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—— Abstract
The radio network model is a well-studied model of wireless, multi-hop networks. However, radio
networks make the strong assumption that messages are delivered deterministically. The recently
introduced noisy radio network model relaxes this assumption by dropping messages independently
at random.

In this work we quantify the relative computational power of noisy radio networks and classic
radio networks. In particular, given a non-adaptive protocol for a fixed radio network we show how to
reliably simulate this protocol if noise is introduced with a multiplicative cost of poly(log A, loglog n)
rounds where n is the number nodes in the network and A is the max degree. Moreover, we
demonstrate that, even if the simulated protocol is not non-adaptive, it can be simulated with a
multiplicative O(A log? A) cost in the number of rounds. Lastly, we argue that simulations with a
multiplicative overhead of o(log A) are unlikely to exist by proving that an Q(log A) multiplicative
round overhead is necessary under certain natural assumptions.

2012 ACM Subject Classification Theory of computation — Distributed computing models; Theory
of computation — Distributed algorithms; Theory of computation — Graph algorithms analysis

Keywords and phrases radio networks, erasure correction, noisy radio networks, protocol simulation,
distributed computing models

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.10
Related Version A full version of the paper is available at https://arxiv.org/abs/1805.04165.

Funding Supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-1814603, CCF-1910588,
NSF CAREER award CCF-1750808 and a Sloan Research Fellowship.

Keren Censor-Hillel: Supported in part by the Israel Science Foundation (grant 1696/14), the
Binational Science Foundation (grant 2015803) and the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement no. 755839.

Goran Zuzic: Supported in part by DFINITY Scholarship Program.

1 Introduction

The study of distributed graph algorithms provides precise mathematical models to under-
stand how to accomplish distributed tasks with minimal communication. A classic example
of such a model is the radio network model of [13]. Radio networks use synchronous rounds
of communication and were designed to model the collisions that occur in multi-hop, wireless
networks. However, radio networks make the strong assumption that, provided no collisions
occur, messages are guaranteed to be delivered.
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This assumption is overly optimistic for real environments in which noise may impede
communication, and so previous work of [11] introduced the noisy radio network model where
messages are randomly dropped with a constant probability. This prior work demonstrated
that the runtime of existing state-of-the-art broadcast protocols deteriorates significantly
in the face of random noise. Furthermore, it showed how to design efficient broadcasting
protocols that are robust to noise.

However, it has remained unclear how much more computationally powerful radio networks
are than noisy radio networks. In particular, it was not known how efficiently an arbitrary
protocol from a radio network can be simulated by a protocol in a noisy radio network.
A simulation with little overhead would demonstrate that radio networks and noisy radio
networks are of similar computational power. However, if simulation was necessarily expensive
then radio networks would be capable of completing more communication-intensive tasks
than their noisy counterparts.

A simple observation regarding the relative power of these two models is that any
polynomial-length radio network protocol can be simulated at a multiplicative cost of O(logn)
rounds where n is the number of nodes in the network. In particular, we can simulate any
protocol from the non-noisy setting by repeating every round O(logn) times. A standard
Chernoff and union bound argument show that every message sent by the original protocol
is successfully sent with high probability. However, a multiplicative O(logn) is a significant
price to pay for noise-robustness for many radio network protocols. For example, the optimal
known-topology message broadcast protocol of [25] uses only O(D + log? n) rounds, while the
topology-oblivious Decay protocol of [6] takes O(D logn + log? n) where D is the diameter
of the network. Moreover, a dependence on a global property of the network — the number
of nodes in the graph — is excessive for correcting for a local issue — faults.

The simple solution from above globally synchronizes nodes by forcing all nodes to
simulate the same round for O(logn) repetitions. A natural question is can one more
efficiently simulate a noisy protocol by enforcing only local synchronization. In this paper we
show how to use local synchronization to efficiently simulate radio network protocols in a
noisy setting.

The local synchronization technique we use is as follows. Suppose each node tracked
the round in the original protocol up to which it has successfully simulated; we call this
round a node’s wvirtual round. In our simulation in each round each node simulate the virtual
round of its neighbor which has successfully simulated the fewest total rounds; i.e. each node
simulates the virtual round of its neighbor with the largest “delay”, thereby “helping” it.
Such a simulation is local as — unlike the above simple simulation — nodes in distant parts
of the network may simulate different rounds of the original protocol. Moreover, if a node
has successfully simulated fewer rounds than all of its neighbors (and all of its neighbors’
neighbors) then after one more round of simulation it will successfully simulate a new round
of the original protocol if no random faults occur.

However, there are at least three notable challenges in implementing and proving the
efficiency of such a local-synchronization-based simulation.

1. First, one must show that locally synchronizing nodes yields a fast simulation. A priori,
it is not clear that locally synchronizing nodes provides an advantage over the simple
global synchronization strategy.

2. Second, one must deal with the fact that local synchronization requires nodes to determine
the minimal virtual rounds of its neighbors. In particular, nodes cannot easily compute
the virtual rounds of their neighbors without communicating: When node v simulates a
round of the original protocol and broadcasts should it assume all of its neighbors have
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now successfully simulated this round? If a random fault occurred at a receiver then
clearly v should not but v has no easy means of determining whether or not any such
faults occurred. One must, therefore, determine how nodes can efficiently determine the
minimal virtual round of their neighbors.

