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Abstract

The radio network model is a well-studied model of wireless, multi-hop networks. However, radio

networks make the strong assumption that messages are delivered deterministically. The recently

introduced noisy radio network model relaxes this assumption by dropping messages independently

at random.

In this work we quantify the relative computational power of noisy radio networks and classic

radio networks. In particular, given a non-adaptive protocol for a fixed radio network we show how to

reliably simulate this protocol if noise is introduced with a multiplicative cost of poly(log ∆, log log n)

rounds where n is the number nodes in the network and ∆ is the max degree. Moreover, we

demonstrate that, even if the simulated protocol is not non-adaptive, it can be simulated with a

multiplicative O(∆ log2 ∆) cost in the number of rounds. Lastly, we argue that simulations with a

multiplicative overhead of o(log ∆) are unlikely to exist by proving that an Ω(log ∆) multiplicative

round overhead is necessary under certain natural assumptions.
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1 Introduction

The study of distributed graph algorithms provides precise mathematical models to under-

stand how to accomplish distributed tasks with minimal communication. A classic example

of such a model is the radio network model of [13]. Radio networks use synchronous rounds

of communication and were designed to model the collisions that occur in multi-hop, wireless

networks. However, radio networks make the strong assumption that, provided no collisions

occur, messages are guaranteed to be delivered.
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10:2 Erasure Correction for Noisy Radio Networks

This assumption is overly optimistic for real environments in which noise may impede

communication, and so previous work of [11] introduced the noisy radio network model where

messages are randomly dropped with a constant probability. This prior work demonstrated

that the runtime of existing state-of-the-art broadcast protocols deteriorates significantly

in the face of random noise. Furthermore, it showed how to design efficient broadcasting

protocols that are robust to noise.

However, it has remained unclear how much more computationally powerful radio networks

are than noisy radio networks. In particular, it was not known how efficiently an arbitrary

protocol from a radio network can be simulated by a protocol in a noisy radio network.

A simulation with little overhead would demonstrate that radio networks and noisy radio

networks are of similar computational power. However, if simulation was necessarily expensive

then radio networks would be capable of completing more communication-intensive tasks

than their noisy counterparts.

A simple observation regarding the relative power of these two models is that any

polynomial-length radio network protocol can be simulated at a multiplicative cost of O(log n)

rounds where n is the number of nodes in the network. In particular, we can simulate any

protocol from the non-noisy setting by repeating every round O(log n) times. A standard

Chernoff and union bound argument show that every message sent by the original protocol

is successfully sent with high probability. However, a multiplicative O(log n) is a significant

price to pay for noise-robustness for many radio network protocols. For example, the optimal

known-topology message broadcast protocol of [25] uses only O(D + log2 n) rounds, while the

topology-oblivious Decay protocol of [6] takes O(D log n + log2 n) where D is the diameter

of the network. Moreover, a dependence on a global property of the network – the number

of nodes in the graph – is excessive for correcting for a local issue – faults.

The simple solution from above globally synchronizes nodes by forcing all nodes to

simulate the same round for O(log n) repetitions. A natural question is can one more

efficiently simulate a noisy protocol by enforcing only local synchronization. In this paper we

show how to use local synchronization to efficiently simulate radio network protocols in a

noisy setting.

The local synchronization technique we use is as follows. Suppose each node tracked

the round in the original protocol up to which it has successfully simulated; we call this

round a node’s virtual round. In our simulation in each round each node simulate the virtual

round of its neighbor which has successfully simulated the fewest total rounds; i.e. each node

simulates the virtual round of its neighbor with the largest “delay”, thereby “helping” it.

Such a simulation is local as – unlike the above simple simulation – nodes in distant parts

of the network may simulate different rounds of the original protocol. Moreover, if a node

has successfully simulated fewer rounds than all of its neighbors (and all of its neighbors’

neighbors) then after one more round of simulation it will successfully simulate a new round

of the original protocol if no random faults occur.

However, there are at least three notable challenges in implementing and proving the

efficiency of such a local-synchronization-based simulation.

1. First, one must show that locally synchronizing nodes yields a fast simulation. A priori,

it is not clear that locally synchronizing nodes provides an advantage over the simple

global synchronization strategy.

2. Second, one must deal with the fact that local synchronization requires nodes to determine

the minimal virtual rounds of its neighbors. In particular, nodes cannot easily compute

the virtual rounds of their neighbors without communicating: When node v simulates a

round of the original protocol and broadcasts should it assume all of its neighbors have
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now successfully simulated this round? If a random fault occurred at a receiver then

clearly v should not but v has no easy means of determining whether or not any such

faults occurred. One must, therefore, determine how nodes can efficiently determine the

minimal virtual round of their neighbors.

3. Lastly, one must overcome the fact that not receiving a message is indistinguishable from

a randomly dropped message. In particular, a node can interpret not receiving a message

in a simulated round as indicating either (1) that it receives no message in the simulated

round of the original protocol or (2) that it does receive a message in this simulated

round but a random fault dropped this message. Thus, it is not clear how nodes ought to

increment their virtual rounds when they do not receive a message. On the one hand,

failing to increment a node’s virtual round in the former case could needlessly slow down

the simulation. On the other hand, if a node incorrectly decides it does not receive a

message in a round, its idea of what messages it received will diverge from that of its

neighbor who tried to send it a message. This divergence, in turn, may compound into

further errors later in the simulation.

