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Abstract

A classical multi-agent fence patrolling problem asks: What is the maximum length L of a line

fence that k agents with maximum speeds v1, . . . , vk can patrol if each point on the line needs to

be visited at least once every unit of time. It is easy to see that L = α
∑

k

i=1
vi for some efficiency

α ∈ [ 1
2
, 1). After a series of works [3, 8, 9, 10] giving better and better efficiencies, it was conjectured

by Kawamura and Soejima [10] that the best possible efficiency approaches 2
3
. No upper bounds on

the efficiency below 1 were known.

We prove the first such upper bounds and tightly bound the optimal efficiency in terms of

the minimum speed ratio s = vmax
vmin

and the number of agents k. Our bounds of α ≤
1

1+ 1
s

and

α ≤ 1 −
1√

k+1
imply that in order to achieve efficiency 1 − ǫ, at least k ≥ Ω(ǫ−2) agents with a

speed ratio of s ≥ Ω(ǫ−1) are necessary. Guided by our upper bounds, we construct a scheme whose

efficiency approaches 1, disproving the conjecture stated above. Our scheme asymptotically matches

our upper bounds in terms of the maximal speed difference and the number of agents used.

A variation of the fence patrolling problem considers a circular fence instead and asks for

its circumference to be maximized. We consider the unidirectional case of this variation, where

all agents are only allowed to move in one direction, say clockwise. At first, a strategy yielding

L = maxr∈[k] r · vr where v1 ≥ v2 ≥ · · · ≥ vk was conjectured to be optimal by Czyzowicz et al. [3]

This was proven not to be the case by giving constructions for only specific numbers of agents with

marginal improvements of L. We give a general construction that yields L = 1
33 loge log2(k)

∑

k

i=1
vi for

any set of agents, which in particular for the case 1, 1/2, . . . , 1/k diverges as k → ∞, thus resolving

a conjecture by Kawamura and Soejima [10] affirmatively.
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1 Introduction

Patrolling is a fundamental task in robotics, multi-agent systems, and security settings. Given

some environment of interest, and a collection of mobile agents, the aim is to coordinate

the movements of the agents in order to, for example, guard an area from intrusion by an

enemy, prevent accidents or failure of equipment, maintain up-to-date information of the

environment, etc. For each of these tasks, ensuring that certain points in the environment get

visited/monitored frequently is crucial. Performance of patrolling algorithms is consequently

often measured in terms of idleness – roughly speaking, the time between two consecutive

visits to a point in the environment.

Multi-agent patrolling has been extensively studied in the robotics literature since the

early 2000s, e.g., see [1, 11] and the survey [12]. However, even for extremely clean and very

simple models, determining optimal patrolling schemes poses many natural mathematical

questions with interesting and surprisingly sophisticated answers [2, 3, 4, 5, 6, 7, 8, 9, 10].

1.1 Fence Patrolling

This paper studies a classical fence patrolling problem introduced by Czyzowicz et al. [3],

which might be one of the cleanest and most natural patrolling problems: What is the

maximum length L of a fence that k agents a1, . . . , ak with maximum speeds v1, . . . , vk can

patrol if each point needs to be visited at least once every unit of time. Czyzowicz et al.

introduce two variations of this question – the fence could be either an open curve, or a

closed curve. For simplicity, we assume the open curve is a line segment and the closed

curve is a circle.

For the line segment, it is easy to see that for any speeds the maximum length L satisfies

L = α
∑k

i=1 vi for some efficiency α ∈ [ 1
2 , 1). In particular, in one unit of time an agent ai

can cover a length of at most vi and all agents can cover at most a total length of
∑k

i=1 vi.

An efficiency of exactly α = 1 is furthermore never possible because agents have to turn

around eventually. On the other hand, an efficiency of α = 1
2 can easily be achieved by the

following strategy:

Partition-based strategy, A1: For all i ∈ [k], agent ai patrols a subsegment of length
1
2 vi by going back and forth on this segment once every unit of time. This patrols a segment

of length L = 1
2

∑k

i=1 vi with idle time 1.

Considering patrol schedules on a circle, the picture is quite different than for a line

segment. Again, the length L of any circle that can be patrolled by a set of agents is

upper-bounded by the sum of the maximum speeds of the agents, since agent ai cannot

cover a length of more than vi. Here, however, it is easy to find collections of agents and

a corresponding patrol schedule that achieves this exactly – imagine k identical agents

starting equidistantly along the circle and moving in unison in the same direction, say

counter-clockwise.

