construction of such
indexing sequence resembles long-distance synchronization strings
from [23].

Throughout this section, we consider string S of length N -
Zc |N " that consists of coordinate-wise concatenation of a content
string m and the indexing string I. In other words, S; = (m;, I;). We
will provide algorithms that approximate the edit distance of S to a
given string .

Consider the longest common subsequence between S and S’.
One can represent such common subsequence by a matching My cs
with non-crossing edges in a bipartite graph with two parts of size
|S| and |S’| where each vertex corresponds to a symbol in S or S’
and each edge corresponds to a pair of identical symbols in the
longest common subsequence.

Note that one can turn S into S’ by simply deleting any symbol
that corresponds to an unmatched vertex in S and then inserting
symbols that correspond to the unmatched vertices in S”. Therefore,
the edit distance between S and S’ is equal to the number of non-
connected vertices in that graph. To provide a (1 + ¢) edit distance
approximation as described in Theorem 2.3, one only needs to
compute a common subsequence, or equivalently, a non-crossing
matching between S and S’ in which the number of unmatched
vertices does not exceed a 1 + ¢ multiplicative factor of My cs’s.

We start by an informal intuitive justification of the algorithm.
The algorithm starts by splitting the string S’ into blocks of length
N in the same spirit as S. We denote ith such block by S’(i) and
the ith block of S by S(i). Note that the blocks of S are codewords
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of an insertion-deletion code with high distance indexed by m
(S(i) = C(>i) X m[N(i — 1), Ni — 1]). Therefore, one might expect
that any block of S that is not significantly altered by insertions
and deletions, (1) appears in a set of consecutive blocks in S” and
(2) has a small edit distance to at least one of those blocks.

Following this intuition, our proposed algorithm works thusly:
For any block of S like S’(i), the algorithm uses the list decoder
of C to find all (up to L) blocks of S that can be turned into S’(i)
by N(1 — ¢) deletions and N(1 — ¢) insertions ignoring the content
portion on §’. In other words, let §'(i) = C; x m’[N(i — 1), Ni - 1].
We denote the set of such blocks by Decc(C;). Then, the algorithm
constructs a bipartite graph G with |S| and |S’| vertices on each
side (representing symbols of S and S”) as follows: a symbol in S’(i)
is connected to all identical symbols in the blocks that appear in
Decc(C;) or any block that is in their w = O (1/¢) neighborhood,
ie,isupto O(1/e) blocks away from at least one of the members
of Decc(C)).

Note that any non-crossing matching in G corresponds to some
common subsequence between S and S’ because G’s edges only
connect identical symbols. In the next step, the algorithm finds
the largest non-crossing matching in G, M 41, and outputs the
corresponding set of insertions and deletions as the output. We
will use the algorithm proposed by Hunt and Szymanski [28] (see
Theorem 3.8) to find the largest non-crossing matching. A formal
description of the algorithm is available in Algorithm 1.

Algorithm 1 (1 + 11¢)-Approximation for Edit Distance

procedure ED-ApPrOX(S, S’, N, Decc(+))
Make empty bipartite graph G with parts of size (|S|, |S’])

1:

2:

3: w = %

4 for each 5(i) = C; x m’[N(i — 1), Ni — 1] do

5 List « Decc(CY)

6 for each j € List do

7 forke[j—w,j+w]do

8 Connect pairs of vertices in G that correspond
to identical symbols in S(k) and S’(i).

9: Marc < Largest non-crossing matching in G

10: return My

4.1 Analysis

We now proceed to the analysis of approximation guarantee and
time complexity of Algorithm 1.

THEOREM 4.1. For n = max(|S|,|S’|), the running time of Algo-
rithm 1is O (% Tpece (N) + % . nloglogn).

Proor. The algorithm starts by using the decoder for any block
in §” which takes a total of §; - Tpec,, (N) time. Further, construction
of G will take O (nLN/¢). G has no more thann-NL-w = O (nNL/¢)
edges. Thus, by using Hunt and Szymanski’s [28] algorithm (Theo-
rem 3.8), the maximum non-crossing matching in G can be compu-
tedinO(% -nloglogn). O

Before providing the analysis for the approximation ratio of
Algorithm 1, we define the following useful notions.
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Projection of S'(2)

Figure 1: An example of a matching between S and S’ de-
picting the projection of $’(2). This matching is 3-window-
limited.

Definition 4.2 (Projection). Let M be a non-crossing matching
between S and S’. The projection of S’(i) under M is defined to be
the substring of S between the leftmost and the rightmost element
of S that are connected to S’(i) in M. (see Fig. 1 for an example)

Definition 4.3 (Window Limited). A non-crossing matching bet-
ween S and S’ is called w-window-limited if the projection of any
block of S fits in w consecutive blocks of S.

The definition of window-limited matchings is inspired by the
window-compatibility notion from [11].

THEOREM 4.4. For0 < ¢ < % Algorithm 1 computes a set of up

to (1 + 11¢) - ED(S, S’) insertions and deletions that turn S into S’.

Proor. Let ED 41 denote the edit distance solution obtained
by the matching suggested by Algorithm 1. We will prove that
ED4rG < (1+ 11¢) - ED(S, S’) in the following two steps:

(1) Let My be the largest w = (% + 1)—wind0w—limited mat-

ching between S and S” and EDyy be its count of unmatched
vertices. In the first step, we show the following.