3. Lastly, one must overcome the fact that not receiving a message is indistinguishable from
a randomly dropped message. In particular, a node can interpret not receiving a message
in a simulated round as indicating either (1) that it receives no message in the simulated
round of the original protocol or (2) that it does receive a message in this simulated
round but a random fault dropped this message. Thus, it is not clear how nodes ought to
increment their virtual rounds when they do not receive a message. On the one hand,
failing to increment a node’s virtual round in the former case could needlessly slow down
the simulation. On the other hand, if a node incorrectly decides it does not receive a
message in a round, its idea of what messages it received will diverge from that of its
neighbor who tried to send it a message. This divergence, in turn, may compound into
further errors later in the simulation.

1.1 Qur Contributions

In this work we present solutions for these challenges which demonstrate that, by using local
synchronization, radio network protocols can be simulated by noisy radio networks with a
multiplicative dependence on A, the maximum degree of the network. Thus, we demonstrate
that, for low-degree networks, noisy radio networks are essentially of the same computational
power as radio networks. Moreover, we demonstrate that this dependence is more or less
tight in two natural settings.

We give our simulations in three increasingly difficult settings, each of which introduces
one of the above three challenges. In particular, our first model focuses on the first challenge,
our second focuses on the first two challenges and our last model deals with all three
challenges. We briefly mention our techniques here but defer more thorough intuition
regarding our simulation techniques until Section 4, which is after we have more formally
defined our problem.

Local Progress Detection. As a warmup we begin by providing a simulation with O(log A)
multiplicative round overhead in the setting where nodes have access to “local progress
detection”. Roughly, local progress detection enables nodes to know when they experience
a random fault and also the virtual rounds of their neighbors. Notice that in this setting
challenges 2 and 3 are non-issues: if each node has local progress detection, they can easily
determine neighbors’ delays and distinguish not receiving a message in the original protocol
from a randomly dropped message. The key technique we introduce for the first challenge is
a concentration-inequality-type result based on what we call “blaming chains”. (Section 5)

Non-Adaptive Protocols. Next, we provide simulations for non-adaptive protocols. Roughly,
non-adaptive protocols are protocols in which nodes know a priori the rounds in which they re-
ceive messages. In this setting, our simulations achieve a multiplicative poly(log A, loglogn) =
O(log® A - loglogn - logloglogn) round overhead without local progress detection. As we
argue in Section 6, a number of well-known protocols (e.g. the optimal broadcast algorithm
of [25]) are non-adaptive. Notice that in this setting we need not deal with challenge 3
above since nodes can always distinguish a dropped message from a round in which they
receive no messages because they know the rounds of the original protocol in which they
receive messages. In this setting, we leverage non-adaptiveness of protocols to overcome
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challenge 2. In particular, we use a distributed binary search which carefully silences nodes
that search over divergent ranges to inform nodes of the minimal virtual round of their
neighbors. Moreover, we keep the range over which the binary search must search tractable
by slowing down nodes that make progress too quickly. (Section 6)

General Protocols. Lastly, we show how to deal with all three challenges at once by giving
simulations for arbitrary radio network protocols with a multiplicative O(A log? A) overhead.
To overcome challenge 3 we have nodes exchange “tokens” with all neighbors in every round
to preclude the possibility of a dropped message going unnoticed. (Section 7)

Lower Bounds. We also show that our simulations for non-adaptive protocols are likely
optimal: We show that two natural classes of simulations necessarily use Q(log A) multiplic-
atively many more rounds than the protocols which they simulate. In particular, a simulation
that either (1) does not use network coding, or (2) sends information in the same way as
the original protocol requires (log A) multiplicatively many more rounds than the original
protocol. We also give a construction which we believe gives an unconditional Q(log A)
simulation overhead. (Section 8)

2 Related Work

Several models have been studied to understand robust communication in models similar to
the radio network model. [16] introduced the noisy broadcast model, which also assumes
random errors, and focuses on studying the computation of functions of the inputs of
nodes [18, 40, 26, 38]. The model of [16] differs from the noisy radio network model in that it
assumes a complete communication network and single-bit transmissions. [42] introduced a
similar model which again assumes single-bit transmissions and also does not have collisions
as the noisy radio network model does. Several papers have been written on notions of
noisy radio networks which assume the network admits geometric structure [33, 34]. There
have also been several papers on noisy single-hop radio networks. See either [24] for a study
of an adversarial model or [15] for a nice study of a random noise model. Another model
which captures uncertainty is the dual graph model [35, 10, 36, 21, 23], in which an adversary
chooses a set of unreliable edges in each round. Recent work [29] has also made use of several
of our techniques for variants of the SINR model.

There has also been extensive work on two-party interactive communication in the
presence of noise [44, 27, 19]. In this setting, Alice and Bob have some conversation in mind
they would like to execute over a noisy channel; by adding redundancy they hope to hold a
slightly longer conversation from which they can recover the original conversation outcome
even when a fraction of the coded conversation is corrupted. Multi-party generalizations of
this problem have also been studied [8]. The noisy radio network model can be seen as a
radio network analogue of these interactive communication models in which erasures occur
rather than corruptions.

Lastly, work on MAC layers has sought to provide abstractions for algorithms that hide
low-level uncertainty in wireless communication [22, 35, 43, 30]. Radio networks differ from
MAC layers as in radio networks it is not required that a sender receive an acknowledgment
from a receiver.