1.2 Prior Work on Fence Patrolling

1.2.1 Prior Work on the Line Segment

Czyzowicz et al. [3] observed that the trivial scheme A1 with efficiency 1
2 is optimal if the

paths of the agents never cross. To see this, note that the leftmost agent ai cannot walk

away further than 1
2 vi from the leftmost point of the fence as it would take more than one

unit of time between two visits of this point. By the same argument the agent aj to the
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right of agent ai cannot ever be further away than 1
2 (vi + vj) from the leftmost point of the

fence and induction shows that a total fence length of 1
2

∑k

i=1 vi is best possible. For the

special case of all agents having the same speed the assumption that the paths of the agents

never cross is furthermore without loss of generality as one can equally well switch identities

of agents at a crossing, making the agents bounce off each other instead of crossing. In the

worst case an efficiency of 1
2 is thus optimal and Czyzowicz et al. posited [3] that indeed no

better efficiency can be achieved for any speeds.

Surprisingly, Kawamura and Kobayashi [9] disproved this by providing an explicit fence

patrolling schedule for 6 agents with speeds 1, 1, 1, 1, 7
3 , and 1

2 for a fence of length 7
2 , thus

achieving an efficiency of 21
41 > 1

2 . This was improved by Dumitrescu, Ghosh and Tóth [8],

who proposed a family of patrolling schedules with efficiency approaching 25
48 , and finally

by Kawamura and Soejima [10] who achieved an efficiency approaching 2
3 . Kawamura and

Soejima furthermore explicitly conjectured that no efficiency better than 2
3 is possible for

any set of speeds [10, Conjecture 6, page 9].

On the other hand, except for the setting of equal speeds discussed above, no upper

bounds on the efficiency below 1 have been provided in the literature [3, 9, 8, 10].

1.2.2 Prior work on the Circle

For a general set of agents, Czyzowicz et al. [3] proposed the following universal scheme that

generalizes the schedule above for equal speeds:

Runners strategy, A2: Assume v1 ≥ v2 ≥ · · · ≥ vk. Find the r ∈ [k] that maximizes

r · vr, and let the r fastest agents move equidistantly along the circle at speed vr. This

patrols a circle of length L = maxr∈[k] r · vr with idle time 1.

Suppose for a collection of agents with maximum speeds v1 ≥ v2 ≥ · · · ≥ vk, A2 produces

a schedule on a circle with length L. Without loss of generality, we can assume L = 1. Then

maxr∈[k] r · vr = 1, and by possibly increasing the maximum speed of some agents we may

assume vi = 1/i for each i ∈ [k]. Note that increasing speeds in this way can only increase

the maximum circumference that can be patrolled with idle time 1 using these agents, but

will not increase the length produced by A2. Thus, if there is any collection of agents where

there is a patrol schedule that performs better than A2, there must be such a schedule in

the case of harmonic maximum speeds 1, 1/2, . . . , 1/k.

To analyse the performance of patrol schemes on the circle, Czyzowicz et al. considered

two different cases: unidirectional patrol schedules, where agents are only allowed to move in

one direction, and general (or bidirectional) patrol schedules, where agents are allowed to go

in both directions. Clearly, any patrol schedule obtained through A2 is unidirectional.

In the bidirectional case, it is not too hard to see that there are situations where A2 is

not optimal. Indeed, in the case of harmonic maxiumum speeds, the partition-based strategy

A1, which works in the same way for a circular fence as for a line segment fence, would give

L = (1 + 1/2 + · · · + 1/k)/2, which is bigger than 1 as given by A2 for any k ≥ 4. In fact,

an example with three agents was given in [3] where neither A1 nor A2 are optimal. This

was strengthened further by Dumitrescu et al. [8], who showed for any k ≥ 4 there exists

a collection of k agents where what they call the train strategy A3 performs strictly better

than both A1 and A2. To the authors’ knowledge, no universal scheme has been proposed to

always produce an optimal patrol schedule in this setting.

For the unidirectional case, it was initially conjectured by Czyzowicz et al. that A2 is

optimal for any set of agents. This was proved to be true for up to four agents. However, it

was shown incorrect by parallel results by Dumitrescu et al. [8] and Kawamura and Soejima

[10], who gave explicit examples of patrol schemes for 32 and 122 agents (with harmonic
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speeds) with L = 1 + ǫ (for a small unspecified ǫ > 0) and L = 1.05 respectively. Kawamura

and Soejima further conjectured that the maximum length of a unidirectional circle that can

be patrolled by agents with speeds 1, 1/2, . . . 1/k diverges as k → ∞.