1.1 Our Contributions

In this work we present solutions for these challenges which demonstrate that, by using local

synchronization, radio network protocols can be simulated by noisy radio networks with a

multiplicative dependence on ∆, the maximum degree of the network. Thus, we demonstrate

that, for low-degree networks, noisy radio networks are essentially of the same computational

power as radio networks. Moreover, we demonstrate that this dependence is more or less

tight in two natural settings.

We give our simulations in three increasingly difficult settings, each of which introduces

one of the above three challenges. In particular, our first model focuses on the first challenge,

our second focuses on the first two challenges and our last model deals with all three

challenges. We briefly mention our techniques here but defer more thorough intuition

regarding our simulation techniques until Section 4, which is after we have more formally

defined our problem.

Local Progress Detection. As a warmup we begin by providing a simulation with O(log ∆)

multiplicative round overhead in the setting where nodes have access to “local progress

detection”. Roughly, local progress detection enables nodes to know when they experience

a random fault and also the virtual rounds of their neighbors. Notice that in this setting

challenges 2 and 3 are non-issues: if each node has local progress detection, they can easily

determine neighbors’ delays and distinguish not receiving a message in the original protocol

from a randomly dropped message. The key technique we introduce for the first challenge is

a concentration-inequality-type result based on what we call “blaming chains”. (Section 5)

Non-Adaptive Protocols. Next, we provide simulations for non-adaptive protocols. Roughly,

non-adaptive protocols are protocols in which nodes know a priori the rounds in which they re-

ceive messages. In this setting, our simulations achieve a multiplicative poly(log ∆, log log n) =

O(log3 ∆ · log log n · log log log n) round overhead without local progress detection. As we

argue in Section 6, a number of well-known protocols (e.g. the optimal broadcast algorithm

of [25]) are non-adaptive. Notice that in this setting we need not deal with challenge 3

above since nodes can always distinguish a dropped message from a round in which they

receive no messages because they know the rounds of the original protocol in which they

receive messages. In this setting, we leverage non-adaptiveness of protocols to overcome

DISC 2019



10:4 Erasure Correction for Noisy Radio Networks

challenge 2. In particular, we use a distributed binary search which carefully silences nodes

that search over divergent ranges to inform nodes of the minimal virtual round of their

neighbors. Moreover, we keep the range over which the binary search must search tractable

by slowing down nodes that make progress too quickly. (Section 6)

General Protocols. Lastly, we show how to deal with all three challenges at once by giving

simulations for arbitrary radio network protocols with a multiplicative O(∆ log2 ∆) overhead.

To overcome challenge 3 we have nodes exchange “tokens” with all neighbors in every round

to preclude the possibility of a dropped message going unnoticed. (Section 7)

Lower Bounds. We also show that our simulations for non-adaptive protocols are likely

optimal: We show that two natural classes of simulations necessarily use Ω(log ∆) multiplic-

atively many more rounds than the protocols which they simulate. In particular, a simulation

that either (1) does not use network coding, or (2) sends information in the same way as

the original protocol requires Ω(log ∆) multiplicatively many more rounds than the original

protocol. We also give a construction which we believe gives an unconditional Ω(log ∆)

simulation overhead. (Section 8)

2 Related Work

Several models have been studied to understand robust communication in models similar to

the radio network model. [16] introduced the noisy broadcast model, which also assumes

random errors, and focuses on studying the computation of functions of the inputs of

nodes [18, 40, 26, 38]. The model of [16] differs from the noisy radio network model in that it

assumes a complete communication network and single-bit transmissions. [42] introduced a

similar model which again assumes single-bit transmissions and also does not have collisions

as the noisy radio network model does. Several papers have been written on notions of

noisy radio networks which assume the network admits geometric structure [33, 34]. There

have also been several papers on noisy single-hop radio networks. See either [24] for a study

of an adversarial model or [15] for a nice study of a random noise model. Another model

which captures uncertainty is the dual graph model [35, 10, 36, 21, 23], in which an adversary

chooses a set of unreliable edges in each round. Recent work [29] has also made use of several

of our techniques for variants of the SINR model.

There has also been extensive work on two-party interactive communication in the

presence of noise [44, 27, 19]. In this setting, Alice and Bob have some conversation in mind

they would like to execute over a noisy channel; by adding redundancy they hope to hold a

slightly longer conversation from which they can recover the original conversation outcome

even when a fraction of the coded conversation is corrupted. Multi-party generalizations of

this problem have also been studied [8]. The noisy radio network model can be seen as a

radio network analogue of these interactive communication models in which erasures occur

rather than corruptions.

Lastly, work on MAC layers has sought to provide abstractions for algorithms that hide

low-level uncertainty in wireless communication [22, 35, 43, 30]. Radio networks differ from

MAC layers as in radio networks it is not required that a sender receive an acknowledgment

from a receiver.

Since its introduction by [13], the classic radio network model has attracted wide attention

from researchers. The survey of [41] is an excellent overview of this research area. Here we

focus the radio network literature that relates to our work. Much of previous work for the noisy
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radio network model focused on broadcast [31]. For the classic model, [6] gave a single-message

broadcast algorithm for a known topology, which completes in O(D log n+log2 n) rounds. [11]

shows that this protocol is robust to noise, completing in O( log n
1−p (D + log n + log 1

δ )) rounds,

with a probability of failure of at most δ. In the classic model, single-message broadcast

was then improved by [25] and [32], who showed that in the case of a known topology,

O(D + log2 n) rounds suffice. [11] shows that this protocol is not robust to noise, requiring in

expectation Θ( p
1−p D log n+ 1

1−p D) rounds, for broadcasting a message along a path of length

D. They showed an alternative protocol, completing in O(D + log n log log n(log n + log 1
δ ))

rounds, with a probability of failure of at most δ. For an unknown topology in the classic

model, [14] give a protocol completing in O(D log(n/D) + log2 n) rounds, which is optimal,

due to the Ω(log2 n) and Ω(D log(n/D)) lower bounds of [2] and [37], respectively. [20] give

a O(D + poly log n)-round protocol that uses collision detection.