Since its introduction by [13], the classic radio network model has attracted wide attention
from researchers. The survey of [41] is an excellent overview of this research area. Here we
focus the radio network literature that relates to our work. Much of previous work for the noisy
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radio network model focused on broadcast [31]. For the classic model, [6] gave a single-message
broadcast algorithm for a known topology, which completes in O(D log n+log? n) rounds. [11]
shows that this protocol is robust to noise, completing in O(lffg (D +logn + log })) rounds,
with a probability of failure of at most §. In the classic model, single-message broadcast

was then improved by [25] and [32], who showed that in the case of a known topology,
O(D + log? n) rounds suffice. [11] shows that this protocol is not robust to noise, requiring in
expectation @(l"%pD logn+ ﬁD) rounds, for broadcasting a message along a path of length
D. They showed an alternative protocol, completing in O(D + log nloglogn(logn + log %))
rounds, with a probability of failure of at most §. For an unknown topology in the classic
model, [14] give a protocol completing in O(Dlog(n/D) + log” n) rounds, which is optimal,
due to the Q(log? n) and Q(Dlog(n/D)) lower bounds of [2] and [37], respectively. [20] give
a O(D + poly logn)-round protocol that uses collision detection.

Lastly, simulations of models of distributed computation by other models of distributed
computation is a foundational aspect of distributing computing, dating back to the 80’s-90’s
with many simulations of various shared memory primitives, faults, and more (see a wide
variety in, e.g., [3]). It is also a focus for message-passing models with different features,
being the motivation for synchronizers [4, 5], and additional simulations [12, 9].

3 Model and Assumptions

In this section we formally define the classic radio network model, the noisy radio network
model and discuss various assumptions we make throughout the paper.

Radio Networks. A multi-hop radio network, as introduced in [13], consists of an undirected
graph G = (V, E) with n := |V| nodes. Communication occurs in synchronous rounds: in
each round, each node either broadcasts a single message containing O(logn) bits to its
neighbors or listens. A node receives a message in a round if and only if it is listening and
exactly one of its neighbors is transmitting a message. If two or more neighbors of node v

transmit in a single round, their transmissions collide at v and v does not receive anything.

We assume no collision detection, meaning a node cannot differentiate between when none of

its neighbors transmit a message and when two or more of its neighbors transmit a message.

Nodes are assumed to have unbounded computation, though all of the protocols in our paper
use polynomial computation.

We use the following notational conventions throughout this paper when referring to
radio networks. Let dist(v, w) be the hop-distance between v and v in G, let I'(v) = {w € V :
dist(v,w) < 1} denote the 1-hop neighborhood of v, and let T'*) (v) = {w € V : dist(v, w) <
k} denote the k-hop neighborhood of v.

Noisy Radio Networks. A multi-hop noisy radio network, as introduced in [11], is a radio
network with random erasures. In particular, it is a radio network where node v receives a
message in a round if and only if it is listening, exactly one of its neighbors is broadcasting
and a receiver fault does not occur at v. Receiver faults occur at each node and in each
round independently with constant probability p € (0,1). As p will be treated as a constant
it will be suppressed in our O and €2 notation. We assume that in a given round a node
cannot differentiate between a message being dropped because of a fault, i.e. a collision, and
all of its neighbors remaining silent.
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We consider this model because independent receiver faults model transient environmental
interference such as the capture effect [39].1 Moreover, we consider an erasure model — entire
messages are dropped — rather than a corruption model — messages are corrupted at the bit
level — because, in practice, wireless communication typically incorporates error correction
and checksums that can guard against bit corruptions [17]. The noisy radio network model
can also be seen as modeling those cases when this error correction fails and the message
cannot be reconstructed and is therefore effectively dropped.

Protocols. A protocol governs the broadcast and listening behavior of nodes in a network.
In particular, a protocol tells each node in each round to listen or what message to broadcast
based on the node’s history. This history includes the messages the node received, when
it received them and its initial private input. We assume that this private input includes
the number of nodes, n, the maximum degree, A, the receiver fault probability, p, a private
random string, and any other data nodes have as input in a protocol. Formally, a history
for node v is an H € H where H is all valid histories. H = {(¢,R) : ¢ € Z, R C M x N}
where 7 is all valid private inputs, R gives what messages v has received in each round
and M = {0,1}°0°¢") is all O(logn) bit messages a node could receive in a single round.
Formally, a protocol P of length T is a function P : V x [T] x H — {listen} U M where
P(v,t, H) = listen indicates that v listens in round ¢ and P(v, ¢, H) = m € M indicates that
v broadcasts message m € M in round t. We let |P|:= T stand for the length of a T’ round
protocol. In this paper we assume that T is at most poly(n).

Simulating a Protocol in the Noisy Setting. We say that protocol P’ successfully simu-
lates P if, after executing P’ in the noisy setting, every node in the network can reconstruct
the messages it would receive if P were run in the faultless setting. In particular, for any
set of private input I € ZIV! - letting H(v,I) be v’s history after running P with private
inputs I — it must hold that after running P’ with private inputs I, every v can compute
H(v,I). Note that nodes running P’ can send messages not sent by P or send messages in a
different order than they do in P. We call P the original protocol and P’ the simulation
protocol. We measure the efficacy of P’ as the limiting ratio of % when T is sufficiently
large and n goes to infinity, which we call the multiplicative overhead of a simulation.