2 Our Results

This paper advances the understanding of the fence patrolling problem by giving tight upper

and lower bounds on the optimal efficiency for the line segment, and a construction for the

circle with efficiency of Θ( 1
loge log2 k

) for any set of k agents. To a large extent it concludes

the main line of inquiry put forward in the works discussed above [3, 9, 8, 10].

2.1 Results for the Line Segment

We provide the first technique to prove general impossibility results for the fence patrolling

problem. We explain our ideas in more detail in Section 4 and merely state our main upper

bound here:

◮ Theorem 2.1. Any fence patrol schedule with k agents with maximum speeds v1, . . . , vk

patrols a fence of length at most

L ≤
k

∑

i=1

vi

1 + vi

maxj vj

.

One way to interpret Theorem 2.1 is that the contribution of an agent ai depends not

only on his/her own speed vi but also on how much slower he/she is than the fastest agent.

In particular, instead of always contributing vi, as in the trivial upper bound, an agent

contributes at most 1
1+ 1

si

· vi given that the fastest agent patrolling is a factor of si faster

than ai. That is, the “relative efficiency” of an agent ai ranges anywhere between 1/2

and 1 depending on si, which always constitutes an improvement over the trivial upper

bound of
∑

i vi.

We also show that Theorem 2.1 can be used to prove an upper bound on the efficiency of

a schedule solely in terms of the number of agents:

◮ Lemma 2.2. Any fence patrolling schedule with k agents has an efficiency of at most

1 − 1√
k+1

.

We note that our upper bounds are tight in several interesting special cases. Specifically,

for the case of agents having identical speeds, Theorem 2.1 shows that the efficiency of the

schedule (and indeed each agent) is at most 1
2 , reproving the result of [3]. In contrast to

the symmetry argument about non-crossing agents explained above, our arguments and

upper bounds easily extend to near-identical speeds as well. Lastly, it is easy to check that

Theorem 2.1 is tight when applied to the configuration of agents used by Dumitrescu et

al. [8] and Kawamura and Soejima [10] for their construction to obtain efficiency ratios of

25/48 − o(1) and 2/3 − o(1), respectively.

Our upper bounds do not exclude schedules with efficiency close to 1. They do however

give important restrictions and clues about what an extremely efficient schedule, if it exists,

has to look like. In particular, Lemma 2.2 implies that any schedule with efficiency 1 − ǫ has

to have at least
(

1
2ǫ

)2
, i.e., quadratically in 1

ǫ
many agents. In the same manner, Theorem 2.1

implies that, with ǫ → 0, the ratio between the fastest and slowest agent has to be at

least Ω( 1
ǫ
), i.e. grow unboundedly. Even more interestingly, the way the upper bound in

Theorem 2.1 depends on maxi vi seems to indicate that even just a single very fast agent can

raise the “relative efficiency” of slower agents from 1/2 to almost 1.
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Equipped with this better understanding and guidance from our impossibility results we

were, to our surprise, able to design schedules which achieve an efficiency arbitrarily close to

1, thus disproving the conjecture of [10]:

◮ Theorem 2.3. For any sufficiently large k, there exists a fence patrolling schedule with

efficiency 1− 3.5√
k

. Such a schedule uses k−1 agents of speed one and one agent with maximum

speed Θ(
√

k).

Note that this theorem implies that for any ǫ > 0 there exists a fence patrolling schedule

with efficiency 1 − ǫ using O( 1
ǫ2 ) agents – one with speed Θ( 1

ǫ
) and all others with speed 1.

In other words, the efficiency can be made arbitrarily close to 1 by choosing the appropriate

number and maximum speeds of agents.

We remark that Theorem 2.3 also shows that both our upper bounds are asymptotically

tight. In particular, the optimal efficiency for any schedule with k agents is indeed 1 − Θ( 1√
k

).

Furthermore, for any s ≥ 1, there is a configuration (with k = Θ(s2) agents), where the

maximum speeds of the agents differ by a factor s and for which the optimal efficiency

is 1
1+ 1

Θ(s)

= 1 − Θ( 1
s
).

2.2 Results for the Circle

We resolve the conjecture by Kawamura and Soejima affirmatively. Namely, for any large

enough k, we can construct a patrol schedule with idle time 1 using agents with maximum

speeds 1, 1/2, . . . 1/k that patrols a unidirectional circle of length L = Θ
(

log2 k

loge log2 k

)

. In fact,

our construction extends to a new universal scheme for the unidirectional circle. This is

captured in the following theorem.

◮ Theorem 2.4. For k sufficiently large and for any k agents with maximum speeds v1, . . . vk

there exists a patrol scheme with idle time 1 that patrols a unidirectional circle of length

L =
1

33 loge log2 k

k
∑

i=1

vi.