Lastly, simulations of models of distributed computation by other models of distributed

computation is a foundational aspect of distributing computing, dating back to the 80’s–90’s

with many simulations of various shared memory primitives, faults, and more (see a wide

variety in, e.g., [3]). It is also a focus for message-passing models with different features,

being the motivation for synchronizers [4, 5], and additional simulations [12, 9].

3 Model and Assumptions

In this section we formally define the classic radio network model, the noisy radio network

model and discuss various assumptions we make throughout the paper.

Radio Networks. A multi-hop radio network, as introduced in [13], consists of an undirected

graph G = (V, E) with n := |V | nodes. Communication occurs in synchronous rounds: in

each round, each node either broadcasts a single message containing Θ(log n) bits to its

neighbors or listens. A node receives a message in a round if and only if it is listening and

exactly one of its neighbors is transmitting a message. If two or more neighbors of node v

transmit in a single round, their transmissions collide at v and v does not receive anything.

We assume no collision detection, meaning a node cannot differentiate between when none of

its neighbors transmit a message and when two or more of its neighbors transmit a message.

Nodes are assumed to have unbounded computation, though all of the protocols in our paper

use polynomial computation.

We use the following notational conventions throughout this paper when referring to

radio networks. Let dist(v, w) be the hop-distance between u and v in G, let Γ(v) = {w ∈ V :

dist(v, w) ≤ 1} denote the 1-hop neighborhood of v, and let Γ(k)(v) = {w ∈ V : dist(v, w) ≤

k} denote the k-hop neighborhood of v.

Noisy Radio Networks. A multi-hop noisy radio network, as introduced in [11], is a radio

network with random erasures. In particular, it is a radio network where node v receives a

message in a round if and only if it is listening, exactly one of its neighbors is broadcasting

and a receiver fault does not occur at v. Receiver faults occur at each node and in each

round independently with constant probability p ∈ (0, 1). As p will be treated as a constant

it will be suppressed in our O and Ω notation. We assume that in a given round a node

cannot differentiate between a message being dropped because of a fault, i.e. a collision, and

all of its neighbors remaining silent.

DISC 2019



10:6 Erasure Correction for Noisy Radio Networks

We consider this model because independent receiver faults model transient environmental

interference such as the capture effect [39].1 Moreover, we consider an erasure model – entire

messages are dropped – rather than a corruption model – messages are corrupted at the bit

level – because, in practice, wireless communication typically incorporates error correction

and checksums that can guard against bit corruptions [17]. The noisy radio network model

can also be seen as modeling those cases when this error correction fails and the message

cannot be reconstructed and is therefore effectively dropped.

Protocols. A protocol governs the broadcast and listening behavior of nodes in a network.

In particular, a protocol tells each node in each round to listen or what message to broadcast

based on the node’s history. This history includes the messages the node received, when

it received them and its initial private input. We assume that this private input includes

the number of nodes, n, the maximum degree, ∆, the receiver fault probability, p, a private

random string, and any other data nodes have as input in a protocol. Formally, a history

for node v is an H ∈ H where H is all valid histories. H = {(i, R) : i ∈ I, R ⊆ M × N}

where I is all valid private inputs, R gives what messages v has received in each round

and M = {0, 1}O(log n) is all O(log n) bit messages a node could receive in a single round.

Formally, a protocol P of length T is a function P : V × [T ] ×H → {listen} ∪M where

P (v, t, H) = listen indicates that v listens in round t and P (v, t, H) = m ∈M indicates that

v broadcasts message m ∈M in round t. We let |P | := T stand for the length of a T round

protocol. In this paper we assume that T is at most poly(n).

Simulating a Protocol in the Noisy Setting. We say that protocol P ′ successfully simu-

lates P if, after executing P ′ in the noisy setting, every node in the network can reconstruct

the messages it would receive if P were run in the faultless setting. In particular, for any

set of private input I ∈ I |V | – letting H(v, I) be v’s history after running P with private

inputs I – it must hold that after running P ′ with private inputs I, every v can compute

H(v, I). Note that nodes running P ′ can send messages not sent by P or send messages in a

different order than they do in P . We call P the original protocol and P ′ the simulation

protocol. We measure the efficacy of P ′ as the limiting ratio of |P ′|
|P | when T is sufficiently

large and n goes to infinity, which we call the multiplicative overhead of a simulation.

4 Techniques Overview and Our Formal Results

As earlier mentioned, we show how to simulate a faultless protocol P in three noisy settings

of increasing difficulty. Throughout our simulation results, we use the notion of a virtual

round of node v, tv, which tracks how many rounds of P node v has successfully simulated.

We say that a node v is most delayed in a set of nodes U when tv ≤ minw∈U tw. All three

simulations roughly work by having nodes first exchange their virtual rounds with their

neighbors. Nodes then locally synchronize by simulating the virtual round of their most

delayed neighbor. Our simulations differ in how each defines a virtual round and how nodes

learn virtual rounds.