4  Techniques Overview and Our Formal Results

As earlier mentioned, we show how to simulate a faultless protocol P in three noisy settings
of increasing difficulty. Throughout our simulation results, we use the notion of a virtual
round of node v, t,, which tracks how many rounds of P node v has successfully simulated.
We say that a node v is most delayed in a set of nodes U when t, < min,cy t,,. All three
simulations roughly work by having nodes first exchange their virtual rounds with their
neighbors. Nodes then locally synchronize by simulating the virtual round of their most
delayed neighbor. Our simulations differ in how each defines a virtual round and how nodes
learn virtual rounds.

As a warmup and to study what sort of overhead local synchronization enables, we
consider the setting where nodes have access to “local progress detection”. Recall that local
progress detection gives nodes oracle access to the virtual rounds of their neighbors as well
as when faults occur. We show the following theorem which demonstrates that a O(log A)
overhead is possible in this setting.

! In contrast, a sender faults model in which an entire broadcast by a node is dropped might model
hardware failures where independence of faults would be a poor modeling choice.
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» Theorem 1. Let P be a general protocol of length T for the faultless radio network
model. P can be simulated in the noisy radio setting using local progress detection in
O(Tlog A +logn + k) rounds with probability at least 1 — exp(—k) for any k >0 .

Blaming Chain Intuition. To prove the above theorem we use the idea of a blaming chain
to argue that local synchronization enables small simulation overhead. Since every node
simulates the round of its most delayed neighbor, a node v will have all neighbors simulate

its virtual round when its virtual round is minimal among virtual rounds of nodes in I'®) (v).

Moreover, as we will show, once v is most delayed in F(Q)(v) it does not take too many
additional rounds for nodes to successfully simulate v’s virtual round. Thus, if v takes many
rounds to successfully simulate virtual round x, it must be because there was a u € T'?)(v)
that required many rounds to simulate virtual round z — 1. In this way v can blame its
delay on u. Node u, in turn, can blame the fact that it required many rounds to simulate
virtual round = — 1 on the fact that one of its 2-hop neighbors, say w, required many rounds
to simulate virtual round z — 2 and so on. Thus, if node v is very delayed we can explain
this delay by some such blaming chain. There are exponentially many possible such blaming
chains, but — by way of concentration inequalities we prove — we show that long blaming
chains can be shown to have exponentially small probability and so a union bound over all
long blaming chains will allow us to show that no long blaming chain occurs.

We next show how to efficiently spread virtual round information without using progress
detection. In particular, we show a poly(log A, loglogn) overhead for non-adaptive protocols
where nodes know a priori the rounds of the original protocol they are sent messages
without collision.?

» Theorem 2. Let P be a non-adaptive protocol of length T for the faultless radio network
model. P can be simulated in O((T + logn) log® Aloglog nlogloglogn) rounds in the noisy
radio setting with high probability by MAINNONADAPTIVE.

Progress Throttling and Distributed Binary Search Intuition. In addition to blaming
chains, the main technique we use to prove the above result is progress throttling and a
novel algorithm for binary search in noisy radio networks. Since in this setting nodes can
no longer learn their neighbors’ virtual rounds using local progress detection, our goal is to
provide nodes an alternative means of learning their neighbors virtual rounds; namely, we
use progress throttling and distributed binary search. Since virtual rounds can be as small as
1 and as large as the length of the entire protocol which is as large as poly(n), the range over
which we must binary search might seem to be as large as poly(n); a binary search over this
range would require a prohibitive O(logn) iterations. For this reason, we slow down nodes
that make progress too quickly by only increasing their virtual round at most once after log A
simulated rounds. We show that this throttling keeps all virtual rounds within an additive

O(logn) range. This, in turn, allows our binary search to require only O(loglogn) iterations.

Moreover, actually implementing a distributed binary search in a radio network presents
technical challenges of its own. The natural solution we use for node v to learn the smallest
virtual round of a neighbor is for v to repeatedly ask its neighbors if any of them have a
virtual round below the midpoint of the binary search range. v then updates its binary

2 When we write that an event occurs with high probability (w.h.p.), we mean that it occurs with
probability 1 — %, and that the constant ¢ = ©(1) can be made arbitrarily large by changing the
constants in the routines.
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search parameters in the usual way. This strategy enables an efficient binary search in radio
networks because to update its binary search parameters, v need only hear from at most one
neighbor. However, such a strategy suffers from the following problem of divergent ranges.
Suppose node v has a neighbor u. u might have neighbors that are not neighbors of v which
influence the range over which w searches. As such u might end up searching over a different
range than v. These divergent ranges may render v’s binary search nonsensical: v might
query u to learn if its virtual round is below v’s binary search midpoint and u could respond
with whether or not it is below the midpoint of an entirely different search range, namely
u’s search range. We overcome this issue by carefully marking nodes “silent” if they might
interfere with other nodes’ binary search. Specifically, we show that, given a node v whose
virtual round is minimal in T'®)(v), a careful silencing of possibly deviating nodes causes
nodes in I'(v) to always update their binary search parameters in exactly the same manner as
v. Also, we show that, while nodes in T'® (v) \ I'(v) might update their parameters differently,
our silencing ensures that these nodes never interfere with the binary search performed by
nodes in I'(v).

Lastly, we describe how to simulate any protocol with a O(Alog? A) multiplicative
overhead.

» Theorem 3. Let P be a general protocol of length T for the faultless radio network
model. MAINGENERAL simulates P in the noisy radio setting in O((T log A + logn)Alog A)
rounds w.h.p.