The construction of our schedule has two steps: we first divide the agents into Θ(log2 k)

groups, reducing the speed of some and discarding others so that each group consists of a

power of 2 number of agents that move with the same speed, which is also a power of 2 times

the sum of speeds. This allows us to use a randomized construction, in which the agents

from each group are placed equidistantly around the circle with a random offset from some

fixed “beginning” of the circle, and move around it with the same speed. We show that

with this patrol schedule, most points are visited as frequently as required by our theorem.

Then as a second phase, we cut out the bad points – that is, the ones that are not visited

as frequently as necessary. We move the patrol schedule to a smaller circle, intuitively only

consisting of the good bits. Agents move as if they were on the larger circle, but whenever

moving though a cut-out segment, they just stand still instead. The details of this scheme

together with a proof sketch will be given in Section 6.

2.3 Organization

The rest of the paper is organized as follows: We first give a more formal model description

of the fence patrolling problem as well as discuss some related models and works in Section 3.

In Section 4 we explain and prove our upper bounds for the line segment. Section 5 explains
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and gives a proof sketch of our optimal fence patrolling schedule for the line segment.

Finally, Section 6 presents and and gives a proof sketch our schedule for a circle with length

Θ( 1
loge log2 k

∑k

i=1 vi). Formal and complete proofs for the two schedules can be found at

https://arxiv.org/abs/1809.06727.

3 Fence Patrolling and Related Models

In this section we give a more detailed formal definition for the fence patrolling model/problem

and briefly discuss related models and results. The fence patrolling model as given by [3] is

defined as follows:

The environment E to be patrolled is 1-dimensional and consists of a line segment of

length L or a circle of circumference L. This line segment or circle is also referred to as a

fence.

The fence patrolling problem consists of some finite number k ∈ N of mobile agents

a1, a2, . . . , ak to patrol the fence, each having a possibly distinct positive maximum speed

v1, v2, . . . , vk ∈ R+.

A schedule for the fence patrolling problem consists of a k-tuple of functions a1, a2, . . . , ak :

[0, ∞) → E such that, for all i ∈ [k], t ≥ 0 and ǫ > 0,

dist(ai(t + ǫ), ai(t)) ≤ ǫ · vi.

That is, we assume patrolling starts at t = 0 and goes on indefinitely. Each agent follows a

predetermined trajectory, in which he/she moves along E with at most his/her maximum

speed. In the case of a circular fence, the function dist(x, y) refers to the length of the

shorter circle arc between x, y ∈ E . In the case of the unidirectional circle, we have the

additional requirement that ∀i ∈ [k], t ≥ 0 and 0 < ǫ < L
2vi

, the shorter arc between ai(t)

and ai(t + ǫ) is the one that spans clockwise from ai(t).

We say that a patrol schedule has idle time T for some fixed positive parameter T if for

all t ≥ T and for all x ∈ E , there is some agent that visits x during [t − T, t]. Intuitively,

this condition means that an intruder cannot remain undetected at a point for more than

T time.

Given a patrol schedule, we say that a point (x, t) ∈ E × [T, ∞) is T -covered if some

agent ai visits the point x ∈ E on the fence during the time interval [t − T, t]. Note that

in this model an agent patrols/monitors a point x ∈ E by visiting it. On the one hand,

this means the agents are limited to zero line of sight. On the other hand, no additional

operation (e.g. stop and look around) is necessary to patrol a point.

One can see that a schedule has idle time T if and only if every point (x, t) ∈ E × [T, ∞)

is T -covered. It is easy to observe that any patrol schedule of a fence of length L with idle

time T can be rescaled to a schedule of a fence of length α · L with idle time 1
α

· T for any

α > 0. Thus, to simplify terminology, we assume henceforth that T = 1 and we refer to

1-covered simply as covered.

Related models have been considered in the literature: where agents have positive line of

sight [7], where agents have distinct walking and patrolling speeds [5], where some agents

may be faulty [4], where only some regions of the environment need to be patrolled [2], or

where the environment is a geometric tree [6]. However, all of these models feature identical

agents and in particular do not allow for varying maximum speeds. Overall, the model given

above is likely the cleanest and most natural model in which agents with different speeds can

and have been studied. Despite the extreme simplicity of this model, this paper and prior
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works on the fence patrolling problem [3, 9, 8, 10] show that very surprising and intricate

phenomena occur when agents have different speeds and that these nontrivial consequences

can be studied in the model defined above.

4 Impossibility Results for the Line Segment: Proof of Theorem 2.1
and Lemma 2.2

In this section, we prove two upper bounds on the length of a straight line fence (i.e. E = [0, L])

patrolled by agents of maximum speeds v1, . . . , vk.