As a warmup and to study what sort of overhead local synchronization enables, we

consider the setting where nodes have access to “local progress detection”. Recall that local

progress detection gives nodes oracle access to the virtual rounds of their neighbors as well

as when faults occur. We show the following theorem which demonstrates that a O(log ∆)

overhead is possible in this setting.

1 In contrast, a sender faults model in which an entire broadcast by a node is dropped might model
hardware failures where independence of faults would be a poor modeling choice.
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◮ Theorem 1. Let P be a general protocol of length T for the faultless radio network

model. P can be simulated in the noisy radio setting using local progress detection in

O(T log ∆ + log n + k) rounds with probability at least 1− exp(−k) for any k ≥ 0 .

Blaming Chain Intuition. To prove the above theorem we use the idea of a blaming chain

to argue that local synchronization enables small simulation overhead. Since every node

simulates the round of its most delayed neighbor, a node v will have all neighbors simulate

its virtual round when its virtual round is minimal among virtual rounds of nodes in Γ(2)(v).

Moreover, as we will show, once v is most delayed in Γ(2)(v) it does not take too many

additional rounds for nodes to successfully simulate v’s virtual round. Thus, if v takes many

rounds to successfully simulate virtual round x, it must be because there was a u ∈ Γ(2)(v)

that required many rounds to simulate virtual round x − 1. In this way v can blame its

delay on u. Node u, in turn, can blame the fact that it required many rounds to simulate

virtual round x− 1 on the fact that one of its 2-hop neighbors, say w, required many rounds

to simulate virtual round x− 2 and so on. Thus, if node v is very delayed we can explain

this delay by some such blaming chain. There are exponentially many possible such blaming

chains, but – by way of concentration inequalities we prove – we show that long blaming

chains can be shown to have exponentially small probability and so a union bound over all

long blaming chains will allow us to show that no long blaming chain occurs.

We next show how to efficiently spread virtual round information without using progress

detection. In particular, we show a poly(log ∆, log log n) overhead for non-adaptive protocols

where nodes know a priori the rounds of the original protocol they are sent messages

without collision.2

◮ Theorem 2. Let P be a non-adaptive protocol of length T for the faultless radio network

model. P can be simulated in O((T + log n) log3 ∆ log log n log log log n) rounds in the noisy

radio setting with high probability by MainNonAdaptive.

Progress Throttling and Distributed Binary Search Intuition. In addition to blaming

chains, the main technique we use to prove the above result is progress throttling and a

novel algorithm for binary search in noisy radio networks. Since in this setting nodes can

no longer learn their neighbors’ virtual rounds using local progress detection, our goal is to

provide nodes an alternative means of learning their neighbors virtual rounds; namely, we

use progress throttling and distributed binary search. Since virtual rounds can be as small as

1 and as large as the length of the entire protocol which is as large as poly(n), the range over

which we must binary search might seem to be as large as poly(n); a binary search over this

range would require a prohibitive O(log n) iterations. For this reason, we slow down nodes

that make progress too quickly by only increasing their virtual round at most once after log ∆

simulated rounds. We show that this throttling keeps all virtual rounds within an additive

O(log n) range. This, in turn, allows our binary search to require only O(log log n) iterations.

Moreover, actually implementing a distributed binary search in a radio network presents

technical challenges of its own. The natural solution we use for node v to learn the smallest

virtual round of a neighbor is for v to repeatedly ask its neighbors if any of them have a

virtual round below the midpoint of the binary search range. v then updates its binary

2 When we write that an event occurs with high probability (w.h.p.), we mean that it occurs with
probability 1 −

1

nc , and that the constant c = Θ(1) can be made arbitrarily large by changing the
constants in the routines.
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search parameters in the usual way. This strategy enables an efficient binary search in radio

networks because to update its binary search parameters, v need only hear from at most one

neighbor. However, such a strategy suffers from the following problem of divergent ranges.

Suppose node v has a neighbor u. u might have neighbors that are not neighbors of v which

influence the range over which u searches. As such u might end up searching over a different

range than v. These divergent ranges may render v’s binary search nonsensical: v might

query u to learn if its virtual round is below v’s binary search midpoint and u could respond

with whether or not it is below the midpoint of an entirely different search range, namely

u’s search range. We overcome this issue by carefully marking nodes “silent” if they might

interfere with other nodes’ binary search. Specifically, we show that, given a node v whose

virtual round is minimal in Γ(2)(v), a careful silencing of possibly deviating nodes causes

nodes in Γ(v) to always update their binary search parameters in exactly the same manner as

v. Also, we show that, while nodes in Γ(2)(v)\Γ(v) might update their parameters differently,

our silencing ensures that these nodes never interfere with the binary search performed by

nodes in Γ(v).

Lastly, we describe how to simulate any protocol with a O(∆ log2 ∆) multiplicative

overhead.

◮ Theorem 3. Let P be a general protocol of length T for the faultless radio network

model. MainGeneral simulates P in the noisy radio setting in O((T log ∆ + log n)∆ log ∆)

rounds w.h.p.

Token Exchange Intuition. In addition to blaming chains, the main technique we use to

show the above theorem is a token exchange strategy. Recall that the main challenge in the

general setting is that even if a node knows its neighbors are simulating its virtual round,

the node cannot tell if the absence of a message indicates that it receives no message in this

round in the original protocol or that a random fault occurred. As such if a node does not

have a message to deliver to its neighbor, we force it to send its neighbor a token indicating

that it has no message to send. This allows v to distinguish between a random fault and a

round in which it simply receives no message.