EDy < (1 +3¢)ED(S,S) 1)
To prove this, consider My cg, the matching that corre-
sponds to the longest common subsequence. Then, we mo-
dify this matching by deleting all the edges connected to
any block §’(i) that violates the w-window-limited require-
ment. In other words, if the projection of S’(i) spans over
at least w + 1 blocks in S, we remove all the edges with one
endpoint in S’(i). Note that removing the edges connected
to S’(i) might increase the number of unmatched vertices in
the matching by 2N. However, as projection of S’(i) spans
over at least w + 1 blocks in S, one can assign all the ori-
ginally unmatched vertices in that projection, which are at
least (w — 1) - N = N > (w — 2)N, to the newly introdu-
ced unmatched edges as an “approximation budget”. Note
that this assignment is mutually exclusive since projecti-
ons of two distinct blocks of S” are disjoint. Therefore, the
above-mentioned removal procedure increases the number
of unmatched vertices by a multiplicative factor no larger

than WZANHEN . w o _ 1te o g 4 30 fore < 1,

(w=2)N ~ w-2 " 1-¢ 3
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Note that the matching obtained by the above-mentioned
removal procedure is a w-window-limited matching and, the-
refore, has at least EDyy unmatched vertices by the definition

of My, . Hence, Eq. (1) is proved.

(2) In the second step, we show that
EDarG < (1+ 7¢)EDyy. (2)
Similar to Step 1, consider the largest w-window-limited
matching My, and then modify it by removing all the edges
connected to any block S’(i) that has less than eN edges
to any block in S. Again, we prove an approximation ratio
by exclusively assigning some of the unmatched vertices in

Myy to each S’(i) that we choose to remove its edges.
Consider some S’(i) that has less than ¢N edges to any block
in S. We assign all unmatched vertices in S’(i) and all unma-
tched vertices in the projection of S’(i) as the approximation
budget for eliminated edges. Let B be the number of blocks
in S that are contained or intersect with projection of S”(i).
As S’(i) has less than ¢N edges to any block in S, the total
number of removed edges is less than NBe. This gives that
there are at least N — NBe unmatched vertices within $” and
max{B — 2,0} - N(1 — ¢) unmatched vertices in its projection
that are assigned to 2NBe new unmatched edges appearing
as a result of removing S’(i)’s edges. Therefore, this process
does not increase the number of unmatched vertices by a mul-
tiplicative factor more than 1+

2NBe
(N-NB¢)+max{B-2,0}-N(1-¢)"
If B = 1 or 2, the above approximation ratio can be bounded

aboveby1+% <1+ 2 < 1+5fore < &

1-2¢ 10
Unless, B > 3, therefore the approximation ratio is less than
1+ % <1+ 16_—55 <1+7efore < %.Therefore, the
edge removal process in Step 2 does not increase the number
of unmatched vertices by a factor larger than 1 + 7.

Note that the matching obtained after the above-mentioned
procedure is a w-window limited one in which any block
of S’ that contains at least one edge, has more than N¢ ed-
ges to some block in S within its projection. Therefore, this
matching is a subgraph of G. Since M 41 is defined to be
the largest non-crossing matching in G, the number of un-
matched vertices in Mapg, EDaLG is not larger than the
ones in the matching we obtained in Step 2. Hence, proof of

Eq. (2) is complete.

Combining Egs. (1) and (2) implies the following approximation
ratio.

EDarg < (14 3¢)(1 +7¢)ED(S, S”) < (1 + 11€)ED(S, ) (3)

The last inequality holds for ¢ < 21—1 |

4.2 Proof of Theorem 2.3

Proor. To prove this theorem, take &’ ﬁ Further, take C
as an insertion-deletion code from Theorem 3.5 with block length

_ logn-e”
N = co* G Tog(i/e)
(constant ¢y will be determined later)

According to Theorem 3.5, C is O.(exp(exp(exp(log™ n))))-list

decodable from (1 — ¢’)N insertions and (1 — ¢’)N deletions, is over

and parameters 5o = yg =1-¢',ec = €.
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an alphabet of size q¢ = =00/ = exp (bg(g—z/g/)), and has rate
re =1-2¢.

Construct string I according to the structure described in the be-
ginning of Section 4 using C as the required list-decodable insertion-
deletion code. Note that |I| = N - qE,CN = N - exp(co - O(log n)).
Choosing an appropriate constant ¢ that cancels out the constants
hidden in O-notation that originate from hidden constants in the
alphabet size will lead to |I| = Nn = O(nlog n). Truncate the extra
elements to have string I of length n. As C is efficiently encodable,
string I can be constructed in near-linear time.

Further, define algorithm ED 1 as follows. ED 1 takes S X I and
S’ and runs an instance of Algorithm 1 with S x I, $’, N, and the
decoder of C as its input. Theorem 4.4 guarantees that ﬁ)I(S xI,S")
generates a set of at most (1+11¢")ED(SXI, S”) = (1+¢)ED(SXI, S”)
insertions and deletions over S X I that converts it to S’. Finally,
Theorem 4.1 guarantees that ED; runs in

o (E .
N
nTDecc (logn)
€ logn

NL
Tpece(N) + — -nloglogn
€

+ nlognloglog n exp(exp(exp(log” n)))

O¢(npoly(log n))

time.

5 ENHANCED INDEXING SCHEME

In Section 4, we provided an indexing scheme, using which, one can
essentially approximate the edit distance by a (1 + ¢) multiplicative
factor for any ¢ > 0. Note that if code C that was used in that
construction has some constant rate r = O(1), then |S| = N -
[ZcINT and, therefore, N = ©, (logn/r). This makes the running
time of Algorithm 1 from Theorem 4.1 O(nr/logn - Tpec, (logn)
+logn-L/e-nloglogn). As described in the proof of Theorem 2.3,
using the efficient list-decodable codes from Corollary 3.6, one can
obtain edit distance computations in O,(n - poly(logn) + nlogn -
loglogn - exp (exp(exp(log™ n)))) = O.(n - poly(log n)).