Proof of Theorem 2.1. The main idea of the proof is to consider the two-dimensional

spacetime continuum S := [0, L] × [0, ∞) and the trajectories of the agents along with the

points they cover. Since, as noted in Section 3, a patrol schedule with agents a1, . . . , ak has

idle time 1 if and only if ∀x ∈ [0, L], ∀t ≥ 1, (x, t) ∈ S is covered by at least one agent aj ,

the theorem can be equivalently stated as that, for any patrol schedule such that all points

(x, t) ∈ S with t ≥ 1 are covered by some agent, we have

L ≤
k

∑

i=1

1
1
vi

+ 1
vmax

. (4.1)

In fact, we will show (4.1) under the weaker assumption that only points (x, t) ∈ S with

t ∈ [1, 2k] are covered by some agent.

Given a patrol schedule of [0, L] with agents a1, . . . , ak and a non-empty subset A ⊆
{a1, . . . , ak}, we define the right border (see Figure 2) of A as the function BA : [1, ∞) → [0, L]

given by BA(t) := max{x ∈ [0, L] : (x, t) is covered by some agent in A}. We show (4.1) by

considering consecutively the collections of agents A1, . . . , Aq, where A1 = {ai1
}, ∀j ∈

[q] \ {1}, Aj = Aj−1 ∪ {aij
}, i1, . . . , iq is a sequence of distinct integers in [k] to be specified

later, and 1 ≤ q ≤ k as we might not need to consider all agents. The intuition behind this is

that we are starting with an empty set and adding more agents in a specific order until some

termination condition is met. It is clear that ∀t ≥ 0, ∀j ∈ [q − 1], BAj (t) ≤ BAj+1(t). The

key idea of the proof is to consider what happens to the right border of Aj as j increases

(that is, as more agents are added). An example of the right borders of Aj and Aj+1 for

some j is shown in Figure 1.

At this point we prove a claim which will be useful in specifying the sequence i1, . . . , iq.

⊲ Claim 4.1. For any patrol schedule of [0, L] with set of agents A = {a1, . . . , ak} and idle

time 1, for any subset A′ of {a1, . . . , ak}, and for any point (px, pt) ∈ S on the right border

of A′ (that is, such that BA′

(pt) = px), there exists an ε > 0 such that there is at least one

agent ai ∈ A \ A′ that covers all points (px + ν, pt) for ν ∈ [0, ε].

Proof. Note that there could not exist three points (x1, t), (x2, t), (x3, t) such that 0 ≤ x1 <

x2 < x3 ≤ L and some agent aj covers (x1, t) and (x3, t) but not (x2, t). This is because the

trajectory of every agent can be considered as a continuous function faj
: [0, ∞) → [0, L], so it

cannot be that ∃t1, t3 ∈ [t − 1, t] such that f(t1) = x1 and f(t3) = x3 but 6 ∃t2 ∈ [t − 1, t] with

f(t2) = x2. It follows that the set of points Cj on the segment between (px, pt) and (L, pt)

covered by some agent aj must be either the empty set or a segment. Now consider the set

of agents Ap in A \ A′ that cover (px, pt) and note that ∃ε > 0 such that ∃a ∈ Ap that covers

(px + ε, pt) (otherwise choose the non-empty Cj with aj ∈ A \ A′ with the leftmost left end

(pl, pt) that is strictly to the right of px and notice that all points (px′ , pt) with px′ ∈ (px, pl)

are not covered by any agent in A, which is impossible as all points in S should be covered).

But now a ∈ Ap covers both (px, pt) and (px + ε, pt), therefore it also covers anything in

between since the points it covers between (px, pt) and (L, pt) must form a segment. ⊳
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fence

0

time

Figure 1 If we have added the blue agent and the red agent so far, then the right border is shown

in yellow. If we now also add the green agent, the new right border is shown in black.

Now we can continue with the proof of our main upper bound by specifying i1, . . . , iq.

Consider a fixed patrol schedule of [0, L] with agents a1, . . . , ak and idle time 1. To pick

the sequence i1, . . . , iq, consider the following procedure: initially, put l0 = (x0, t0) = (0, k)

and pick i1 ∈ [k] such that agent ai1 covers l0. For each consecutive j = 1, 2, . . . , we let

lj = (xj , tj) be such that

tj = arg min
t∈[k−j,k+j]

BAj (t)

and xj = BAj (tj). Intuitively, lj is the leftmost point of BAj between times k − j and k + j.