In Section 8 we give a formal statement of how simulations in two natural settings require

Ω(log ∆) overhead but we give some intuition here as to why this might be true here.

Lower Bound Construction Intuition. Consider a star with degree ∆ where the center

node wants to send T messages to its neighbors. A noiseless protocol requires T rounds

but if the center only sends the original messages (and not e.g. an error correcting code)

and random faults occur then the center must send each message about Ω(log ∆) times to

guarantee all messages are delivered. Likewise consider a complete bipartite graph where

each node on the left wants to deliver a message to the right. The existence of collisions in

radio networks means that effectively only one node on the left can broadcast per round and,

like the star, every node must broadcast about Ω(log ∆) times to deliver its message if there

are random faults.

5 Warmup: Simulation with Local Progress Detection

We begin by giving our simulation with O(log ∆) multiplicative overhead in the setting where

nodes have access to local progress detection.

To rigorously define local progress detection, we introduce our notion of how much

simulation progress nodes have made, the virtual round. We say that a node v successfully

completed round t if it has succeeded in taking the action in P that it takes in t: v successfully
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broadcasts its message m of round t if every node in Γ(v) either has received m or had a

collision in the original protocol P at round t; v successfully completes its listening action

of round t if v receives the message it receives in round t of P or a collision occurs at v in

round t of P . We formally define the virtual round and local progress detection.

◮ Definition 4 (Virtual Round). The virtual round of node v ∈ V in a given round of

simulation P ′ is the smallest tv ∈ Z≥1 such that v has not successfully completed round tv of P .

◮ Definition 5 (Local Progress Detection). In the noisy radio network model with local

progress detection every node v knows the virtual round of every node w ∈ Γ(2)(v) in every

simulation round.

We now sketch a proof of the main theorem of this section; the full proof is in the full

version of the paper.

Proof Sketch of Theorem 1. We begin by describing our simulation, P ′. Each node v

repeatedly does the following in each round of P ′. Let u be the node in Γ(v) with minimal tu.

v takes the action that it takes in round tu of P . That is, v tries to “help” u by simulating

its virtual round.

Let v ∈ V and note that the virtual round tv never decreases. Hence for x ∈ Z≥1 we can

define Dv,x as the earliest round in P ′ when tv ≥ x. Notice that Dv,T just is the number of

rounds that v takes to simulate all rounds of the original protocol P . Thus, it will suffice

for us to argue that Dv,T is not too large for every v. We begin by finding a recurrence

relation on Dv,x saying that v will advance soon after its 2-hop neighborhood Γ(2)(v) has

virtual round at least x. In particular we show Dv,x ≤
(

maxw∈Γ(2)(v) Dw,x−1

)

+ Yv,x where

Yv,x is the maximum of at most ∆ many geometric random variables. Next, we show that

this recurrence shows that Dv,x is given by the longest “blaming chain” – formal definition

deferred to the full paper. We then apply a Chernoff-style tail bound (proved in the full

version) to show that a fixed blaming chain has small length with very high probability. By

union bounding over all blaming chains we have that the length of the maximum blaming

chain must be small and therefore Dv,T is small for every v. ◭

6 Simulation for Non-Adaptive Protocols

We now give our simulation results for non-adaptive protocols with poly(log ∆, log log n)

overhead.

◮ Definition 6 (Non-Adaptive Protocol). A non-adaptive protocol P is a protocol in which

every node can determine if it receives a message in each round of P regardless of the private

inputs of the nodes. Formally, each node v is given a list, Mv, of the rounds in which it

receives a message without collision in P .

We let Mv.getNextRound return the smallest round in Mv such that for every r ∈ Mv

such that r < Mv.getNextRound, v has received the message it receives in round r of P .

Since in a non-adaptive protocol nodes know in which rounds they receive messages in P ,

nodes in a simulation can locally compute Mv.getNextRound. Also notice that even

though non-adaptive protocols assume nodes know a priori when they are supposed to receive

messages, nodes do not know the contents of these messages before receiving them.

We note that a number of well-known protocols are non-adaptive. For instance, assuming

nodes know the network topology and use public randomness, the optimal broadcast algorithm

of [25] is non-adaptive. In particular, under these assumptions nodes can compute the
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broadcast schedule of their neighbors for this protocol. The same is true of the Decay

protocol of [6]. Since broadcast is the most studied problem in radio networks, the fact

that the state-of-the-art broadcast algorithm is non-adaptive would seem to make studying

non-adaptive protocols worthwhile. Moreover, though requiring that nodes know the network

topology and use public randomness may seem restrictive, in the context of simulations this

assumption is actually quite weak: we can dispense with both assumptions by simply running

any primitive that informs nodes of the network topology or shares randomness before our

simulation is run at a one-time additive round overhead. Any primitive to learn the network

topology or share randomness from the classic radio network setting coupled with the simple

O(log n) simulation as described in Section 1 suffices here. This overhead is negligible if the

simulated protocol is sufficiently long or we run many simulations on our network. Lastly, we

note that it is often the case that nodes can even efficiently compute the broadcast schedule

of their neighbors – see [28] – and so this one-time cost is often quite small.

To prove Theorem 2 we build upon the idea of the preceding section of using virtual

rounds to locally synchronize nodes. However, in the current setting it is difficult for nodes

to confirm when their broadcasts have succeeded, and so we must relax our definition of

virtual rounds. In particular, for the remainder of this section we let the virtual round

of each node be the minimum between the largest tv ∈ Z≥1 such that v receives a message

without collision in tv and v has successfully received all messages it receives up to round

tv − 1 in P in our simulation and a throttling variable L. That is, the virtual round of v is

min(Mv.getNextRound, L). L will be a slowly increasing value and, in this way, will slow

down the progress of nodes by keeping their virtual rounds small, thereby keeping all virtual

rounds within an additive O(log n) range.

