
Bridging the Capacity Gap Between Interactive and One-Way

Communication

Bernhard Haeupler∗

Carnegie Mellon University

haeupler@cs.cmu.edu

Ameya Velingker †

Carnegie Mellon University

avelingk@cs.cmu.edu

Abstract
We study the communication rate of coding schemes for
interactive communication that transform any two-party
interactive protocol into a protocol that is robust to noise.

Recently, Haeupler [11] showed that if an ǫ > 0 fraction
of transmissions are corrupted, adversarially or randomly,
then it is possible to achieve a communication rate of

1 − Õ(
√
ǫ). Furthermore, Haeupler conjectured that this

rate is optimal for general input protocols. This stands in
contrast to the classical setting of one-way communication in
which error-correcting codes are known to achieve an optimal

communication rate of 1−Θ(H(ǫ)) = 1− Θ̃(ǫ).
In this work, we show that the quadratically smaller rate

loss of the one-way setting can also be achieved in interactive
coding schemes for a very natural class of input protocols.
We introduce the notion of average message length, or the
average number of bits a party sends before receiving a
reply, as a natural parameter for measuring the level of
interactivity in a protocol. Moreover, we show that any
protocol with average message length ℓ = Ω(poly(1/ǫ)) can
be simulated by a protocol with optimal communication
rate 1 − Θ(H(ǫ)) over an oblivious adversarial channel
with error fraction ǫ. Furthermore, under the additional
assumption of access to public shared randomness, the
optimal communication rate is achieved ratelessly, i.e., the
communication rate adapts automatically to the actual error
rate ǫ without having to specify it in advance.

This shows that the capacity gap between one-way and

interactive communication can be bridged even for very

small (constant in ǫ) average message lengths, which are

likely to be found in many applications.

1 Introduction

In this work, we study the communication rate of coding
schemes for interactive communication that transform
any two-party interactive protocol into a protocol that
is robust to noise.

∗Computer Science Department, Carnegie Mellon University.

Research supported in part by NSF grant CCF-1527110 and the

NSF-BSF grant “Coding for Distributed Computing.”
†Computer Science Department, Carnegie Mellon University.

Part of this work was done while the author was visiting the

Simons Institute for the Theory of Computing, Berkeley, CA.

Research supported in part by NSF grant CCF-0963975.

1.1 Error-Correcting Codes The study of reliable
transmission over a noisy channel was pioneered by
Shannon’s work in the 1940s. He and others showed
that error-correcting codes allow one to add redundancy
to a message, thereby transforming the message into a
longer sequence of symbols, such that one can recover
the original message even if some errors occur. This
allows fault-tolerant transmissions and storage of infor-
mation. Error-correcting codes have since permeated
most modern computation and communication tech-
nologies.networks, data storage, computation, or data
computation, dainvolving data storage, transmission or
csuch as storage devices (e.g., disk drives, RAM, DVDs),
satellite systems, wireless LAN, etc.

One focus of study has been the precise tradeoff
between redundancy and fault-tolerance. In particular,
if one uses an error-correcting code that encodes a
binary message of length k into a sequence of n bits,
then the communication rate of the code is said to
be k/n. One wishes to make the rate as high as
possible. Shannon showed that for the random binary
symmetric channel (BSC) with error probability ǫ the
(asymptotically) best achievable rate is C = 1 − H(ǫ),
where H(ǫ) = −ǫ log2 ǫ− (1− ǫ) log2(1− ǫ) denotes the
binary entropy function.

Another realm of interest is the case of adversarial
errors. In this case, the communication channel cor-
rupts at most an ǫ fraction of the total number of bits
that are transmitted. Moreover, one wishes to allow
the receiver to correctly decode the message in the pres-
ence of any such error pattern. The work of Hamming
shows that one can achieve a communication rate of
R = 1 − Θ(H(ǫ)), in particular, the so-called Gilbert-
Varshamov bound of 1−H(2ǫ) > 1−2H(ǫ). Finding the
optimal rate, or even just the constant in the asymptotic
Θ(H(ǫ)) term, remains a major open question.

1.2 Interactive Communication The work of
Shannon and Hamming applies to the problem of one-
way communication, in which one party, say Alice,

2123 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

wishes to send a message to another party, say Bob.
However, in many applications, underlying (two-party)
communications are interactive, i.e., Bob’s response to
Alice may be based on what he received from her previ-
ously and vice versa. As in the case of one-way commu-
nication, one wishes to make such interactive communi-
cations robust to noise by adding some redundancy.

At first sight, it seems plausible that one could use
error-correcting codes to encode each round of com-
munication separately. However, this does not work
correctly because the channel might corrupt the code-
word of one such round of communication entirely and
as a result derail the entire future conversation. With
the naive approach being insufficient, it is not obvious
whether it is possible at all to encode interactive pro-
tocols in a way that can tolerate some small constant
fraction of errors in an interactive setting. Nonetheless,
Schulman [14, 15, 16] showed that this is possible and
numerous follow-up works over the past several years
have led to a drastically better understanding of error-
correcting coding schemes for interactive communica-
tions.

1.3 Communication Rates of Interactive Cod-
ing Schemes Only recently, however, has this study
led to results shedding light on the tradeoff between the
achievable communication rate for a given error fraction
or amount of noise.

Kol and Raz [12] gave a communication scheme for
random errors that achieves a communication rate of
1−O(

√
H(ǫ)) for any alternating protocol, where ǫ > 0

is the error rate. [12] also developed powerful tools to
prove upper bounds on the communication rate. Hae-
upler [11] showed communication schemes that achieve
a communication rate of 1 − O(

√
ǫ) for any oblivious

adversarial channel, including random errors, as well as
a communication rate of 1−O(

√
ǫ log log(1/ǫ)) for any

fully adaptive adversarial channel. These results apply
to alternating protocols as well as adaptively simulated
non-alternating protocols (see [11] for a more detailed
discussions). Lastly, given [12], Haeupler conjectured
these rates to be optimal for their respective settings.
Therefore, there is an almost quadratic gap between
the conjectured rate achievable in the interactive set-
ting and the 1−Θ(H(ǫ)) rate known to be optimal for
one-way communications.

1.4 Results In this paper, we investigate this com-
munication rate gap. In particular, we show that for a
natural and large class of protocols this gap disappears.
Our primary focus is on protocols for oblivious adversar-
ial channels. Such a channel can corrupt any ǫ fraction
of bits that are exchanged in the execution of a proto-

col, and the simulation is required to work, with high
probability, for any such error pattern. This is signif-
icantly stronger, more interesting, and, as we will see,
also much more challenging than the case of indepen-
dent random errors. We remark that, in contrast to a
fully adaptive adversarial channel, the decision whether
an error happens in a given round is not allowed to de-
pend on the transcript of the execution thus far. This
seems to be a minor but crucially necessary restriction
(see also Section 5).

As mentioned, the conjectured optimal communi-
cation rate of 1 − O(

√
ǫ) for the oblivious adversarial

setting is worse than the 1 − O(H(ǫ)) communication
rate achievable in the one-way communication settings.
However, the conjectured upper bound seems to be tight
mainly for “maximally interactive” protocols, i.e., pro-
tocols in which the party that is sending bits changes
frequently. In particular, alternating protocols, in which
Alice and Bob take turns sending a single bit, seem to
require the most redundancy for a noise-resilient encod-
ing. On the other hand, the usual one-way communi-
cation case in which one party just sends a single mes-
sage consisting of several bits is an example of a “min-
imally interactive” protocol. It is a natural question to
consider what the tradeoff is between achievable com-
munication rate and the level of interaction that takes
place. In particular, most natural real-world protocols
are rarely “maximally interactive” and could potentially
be simulated with communication rates going well be-
yond 1−O(

√
ǫ). We seek to investigate this possibility.