Now if xj = L, we stop adding agents and we set q := j. Note that if j = k, then xj = L as

agents a1, . . . , ak cover all of [1, 2k]. If xj < L, pick as agent aij+1 an agent that covers all

the points with coordinates (xj + ν, tj) for ν ∈ [0, ε] for some small enough ε > 0. Such an

agent should exist by Claim 4.1. To make sure lj is always defined for any j ∈ {0, 1, . . . , q},

if q = k, set lk := (L, k).

We note that x0, x1, ..., xq is non-decreasing, x0 = 0 and xq = L since we either stopped

adding agents when q < k because xq = L or we stopped when q = k, in which case

all of [0, L] × [1, 2k] should be covered. Hence the theorem follows if we can show that

∀j ∈ {0, 1, . . . , q − 1}, xj+1 − xj ≤ 1
1

vij+1
+ 1

vmax

.

In order to bound this difference, we investigate how the right border moves when agent

aij+1 is added. Note that ∀t ∈ [0, ∞),

BAj+1(t) = max(BAj (t), B{aj+1}(t)).

For any time t > tj , the rightmost point at time t that could be covered by any agent in Aj

is (xj + (t − tj)vmax, t) since the speed of any agent is at most vmax. Similarly, for any time

t < tj , the rightmost point at time t that could be covered is (xj + (tj − t)vmax, t). Thus,

∀t ∈ [0, ∞),

BAj (t) ≤ xj + |t − tj |vmax.

Denote by u the ray (xj + (tj − t)vmax, t) where t ≤ tj , and by w the ray (xj + (t − tj)vmax, t)

where t ≥ tj .
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Next, consider B{aj+1}(t). Since agent aj+1 covers lj , this means that he/she visits xj

at some time between tj − 1 and tj , say at point (xj , tvisit). Under the restriction that

the trajectory of agent aij+1
should go through (xj , tvisit), it is clear that B{aij+1

}(t) is

maximized if agent aij+1 comes from the right at maximum speed, hits (xj , tvisit) and then

turns around and moves to the right at maximum speed, in which case equality is achieved in

∀t ∈ [0, ∞), B{aij+1
}(t) ≤ min(x′ + |t − t′|vij+1

, L),

where (x′, t′) = (xj +
vij+1

2 , tvisit + 1
2 ). Denote by h the ray (x′ + (t′ − t)vij+1 , t) where t ≤ t′

and by g the ray (x′ + (t − t′)vij+1
, t) where t ≥ t′.

L′
Lold

Lnew

M

Lold

Lnew

M

L′

Lold
Lnew

L′
M

Figure 2 The rays R1 and R2 give a bound to the right of the current right border and are given

in red and green respectively, and in black and gray we have a bound to the right of the trajectory

of the newly added agent ai and its shadow, i.e. the points that are covered by it.

We thus get ∀t ∈ [0, ∞),

BAj+1(t) = max(BAj (t), B{aij+1
}(t)) ≤ f(t),

where f(t) = max(xj + |t − tj |vmax, x′ + |t − t′|vij+1
). Consider tnew = arg mint∈[1,∞) f(t).

Let Lnew = (xnew := f(tnew), tnew) be the leftmost point on the aforementioned upper bound

on BAj+1(t). Notice that Lnew is either the intersection of h and w, or the intersection of g

and u, or the intersection of g and h. These three cases are illustrated in Figure 2. We have

u in red and w in green. Consider the upper bound on B{aij+1
}(t) mentioned above. The

trajectory of agent aij+1
that would correspond to matching this upper bound is given in

black and the points aij+1 would cover if this was his/her trajectory are given in gray. We

have that Lold = (xold, told) := lj . It can be seen by inspection of the three cases in Figure 2

that |tnew − tj | ≤ 1. Then tnew ∈ [k − (j + 1), k + (j + 1)], which makes Lnew a candidate

for lj+1, therefore lj+1 = (xj+1, tj+1) will have xj+1 ≤ xnew. Thus it is enough to show that

xnew − xj ≤ 1
1

vij+1
+ 1

vmax

.

We need an upper bound on d = xnew − xold. We consider the points M = (xM , tM )

and N = (xN , tN ) as illustrated in Figure 2, such that in all three cases xM = xnew and

|tM − tnew| = 1. In Case 1, we consider the segment MN of slope 1
vij+1

and xM − xN = d,

and the segment LoldLnew of w of slope − 1
vmax

and xnew − xold = d. This gives us

d

vij+1

+
d

vmax
≤ 1 ⇒ d ≤ 1

1
vij+1

+ 1
vmax

. (4.2)

In Case 2, we consider the segment LnewLold of u of slope 1
vmax

and xnew − xold = d, and

the segment NM of slope − 1
vij+1

and xM − xN = d. This implies Equation (4.2) for Case 2

ICALP 2019
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as well. In Case 3, we consider the segment MN of slope 1
vij+1

and xM − xN = d, and the

segment NLnew of slope − 1
vij+1

and xnew − xN = d. This means that

2d

vij+1

= 1 ⇒ d =
vij+1

2
≤ 1

1
vij+1

+ 1
v

.