In this section, we try to enhance this running time by reducing
the poly-logarithmic terms. To this end, we break down the factors
in our construction and edit distance computation that contribute
to the poly-logarithmic terms in the decoding time complexity.

(1) Edges in graph G: The number of edges in graph G can

be as high as ©(nNL/e) = ©O(nlogn - poly(loglogn))
which, as discussed above, leads to an additive
nlogn - loglogn - exp (exp(exp(log* n))) component. In

Section 5.1, we will show that this component can be
reduced to O(n - poly(loglog n)) by having two layers of
indices via indexing each codeword of C with an indexing
scheme as described in Section 4 (constructed based on
some code of block length O(log log n)).

Decoding complexity of C from Corollary 3.6
(Tpece (+)): As described in Section 3.1, list-decodable insdel
codes from Theorem 3.5 are obtained by indexing codewords
of a list-recoverable code with a synchronization string and
their decoding procedure consist of (1) calculating a constant
number of longest common subsequence computations, and
(2) running the decoder of the list-recoverable code.
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Part (1) consumes quadratic time in terms of N. However,
using the indexing schemes for approximating edit distance
from Theorem 2.3, we will show in Theorem 7.4 that one

can reduce the running time of part (1) to O(@ -logn -

poly(loglog n)) = O (n - poly(loglog n)).

Applying the above-metioned enhancements to the structure of
our indexing scheme will result in the black-box construction of
indexing schemes using list-recoverable codes as formalized in the
following theorem.

THEOREM 5.1. For any ¢ € (0, 1), given a family of codes over al-

phabet T that are (4—2, ZZ—,(’, L()) -list recoverable in Tpec(+) time and
achieve a rate of r = O¢(1), one can construct an e-indexing scheme

(I,EDy) with any positive length n over an alphabet of size |S|? x

exp 108(1/6)) \ here EDy has O |n - | Dectdogn) | Toecloglogn)
&

logn loglogn

log? log n- L(log n)L(log log n) + poly(log log n)] running time com-

plexity. Further, if the given family of codes are efficiently encodable,
I can be constructed in near-linear time.

These enhancements do not eventually yield an indexing scheme
that works in O(n - poly(log log n)) as the bottleneck of the indexing
scheme’s time complexity is the decoding time of the utilized list-
recoverable code.

As of the time of writing this paper, no deterministic list recover-
able code with our ideal properties and a decoding time complexity
faster than an unspecified large polynomial is found. However, be-
cause of the enhancements discussed in this section, improvements
in decoding time complexity of list-recoverable codes can lead to
e-indexing schemes that run in O(n - poly(log log n)) time. Particu-
larly, having a linear-time (e, 1/¢, L(n) = poly(log n))-list recovera-
ble code would suffice.

5.1 Two Layer Indexing

Our enhanced indexing sequence I consists of the coordinate-wise
concatenation of two string I; and I where I is the ordinary in-
dexing sequence as described in Section 4, i.e, the codewords of a
code C; with block length Nj, and I is repetitions of an ordinary
indexing sequence I’ of length Nj constructed using some code Cs.
(See Fig. 2a)

In other words, let C; be a code of block length N» and rate rp
over alphabet 3¢, that is Ly-list decodable from N3(1— ¢) insertions
and Nz(1 — ¢) deletions. Writing the codewords of Cz back to back
would give the string I’ of length |I’| = N; - |Z¢,|N2"2. Then, let
code C; be a code of block length Ny = |I’| and rate r; over alphabet
Y ¢, thatis L;-list decodable from Nj(1 - ¢) insertions and Ni(1—¢)
deletions. We form string I; by writing the codewords of C; one
after another and string I; by repeating I’ for |C;| times. Finally,
I=(,k).

We provide a decoding algorithm for indexing sequence I that is
very similar to Algorithm 1 with an extra step in the construction
of bipartite graph G that reduces the number of edges at the cost
of a weaker yet still constant approximation guarantee.

In Line 8 of Algorithm 1, instead of adding an edge between any
two pair of identical symbols in S(k) and S’(i) (that can be as many
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(b) Decoding for enhanced construction.

Figure 2

as log? n), the algorithm runs another level of list-decoding and
window-limiting based on the copy of I’ that is a component of
S(k). In other word, the algorithm uses the decoder of C; for any
sub-block of length Ny in S’(i), like S’(i, i’), to find up to Ly sub-
blocks of length N; in S(k), like S(k, k”), and adds an edge between
any two identical symbols between S’(i, i’) and S(k, k”). We denote
the portion of (i, ") that corresponds to Cz codewords by C;’,,.
(See Fig. 2b) A formal description is available in Algorithm 2. |

Algorithm 2 (1 + 23¢)-Approximation for Edit Distance

1. procedure ENHANCED-ED-APPROX(S, S”, {Nj, Decc, (~)}f:1)
2 Make empty bipartite graph G with parts of size |S| and |S’|

_1
3: W—g

4 for each 5’(i) = C]x le”l,le”Z, ‘e ,C;”N1 /N, xm/[Ny(i—
1), Nji — 1] do

5 List; < Decg,(C})

6: for each j € List; do

7: forke[j—w,j+w]do

8: for i’ € [1,N1/Ny] do

9: Listy « Decg, (C;,,i’)

10: for each j’ € List; do

11: for k' € [j/ —w,j’ + w] do

12: Connect any pair of vertices in G that
correspond to identical symbols in S(k, k”) and S’(i, i’).