Our first contribution is to introduce the notion
of average message length as a natural measure of the
interactivity of a protocol in the context of analyzing
communication rates. Loosely speaking, the average
message length of an n-round protocol corresponds to
the average number of bits a party sends before receiving
a reply from the other party. A lower average message
length roughly corresponds to more interactivity in a
protocol, e.g., a maximally interactive protocol has
average message length 1, while a one-way protocol with
no interactivity has average message length n. The
formal definition of average message length appears as
Definition 3.1 in Section 3.

Our second and main contribution in this paper
is to show that for protocols with an average message
length of at least some constant in ǫ (but independent
of the number of rounds n) one can go well beyond
the 1−Θ(

√
ǫ) communication rate achieved by [11] for

channels with oblivious adversarial errors. In fact, we
show that for such protocols one can actually achieve
a communication rate of 1 − Θ(H(ǫ)), matching the
communication rate for one-way communication up to
the (unknown) constant in the H(ǫ) term.

2124 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Theorem 1.1. For any ǫ > 0 and any n-round in-
teractive protocol Π with average message length ℓ =
Ω(poly(1/ǫ)), it is possible to encode Π into a protocol
over the same alphabet which, with probability at least
1− exp(−nǫ6), simulates Π over an oblivious adversar-
ial channel with an ǫ fraction of errors while achieving a
communication rate of 1−Θ(H(ǫ)) = 1−Θ(ǫ log(1/ǫ)).

Under the (simplifying) assumption of public shared
randomness, our protocol can furthermore be seen to
have the nice property of being rateless. This means
that the communication rate adapts automatically and
only depends on the actual error rate ǫ without having
to specify or know in advance what amount of noise to
prepare for.

Theorem 1.2. Suppose Alice and Bob have access to
public shared randomness. For any ǫ′ > 0 and any
n-round interactive protocol Π with average message
length ℓ = Ω(poly(1/ǫ′)), it is possible to encode Π
into protocol Πrateless over the same alphabet such that
for any true error rate ǫ, executing Πrateless for n(1 +
O(H(ǫ)) +O(ǫ′ polylog(1/ǫ′))) rounds simulates Π with
probability at least 1− exp(−nǫ′3).

We note that one should think of ǫ′ in Theorem 1.2
as chosen to be very small, in particular, smaller
than the smallest amount of noise one expects to
encounter. In this case, the communication rate of
the protocol simplifies to the optimal 1 − O(H(ǫ))
for essentially any ǫ > ǫ′. The only reason for not
choosing ǫ′ too small is that it very slightly increases the
failure probability. As an example, choosing ǫ′ = o(1)
suffices to get ratelessness for any constant ǫ and still
leads to an essentially exponential failure probability.
Alternatively, one can even set ǫ′ = n−1/6 which leads to
optimal communication rates even for tiny sub-constant
true error fractions ǫ > n−0.2 while still achieving a
strong sub-exponential failure probability of at most
exp(−√n).

In Section 2, we introduce preliminaries about in-
teractive coding. In Section 3, we describe the notion
of average message length and its use in blocking. In
Section 4, we provide some simple coding schemes for
random channels as a warmup for our main result for the
much more difficult case of adversarial channels. This
leads up to Section 5, in which we describe some concep-
tual challenges and ideas needed to go beyond commu-
nication rates established in previous works. Finally,
Section 6 provides a high-level description along with
pseudocode of our interactive coding scheme, which al-
lows us to obtain Theorems 1.1 and 1.2. Note that the
proof of correctness of our coding scheme is omitted
in this paper. A full analysis of our interactive coding

scheme, which proves Theorems 1.1 and 1.2, is provided
in the full version of this paper.

1.5 Further Related Works Schulman was the
first to consider the question of coding for interactive
communication and showed that one can tolerate an ad-
versarial error fraction of ǫ = 1/240 with an unspecified
constant communication rate [14, 15, 16]. Schulman’s
result also implies that for the easier setting of random
errors, one can tolerate any error rate bounded away
from 1/2 by repeating symbols multiple times. Since
Schulman’s seminal work, there has been a number of
subsequent works pinning down the tolerable error frac-
tion. For instance, Braverman and Rao [5] showed that
any error fraction ǫ < 1/4 can be tolerated in the realm
of adversarial errors, provided that one can use larger
alphabet sizes, and this bound was shown to be opti-
mal. A series of subsequent works [4, 9, 10, 6, 7] worked
to determine the error rate region under which non-
zero communication rates can be obtained for a variety
of models, e.g., adversarial errors, random errors, list-
decoding, adaptivity, and channels with feedback. Un-
like the initial coding schemes of [16] and [5] that relied
on tree codes and as a result required exponential time
computations, many of the newer coding schemes are
computationally efficient [1, 3, 2, 8, 9]. All these results
achieve small often unspecified constant communication
rate of Θ(1) which is fixed and independent of amount of
noise. Only the works of [12] and [11], which are already
discussed above in Section 1.3 achieve a communication
rate approaching 1 for error fractions going to zero.

2 Preliminaries

An interactive protocol Π consists of communication
performed by two parties, Alice and Bob, over a channel
with alphabet Σ. Alice has an input x and Bob has an
input y, and the protocol consists of n rounds. During
each round of a protocol, each party decides whether to
listen or transmit a symbol from Σ, based on his input
and the player’s transcript thus far. Alice’s transcript
is defined as a tuple of symbols from Σ, one for each
round that has occurred, such that the ith symbol is
either (a.) the symbol that Alice sent during the ith

round, if she chose to transmit, or (b.) the symbol that
Alice received, otherwise.

Moreover, protocols can utilize randomness. In the
case of private randomness, each party is given its own
infinite string of independent uniformly random bits as
part of its input. In the case of shared randomness, both
parties have access to a common infinite random string
during each round. In general, our protocols will utilize
private randomness, unless otherwise specified.

In a noiseless setting, we can assume that in any

2125 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

symbols. Alternatively, one can imagine that the
adversary chooses arbitrary symbols for Alice and Bob
to receive without this being counted as a corruption
(i.e., a free corruption that is not counted toward the
budget of ǫ fraction of corruptions). The reason for
this model is to disallow the possibility of transmitting
information by using silence. An extensive discussion on
the suitability of this error model can be found in [10].

3 Average Message Length and Blocked
Protocols

One conceptual contribution of this work is to introduce
the notion of average message length as a natural
measure of the level of interactivity of a protocol. While
this paper uses it only in the context of analyzing the
optimal rate of interactive coding schemes, we believe
that this notion and parametrization will also be useful
in other settings, such as compression. Next, we define
this notion formally.

Definition 3.1. The average message length ℓ of an
n-round interactive protocol Π is the minimum, over all
paths in the protocol tree of Π, of the average length in
bits of a maximal contiguous block (spoken by a single
party) down the path.

More precisely, given any string s ∈ {0, 1}n, there
exist integer message lengths l0, . . . , lk > 0 such that
along the path of Π given by s one player (either Alice
or Bob) speaks between round 1 +

∑
j<i lj and round∑

j≤i lj for even i while the other speaks during the
remaining intervals, i.e., those for odd i. We then
define ℓs to be the average of these message lengths
l0, . . . , lk and define the average message length of
Π to be minimum over all possible inputs, i.e., ℓ =
mins∈{0,1}n ℓs.