Token Exchange Intuition. In addition to blaming chains, the main technique we use to
show the above theorem is a token exchange strategy. Recall that the main challenge in the
general setting is that even if a node knows its neighbors are simulating its virtual round,
the node cannot tell if the absence of a message indicates that it receives no message in this
round in the original protocol or that a random fault occurred. As such if a node does not
have a message to deliver to its neighbor, we force it to send its neighbor a token indicating
that it has no message to send. This allows v to distinguish between a random fault and a
round in which it simply receives no message.

In Section 8 we give a formal statement of how simulations in two natural settings require
Q(log A) overhead but we give some intuition here as to why this might be true here.

Lower Bound Construction Intuition. Consider a star with degree A where the center
node wants to send T messages to its neighbors. A noiseless protocol requires T rounds
but if the center only sends the original messages (and not e.g. an error correcting code)
and random faults occur then the center must send each message about Q(log A) times to
guarantee all messages are delivered. Likewise consider a complete bipartite graph where
each node on the left wants to deliver a message to the right. The existence of collisions in
radio networks means that effectively only one node on the left can broadcast per round and,
like the star, every node must broadcast about Q(log A) times to deliver its message if there
are random faults.

5 Warmup: Simulation with Local Progress Detection

We begin by giving our simulation with O(log A) multiplicative overhead in the setting where
nodes have access to local progress detection.

To rigorously define local progress detection, we introduce our notion of how much
simulation progress nodes have made, the virtual round. We say that a node v successfully
completed round ¢ if it has succeeded in taking the action in P that it takes in ¢: v successfully
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broadcasts its message m of round ¢ if every node in I'(v) either has received m or had a
collision in the original protocol P at round ¢; v successfully completes its listening action
of round t if v receives the message it receives in round ¢ of P or a collision occurs at v in
round t of P. We formally define the virtual round and local progress detection.

» Definition 4 (Virtual Round). The virtual round of node v € V in a given round of
simulation P’ is the smallest t, € Z>1 such that v has not successfully completed round t,, of P.

» Definition 5 (Local Progress Detection). In the noisy radio network model with local
progress detection every node v knows the virtual round of every node w € I'® (v) in every
simulation round.

We now sketch a proof of the main theorem of this section; the full proof is in the full
version of the paper.

Proof Sketch of Theorem 1. We begin by describing our simulation, P’. Each node v
repeatedly does the following in each round of P’. Let u be the node in I'(v) with minimal ,,.
v takes the action that it takes in round ¢, of P. That is, v tries to “help” u by simulating
its virtual round.

Let v € V' and note that the virtual round ¢, never decreases. Hence for x € Z>; we can
define D, , as the earliest round in P’ when ¢, > z. Notice that D, 7 just is the number of
rounds that v takes to simulate all rounds of the original protocol P. Thus, it will suffice
for us to argue that D, r is not too large for every v. We begin by finding a recurrence
relation on D, , saying that v will advance soon after its 2-hop neighborhood I‘(z)(v) has
virtual round at least x. In particular we show D, , < (maxwer(2)(v) Du},z—l) + Y, . where
Y, » is the maximum of at most A many geometric random variables. Next, we show that
this recurrence shows that D, , is given by the longest “blaming chain” — formal definition
deferred to the full paper. We then apply a Chernoff-style tail bound (proved in the full
version) to show that a fixed blaming chain has small length with very high probability. By
union bounding over all blaming chains we have that the length of the maximum blaming
chain must be small and therefore D, 7 is small for every v. |

6 Simulation for Non-Adaptive Protocols

We now give our simulation results for non-adaptive protocols with poly(log A, loglogn)
overhead.

» Definition 6 (Non-Adaptive Protocol). A non-adaptive protocol P is a protocol in which
every node can determine if it receives a message in each round of P regardless of the private
inputs of the nodes. Formally, each node v is given a list, M, of the rounds in which it
recetves a message without collision in P.

We let M,.GETNEXTROUND return the smallest round in M, such that for every r € M,
such that r < M,,.GETNEXTROUND, v has received the message it receives in round r of P.
Since in a non-adaptive protocol nodes know in which rounds they receive messages in P,
nodes in a simulation can locally compute M, .GETNEXTROUND. Also notice that even
though non-adaptive protocols assume nodes know a priori when they are supposed to receive
messages, nodes do not know the contents of these messages before receiving them.

We note that a number of well-known protocols are non-adaptive. For instance, assuming
nodes know the network topology and use public randomness, the optimal broadcast algorithm
of [25] is non-adaptive. In particular, under these assumptions nodes can compute the
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broadcast schedule of their neighbors for this protocol. The same is true of the Decay
protocol of [6]. Since broadcast is the most studied problem in radio networks, the fact
that the state-of-the-art broadcast algorithm is non-adaptive would seem to make studying
non-adaptive protocols worthwhile. Moreover, though requiring that nodes know the network
topology and use public randomness may seem restrictive, in the context of simulations this
assumption is actually quite weak: we can dispense with both assumptions by simply running
any primitive that informs nodes of the network topology or shares randomness before our
simulation is run at a one-time additive round overhead. Any primitive to learn the network
topology or share randomness from the classic radio network setting coupled with the simple
O(logn) simulation as described in Section 1 suffices here. This overhead is negligible if the
simulated protocol is sufficiently long or we run many simulations on our network. Lastly, we
note that it is often the case that nodes can even efficiently compute the broadcast schedule
of their neighbors — see [28] — and so this one-time cost is often quite small.