13: M1 < Largest non-crossing matching in G

14: return My g

THEOREM 5.2. Forn = max (|S|, |S’|), Algorithm 2 runs in O(NL1 :

Tpece, (N1) + NLZ “ Toecg, (N2) + % -nloglog n) time.
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Proor. The algorithm uses the decoder of Cy, Nil times and the

n : n
decoder of Cs, A times. G can have up to ~

% - n edges. Therefore, the use of Hunt and Szymanski’s [28]

algorithm (Theorem 3.8) will take O (N2L1L2/e? - nloglog n) time.
Therefore, the time complexity is as claimed. O

THEOREM 5.3. For0 < ¢ < ﬂll, Algorithm 2 computes a set of up

to (1 + 23¢) - ED(S, S’) insertions and deletions that turn S into S’.

ProoF. In the proof of Theorem 4.4, we proved that for the graph
G in Algorithm 1, ED g1 < (1 + 11¢)ED(S, S’). In other words, the
number of unmatched vertices in the largest non-crossing matching
in that graph is at most (1+11¢) times the number of unmatched ver-
tices in the bipartite graph that corresponds to the longest common
subsequence between S and S’.

As graph G in Algorithm 2 is the same as the one in Algo-
rithm 1 with some extra edges removed, we only need to show
that removing the extra edges does not increase the number of non-
matched vertices in the largest non-crossing matching by more
than a (1 + O(¢)) multiplicative factor. This can be directly con-
cluded from Theorem 4.4 since the extra removed edges are elimi-
nated by doing the same procedure between pairs of codewords
of C; that is done between the strings in the statement of Theo-
rem 4.4. In fact, using similar budget-based arguments as in Eqgs. (1)
and (2), the extra edge removal step will only increase the edit
distance by a (1 + 11¢) factor. This leads to an upper bound of
(1+ 11e)(1 + 116)ED(S, S’) < (1 + 23¢)ED(S, S”) on the approxima-
tion ratio of Algorithm 2 for ¢ < ﬁ O

5.2 Proof of Theorem 5.1

Proor. Let ¢/ = ¢/46. Thus, the given family of codes is
(¢’,6/¢’, L(-))-list recoverable.

Take the code C; as a code with block length Nj from the given
family of codes where Nj is large enough so that Ny - ||"/2" M > p,
Similarly, take C» with block length N so that Ny - Ier/z'N2 > Ni.
For a large enough n, rates of C; and C; are at least /2. We reduce
the rates of C; and Cy to r/2 by arbitrarily removing codewords
from them.

We now use Theorem 7.4 with parameters écony = ¢’ and yeonv =
1—2¢’ to convert list-recoverable codes C; and C to list-decodable
insertion-deletion codes C; and C, by indexing their codewords
with appropriately chosen indexing sequences from Theorem 2.3
and synchronization strings. Note that we can do this conversion
lc; “€conv _ 6/ _
—5  Cl=T5 1=
1. Also, C; can L(N;)-list decode from any ycony = 1 — 2¢’ fraction
of insertions and any 1—a¢, — £conv = 1 — 4—56 —¢’ = 1-2¢' fraction
of deletions in Tpec(N;) + O (N;poly(log N;)).

Also, it is known how to construct ¢s-synchronization strings and
er-indexing schemes needed in Theorem 7.4. e5-synchronization

strings can be constructed in linear time in terms of their length
o)

using Theorem 7.4 since ycony = 1-2¢” <

over an alphabet of size ¢ and ¢-indexing sequences from
Theorem 2.3 can be constructed in near-linear time over an alphabet

of size exp (log(l/q)/e?). Therefore, the alphabets of C1 and Gy
will be of size |%| x exp (log(1/¢)/¢").
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We now use codes C; and C; in the structure described in the
beginning of Section 5.1 to obtain an indexing sequence I of length
n. Since the conversion of each codeword of C; to C ; consumes near-
linear time in terms of Nj, if the codes C; are efficiently encodable,
string I can be constructed in near-linear time. Also, the above-
mentioned discussion on alphabet sizes of Ci entails that I will be
a string over an alphabet of size |Z|2 x exp (log(1/¢)/¢").

We now have to provide an algorithm that produces a (1 + ¢)-
approximation for the edit distance using I. In the same spirit as
the algorithm provided in the proof of Theorem 5.1, we define
algorithm EDy as an algorithm that takes S x I and S and runs an
instance of Algorithm 2 with S x [, S’, N1, N2, and decoders of C’i
as its input.

As codes C; list decode from 1 — 2¢’ fraction of insertions and
deletions, Theorem 5.3 guarantees that ED; generates a set of at
most (1 + 23 -2(¢"))ED(S X I,S”) = (1 + £)ED(S x I, S’) insertions
and deletions over S X I that converts it to S’.

Finally, since N = O(log n), Nz = O(loglog n) and C; list decode
in Tpec(N;) + O (N;poly(log N;)) time, Theorem 5.2 guarantees that
ED [ runs in

ol
M

time. This gives the running time in the theorem statement.

n NoL1Ly
: TDecc:l (Ny) + FZ : TDecéZ (N2) + g—z -nloglogn
[m}

6 RANDOMIZED INDEXING

In this section, we will prove the following theorem by taking
similar steps as in the proof of Theorem 5.1 to construct an indexing
scheme according to the structure introduced in Section 5.1.