An alternate characterization of the amount of interac-
tion in a protocol involves the number of alternations in
the protocol:

Definition 3.2. An n-round protocol Π is said to be
k-alternating if any path in the protocol tree of Π can
be divided into at most k blocks of consecutive rounds
such that only one person (either Alice or Bob) speaks
during each block.

More precisely, Π is k-alternating if, given any
string s ∈ {0, 1}n, there exist k′ ≤ k integers
r0, r1, . . . , rk′ with 0 = r0 < · · · < rk′ = n, such that
along the path of Π given by s, only one player (either
Alice or Bob) speaks for rounds ri + 1, . . . , ri+1 for any
0 ≤ i < k′.

It is easy to see that the two notions are essen-
tially equivalent, as an n-round protocol with average

message length ℓ is an (n/ℓ)-alternating protocol, and
a k-alternating n-round protocol has average message
length n/k. Note that an n-round alternating protocol
has average message length 1, while a one-way proto-
col has average message length n. The average message
length can thus be seen as a natural measure for the
interactivity of a protocol.

We emphasize that the average message length def-
inition does not require message lengths to be uniform
along any path or across paths. In particular, this al-
lows for the length of a response to vary depending on
what was communicated before, e.g., the statement the
other party has just made—a common phenomenon in
many applications. Taking as an example real-world
conversations between two people, responses to state-
ments can be as short as a simple “I agree” or much
longer, depending on what the conversation has already
covered and what the opinion or input of the receiv-
ing party is. Thus, a sufficiently large average message
length roughly states that while the ith response of a
person can be short or long depending on the history of
the conversation, no sequence of responses can lead to
two parties going back and forth with super short state-
ments for too long a period of time. This flexibility
makes the average message length a highly applicable
parameter that is reasonably large in most settings of
interest. We expect it to be a very useful parametriza-
tion for questions going beyond the communication rate
considered here.

However, the non-uniformity of protocols with an
average message length bound can make the design
and analysis of protocols somewhat harder than one
would like. Fortunately, adding some dummy rounds of
communication in a simple procedure we call blocking
allows us to transform any protocol with small number
of alternations into a much more regularly structured
protocol which we refer to as blocked.

Definition 3.3. An n-round protocol Π is said to be
b-blocked if for any 1 ≤ j ≤ ⌈n/b⌉, only one person
(either Alice or Bob) speaks during all rounds r such
that (j − 1)b < r ≤ jb.

Lemma 3.1. Any n-round k-alternating protocol Π can
be simulated by a b-blocked protocol Π′ that consists of
at most n+ kb rounds.

We omit the proof of Lemma 3.1 here, but it can be
found in the full version of this paper.

4 Warmup: Interactive Coding for Random
Errors

As a warmup for the much more difficult adversarial
setting, we first consider the setting of random errors, as

2127 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

this will illustrate several ideas including blocking, the
use of error-correcting codes, and how to incorporate
those with known techniques in coding for interactive
communication.

In this section, we suppose that each transmission of
Alice and Bob occurs over a binary symmetric channel
with an ǫ probability of corruption. Recall that we wish
to encode an n-round protocol Π into a protocol Πrandom

enc

such that with high probability over the communication
channel, execution of Πrandom

enc robustly simulates Π. By
[11], it is known that one can achieve a communication
rate of 1 − O(

√
ǫ). In this section, we show how to go

beyond the rate of 1−O(
√
ǫ) for protocols with at least

a constant (in ǫ) average message length.

4.1 Trivial Scheme for Non-Adaptive Protocols
with Minimum Message Length The first coding
scheme we present for completeness is a completely triv-
ial and straightforward application of error correcting
codes which works for non-adaptive protocols Π with
a guaranteed minimum message length. In particular,
the coding scheme achieves a communication rate of
1 − O(H(ǫ)) for non-adaptive protocols with minimum
message length Ω((1/ǫ) log n).

In particular, we assume that Π is a a non-
adaptive n-round protocol with message lengths of size
b1, b2, . . . , bk, i.e., Alice sends b1 bits, then Bob sends
b2 bits, and so on. Moreover, we assume that that
b1, b2, . . . , bk ≥ b, where b = Ω((1/ǫ) log n) is the mini-
mum message length.

Now, we can form the encoded protocol Πrandom
enc

by simply having the transmitting party replace its
intended message in Π (of bi bits) with the encoding (of
length, say, b′i) of the message under an error-correcting
code of minimum relative distance Ω(ǫ) and rate 1 −
O(H(ǫ)) and then transmitting the resulting codeword.
The receiver then decodes the word according to the
nearest codeword of the appropriate code.

Note that for any given message (codeword) of
length b′i, the expected number of corruptions due
to the channel is ǫb′i. Thus, by Chernoff bound,
the probability that the corresponding codeword is
corrupted beyond half the minimum distance of the
relevant error-correcting code is e−Ω(ǫb′) = n−Ω(1).
Since k = O(n/b) = O(nǫ/ log n), the union bound
implies that the probability that any of the k <
n messages is corrupted beyond half the minimum
distance is also n−Ω(1). Thus, with probability 1 −
n−Ω(1), Πrandom

enc simulates the original protocol without
error. Moreover, the overall communication rate is
clearly 1 − O(H(ǫ)) due to the choice of the error-
correcting codes.

Remark 4.1. Note that the aforementioned trivial cod-

ing scheme has the disadvantage of working only for
nonadaptive protocols with a certain minimum message
length, which is a much stronger assumption than aver-
age message length. In Section 4.2, we show how to get
around this problem by converting the input protocol to
a blocked protocol.

Another problem with the coding scheme is that the
minimum message length is required to be Ωǫ(log n).
This is in order to ensure that the probability of error
survives a union bound, as the trivial coding scheme has
no mechanism for recovering if a particular message gets
corrupted. This also results in a success probability of
only 1− 1/poly(n) instead of the 1− exp(n) one would
like to have for a coding scheme. Section 4.2 shows how
to rectify both problems by combining the reduced error
probability of a error correcting code failing with any
existing interactive coding scheme, such as [11].

4.2 Coding Scheme for Protocols with Average
Message Length of Ω(log(1/ǫ)/ǫ2) In this section,
we build on the trivial scheme discussed earlier to
provide an improved coding scheme that handles any
protocol Π with an average message length of at least
ℓ = Ω(log(1/ǫ)/ǫ2).

The first step is to transform Π into a protocol
that is blocked. Note that the Π is a k-alternating
protocol, where k = n/ℓ = O(nǫ2/ log(1/ǫ)). Thus,
by Lemma 3.1, we can transform Π into a b-blocked
protocol Πblk, for b = Θ(log(1/ǫ)/ǫ), such that Πblk

simulates Π and has nb = n+ kb = n(1 +O(ǫ)) rounds.
Now, we view Πblk as a q-ary protocol with nb/b

rounds, where q = 2b. This can be done by grouping
the symbols in each b-sized block as a single symbol
from an alphabet of size q. Next, we can use the coding
scheme of [11] in a blackbox manner to encode this q-
ary protocol as a q-ary protocol Π′ with nb

b (1+Θ(
√
ǫ′))

rounds such that Π′ simulates Π under oblivious random
errors with error fraction ǫ′ (i.e., each q-ary symbol is
corrupted (in any way) with an independent probability
of at most ǫ′). We pick ǫ′ = ǫ4.