To prove Theorem 2 we build upon the idea of the preceding section of using virtual
rounds to locally synchronize nodes. However, in the current setting it is difficult for nodes
to confirm when their broadcasts have succeeded, and so we must relax our definition of
virtual rounds. In particular, for the remainder of this section we let the virtual round
of each node be the minimum between the largest ¢, € Z>; such that v receives a message
without collision in ¢, and v has successfully received all messages it receives up to round
t, — 1 in P in our simulation and a throttling variable L. That is, the virtual round of v is
min(M,.GETNEXTROUND, L). L will be a slowly increasing value and, in this way, will slow
down the progress of nodes by keeping their virtual rounds small, thereby keeping all virtual
rounds within an additive O(logn) range.

The main subroutine of our simulation is LEARNDELAYS (Algorithm 1). LEARNDELAYS
performs a binary search to inform each node of the virtual round of its most delayed neighbor.
Initially the search range of every node is between L — O(logn) and L. In each iteration of
LEARNDELAYS nodes with a virtual round less than the mean of their binary search range
are “active”. If there is an active node within 0 or 1 hop of node v then node v lowers the
upper bound of its binary search. If there are no active nodes within 2 hops of v then it
raises its binary search lower bound. Otherwise there is an active node 2 hops from v —
which intuitively means that v is not most delayed in I'® (v) — in which case node v remains
silent for the rest of the binary search so as to not interfere with the binary search of its
neighbors. LEARNDELAYS uses subroutine DISTTOACTIVE to inform nodes of their nearest
active node. The properties of LEARNDELAYS are given by the following lemma. Details of
DisTTOACTIVE and a formal proof of the following lemma are deferred to the full version.

» Lemma 7. Assume that L — O(logn) <t, <L for allv €V and let v be a most delayed
node in its 2-hop neighborhood. With constant probability the output of LEARNDELAYS for
every w € T'(v) is t,, i.e., every w will try to help v advance. The runtime of LEARNDELAYS
is O(log® Aloglog nlogloglogn) rounds.

We now present the MAINNONADAPTIVE simulation routine that simulates P in the
noisy setting (Algorithm 2). We let P(v,t) return the action taken by node v in round ¢
of P. The properties of MAINNONADAPTIVE are given by the following lemma.

» Lemma 8. Assume that L — O(logn) <t, < L for allv € V and let v be a most delayed
node in its 2-hop neighborhood. After an innermost iteration of MAINNONADAPTIVE, t,
will increase by one with at least constant probability. Moreover, the running time of each
innermost iteration is O(log? Aloglognlogloglogn) rounds.
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Algorithm 1 LEARNDELAYS for node v.

Require: L, t,
lo+ L—0O(logn); hi + L
while lo # hi do > repeats O(loglogn) rounds
v is marked as “active” iff t, < || and v is not marked “silent”
dist <— DISTTOACTIVE
if dist is “=2” then mark v as “silent” until the end of LEARNDELAYS
if dist is “=0” or “=1" then
hi e |l
else
lo< |lethi| +1

return lo

Proof. Fix a v that is most delayed in its 2-hop neighborhood such that ¢, < L. By
definition of a virtual round and the fact that ¢, < L we have that P(v,t,) is a listening
action where in round ¢,, of P it holds that v is sent a message without collision. By Lemma 7
after LEARNDELAYS terminates with constant probability each 1-hop neighbor w will have
My, = t,. Thus, every node in the 1-hop neighborhood of v will simulate round ¢, i.e. the
one neighbor that has a message for v will broadcast its message and the rest of v’s neighbors
will be silent. This message will be successfully received with probability p which is constant
and so t, will be incremented with constant probability. The running time follows easily by
summing runtimes. <

Algorithm 2 MAINNONADAPTIVE for node v.

ty <1
for L=1,2,...,T4 O(logn) do > “Outermost iteration”
for repeat O(log A) times do > “Innermost iteration”

m, < LEARNDELAYS
do action P (v, m,)
if m, = M,.GETNEXTROUND and v received a message then
t, < min(L, M,,.GETNEXTROUND) > Throttle v

We end this section with a proof sketch of Theorem 2; the full proof is in the full version
of the paper.

Proof Sketch of Theorem 2. We divide our simulated schedule into length O(logn) chunks.
Next we argue by induction that after each O(logn) outermost iterations of MAINNON-
ADAPTIVE every node is simulating the same chunk. This allows us to apply to apply
Lemma 8 and a blaming chain argument as in Theorem 1 to argue that the current chunk is
correctly simulated by all nodes. <

7 General Protocol Simulation

Here, we provide our results for arbitrary protocols. Our approach gives a O(A log2 A)
multiplicative overhead.

» Theorem 3. Let P be a general protocol of length T for the faultless radio network
model. MAINGENERAL simulates P in the noisy radio setting in O((T log A +logn)Alog A)
rounds w.h.p.