The main subroutine of our simulation is LearnDelays (Algorithm 1). LearnDelays

performs a binary search to inform each node of the virtual round of its most delayed neighbor.

Initially the search range of every node is between L−O(log n) and L. In each iteration of

LearnDelays nodes with a virtual round less than the mean of their binary search range

are “active”. If there is an active node within 0 or 1 hop of node v then node v lowers the

upper bound of its binary search. If there are no active nodes within 2 hops of v then it

raises its binary search lower bound. Otherwise there is an active node 2 hops from v –

which intuitively means that v is not most delayed in Γ(2)(v) – in which case node v remains

silent for the rest of the binary search so as to not interfere with the binary search of its

neighbors. LearnDelays uses subroutine DistToActive to inform nodes of their nearest

active node. The properties of LearnDelays are given by the following lemma. Details of

DistToActive and a formal proof of the following lemma are deferred to the full version.

◮ Lemma 7. Assume that L−O(log n) ≤ tv ≤ L for all v ∈ V and let v be a most delayed

node in its 2-hop neighborhood. With constant probability the output of LearnDelays for

every w ∈ Γ(v) is tv, i.e., every w will try to help v advance. The runtime of LearnDelays

is O(log2 ∆ log log n log log log n) rounds.

We now present the MainNonAdaptive simulation routine that simulates P in the

noisy setting (Algorithm 2). We let P (v, t) return the action taken by node v in round t

of P . The properties of MainNonAdaptive are given by the following lemma.

◮ Lemma 8. Assume that L−O(log n) ≤ tv < L for all v ∈ V and let v be a most delayed

node in its 2-hop neighborhood. After an innermost iteration of MainNonAdaptive, tv

will increase by one with at least constant probability. Moreover, the running time of each

innermost iteration is O(log2 ∆ log log n log log log n) rounds.
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Algorithm 1 LearnDelays for node v.

Require: L, tv

lo← L−O(log n); hi← L

while lo 6= hi do ⊲ repeats O(log log n) rounds

v is marked as “active” iff tv ≤ ⌊
lo+hi

2 ⌋ and v is not marked “silent”

dist ← DistToActive

if dist is “=2” then mark v as “silent” until the end of LearnDelays

if dist is “=0” or “=1” then

hi← ⌊ lo+hi
2 ⌋

else

lo← ⌊ lo+hi
2 ⌋+ 1

return lo

Proof. Fix a v that is most delayed in its 2-hop neighborhood such that tv < L. By

definition of a virtual round and the fact that tv < L we have that P (v, tv) is a listening

action where in round tv of P it holds that v is sent a message without collision. By Lemma 7

after LearnDelays terminates with constant probability each 1-hop neighbor w will have

mw = tv. Thus, every node in the 1-hop neighborhood of v will simulate round tv, i.e. the

one neighbor that has a message for v will broadcast its message and the rest of v’s neighbors

will be silent. This message will be successfully received with probability p which is constant

and so tv will be incremented with constant probability. The running time follows easily by

summing runtimes. ◭

Algorithm 2 MainNonAdaptive for node v.

tv ← 1

for L = 1, 2, . . . , T + O(log n) do ⊲ “Outermost iteration”

for repeat O(log ∆) times do ⊲ “Innermost iteration”

mv ← LearnDelays

do action P (v, mv)

if mv = Mv.getNextRound and v received a message then

tv ← min(L, Mv.getNextRound) ⊲ Throttle v

We end this section with a proof sketch of Theorem 2; the full proof is in the full version

of the paper.

Proof Sketch of Theorem 2. We divide our simulated schedule into length O(log n) chunks.

Next we argue by induction that after each O(log n) outermost iterations of MainNon-

Adaptive every node is simulating the same chunk. This allows us to apply to apply

Lemma 8 and a blaming chain argument as in Theorem 1 to argue that the current chunk is

correctly simulated by all nodes. ◭

7 General Protocol Simulation

Here, we provide our results for arbitrary protocols. Our approach gives a O(∆ log2 ∆)

multiplicative overhead.

◮ Theorem 3. Let P be a general protocol of length T for the faultless radio network

model. MainGeneral simulates P in the noisy radio setting in O((T log ∆ + log n)∆ log ∆)

rounds w.h.p.
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Again, we build on the notion of a virtual round for this setting. Our main challenge

in this setting is that even if a node knows its neighbors are simulating its virtual round,

the node cannot tell if the absence of a message indicates that it receives no message in this

round in the original protocol or that a random fault occurred. As such, in order for node

v to advance its virtual round after hearing no messages from a neighbor, v must confirm

that every neighbor was silent in the simulated round. Let P be the original protocol for the

faultless setting. Define the token for a node v in round r of P to be either the message

that v is sending in round r of P or an arbitrary message indicating “v is not broadcasting”

if v is silent in round r of P . Next, we (re-)define the virtual round of a node v to be the

largest tv ∈ Z≥1 such that v successfully received all tokens from all neighbors for rounds

1, 2, . . . , tv − 1 (for a total of up to (tv − 1)∆ tokens).