Finally, we transform Π′ into a binary protocol
Πrandom

enc as follows: We expand each q-ary symbol of
Π′ back into a sequence of b bits and then expand
the b bits into b′ > b bits using an error-correcting
code. In particular, we use an error-correcting code
C : {0, 1}b → {0, 1}b′ with block length b′ = b +
(2c+ δ) log2(1/ǫ) and minimum distance 2c log(1/ǫ) for
appropriate constants c, δ (such a code is guaranteed to
exist by the Gilbert-Varshamov bound). Thus, Πrandom

enc

is a b′-blocked binary protocol with nb · b
′

b (1+Θ(
√
ǫ′)) =

n(1 + O(ǫ log(1/ǫ)) rounds. Moreover, each b′-sized
block of Πrandom

enc simply simulates each q-ary symbol of
Π′ and the listening party simply decodes the received

2128 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

b′ bits to the nearest codeword of C.
To see that Πrandom

enc successfully simulates Π in the
presence of random errors with error fraction ǫ, observe
that a b′-block is decoded incorrectly if and only if more
than d/2 of the b′ bits are corrupted. By the Chernoff
bound, the probability of such an event is < ǫ4 (for
appropriate choice of c, δ). Thus, since Π′ is known to
simulate Π under oblivious errors with error fraction ǫ4,
it follows that Πrandom

enc satisfies the desired property.

5 Conceptual Challenges and Key Ideas

In this section, we wish to provide some intuition for the
difficulties in surpassing the 1−Θ(

√
ǫ) communication

rate for interactive coding when dealing with non-
random errors. We do this because the adversarial
setting comes with a completely new set of challenges
that are somewhat subtle but nonetheless fundamental.
As such, the techniques used in the previous section
for interactive coding under random errors still provide
a good introduction to some of the building blocks
in the framework we use to deal with the adversarial
setting, but they are not sufficient to circumvent the
main technical challenges. Indeed, we show in this
section that the adversarial setting inherently requires
several completely new techniques to beat the 1−Θ(

√
ǫ)

communication rate barrier.
We begin by noting that all existing interactive

coding schemes encode the input protocol Π into a
protocol Π′ with a certain type of structure: There are
some, a priori specified, communication rounds which
simulate rounds of the original protocol (i.e., result
in a walk down the protocol tree of Π), while other
rounds constitute redundant information which is used
for error correction. In the case of protocols that use
hashing (e.g., [11], [12]), this is directly apparent in
their description, as rounds in which hashes and control
information are communicated constitute redundant
information. However, this is also the case for all
protocols based on tree codes (e.g., [5, 10, 9]): To see
this, note that in such protocols, one can simply use
an underlying tree code that is linear and systematic,
with the non-systematic portion of the tree code then
corresponding to redundant rounds.

We next present an argument which shows that,
due to the above structure, no existing coding scheme
can break the natural 1 − Ω(

√
ǫ) communication rate

barrier, even for protocols with near-linear o(n) average
message lengths. This will also provide some intuition
about what is required to surpass this barrier.

Suppose that for a (randomized) n-round commu-
nication protocol Π, the simulating protocol Π′ has the
above structure and a communication rate of 1−ǫ′. The
simulation Π′ thus consists of exactly N = n/(1 − ǫ′)

rounds. Note that, since every simulation must have
at least n non-redundant rounds, the fraction of redun-
dant rounds in Π′ can be at most ǫ′. Given that the
position of the redundant rounds is fixed, it is therefore
possible to find a window of (ǫ/ǫ′)N consecutive rounds
in Π′ which contain at most ǫN redundant rounds, i.e.,
an ǫ′ fraction. Now, consider an oblivious adversarial
channel that corrupts all the redundant information in
the window along with a few extra rounds. Such an ad-
versary renders any error correction technique useless,
while the few extra errors derail the unprotected parts of
the communication, thereby rendering essentially all the
non-redundant information communicated in this win-
dow useless as well—all while corrupting essentially only
ǫN rounds in total. This implies that in the remaining
N − (ǫ/ǫ′)N communication rounds outside of this win-
dow, there must be at least n non-redundant rounds in
order for Π′ to be able to successfully simulate Π. How-
ever, it follows that N − (ǫ/ǫ′)N ≥ n = N(1− ǫ′) which
simplifies to 1 − (ǫ/ǫ′) ≥ 1 − ǫ′, or ǫ′2 ≥ ǫ, implying
that the communication rate of 1 − ǫ′ can be at most
1 − Ω(

√
ǫ), where ǫ is the fraction of errors applied by

the channel.
One can note that a main reason for the 1−Ω(

√
ǫ)

limitation in the above argument is that the adversary
can target the rounds with redundant information in the
relevant window. For instance, in the interactive coding
scheme of [11], the rounds with control information are
in predetermined positions of the encoded protocol, and
so, the adversary knows which locations to corrupt.

Our idea for overcoming the aforementioned limi-
tations in the case of an oblivious adversarial channel
is to use some type of information hiding to hide
the locations of the redundant rounds carrying con-
trol/verification information. In particular, we random-
ize the locations of control information bits within the
output protocol, which allows us to guard against at-
tacks that target solely the redundant information. In
order to allow for this synchronized randomization in
the standard private randomness model assumed in this
paper, Alice and Bob use the standard trick of running
an error-corrected randomness exchange procedure that
allows them to establish some shared randomness hid-
den from the oblivious adversary that can be used for
the rest of the simulation. Note that this inherently
does not work for a fully adaptive adversary, as the ad-
versary can adaptively choose which locations to corrupt
based on any randomness that has been shared over the
channel. In fact, we believe that beating the 1−Ω(

√
ǫ)

rate barrier against fully adaptive adversaries may be
fundamentally impossible for precisely this reason.

Information hiding, while absolutely crucial, does
not, however, make use of a larger average message

2129 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

length which, according to the conjectures of [11], is
necessary to beat the 1 − Ω(

√
ǫ) barrier. The idea we

use for this, as already demonstrated in Section 4, is
the use of blocking and the subsequent application of
error-correcting codes on each such block.

Unfortunately, the same argument as given above
shows that a straightforward application of block error-
correcting codes, as done in Section 4, cannot work
against an oblivious adversarial channel. The reason
is that in such a case, an application of systematic
block error-correcting codes would be possible as well,
and such codes again have pre-specified positions of
redundancy which can be targeted by the adversarial
channel. In particular, one could again disable all
redundant rounds including the non-systematic parts of
block error-correcting codes in a large window of (ǫ/ǫ′)N
rounds and make the remaining communication useless
with few extra errors. More concretely, suppose that
one simply encodes all blocks of data with a standard
block error-correcting code. For such block codes, one
needs to specify a priori how much redundancy should
be added, and the natural direction would be to set the
relative distance to, say, 100ǫ given that one wants to
prepare against an error rate of ǫ. However, this would
allow the adversary to corrupt a constant fraction (e.g.,
1/200) of error correcting codes beyond their distance,
thus making a constant fraction of the communicated
information essentially useless. This would lead to
a communication rate of 1 − Θ(1). It can again be
easily seen that in this tradeoff, the best fixed relative
distance one can choose for block error-correcting codes
is essentially

√
ǫ, which would lead to a rate loss of

H(
√
ǫ) for the error-correcting codes but would also

allow the adversary to corrupt at most a
√
ǫ fraction

of all codewords. This would again lead to an overall
communication rate of 1− Ω̃(

√
ǫ).