Therefore, xnew − xold ≤ 1
1

vij+1
+ 1

vmax

as desired. ◭

Proof of Lemma 2.2. We show how L ≤
(

1 − 1√
k+1

)

∑k

i=1 vi follows from Theorem 2.1.

First note that L ≤ ∑k

i=1 vi − vmax

2 as each agent ai contributes at most vi · 1
1+

vi
vmax

≤ vi while

the agent with maximum speed contributes exactly vmax

2 . Therefore, if vmax ≥ 1√
k

∑k

i=1 vi

the desired upper bound for L follows immediately. It remains to deal with the case

vmax < 1√
k

∑k

i=1 vi. For this we first note that x · 1
1+ x

vmax

= 1
1
x

+ 1
vmax

is a concave function

in x for 0 ≤ x ≤ vmax, since the second derivative − 2
(1+ x

vmax
)3vmax

is always negative. This

allows us to apply Jensen’s inequality and thus we have

L ≤
k

∑

i=1

1
1
vi

+ 1
vmax

≤ k
1

1
vavg

+ 1
vmax

=
1

1 +

∑

k

i=1
vi

k·vmax

k
∑

i=1

vi ≤
(

1 − 1√
k + 1

) k
∑

i=1

vi,

where vavg = 1
k

∑k

i=1 vi. This concludes the proof of Lemma 2.2. ◭

5 A Schedule with Efficiency 1 − ǫ for the Line Segment: Proof of
Theorem 2.3

In this section, we give proof sketch that for any k agents, there exist speeds v1, . . . , vk and

a scheme for these agents to patrol a fence of length

L =

(

1 − 3.5√
k

+ O(1/k)

) k
∑

i=1

vi.

This improves the result from [10] and therewith falsifies the corresponding conjecture stated

in that paper.

Proof sketch of Theorem 2.3. Assume k is sufficiently large, and, for ease of notation,

define n := k − 2. Let L = n − 3/2
√

n. We construct a schedule that patrols E = [0, L] with

idle time 1, using n + 1 agents with maximum speed 1 and 1 agent with maximum speed

2
√

n − 1. Thus we have a total speed of V =
∑k

i=1 vi = n + 2
√

n. As the ratio between L

and V approaches 1 − 3.5√
k

+ O(1/k), Theorem 2.3 follows.

To simplify the presentation of the patrol schedule, we will allow the agents to occasionally

“step out of the fence [0, L]”, i.e. we allow an agent ai to assume positions ai(t) < 0 and

ai(t) > L (to avoid this, we could also modify the schedule so that they stay at the respective

end of the fence for a while). To keep the notation as clean as possible, we henceforth assume

that n is a square number. Our schedule works as follows (see Figure 3 for a graphical

representation):

Slow agents a1, . . . , an: For each i ∈ {0, . . . , n}, agent ai starts at time 0 at position

x = i − i/
√

n and moves i/(2
√

n) time units to the right. Then he or she repeats:

move to the left for
√

n time units.

move to the right for
√

n time units.
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Fast agent an+1: The fast agent an+1 starts at time 0 and repeats the following four steps:

(1) Move from position 0 to position L + 1/2 with speed 2
√

n − 1.

(2) Move from position L + 1/2 to position −1/2 during the next
√

n/2 + 1 time units (e.g.

with constant speed (L + 1)/(
√

n/2 + 1) = 2
√

n − 7 + (16)/(
√

n + 2)).

(3) Move from position −1/2 to position L with speed 2
√

n − 1.

(4) Move from position L to position 0 in the next
√

n/2 time units (e.g. with constant

speed (L)/(
√

n/2) = 2
√

n − 3).