10:11

DISC 2019



10:12

Erasure Correction for Noisy Radio Networks

Again, we build on the notion of a virtual round for this setting. Our main challenge
in this setting is that even if a node knows its neighbors are simulating its virtual round,
the node cannot tell if the absence of a message indicates that it receives no message in this
round in the original protocol or that a random fault occurred. As such, in order for node
v to advance its virtual round after hearing no messages from a neighbor, v must confirm
that every neighbor was silent in the simulated round. Let P be the original protocol for the
faultless setting. Define the token for a node v in round r of P to be either the message
that v is sending in round r of P or an arbitrary message indicating “v is not broadcasting’
if v is silent in round r of P. Next, we (re-)define the virtual round of a node v to be the
largest t, € Z>1 such that v successfully received all tokens from all neighbors for rounds
1,2,...,t, — 1 (for a total of up to (¢, — 1)A tokens).

Our simulation algorithm works in two phases: every node first informs its neighbors of
its virtual round; next, nodes help the neighbor with the smallest ¢, they saw by sharing the
token for that round. We now present pseudocode for the SHAREKNOWLEDGE routine which
shares messages from a node with all of its neighbors and MAINGENERAL which simulates P

i

in the noisy setting.

Algorithm 3 SHAREKNOWLEDGE for node v.

Require: a message, B,, that v wants to share
for O(Alog A) rounds do
v broadcasts B, with probability %, independently from other nodes

» Lemma 9. After SHAREKNOWLEDGE terminates, a fixed node v successfully receives
messages from all its neighbors with probability at least 3/4 and successfully sends its message
to all neighbors with probability at least 3/4. The running time of SHAREKNOWLEDGE is
O(Alog A) rounds.

Proof. Fix an arbitrary node v. Consider the event where v receives a message from
a fixed neighbor w in a fixed iteration of SHAREKNOWLEDGE. This event occurs iff w
broadcasts and all other neighbors of v, namely I'(v) \ {w,v}, do not broadcast. This
occurs with probability that is at least % (1 — i)'r(”)\{w’“H > (1= %)* > Q(%) by
(1 —1)” =Q(1). The probability that v does not hear from w after O(Alog A) iterations is
(1-Q(%))2 182 < exp(—Q(log A)) < 2. Union bounding over all |['(v)| < A possibilities for
w we get that the probability of v not sharing knowledge with all neighbors is at most 1/4. <

Algorithm 4 MAINGENERAL for node v.

ty — 1
for O(T'log A +1logn) do
v runs SHAREKNOWLEDGE(¢,)
m,, < smallest value v receives from all nodes running SHAREKNOWLEDGE
SHAREKNOWLEDGE(token for virtual round m,,)
update t, if v received all tokens for round ¢,

» Lemma 10. Let v be a most delayed node in its 2-hop neighborhood. After one MAINGEN-
ERAL loop iteration, t, will increase by one with at least constant probability.

Proofs of Lemma 10 and Theorem 3 are deferred to the full version of the paper.
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8 Lower bounds

In this section we argue that an Q(polylog A) multiplicative overhead in simulation is
necessary in two natural settings. In the first setting the simulation is not permitted to
use network coding [1]. In the second setting the simulation must respect information flow
in the sense that we show a lower bound when the graph is directed. It follows that any
simulation with constant overhead either uses network coding or does not respect information
flow. We also give a construction which we believe could be used to show an (poly log A)
multiplicative overhead in simulation, even without any assumptions.

Additionally, we strengthen our lower bounds by proving them in the setting in which
the simulation is granted “global control”. Informally, global control eliminates the need for
control messages by providing a centralized scheduler that can synchronize nodes based on
how faults occur. The scheduler, however, cannot read the actual contents of the messages.

» Definition 11 (Global Control). We say that a noisy radio network has global control when
(1) nodes know the network topology, (2) nodes learn which nodes broadcast in each round
and at which nodes receiver faults occur in each round, and (8) all nodes have access to public
randomness.

It is not difficult to see that access to global control is sufficient to achieve the local progress
detection of Section 5. Moreover, notice that our simulation from Section 5 with O(log A)
multiplicative overhead is both non-coding and respects information flow. As such, it is
optimal for both settings.

8.1 Non-Coding Simulations

We now define a non-coding protocol and prove that simulations that do not use network
coding suffer a Q(log A) multiplicative overhead.

» Definition 12 (Non-Coding). We say that a simulation P’ in the noisy setting, which is
stmulating a protocol P in the faultless setting, is non-coding if any message sent in P’ is
also sent in P (though possibly by different nodes).

We consider an isolated star with degree A where the center node wants to send T’
messages to its neighbors. One can achieve a constant multiplicative overhead on this
protocol by using an error correction code like Reed-Solomon [45]. However, the following
lemma shows that if coding is not used no such overhead is possible.

» Lemma 13. For any T > 1 and sufficiently large A there exists a faultless protocol of
length T on the star network with A + 1 nodes such that any non-coding simulation of the
protocol in the noisy setting with constant success probability requires Q(T log A) many rounds
even if the simulation has access to global control.

Proof. As noted, the network is a star with A leafs. Let r be the central node of the star.
In our faultless protocol, r receives T private inputs M, Ms, ..., Mt each of ©(logn) bits.
r takes T rounds to broadcast each input, broadcasting M; at round 1.