Our solution to the hurdle of having to commit
to a fixed amount of redundancy in advance is to use
rateless error-correcting codes. Unlike block error-
correcting codes with fixed block length and minimum
distance, rateless codes encode a message into a poten-
tially infinite stream of symbols such that having ac-
cess to enough uncorrupted symbols allows a party to
decode the desired message with a resulting communi-
cation rate that adapts to the true error rate without
requiring a priori knowledge of the error rate. Since it is
not possible for Alice and Bob to know in advance which
data bits the adversary will corrupt, rateless codes allow
them to adaptively adjust the amount of redundancy for
each communicated block, thereby allowing the correc-
tion of errors without incurring too great a loss in the
overall communication rate.

6 Main Result: Interactive Coding for
Oblivious Adversarial Errors

In this section, we develop our main result. We
remind the reader that in the oblivious adversarial
setting assumed throughout the rest of this paper, the
adversary is allowed to corrupt up to an ǫ fraction of
the total number of bits exchanged by Alice and Bob.
The adversary commits to the locations of these bits
before the start of the protocol. Alice and Bob will
use randomness in their encoding, and one asks for a
coding scheme that allows Alice and Bob to recover the
transcript of the original protocol with exponentially
high probability in the length of the protocol (over the
randomness that Alice and Bob use) for any fixed error
pattern chosen by the adversary.

For simplicity in exposition, we assume that the
input protocol is binary, so that the simulating output
protocol will also be binary. However, the results hold
virtually as-is for protocols over larger alphabet. We
first provide a high-level overview of our construction of
an encoded protocol. The pseudocode of the algorithm
appears in Figure 3.

6.1 High-Level Description of Coding Scheme
Let us describe the basic structure of our interactive
coding scheme. Suppose Π is an n-round binary input
protocol with average message length ℓ ≥ poly(1/ǫ).
Using Lemma 3.1, we first produce a B-blocked binary
protocol Πblk with n′ rounds that simulates Π.

Our encoded protocol Πoblivious
enc will begin by hav-

ing Alice and Bob performing a randomness exchange
procedure. More specifically, Alice will generate some
number of bits from her private randomness and encode
the random string using an error-correcting code of an
appropriate rate and distance. Alice will then trans-
mit the encoding to Bob, who can decode the received
string. This allows Alice and Bob to maintain shared
random bits. The randomness exchange procedure is
described in further detail in Section 6.3.

Next, Πoblivious
enc will simulate the B-sized blocks

(which we call B-blocks) of Πblk in order in a structured
manner. Each B-block will be encoded as a string of 2B
bits using a rateless code, and the encoded string will
be divided into chunks of size b < B. For a detailed
discussion on the encoding procedure via rateless codes,
see Section 6.4.

Now, Πoblivious
enc will consist of a series of Niter

iterations. Each iteration consists of transmitting b′

rounds, and we call such a b′-sized unit a mini-block,
where b′ > b. Each mini-block will consist of b data bits,
as well as b′−b bits of control information. The data bits
in successive mini-blocks will taken from the successive
b-sized chunks obtained by the encoding under the

2130 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

code Cexchange : {0, 1}l′ → {0, 1}10ǫNiterb
′

of relative
distance 2/5 to encode str, and transmits the encoded
string to Bob. Since the adversary can corrupt only
at most ǫ fraction of all bits, the transmitted string
cannot be corrupted beyond half the minimum distance
of Cexchange. Hence, Bob can decode the received string
and determine str.

Note that the exchange of randomness via the
codeword in Cexchange results in a rate loss of Θ(ǫ), which
is still overwhelmed by Θ(H(ǫ)).

6.4 Sending Data Bits Using “Rateless” Error-
Correcting Codes To transmit data from blocks of
Πblk, we will use an error-correcting code that has
incremental distance properties. One can think of this
as a rateless code with minimum distance properties.
Recall that b = s = Θ(1/ǫ′) and B = sb. In particular,
we require an error-correcting code Crateless : {0, 1}B →
{0, 1}2B for which the output is divided in to 2s chunks
of b bits each such that the code restricted to any
contiguous (cyclic) block of > s chunks has a certain
guaranteed minimum distance. The following lemma
guarantees the existence of such a code. We omit the
proof, but it appears in the full version of this paper.

Lemma 6.1. For sufficiently large b, s, there exists an
error-correcting code C : {0, 1}sb → {0, 1}2sb such that
for any a = 0, 1, . . . , 2s− 1 and j = s+ 1, s+ 2, . . . , 2s,
the code Ca,j : {0, 1}sb → {0, 1}jb formed by restricting
C to the bits ab, ab+1, . . . , ab+ jb− 1 (modulo 2sb) has

relative distance at least δj = H−1
(

j−s
j − 1

4s

)
, while C

has relative distance at least δ2s = 1
15 . (Here, H−1 is

the unique inverse of H that takes values in [0, 1/2].)

Remark 6.1. We set b = s = Θ(1/ǫ′). Thus, for
suitably small ǫ′ > 0, there exists such a code C as
guaranteed by Lemma 6.1. Moreover, it is possible to
find such a code by brute force in time poly(1/ǫ′).

Thus, Alice and Bob can agree on a fixed error-
correcting code Crateless of the type guaranteed by
Lemma 6.1 prior to the start of the algorithm. Now,
let us describe how data bits are sent during the itera-
tions of Πoblivious

enc . The blocks of Πoblivious
enc are simulated

in order as follows.
First, suppose Alice’s block index cA indicates a B-

block in Πblk during which Alice is the sender. Then
in Πoblivious

enc , Alice will transmit up to a maximum
of 2s chunks (of size b) that will encode the data x
from that block. More specifically, Alice will compute
y = Crateless(x) ∈ {0, 1}2B and decompose it as y =
y0 ◦ y1 ◦ · · · ◦ y2s−1, where ◦ denotes concatenation and
y0, y1, . . . , y2s−1 ∈ {0, 1}b.

Recall that each mini-block of Πoblivious
enc contains b

data bits (in addition to b′−b control bits). Thus, Alice
can send each yi as the data bits of a mini-block. The
chunk that Alice sends in a given iteration depends on
the global counter m. In particular, Alice always sends
the chunk ym mod 2s. Moreover, Alice keeps a chunk
counter jA, which is set to 0 during the first iteration in
which she transmits a chunk from y and then increases
by 1 during each subsequent iteration (until jA = 2s, at
which point jA stops increasing).

On the other hand, suppose Alice’s block index
cA indicates a B-block in Πblk during which Alice is
the receiver. Then, Alice listens for data during each
mini-block. Alice stores her received b-sized chunks as
g̃0, g̃1, . . . and increments her chunk counter jA after
each iteration to keep track of how many chunks she
has stored, along with a, an index indicating which ya
she expects the first chunk g̃0 to be. Once Alice has
received more than s chunks (i.e., jA > s), she starts to
keep an estimate x̃ of the data x that Bob is sending that
Alice has by decoding g̃0 ◦ g̃1 ◦ · · · ◦ g̃jA−1 to the nearest
codeword of Cratelessa,jA

. This estimate is updated after each
subsequent iteration. As soon as Alice undergoes an
iteration in which she receives valid control information
suggesting that x̃ = x (if Alice’s estimate x̃ matches
the hash of x that Bob sends as control information,
see Section 6.5), she advances her block index cA and
appends her transcript TA with x̃.

Note that it is possible that jA reaches 2s and Alice
has not yet received valid control information suggest-
ing that he has decoded x. In this case, Alice resets
jA to 0 and also resets a to the current value of m,
thereby restarting the listening process. Also, during
any iteration, if Alice receives control information sug-
gesting that jB < jA (i.e., Alice has been listening for a
greater number of iterations than Bob has been trans-
mitting), then again, Alice resets jA and a and restarts
the process.