THEOREM 6.1. For any &g > 0, €1,e2 € (0,1), and integer n,
there exists a randomized indexing scheme (I, ED;) of length n where
ED(S x I,S’) runs in O(n log® n) time and proposes a set of in-
sertions and deletions that turns S X I into S’ and contains up to
(1 + £1)ED(S X I, ") + £2|S’| operations with probability 1 — —2

nom *

Note that, as opposed to the rest of the results in this paper,
Theorem 6.1 provides an approximation guarantee with both mul-
tiplicative and additive components.

To construct such an indexing scheme using the structure intro-
duced in Section 5.1, we will use a list-decodable insertion-deletion
code of block length O(log log n) from Corollary 3.6 and use Theo-
rem 7.4 to obtain a list-decodable insertion-deletion code of block
length O(log n) from the following list recoverable codes of [26].

THEOREM 6.2 (COROLLARY OF THEOREM 7.1 OF HEMENWAY ET
AL. [26]). For any p € [0,1], ¢ > 0, and positive integer l, there
exist constants qo and co so that, for any ¢ < ¢y and infinitely many
integers q > qo, there exists an infinite family of codes achieving the
rate p over an alphabet ¥. of size |3| = q that is encodable in n'*¢
time and probabilistically (p + €, 1, L(n))-list recoverable in n1*¢ time
with success probability 2/3 and L(n) = O, p(exp(exp(exp(log” n))))
where n denotes the block length.

Before providing the proof of Theorem 6.1, we mention a couple
of necessary lemmas.

LEMMA 6.3. Let (a, 1, L(n))-list-recoverable code C have a probabi-
listic decoder that runs in Tpec(n) and works with probability p. Then,
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for any integer k, C can be (a, 1, k - L(n))-list-recovered in kTpec(n)
time with 1 — (1 — p)¥ success probability.

ProorF. Use a decoding procedure for C that repeats the given
decoder k times and outputs the union of the lists produced by
them. The final list size will be at most kL(n) long, the running time
will be kTpec(n), and the failure probability, i.e., the probability
of the output list not containing the correct codeword is at most

(1-p)*. O

Another required ingredient to the proof of Theorem 6.1 is to
show how a probabilistic decoder affect the approximation guaran-
tee of Algorithm 2. To this end, we provide the following lemma
as an analogy of Theorem 5.3 when the decoder of code C; is not
deterministic.

LEMMA 6.4. Let the decoder of code C; (Decg, (+)) be a randomized

algorithm that L1 -list decodes the code C; with probability 1—p. Then,
_2S8’|p

with probability 1 —e 3N, Algorithm 2 will generate a set of up to

(1 + 236)ED(S, S’) + 2p|S’| insertions and deletions that turn S into

S’

Proor. If Decg, (-) worked with probability 1, the outcome of
A would contain up to (1 + 23¢1) insertions and deletions. Each
time that Dec, fails to correctly list-decode a block of length Ny
(le), up to Nj edges from M1 might be lost and, consequently,
there can be up to 2Nj units of increase in the number of insertions
and deletions generated by A.

There are a total of n = |S’|/Nj list decodings and each might
fail with probability p. Using the Chernoff bound,

_28lp
3N,

Pr(more than 2np failures) < e2nPl3 = ¢

_asp
Thus, with probability 1 —e M , the output of A contains (1 +
236)ED(S, S7)+2npN1 = (1+236)ED(S, S) +2p|S’| or less insertions
and deletions. O

We are now adequately equipped to prove Theorem 6.1.

6.1 Proof of Theorem 6.1

Proor. Our construction closely follows the steps taken in the
proof of Theorem 5.1. Let ¢’ = £1/46. Take C; from the Theorem 6.2
with parameters ec, = ¢’, pg, = 2¢’,l¢, = 6/¢’, cc, = €, and block
pc; /2-Ni
G
where qc, is the size of the alphabet of the family codes.

According to Theorem 6.2, C; 1is probabilistically
(e’,¢’/6,L(Ny))-list recoverable in O (NIHSO) time where
L(N7) = exp(exp(exp(log” N1))) and success probability is 2/3. We
use Lemma 6.3 with repetition number parameter k = logs 5—22 to
obtain a (¢’, ¢/ /6, 0 (log(1/e2) - L(N1)))-list recovery algorithm for
C1 that succeeds with probability 1 — (%)k =1- % and runs in

O¢, (NIHE" /82) time.

We now use Theorem 7.4 with parameters écony = ¢’ and
Yeonv = 1—2¢’ to convert list-recoverable code C; to a list-decodable

> n

length N7 where Nj is large enough so that N - ¢

insertion-deletion code C; by indexing its codewords with an
appropriately chosen indexing sequence from Theorem 2.3 and a
synchronization string. Note that we can do this conversion using
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. Ie, - conv v
Theorem 7.4 since yeony = 1 — 2¢’” < % -1= WTE -1=1.

Also, Cy can O (log E—IZL(NI))—list decode from any ycony = 1 — 2¢’
fraction of insertions and any 1 - ag, —éconv = 1— 55 —€" = 1-2¢’
fraction of deletions in O, , (NlHE0 + Nppoly(log Nl)).

We further take code C; from Corollary 3.6 with parameter & G =
EZ/Z'NZ > Nj.
Cyis exp(exp(exp(Nz)))-list decodable from any 1 — 2¢” fraction of
insertions and 1 — 2¢’ fraction of deletions.

String I for the indexing scheme is constructed according to the
structure described in Section 5.1 using 6'1 and éz.