The idea behind our patrol schedule is to initially place the agents with maximum speed

1 equidistantly along the fence with gaps of length slightly smaller than 1, similar to the

schedule for the fast agents in [10]. In contrast to their schedule, this is performed slightly

out of phase between the agents. This will cover most of the points on the fence. The only

problem appears whenever the agents turn around, as then the points right next to these

turning points are not visited for more than 1 time unit, hence creating uncovered triangles

in the “spacetime” diagram (white triangles in Figure 3). By timing the turning times of the

agents appropriately, we ensure that these uncovered triangles are placed such that they can

all be cleaned up by the last fast agent. Figure 3 gives a complete illustration of our schedule

for 18 agents and intuitively shows that each point x on the line L is visited at least once

every unit of time. ◭

6 A schedule for the unidirectonal circle: Proof of Theorem 2.4

In this section, we will present a schedule with which a group of agents a1, . . . , ak with

maximum speeds v1, . . . , vk can patrol a circle with circumference

1

33 loge log2(k)

k
∑

i=1

vi,

followed by a short sketch of why the proposed schedule behaves as claimed. Our schedule

will be divided in two parts. First, we will give a randomized construction for a strategy

which allows the agents a1, . . . , ak to patrol a circle with circumference 1 such that with

probability 1 − o(1) “most” of the points are visited at least every Θ
(

log log(k)/(
∑k

i=1 vi)
)

time units. Then, we will argue that one can remove the “bad” points and then “blow up”

the circle to obtain the desired result.

Proof sketch of Theorem 2.4. We are given a group a1, . . . , ak of agents with maximum

speeds v1 . . . , vk and define V :=
∑k

i=1 vi. We propose the following schedule:

Circle Schedule:

(1) Round speeds down to the next power of 2 and omit too slow agents:

For all i ∈ [k] let ji ∈ N be the non-negative integer such that V · 2−ji ≤ vi < V · 2−ji+1.

We define v′
i := V · 2−ji and I :=

{

i ∈ [k] : v′
i ≥ V

4·k
}

.

(2) Group remaining agents according to their speed:

For all i ∈ {0, . . . , ⌈log2(k)⌉ + 2} define Gi :=
{

j ∈ I : v′
j = V · 2−i

}

.

(3) Reduce number of agents in each group to a power of 2:

For all i ∈ {0, . . . , ⌈log2(k)⌉ + 2} let hi ∈ N be the positive integer such that 2hi ≤
|Gi| < 2hi+1 and let G′

i ⊆ Gi be an arbitrary subset of Gi of size 2hi . We denote by

m′
i = |G′

i| · v′
a = V · 2hi−i the mass of the group G′

i, where a ∈ G′
i (that is, each agent in

G′
i has maximum speed v′

a after the rounding down in step 1).
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position

time

fence

2z
√

n

(2z + 1)
√

n

(2z + 2)
√

n

(2z + 3)
√

n

(2z + 4)
√

n

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10a11a12a13a14a15a16
a17

Figure 3 The described schedule for n = 16. The dark grey area describes the points (x, t) which

are covered by the slow agents a0, . . . , an while the light grey shaded area describes the points (x, t)

which are covered by the fast agent in steps (1) and (3) of his protocol.

(4) Omit groups with too small mass:

Let J :=
{

i ∈ {0, . . . , ⌈log2(k)⌉ + 2} : m′
i ≥ V

16(⌈log2(k)⌉+3)

}

.

(5) Patrol schedule: For each j ∈ J , pick an independent uniform random number rj in the

interval [0, 1
|G′

j
| ). At time 0, we place the |G′

j | agents from the group G′
j at positions

rj , rj +
1

|G′
j | , . . . , rj +

|G′
j | − 1

|G′
j | ,

i.e. we place all agents from the same group equidistantly from each other along the

circle with a random offset from the origin. Then the agents G′
j walk along the circle

with speed v′
j at all times.

Note that the two rounding steps and the two omitting steps each reduced the total

“available” speed by a factor of at most 2, therefore we have that
∑

j∈J m′
j ≥ V/16. Defining

T =
1

minj∈J m′
j

≤ 16(⌈log2(k)⌉ + 3)/V,
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we observe that after T time units the distribution of agents along the circle repeats itself, i.e.

if an agent with speed s is located at position x at time t, then another (or the same) agent

of speed s is located at position x at time t + T . Cutting the time interval into small pieces

of size τ ≈ 16 loge log2(k)/V , one can show that with probability 1 − o(1), almost all points

get visited at least once in each of these small time intervals, and hence all these points get

visited at least every 2τ time units. Next, we can “cut away” the few “bad” points for which

this is not true and obtain a circle of circumference 1 − ǫ. Adjusting the above schedule

so that agents “stand still” on the smaller circle whenever they cross a “bad” point on the

original circle gives us a schedule for which each point (on the small circle) is visited at least

every 2τ time units. Rescaling this patrol schedule then gives the scheme to patrol a circle

with circumference (1 − ǫ) 1
2τ

≥ 1
33 loge log2(k)

∑k

i=1 vi as desired. ◭
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