Remark 6.2. Using a rateless code allows the amount
of redundancy in data that the sender sends to adapt to
the number of errors introduced by the adversary, rather
than wasting extra bits or not sending enough of them.

6.5 Control Information Alice’s unencoded con-
trol information in the mth iteration consists of (1.)

a hash h
(m)
A,c = hash(cA, S) of the block index cA,

(2.) a hash h
(m)
A,x = hash(x, S) of the data in the cur-

rent block of Πblk being communicated, (3.) a hash

h
(m)
A,k = hash(kA, S) of the backtracking parameter kA,

(4.) a hash h
(m)
A,T = hash(TA, S) of Alice’s transcript

TA, (5.) a hash h
(m)
A,MP1 = hash(TA[1, MP1], S) of Alice’s

2132 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

transcript up till the first meeting point, (6.) a hash

h
(m)
A,MP2 = hash(TA[1, MP2], S) of Alice’s transcript up till

the second meeting point, (7.) the chunk counter jA,
and (8.) the sync parameter syncA. Here, S refers to a
string of fresh random bits used to seed the hash func-
tions (note that S is different for each instance). Thus,
we write Alice’s unencoded control information as

ctrl
(m)
A

=
(
h
(m)
A,c , h

(m)
A,x , h

(m)
A,k , h

(m)
A,T , h

(m)
A,MP1, h

(m)
A,MP2, jA, syncA

)
.

Bob’s unencoded control information ctrl
(m)
B is similar

in the analogous way.
For the individual hashes, we can use the following

Inner Product hash function hash : {0, 1}l × {0, 1}r →
{0, 1}p, where r = lp:

hash(X,R) =
(
〈X,R[1,l]〉, 〈X,R[l+1,2l]〉,

. . . , 〈X,R[lp−(l−1),lp]〉
)
,

where X is the quantity to be hashed, and R is a
random seed. This choice of hash function guarantees
the following property:

Property 6.1. For any X,Y ∈ {0, 1}l such that
X 6= Y , we have that PrR∼Unif({0,1}r)[hash(X,R) =
hash(Y,R)] ≤ 2−p.

Now, we wish to take output size p = O(log(1/ǫ′)) for
each of the hashes so that the total size of each party’s
control information in any iteration is O(log(1/ǫ′)).
Note that some of the quantities we hash (e.g., TA,
TB) actually have size l = Ω(n). Thus, for the
corresponding hash function, we would naively require
r = lp = Ω(n log(1/ǫ′)) fresh bits of randomness for the
seed (per iteration), for a total of Ω(Nitern log(1/ǫ′)) bits
of randomness. However, as described in Section 6.3,
Alice and Bob only have access to O(nǫ′polylog(1/ǫ′))
bits of shared randomness!

To get around this problem, we make use of δ-biased
sources to minimize the amount of randomness we need.
In particular, we can use the δ-biased sample space of
[13] to stretch Θ(log(L/δ)) independent random bits
into a string of L = Θ(Nitern log(1/ǫ′)) pseudorandom
bits that are δ-biased. We take δ = 2−Θ(Niter·p). The
sample space guarantees that the L pseudorandom bits
are δΘ(1)-statistically close to being k-wise independent
for k = log(1/δ) = Θ(Niter · p) = Θ(Niter log(1/ǫ

′)).
Moreover, the Inner Product Hash Function satisfies
the following modified collision property, which follows
trivially from Property 6.1 and the definition of δ-bias:

Property 6.2. For any X,Y ∈ {0, 1}l such that X 6=
Y , we have that PrR[hash(X,R) = hash(Y,R)] ≤
2−p + δ, where R is sampled from a δ-biased source.

As it turns out, this property is good enough for our
purposes. Thus, after the randomness exchange, Alice
and Bob can simply take Θ(log(L/δ)) bits from str and
stretch them into an L-bit string strstretch as described.
Then, for each iteration, Alice and Bob can simply seed
their hash functions using bits from strstretch.

6.5.1 Encoding and Decoding Control Informa-
tion In this section, we describe the encoding and de-
coding functions that Alice and Bob use for their control
information. We start by listing the desired properties:

Definition 6.1. Suppose X ∈ {0, 1}l and V ∈
{∗,¬, 0, 1}l for some l > 0. Then, we define
CorruptV (X) = Y ∈ {0, 1}l as follows:

Yi =





Vi if Vi ∈ {0, 1}
Xi ⊕ 1 if Vi = ¬
Xi if Vi = ∗

.

Moreover, we define wt(V) to be the number of coordi-
nates of V that are not equal to ∗.

Remark 6.3. Note that V corresponds to an error pat-
tern, in which ∗ indicates a position that is not cor-
rupted, while ¬ indicates a bit flip, and 0/1 indicates
a bit that is fixed to the appropriate symbol (see Sec-
tion 2.1 for details about flip and replace errors). The
function CorruptV applies the error pattern V to the bit
string given as an argument. Also, wt(V) is equal to the
number of positions that are targeted for corruption.

We require a seeded encoding function Enc :
{0, 1}l × {0, 1}r → {0, 1}o as well as a seeded decod-
ing function Dec : {0, 1}o×{0, 1}r → {0, 1}l ∪{⊥} such
that the following property holds:

Property 6.3. The following holds:

1. For any X ∈ {0, 1}l, R ∈ {0, 1}r, and V ∈
{∗,¬, 0, 1}o such that wt(V) < 1

8o,

Dec(CorruptV (Enc(X,R)), R) = X.

2. For any X ∈ {0, 1}l and V ∈ {0, 1}o such that
wt(V) ≥ 1

8o,

Pr
R∼Unif({0,1}r)

[Dec(CorruptV (Enc(X,R)), R)

6∈ {X,⊥}] ≤ 2−Ω(l).

Remark 6.4. The second argument of Enc and Dec will
be a seed, generated by taking r fresh bits from the
shared randomness of Alice and Bob. A decoding output
of ⊥ indicates a decoding failure. Moreover, (1.) of

2133 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Property 6.3 guarantees that a party can successfully
decode the other party’s control information if at most a
constant fraction of the encoded control information bits
are corrupted. On the other hand, (2.) of Property 6.3
guarantees that if a larger fraction of the encoded control
information bits are corrupted, then the decoding party
can detect any possible corruption with high probability.

We now exhibit Enc, Dec that satisfy Property 6.3.
Our Enc consists of a three-stage encoding: (1.) append
a hash value to the unencoded control information, (2.)
encode the resulting string using an error-correcting
code, and (3.) XOR each output bit with a fresh random
bit taken from the shared randomness.

For our purposes, we want l = O(log(1/ǫ′)) to

be the number of bits in ctrl
(m)
A (or ctrl

(m)
B) and o =

c log(1/ǫ′). First, we choose a hash function h : {0, 1}l×
{0, 1}t → {0, 1}o′ that has the following property:

Property 6.4. Suppose X,U ∈ {0, 1}l, where U is not
the all-zeros vector, and W ∈ {0, 1}o′ . Then,

Pr
R∼Unif({0,1}t)

[h(X + U,R) = h(X,R) +W] ≤ 2−o′ .

In particular, we can use the simple Inner Product Hash
Function with t = l · o′ and o′ = Θ(log(1/ǫ′)):

h(X,R) =
(〈
X,R[1,l]

〉
,
〈
X,R[l+1,2l]

〉
, . . . ,

〈
X,R[l·o′−(l−1),l·o′]

〉)
.

Next, we choose a linear error-correcting code Chash :
{0, 1}l+o′ → {0, 1}o of constant relative distance 1/4
and constant rate. We take r = t+ o and define Enc as

Enc(X,R) = Chash(X ◦ h(X,R[o+1,r]))⊕R[1,o].