We define algorithm ED; as an algorithm that takes S X I and
S’ and runs an instance of Algorithm 2 with S x I, S, N1, Nz, and
decoders of éi as its input. As codes C; list decode from 1 — 2¢’
fraction of insertions and deletions, Lemma 6.4 guarantees that
ED; generates a set of insertions and deletions over S X I that
converts it to S” and is of size (1 +23-2¢")ED(SXI,S")+2- %|S'| =

_ e
(14 €)ED(S X I, S") + £2|S’] or less with probability 1 — e 3M =

—of 2
1—e O(lagn

2¢’ and block length N large enough so that N - ¢

=1- nOe1e2(D) "
Finally, since Np O(logn), N O(loglogn), C; is
list-decodable in O(NIHS" + Nipoly(log N1)) time and Cy is

efficiently list-decodable, Theorem 5.2 guarantees that ED; runs in

nTDecél (N1) nTDecéz (N2)
+
N; N,

O¢,, e, + NyL1Ly - nloglogn

n
Ocy, e, (@ “Toecg, (logn) + — Thecy, (loglog n)

n
loglog
+nlog? log nL 6, (NDLg (N2)

O, ¢, (nlog® n)

time.

7 NEAR-LINEAR TIME INSDEL CODES

The construction of efficient (uniquely-decodable) insertion-
deletion codes from [22] and list-decodable codes from [24]
profoundly depend on decoding synchronization strings that are
attached to codewords of an appropriately chosen Hamming-type
code. The decoding procedure, which was introduced in [22],
consists of multiple rounds of computing the longest common
subsequence (LCS) between a synchronization string and a given
string. In this section, we will show that using the indexing
schemes that are introduced in this paper, one can compute
approximations of the LCSs instead of exact LCSs to construct
insertion-deletion codes of similar guarantees as in [22, 24] that
have faster decoding complexity.

Specifically, for uniquely-decodable insertion-deletion codes,
[22] provided codes with linear encoding-time and quadratic
decoding-time that can approach the singleton bound, i.e., for
any 0 < § < 1land 0 < € < 1 — § can correct from J-fraction of
insertions and deletions and achieve a rate of 1 — § — ¢. Further,
same authors [23] provided codes with linear encoding complexity
and near-linear decoding complexity can can correct from § < 1/3
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fraction of insertions and deletions but only achieve a rate of
1—36 — ¢. In Theorem 2.4 we will provide insertion-deletion codes
that give the best of the two worlds, i.e., approach the Singleton
bound and can be decoded in near-linear time.

Further, in Theorem 7.4, we show that the same improvement
can be made over list-decodable insertion-deletion codes of [24].
However, this improvement brings downs the complexity of all
components of the decoding procedure to near-linear time except
the part that depends on the decoding of a list-recoverable code that
is used as a black-box in the construction from [24]. Even though
this progress does not immediately improve the decoding time of
list-decodable codes of [24], it opens the door to enhancement of
the decoding complexity down to potentially a near-linear time by
the future advances in the design of list-recoverable codes.

7.1 Enhanced Decoding of Synchronization
Strings via Indexing

Synchronization strings, as introduced in [22], are strings that sa-
tisfy Definition 3.1. Let S be an e-synchronization string that is com-
municated through a channel that suffers from a certain fraction of
insertions and deletions. A decoding algorithm Decg for synchroni-
zation string S under such channel is an algorithm that takes string
that is arrived at the receiving end of the channel, and for each
symbol of that string, guesses its actual position in S. We measure
the quality of the decoding algorithm Decg by a metric named as
misdecodings. A misdecoding in the above-mentioned decoding
procedure is a symbol of S that (1) is not deleted by the channel and
(2) is not decoded correctly by Decg. (formal definitions in [22])

The important quality of synchronization strings that is used
in the design of insertion-deletion codes in [22, 24] is that there
are decoders for any e-synchronization string that run in quadratic
time O(n?/¢) and guarantee O(n+/e) misdecodings. In this paper, by
indexing synchronization strings with indexing sequences introdu-
ced in Theorem 2.3, we will show that one can obtain a near-linear
decoding that provides similar misdecoding guarantee.

In the rest of this section, we first present and prove a theorem
that shows an indexed synchronization string can be decoded in
near-linear time with guarantees that are expected in Theorem 6.14
of [22] and Lemma 3.2 of [24]. We then verify that the steps taken
in [22, 24] still follow through.

THEOREM 7.1. Let S be a string of length n that consists of the
coordinate-wise concatenation of an €, -synchronization string and an
er-indexing sequence from Theorem 2.3. Assume that S goes through
a channel that might impose up to § - n deletions and y - n symbol
insertions on S for some0 < § < 1 and 0 < y and arrives as S’ on the
receiving end of the channel. For any positive integer K, there exists
a decoding for S’ that runs in O(Knpoly(log n)) time, guarantees up

1+y er(1+y/2)
ton (K(1+51) Tre

more than K received symbol to any number in 1, n].

+ Kes) misdecodings, and does not decode

Before proceeding to the proof of Theorem 7.1, we present and
prove the following simple yet useful lemma.

LEMMA 7.2. Let us have a set of insertions and deletions that con-
verts string Sy to string Sp which is of sizeED opp < (1+&)ED(S1, S2).
The common subsequence between S1 and Sy that is implied by such
a set (LCSapp) is of size (1 + €)[LCS| = £(|S1] + |S2]) or larger.
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PrOOF.

|S1] + |S2| —EDapp
2
S1] +1S2] = (1 + £)ED(S1, S2)
2
£
(1+¢)|LCS| - 2 (IS1] + 1S21)

[LCS app]

[m]

Proor oF THEOREM 7.1. The global decoding algorithm intro-
duced in [22] and used in [24], consists of K repetitions of the
following steps:

(1) Find the longest common subsequence (LCS) of S and §’.