Our simulation algorithm works in two phases: every node first informs its neighbors of

its virtual round; next, nodes help the neighbor with the smallest tv they saw by sharing the

token for that round. We now present pseudocode for the ShareKnowledge routine which

shares messages from a node with all of its neighbors and MainGeneral which simulates P

in the noisy setting.

Algorithm 3 ShareKnowledge for node v.

Require: a message, Bv, that v wants to share

for O(∆ log ∆) rounds do

v broadcasts Bv with probability 1
∆ , independently from other nodes

◮ Lemma 9. After ShareKnowledge terminates, a fixed node v successfully receives

messages from all its neighbors with probability at least 3/4 and successfully sends its message

to all neighbors with probability at least 3/4. The running time of ShareKnowledge is

O(∆ log ∆) rounds.

Proof. Fix an arbitrary node v. Consider the event where v receives a message from

a fixed neighbor w in a fixed iteration of ShareKnowledge. This event occurs iff w

broadcasts and all other neighbors of v, namely Γ(v) \ {w, v}, do not broadcast. This

occurs with probability that is at least 1
∆ (1 − 1

∆ )|Γ(v)\{w,v}| ≥ 1
∆ (1 − 1

∆ )∆ ≥ Ω( 1
∆ ) by

(1− 1
x )x = Ω(1). The probability that v does not hear from w after O(∆ log ∆) iterations is

(1−Ω( 1
∆ ))∆ log ∆ ≤ exp(−Ω(log ∆)) ≤ 1

4∆ . Union bounding over all |Γ(v)| ≤ ∆ possibilities for

w we get that the probability of v not sharing knowledge with all neighbors is at most 1/4. ◭

Algorithm 4 MainGeneral for node v.

tv ← 1

for O(T log ∆ + log n) do

v runs ShareKnowledge(tv)

mv ← smallest value v receives from all nodes running ShareKnowledge

ShareKnowledge(token for virtual round mv)

update tv if v received all tokens for round tv

◮ Lemma 10. Let v be a most delayed node in its 2-hop neighborhood. After one MainGen-

eral loop iteration, tv will increase by one with at least constant probability.

Proofs of Lemma 10 and Theorem 3 are deferred to the full version of the paper.
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8 Lower bounds

In this section we argue that an Ω(poly log ∆) multiplicative overhead in simulation is

necessary in two natural settings. In the first setting the simulation is not permitted to

use network coding [1]. In the second setting the simulation must respect information flow

in the sense that we show a lower bound when the graph is directed. It follows that any

simulation with constant overhead either uses network coding or does not respect information

flow. We also give a construction which we believe could be used to show an Ω(poly log ∆)

multiplicative overhead in simulation, even without any assumptions.

Additionally, we strengthen our lower bounds by proving them in the setting in which

the simulation is granted “global control”. Informally, global control eliminates the need for

control messages by providing a centralized scheduler that can synchronize nodes based on

how faults occur. The scheduler, however, cannot read the actual contents of the messages.

◮ Definition 11 (Global Control). We say that a noisy radio network has global control when

(1) nodes know the network topology, (2) nodes learn which nodes broadcast in each round

and at which nodes receiver faults occur in each round, and (3) all nodes have access to public

randomness.

It is not difficult to see that access to global control is sufficient to achieve the local progress

detection of Section 5. Moreover, notice that our simulation from Section 5 with O(log ∆)

multiplicative overhead is both non-coding and respects information flow. As such, it is

optimal for both settings.

8.1 Non-Coding Simulations

We now define a non-coding protocol and prove that simulations that do not use network

coding suffer a Ω(log ∆) multiplicative overhead.

◮ Definition 12 (Non-Coding). We say that a simulation P ′ in the noisy setting, which is

simulating a protocol P in the faultless setting, is non-coding if any message sent in P ′ is

also sent in P (though possibly by different nodes).

We consider an isolated star with degree ∆ where the center node wants to send T

messages to its neighbors. One can achieve a constant multiplicative overhead on this

protocol by using an error correction code like Reed-Solomon [45]. However, the following

lemma shows that if coding is not used no such overhead is possible.

◮ Lemma 13. For any T ≥ 1 and sufficiently large ∆ there exists a faultless protocol of

length T on the star network with ∆ + 1 nodes such that any non-coding simulation of the

protocol in the noisy setting with constant success probability requires Ω(T log ∆) many rounds

even if the simulation has access to global control.

Proof. As noted, the network is a star with ∆ leafs. Let r be the central node of the star.

In our faultless protocol, r receives T private inputs M1, M2, . . . , MT each of Θ(log n) bits.

r takes T rounds to broadcast each input, broadcasting Mi at round i.

Now consider a simulation of our protocol and assume for the sake of contradiction that it

succeeds with constant probability. Let C = C(p) be a constant such that 1− p ≥ exp(−C)

where p = Ω(1) is the fault probability of our noisy network. By the non-coding assumption,

all messages sent by P ′ must be in the set {M1, . . . , MT }. Denote by ti the number of times

r broadcasts Mi. For the sake of contradiction, assume that
∑T

i=1 ti ≤
1

100C T log ∆. Hence

mini∈[T ] ti ≤
1

100C log ∆ by an averaging argument. Let i∗ = arg mini∈[T ] ti. Notice that
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the probability that a fixed node receives a message is independent of that of any other

node since WLOG only r ever broadcasts. Therefore, the probability that a fixed node

does not receive Mi∗ is (1 − p)ti∗ ≥ (1 − p)
1

100C
log ∆ ≥ exp(−C 1

100C log ∆) ≥ ∆−1/100 by

definition of C. Consequently, the probability that some node does not receive i∗ is at least

1− (1−∆−1/100)∆ ≥ 1− exp(∆99/100) which tends to 1 as ∆→∞. This contradicts our

assumption that our simulation succeeds with constant probability. Therefore, no simulation

protocol of length Ω(T log ∆) can deliver all messages with constant probability. ◭

8.2 Simulations that Respect Information Flow

In this section we show how any simulation with less than a Ω(poly(log ∆)) multiplicative

overhead must route information along different paths than those in the faultless setting. In

particular, we show that a Ω(poly(log ∆)) lower bound holds in a directed network where

information in any simulation flows just as it does in the noiseless setting.