Moreover, we define Dec as follows: Given Y,R, let X ′

be the decoding of Y + R[1,o] under Chash (using the

nearest codeword of Chash and then inverting the map
Chash). We then define

Dec(Y,R) =

{
X ′

[1,l] if h(X ′
[1,l], R[o+1,r]) = X ′

[l+1,l+o′]

⊥ if h(X ′
[1,l], R[o+1,r]) 6= X ′

[l+1,l+o′]

.

As it turns out, the above functions Enc and Dec

satisfy Property 6.3. We do not prove this fact here,
but a proof appears in the full version of this paper.

6.5.2 Information Hiding We now describe how
the encoded control information bits are sent within
each mini-block. Recall that in the mth iteration,
Alice chooses a fresh random seed RA taken from
the shared randomness str and computes her encoded

control information Enc(ctrl
(m)
A , RA). Similarly, Bob

chooses RB and computes Enc(ctrl
(m)
B , RB). Recall that

RA, RB are known to both Alice and Bob.
As discussed previously, the control information bits

in each mini-block are not sent contiguously. Rather,
the locations of the control information bits within
each b′-sized mini-block are hidden from the oblivious
adversary by using the shared randomness to agree on
a designated set of 2c log(1/ǫ′) locations. In particular,
the locations of the control information bits sent by
Alice and Bob during the mth iteration are given by
the variables zAm,i and zBm,i (i = 1, . . . , c log(1/ǫ′)),
respectively. For each m, these variables are chosen
randomly at the beginning using O(log2(1/ǫ′)) fresh
random bits from the preshared string str. Since there
are Niter iterations, this will require a total of Θ(Niter ·
log2(1/ǫ′)) = Θ(nǫ′ log2(1/ǫ′)) random bits from str.

Thus, Alice sends the c log(1/ǫ′) bits of

Enc(ctrl
(m)
A , RA) in positions zAm,i (i = 1, . . . , c log(1/ǫ′))

of the mini-block of the mth iteration, and similarly,

Bob sends the bits of Enc(ctrl
(m)
B , RB) in positions

zBm,i (i = 1, . . . , c log(1/ǫ′)). Meanwhile, Bob listens
for Alice’s encoded control information in positions
zAm,i of the mini-block and assembles the received bits

as a string Y ∈ {0, 1}c log(1/ǫ′), after which Bob tries
to decode Alice’s control information by computing
Dec(Y,RA). Similarly, Alice listens for Bob’s encoded
control information in locations zBm,i and tries to decode
the received bits.

After each iteration, Alice and Bob use their decod-
ings of each other’s control information to decide how
to proceed. This is described in detail in Section 6.6.

6.6 Flow of the Protocol and Backtracking
Throughout Πoblivious

enc , each party maintains a state that
indicates whether both parties are in sync as well as
parameters that allow for backtracking in the case that
the parties are not in sync. After each iteration, Alice
and Bob use their decodings of the other party’s control
information from that iteration to update their states.
We describe the flow of the protocol in detail.

Alice and Bob maintain binary variables syncA
and syncB , respectively, which indicate the players’
individual perceptions of whether they are in sync. Note
that syncA = 1 implies kA = 1 (and similarly, syncB = 1
implies kB = 1). Also, in the case that syncA = 1 (resp.
syncB = 1), the variable speakA (resp. speakB) indicates
whether Alice (resp. Bob) speaks in the cthA (resp. cthB)
block of Πblk, based on the transcript thus far.

Let us describe the protocol from Alice’s point
of view, as Bob’s procedure is analogous. Note that
after each iteration, Alice attempts to decode Bob’s
control information for that iteration. We say that

2134 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Alice successfully decodes Bob’s control information if
the decoding procedure (see Section 6.5.1) does not
output ⊥. In this case, we write the output of the
control information decoder (for the mth iteration) as

c̃trl
(m)

B

=
(
h̃
(m)
B,c , h̃

(m)
B,x, h̃

(m)
B,k , h̃

(m)
B,T , h̃

(m)
B,MP1, h̃

(m)
B,MP2, j̃B , s̃yncB

)
.

We now split into two cases: syncA = 1 and syncA = 0.

Case 1 (syncA = 1): The general idea is that whenever
Alice thinks she is in sync with Bob (i.e., syncA = 1), she
either (a.) listens for data bits from Bob while updating
her estimate x̃ of block cA of Πblk, if speakA = 0,
or (b.) transmits, as data bits of the next iteration,
the (m mod 2s)-th chunk of the encoding of x (the cA-
th B-block of Πblk) under Crateless, if speakA = 1 (see
Section 6.4 for details).

If Alice is listening for data bits, then Alice expects
that kA = kB = 1 and either (1.) cA = cB , TA = TB or
(2.) cA = cB + 1, TB = TA[1 . . . (cB − 1)B]. Condition
(1.) is expected to hold if Alice has still not managed
to decode the B-block x that Bob is trying to relay,
while (2.) is expected if Alice has managed to decode
x and has advanced her transcript but Bob has not yet
realized this.

On the other hand, if Alice is transmitting data bits,
then Alice expects that kA = kB = 1, as well as either
(1.) cA = cB , TA = TB , or (2.) cB = cA+1, TB = TA◦x,
or (3.) cA = cB+1, TB = TA[1 . . . (cB−1)B]. Condition
(1.) is expected to hold if Bob is still listening for data
bits and has not yet decoded Alice’s x, while (2.) is
expected to hold if Bob has already managed to decode
x and advanced his block index and transcript, and (3.)
is expected to hold if Bob has been transmitting data
bits to Alice (for the (cA − 1)-th B-block of Πblk), but
Bob has not realized that Alice has decoded the correct
B-block and moved on.

Now, if Alice manages to successfully decode Bob’s
control information in the most recent iteration, then

Alice checks whether the hashes h̃
(m)
B,c , h̃

(m)
B,k , h̃

(m)
B,T , h̃

(m)
B,x,

as well as s̃yncB are consistent with Alice’s expectations
(as outlined in the previous two paragraphs). If not,
then Alice sets syncA = 0. Otherwise, Alice proceeds
normally.

Remark 6.5. Note that in general, if a party is trying
to transmit the contents x of a B-block and the other
party is trying to listen for x, then there is a delay of
at least one iteration between the time that the listening
party decodes x and the time that the transmitting party
receives control information suggesting that the other
party has decoded x. However, since b/B = O(ǫ′), the
rate loss due to this delay turns out to be just O(ǫ′).

Case 2 (syncA = 0): Now, we consider what happens
when Alice believes she is out of sync (i.e., syncA =
0). In this case, Alice uses a meeting point based
backtracking mechanism along the lines of [14] and [11].
We sketch the main ideas below.

Specifically, Alice keeps a backtracking parameter
kA that is initialized as 1 when Alice first believes she
has gone out of sync and increases by 1 each iteration
thereafter. (Note that kA is also maintained when
syncA = 1, but it is always set to 1 in this case.) Alice
also maintains a counter EA that counts the number
of discrepancies between kA and kB , as well as meeting
point counters v1 and v2. The counters EA, v1, v2 are
initialized to zero when Alice first sets syncA to 0.