(2) For any pair (S[i], S’[j]) in the LCS, decode S’[}] as ith sent
symbol.

(3) Remove all members of the LCS from S’ (not in S).

Finally, the algorithm declares a special symbol L as the decoded
position of all elements of S” that are not included in any of the K
LCSs.

To derive a decoding algorithm as promised in the statement of
this lemma, we implement similar steps except we make use of the
indexing scheme and compute an approximation of LCS instead of
the LCS itself. This crucial step reduces the quadratic time required
in the global decoding from [22] to near-linear time.

In [22], it has been shown that any assignment from Item 2 that
is derived from any common subsequence between S and S’ (not
necessarily a LCS) does not contain more than nes; misdecodings,
i.e., successfully transmitted symbols of S that are decode incor-
rectly. (see 3.2). Therefore, after K repetitions, among symbols of S
that are not deleted, there are at most Kneg ones that are decoded
incorrectly.

To find an upper bound for the misdecodings of this algorithm,
we need to bound above the number of successfully transmitted
symbols that are not included in any LCS, i.e., decoded as L as
well. Let r be number of successfully transmitted symbols of S that
remain undecoded after K repetitions of the matching procedure
described above. Note that these symbols form a LCS of length r
between S and the remainder of S” after all symbol eliminations
throughout K repetitions. Indeed, this implies that the size of the
LCS at the beginning of each repetition is at least r. Therefore, by
Lemma 7.2, the size of the approximate longest common sequence
found in each matching is at least (1 + ef)r — er/2(IS| + |S’]) =
(1 + e7)r — ern(1 + y/2). Note that sum of the size of all K common
subsequences plus the remaining vertices cannot exceed |S’| <
(1 + y)n. Therefore,

K- [Q+epr—em(l+y/2)]<Q+y)n

1+y . 51(1+y/2)}

= r
K1 +ep) 1+ ¢r

<n-

4)

Using (4) along with the fact that there are at most Kneg incorrectly
decoded symbols of S gives that the overall number of misdecodings
1ty er(1+y/2)
K(1+eg) T+eg
Further, as algorithm consists of K computations of the approxi-
mated longest common subsequence as described in Section 4, the

running time complexity is O(Knpoly(log n)).

isatmostn~[ + Keg|.
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Finally, note that in each of the K rounds, there is at most one
element that gets decoded as each number in [1, n]. Therefore,
throughout the course of the algorithm, for each i € [1, n], there
are at most K elements of S’ that are decoded as i. o

7.2 Near-Linear Time (Uniquely-Decodable)
Insertion-Deletion Codes

The construction of Singleton-bound-approaching uniquely-
decodable insertion-deletion codes of [22] is consisted of a
Singleton approaching error correcting code and a synchronization
string. More precisely, for a given § and ¢ and a sufficiently
large n, [22] takes a synchronization string S of length n and a
Singleton-bound-approaching error correcting code C with block
length n (from [19]) and indexes each codeword of C, symbol by
symbol, with symbols of S. If S is over alphabet X and C is over
alphabet 2, the resulting code would be over £¢ X Zg.

As for the decoding procedure, note that the input of the decoder
is some code word of C, indexed with S, that might be altered by up
to § - n insertions and deletions. Such insertions and deletions might
remove some symbols, adds some new ones, or shift the position
of some of them. The decoder uses the synchronization portion of
each symbol to guess its actual position (in the codeword prior to
n - § insertions and deletions) and then uses the decoder of code C
to figure out the sent codeword.

Before proceeding to the proof of Theorem 2.4, we represent the
following useful theorem from [22].

THEOREM 7.3 (IMPLIED BY THEOREM 4.2 FROM [22]). Given a
synchronization string S over alphabet s, an (efficient) decoding
algorithm Dg with at most k misdecodings and decoding complexity
Tpg(n) and an (efficient) ECC C over alphabet ¥ with rate Re,
encoding complexity Tg,,, and decoding complexity T, that corrects
up to nd + 2k half-errors, one obtains an insdel code that can be (effi-
ciently) decoded from up tond insertions and deletions. The rate of this

code is at least The encoding complexity remains

c
1+log [Zs/log [Z¢ |
Tg,» the decoding complexity is Tp, + Tpg(n) and the complexity
of constructing the code is the complexity of constructing C and S.
We make use of Theorem 7.3 from [22] along with Theorem 7.1

to prove Theorem 2.4.

PRroOF OF THEOREM 2.4. As described earlier in this section,
we construct this code by taking an error correcting code that
approaches the Singleton bound and then index its codewords with
symbols of an &5-synchronization string and an indexing scheme
from Theorem 2.3 with parameter ¢5. For a given § and ¢, we choose
e = 15,865 = %. Furthermore, we use the decoding algorithm from
Theorem 7.1 with repetition parameter K = %. With ¢, €1, and K

chosen as such, the decoding algorithm guarantees a misdecoding
Ity er(1+y/2)

K(1+eg) I+er

or less. (note that there can be up to dn insertions, i.e.,y < § < 1)

It has been shown in [23] that such synchronization string can

countofn~[ +K£s]$n~[f—2+ﬁ+f—2]:%

be constructed in linear time over an alphabet of size 83—0(1). Also,
the indexing sequence from Theorem 2.3 has an alphabet of size

exp (log(l ler)/ {:‘?) Therefore, the alphabet size of the coordinate-

wise concatenation of the ¢5-synchronization string and the index-
ing sequence is |Xg| = exp (log(l/s)/£3).
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As the next step, we take code C from [19] as a code with distance
8¢ = 6+% andrate 1-5¢— § over an alphabet of size [Z¢| = |5 |4/¢.
Note that |Xg| = exp (log(l/s)/£3), therefore, the choice of |Z¢| is
large enough to satisfy the requirements of [19]. C is also encodable
and decodable in linear time.