◮ Lemma 14. Let G = (L ∪R, E) be a complete directed bipartite graph with |L| = |R| = ∆

that has an arc (l, r) for all l ∈ L, r ∈ R. There exists a protocol P of length ∆ for the

faultless setting on the directed network G such that any protocol that works in the noisy

setting with constant success probability requires Ω(∆ log ∆) rounds. This bound holds even

in the global control setting.

Proof. Let L = {l1, l2, . . . , l∆} and R = {r1, r2, . . . , r∆} be the set of nodes on both sides of

the partition. Every node li ∈ L gets private input Mi and needs to broadcast it to all nodes

in R. In the faultless protocol P , li broadcasts Mi in round i ∈ [∆].

Now consider a noisy protocol P ′. Since G is directed, the only node from L that has

knowledge of Mi is li. Moreover, we can assume without loss of generality that in any one

round of P ′ at most one node in L broadcasts, since if this were not the case either no node

in R would be sent a message or a collision would occur at every node in R. Let ti be the

number of rounds in P ′ that li broadcasts Mi. For the sake of contradiction, assume that the

length of P ′ is c∆ log ∆ for a sufficiently small constant c > 0. Therefore,
∑∆

i=1 ti ≤ c∆ log ∆

and there exists i∗ ∈ [∆] such that ti∗ ≤ c log ∆. Since Mi∗ can only be broadcasted from li∗ ,

Mi∗ is broadcasted at most c log ∆ times by an averaging argument. Thus, we have a star

with central node li∗ and leaves given by R with the assumption that c log ∆ rounds suffices

to spread a message from li∗ to every node in R. The remainder of the proof is identical to

the strategy given in Lemma 13 and hence is omitted. ◭

8.3 Unconditional Lower Bound Hypothesis

We do not believe there exists an o(poly(log ∆)) multiplicative overhead simulation, even for

non-adaptive protocols, and in this section we put forward a candidate hard example that

might be used to prove this claim.

Construction. Let G be a bipartite network with partition (L, R), where |L| = |R| = n.

Divide the nodes in L into ∆ groups of size n
∆ , namely L1, . . . , L∆. Let li

1, . . . , li
n/∆ be

the nodes in Li. We repeat the following for t = 1, 2, . . . , ∆ iterations: pick a fresh

independent permutation π : [n]→ [R] and divide R into ∆ groups of size n/∆ according

to π. Specifically, let R1 = {π(1), π(2), . . . , π(n/∆)}, R2 = {π(n/∆ + 1), . . . , π(2n/∆)}, ...,

R∆ = {π(n − n/∆ + 1), . . . , π(n)}. Note that the grouping R changes between iterations

unlike L which remains fixed. Fully connect li
t to all the nodes in Ri for all i ∈ [∆].
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Figure 1 A particular sample of our construction which we believe could help prove an un-

conditional lower bound. Ri labeled according to the first iteration of our construction. ∆ = 3,

n = 9. Nodes (and incident edges) colored according to the round in which they broadcast in the

faultless protocol.

Why we believe this protocol is hard. Directly forwarding messages from a node l ∈ L

to each one of l’s neighbors requires a multiplicative Ω(log ∆) overhead before all of the

neighbors receive the message. Thus, if we assume there is a o(log ∆) overhead protocol,

there must be a large fraction of messages that are delivered indirectly. That is, many nodes

in R receive many of the messages they need to simulate the original protocol from a different

nodes than they do in the faultless protocol. However, indirectly delivering messages seems

to require strictly more rounds than directly sending messages. Each r ∈ R roughly wants

to receive private input from a random subset of L. Therefore, if r ∈ R receives a message

indirectly from a neighbor l ∈ L, it is unlikely that the neighbors of l apart from r need this

message to simulate the original protocol. Thus, while l delivers a message to r, it blocks

all other neighbors of l from receiving messages they need to simulate the protocol. Lastly,

we note that this problem roughly corresponds to a random instance of index coding [7], for

which the bounds are currently not fully understood.

9 Future Work

Recall that the third challenge for local-synchronization-based simulations described in

Section 1 is that nodes cannot distinguish between not receiving a message in the original

protocol and a message being dropped by a random fault. Our general protocol solves this

issue but only through a costly subroutine in which every node shares information with all

of its neighbors, thereby incurring an O(∆) overhead. We leave as an open question whether

this challenge can be overcome with poly(log ∆) overhead. “Backtracking” on faulty progress

has been the subject of some interactive coding literature – see [27] – and will likely prove

insightful on this front.

As a final direction for future work we note that many of our techniques apply to

simulations of faulty versions of other models of distributed computing. For instance,

applying the techniques of our general protocol simulation to a receiver fault version of

CONGEST almost immediately yields a simulation of CONGEST with receiver faults by

CONGEST with a O(log ∆) multiplicative round overhead. We expect further applications.
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