Now consider a simulation of our protocol and assume for the sake of contradiction that it
succeeds with constant probability. Let C' = C(p) be a constant such that 1 — p > exp(—C)
where p = (1) is the fault probability of our noisy network. By the non-coding assumption,
all messages sent by P’ must be in the set {Mq, ..., Mr}. Denote by t; the number of times
r broadcasts M;. For the sake of contradiction, assume that er:l t; < —:=Tlog A. Hence

100C
1

miner i < 1555 log A by an averaging argument. Let i* = argmin;c7)t;. Notice that
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the probability that a fixed node receives a message is independent of that of any other
node since WLOG only r ever broadcasts. Therefore, the probability that a fixed node
does not receive M;- is (1 — p)ii* > (1 — p)Tooc los & > exp(—Cighg log A) > A~1/100 1y
definition of C'. Consequently, the probability that some node does not receive i* is at least
1— (1= A7/100)A > 1 — exp(A99/190) which tends to 1 as A — oo. This contradicts our
assumption that our simulation succeeds with constant probability. Therefore, no simulation

protocol of length (T log A) can deliver all messages with constant probability. <

8.2 Simulations that Respect Information Flow

In this section we show how any simulation with less than a Q(poly(log A)) multiplicative
overhead must route information along different paths than those in the faultless setting. In
particular, we show that a Q(poly(log A)) lower bound holds in a directed network where
information in any simulation flows just as it does in the noiseless setting.

» Lemma 14. Let G = (LU R, E) be a complete directed bipartite graph with |L| = |R| = A
that has an arc (I,7) for alll € L,r € R. There exists a protocol P of length A for the
faultless setting on the directed network G such that any protocol that works in the noisy
setting with constant success probability requires Q(Alog A) rounds. This bound holds even
in the global control setting.

Proof. Let L = {ly,la,...,la} and R = {ry,72,...,7a} be the set of nodes on both sides of
the partition. Every node I; € L gets private input M; and needs to broadcast it to all nodes
in R. In the faultless protocol P, l; broadcasts M; in round ¢ € [A].

Now consider a noisy protocol P’. Since G is directed, the only node from L that has
knowledge of M; is [;. Moreover, we can assume without loss of generality that in any one
round of P’ at most one node in L broadcasts, since if this were not the case either no node
in R would be sent a message or a collision would occur at every node in R. Let ¢; be the
number of rounds in P’ that [; broadcasts M;. For the sake of contradiction, assume that the
length of P’ is cAlog A for a sufficiently small constant ¢ > 0. Therefore, Zle t; < cAlog A
and there exists i* € [A] such that ¢;» < clog A. Since M;~ can only be broadcasted from ;,
M;« is broadcasted at most clog A times by an averaging argument. Thus, we have a star
with central node [;+ and leaves given by R with the assumption that clog A rounds suffices
to spread a message from ;= to every node in R. The remainder of the proof is identical to
the strategy given in Lemma 13 and hence is omitted. |

8.3 Unconditional Lower Bound Hypothesis

We do not believe there exists an o(poly(log A)) multiplicative overhead simulation, even for
non-adaptive protocols, and in this section we put forward a candidate hard example that
might be used to prove this claim.

Construction. Let G be a bipartite network with partition (L, R), where |L| = |R| = n.
Divide the nodes in L into A groups of size ¥, namely L',...,L”. Let .. '7l;/A be
the nodes in L'. We repeat the following for t = 1,2,..., A iterations: pick a fresh
independent permutation 7 : [n] — [R] and divide R into A groups of size n/A according
to m. Specifically, let R = {n(1),7(2),...,7(n/A)}, R? = {r(n/A +1),...,7(2n/A)}, ...,
RA = {r(n —n/A+1),...,7(n)}. Note that the grouping R changes between iterations
unlike L which remains fixed. Fully connect I} to all the nodes in R for all i € [A].
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Figure 1 A particular sample of our construction which we believe could help prove an un-
conditional lower bound. R; labeled according to the first iteration of our construction. A = 3,
n =9. Nodes (and incident edges) colored according to the round in which they broadcast in the
faultless protocol.

Why we believe this protocol is hard. Directly forwarding messages from a node [ € L
to each one of I’s neighbors requires a multiplicative Q(log A) overhead before all of the
neighbors receive the message. Thus, if we assume there is a o(log A) overhead protocol,
there must be a large fraction of messages that are delivered indirectly. That is, many nodes
in R receive many of the messages they need to simulate the original protocol from a different
nodes than they do in the faultless protocol. However, indirectly delivering messages seems
to require strictly more rounds than directly sending messages. Each r € R roughly wants
to receive private input from a random subset of L. Therefore, if r € R receives a message
indirectly from a neighbor [ € L, it is unlikely that the neighbors of [ apart from r need this
message to simulate the original protocol. Thus, while [ delivers a message to r, it blocks
all other neighbors of [ from receiving messages they need to simulate the protocol. Lastly,
we note that this problem roughly corresponds to a random instance of index coding [7], for
which the bounds are currently not fully understood.

9  Future Work

Recall that the third challenge for local-synchronization-based simulations described in
Section 1 is that nodes cannot distinguish between not receiving a message in the original
protocol and a message being dropped by a random fault. Our general protocol solves this
issue but only through a costly subroutine in which every node shares information with all
of its neighbors, thereby incurring an O(A) overhead. We leave as an open question whether
this challenge can be overcome with poly(log A) overhead. “Backtracking” on faulty progress
has been the subject of some interactive coding literature — see [27] — and will likely prove
insightful on this front.

As a final direction for future work we note that many of our techniques apply to
simulations of faulty versions of other models of distributed computing. For instance,
applying the techniques of our general protocol simulation to a receiver fault version of
CONGEST almost immediately yields a simulation of CONGEST with receiver faults by
CONGEST with a O(log A) multiplicative round overhead. We expect further applications.
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