Plugging C and S as described above in Theorem 7.3 gives an
insertion-deletion code that can be encoded in linear time, be de-

coded in O(Knpoly(logn)) time, corrects from any n insertions
c S 1-6-3¢/4

1+log [Zs|/log [Zc] = 1+¢/4

1 -8 — ¢, and is over an alphabet of size exp (10g(1/€)/e4).

and deletions, achieves a rate of

]

7.3 Improved List-Decodable InsDel Codes

A very similar improvement is also applicable to the design of
list-decodable insertion-deletion codes from [24] as it also utili-
zes indexed synchronization strings and a similar position reco-
very procedure. In the following theorem, we will provide a black-
box conversion of a given list-recoverable code to a list-decodable
insertion-deletion code that only adds a near-linear time overhead
to the decoding complexity. Hence, the following theorem paves the
way to obtaining insertion-deletion codes that are list-decodable in
near-linear time upon the design of near-linear time list-recoverable
codes. We will use the following theorem to prove Theorem 2.5 at
the end of this section.

THEOREM 7.4. Let C : 3" — 3" be a (a, 1, L)-list recoverable
code with rate R, encoding complexity Tgp(-) and decoding com-
plexity complexity Tpec(-). For any e > 0 andy < %5 -1, by in-

dexing codewords of C with an &5 = -synchronization string

_
9(1+y)

over alphabet X5 and e = -indexing sequence over alpha-

Ty 72
bet X1, one can obtain an L-list decodable insertion-deletion code
C’ 3™ 5 [2x ¢ x 371" that corrects from § < 1— a — ¢ fraction
of deletions andy fraction of insertions. C’ is encodable and decodable

in O(Tgpc(n)+n) and O,y (Tpec(n) +npoly(log n)) time respectively.

Proor. We closely follow the proof of Theorem 3.1 from [24]
except that we use an indexed synchronization string to speed up
the decoding procedure.

2
Index the code C with an ¢5 = g(lg—ﬂ/)—synchronization string and

an e = -indexing sequence as constructed in Theorem 2.3

E(Ep)
to obtain code C’.

In the decoding procedure, for a given word x that is 5n deletions
and yn insertions far from some codeword x € C’, we first use the
decoding algorithm from Theorem 7.1 to decode the index portion
of symbols with parameter K = 3(1 + y)/e. This will give a list of
up to K = 3(1+y)/e < I candidate symbols for each position of the
codeword x.

We know from Theorem 7.1 that all but

gl(l+y/2)+Kes <n ;X2+£ < ne
3(1 +¢p) 3

1+e¢r
of the symbols of x that are not deleted are in the correct list. As
there are up to n(1 — ) deleted symbols, all but n(1 — 8 — ¢) > na
of the lists contain the symbol from the corresponding position in
x. Having such lists, the receiver can use the list-recovery function
of C to obtain an L-list-decoding for C’.

1+y
K(1+¢p)
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The encoding complexity follows from the fact that synchroni-
zation strings be constructed in linear time [15, 23], the decoding
complexity follows from Theorem 7.1, and the alphabet of C” is tri-
vially ¥ X X X 2t as it is obtained by indexing codewords of C with

the e5-synchronization string and the ¢7-indexing sequence. O
We now use Theorem 7.4 to prove Theorem 2.5.
ProoF oF THEOREM 2.5. Take list-recoverable code C
from Tlllzeorfm 6.2 with parameters pc = 1 -6 - 5, e¢c = §,
— Y+ —
lc = =, and ¢c¢ = ¢ over an alphabet 3 of adequately

large size |X| > qo,¢c which we determine later. According
to Theorem 6.2, C has a rate of po and a randomized
(pc + ¢, lc, L(n) = exp(exp(exp(log” n))))-list recovery that
works in O(n!*) time and succeeds with probability 2/3.

We plug code C into Theorem 7.4 with parameters econy =
and ycony = ¥ to obtain code C’. We can do this because ycony
ICEC% — 1. According to Theorem 7.4, C’ is L(n)-list decodable
from 1 — p¢ — e¢ — econv = O fraction of deletions and y fraction
of insertions in O(n!*#). This list-decoding is correctly done if the
list-recovery algorithm works correctly. Therefore, the list decoder
succeeds with probability 2/3 or more.

Note that the e&g-synchronization strings
rem 7.4 exist over alphabets of size ||
and ¢r-indexing sequence exist over alphabets

7] = exp (log(l/eI)/ei). Therefore, if we take alphabet

£
4
<

in Theo-
-0(1)
s

of size

>

> large enough so that [3]

max {exp (10g(1/€)/54) , ‘IO,C}
resulting code will be

max {'23 x|, QO,C}

Ogy,e,y(1) the rate of the
pc 1-8—¢/2

T og(Ss XD /og 5] 2 Teez 2 170-¢

Finally, the encoding and decoding complexities directly follow

from Theorem 7.4. O
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