The parameter kA measures the amount by which
Alice is willing to backtrack in her transcript TA. More
specifically, Alice creates a scale k̃A = 2⌊log2

kA⌋ by
rounding kA to the largest power of two that does not
exceed it. Then, Alice defines two meeting points MP1

and MP2 on this scale to be the two largest multiples
of k̃AB not exceeding |TA|. More precisely, MP1 =

k̃AB
⌊

|TA|
kAB

⌋
and MP2 = MP1 − k̃AB. Alice is willing

to rewind her transcript to either one of TA[1 . . . MP1]
and TA[1 . . . MP2], the last two positions in her transcript
where the number of B-blocks of Πblk that have been
simulated is an integral multiple of k̃A.

If Alice is able to successfully decode Bob’s control

information, then she checks h̃
(m)
B,k . If it does not agree

with the hash of kA, then Alice increments EA. She also
increments EA if s̃yncB = 1.

Otherwise, if h̃
(m)
B,k matches her computed hash of

kA, then Alice checks whether either of h̃
(m)
B,MP1, h̃

(m)
B,MP2

matches the appropriate hash of TA[1 . . . MP1]. If so,
then Alice increments her counter v1, which counts the
number of times her first meeting point matches one
of the meeting points of Bob. If not, then Alice then

checks whether either of h̃
(m)
B,MP1, h̃

(m)
B,MP2 matches the hash

of TA[1 . . . MP2] and if so, she increments her counter v2,
which counts the number of times her second meeting
point matches one of the meeting points of Bob.

If Alice is not able to successfully decode Bob’s
control information from the most recent iteration (i.e.,
the decoder outputs ⊥), she increments EA.

Regardless of which of the above scenarios holds,
Alice then increments kA and updates k̃A, MP1, MP2.

Next, Alice checks whether to initiate a transition.
Alice only considers making a transition if kA = k̃A ≥ 2
(i.e., kA is a power of two and is ≥ 2). Alice first
decides whether to initiate a meeting point transition. If
v1 ≥ 0.2kA, then Alice rewinds TA to TA[1 . . . MP1] and

resets kA, k̃A, syncA to 1 and EA, v1, v2 to 0. Otherwise,
if v2 ≥ 0.2kA, then Alice rewinds TA to TA[1 . . . MP2]

2135 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

and again resets kA, k̃A, syncA to 1 and EA, v1, v2 to 0.
If Alice has not made a meeting point transition,

then Alice checks whether EA ≥ 0.2kA. If so, Alice
undergoes an error transition, in which she simply resets
kA, k̃A, syncA to 1 and EA, v1, v2 to 0.

Finally, if kA = k̃A ≥ 2 but Alice has not made any
transition, then she simply resets v1, v2 to 0.

Remark 6.6. If TA and TB have not diverged too far,
then there is a common meeting point up to which
TA and TB agree. Thus, as control information of
each iteration, Alice and Bob send hash values of their
two meeting points in the hope that there is a match.
For a given k̃A, there are k̃A hash comparisons that
are generated. If at least a constant fraction of these
comparisons result in a match, then Alice decides to
rewind her transcript to the relevant meeting point. This
ensures that in order for an adversary to cause Alice
to backtrack incorrectly, he must corrupt the control
information in a constant fraction of iterations.

6.7 Pseudocode We are now ready to provide the
pseudocode for the protocol Πoblivious

enc , which follows
the high-level description outlined in Section 6.1 and is
shown in Figure 3. The pseudocode for the helper func-
tions AliceControlFlow, AliceUpdateSyncStatus,
AliceUpdateControl, AliceDecodeControl,
AliceAdvanceBlock, AliceUpdateEstimate, and
AliceRollback for Alice is also displayed. Bob’s
functions BobControlFlow, BobUpdateSyncStatus,
BobUpdateControl, BobDecodeControl,
BobAdvanceBlock, BobUpdateEstimate, and
BobRollback are almost identical, except that “A”
subscripts are replaced with “B.” Also, the function
InitSharedRandomness is the same for Alice and Bob.

References

[1] Z. Brakerski and Y. T. Kalai, Efficient interac-

tive coding against adversarial noise, in 53rd Annual
IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2012, New Brunswick, NJ, USA, October
20-23, 2012, 2012, pp. 160–166.

[2] Z. Brakerski, Y. T. Kalai, and M. Naor, Fast

interactive coding against adversarial noise, J. ACM,
61 (2014), p. 35.

[3] Z. Brakerski and M. Naor, Fast algorithms for in-

teractive coding, in Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, 2013, pp. 443–456.

[4] M. Braverman and K. Efremenko, List and unique

coding for interactive communication in the presence

of adversarial noise, in 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014, 2014,
pp. 236–245.

[5] M. Braverman and A. Rao, Toward coding for

maximum errors in interactive communication, IEEE
Transactions on Information Theory, 60 (2014),
pp. 7248–7255.

[6] K. Efremenko, R. Gelles, and B. Haeupler, Max-

imal noise in interactive communication over erasure

channels and channels with feedback, in Proceedings
of the 2015 Conference on Innovations in Theoretical
Computer Science, ITCS 2015, Rehovot, Israel, Jan-
uary 11-13, 2015, 2015, pp. 11–20.

[7] M. K. Franklin, R. Gelles, R. Ostrovsky, and

L. J. Schulman, Optimal coding for streaming authen-

tication and interactive communication, IEEE Transac-
tions on Information Theory, 61 (2015), pp. 133–145.

[8] R. Gelles, A. Moitra, and A. Sahai, Efficient cod-

ing for interactive communication, IEEE Transactions
on Information Theory, 60 (2014), pp. 1899–1913.

[9] M. Ghaffari and B. Haeupler, Optimal error rates

for interactive coding II: efficiency and list decoding,
in 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18-21, 2014, 2014, pp. 394–403.

[10] M. Ghaffari, B. Haeupler, and M. Sudan, Opti-

mal error rates for interactive coding I: adaptivity and

other settings, in Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03,
2014, 2014, pp. 794–803.

[11] B. Haeupler, Interactive channel capacity revisited,
in 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18-21, 2014, 2014, pp. 226–235.

[12] G. Kol and R. Raz, Interactive channel capacity,
in Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, 2013,
pp. 715–724.

[13] J. Naor and M. Naor, Small-bias probability spaces:

Efficient constructions and applications, SIAM J. Com-
put., 22 (1993), pp. 838–856.

[14] L. J. Schulman, Communication on noisy chan-

nels: A coding theorem for computation, in 33rd An-
nual Symposium on Foundations of Computer Science,
Pittsburgh, Pennsylvania, USA, 24-27 October 1992,
1992, pp. 724–733.

[15] , Deterministic coding for interactive communica-

tion, in Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, May 16-18, 1993,
San Diego, CA, USA, 1993, pp. 747–756.

[16] , Coding for interactive communication, IEEE
Transactions on Information Theory, 42 (1996),
pp. 1745–1756.

2136 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Global parameters

b′ = b+ 2c log(1/ǫ′) Πblk = B-blocked simulating protocol for Π (see Lemma 3.1)

Niter =
n′

b
(1 + Θ(ǫ log(1/ǫ))) l′ = Θ(nǫ′ polylog(1/ǫ′))

ǫ′ = ǫ2 Chash : {0, 1}Θ(log(1/ǫ′)) → {0, 1}Θ(log(1/ǫ′)) (see Section 6.5.1)

b = s = Θ(1/ǫ′) Cexchange : {0, 1}l′ → {0, 1}10ǫNiterb
′

(see Section 6.3)

B = sb Crateless : {0, 1}B → {0, 1}2B (see Lemma 6.1)

Alice Bob

—————– Random string exchange —————–

Choose a random string str ∈ {0, 1}l′
w ← Cexchange(str)

w′ ← nearest codeword of Cexchange to w̃
str← (Cexchange)−1(w′)

—————– Initialization —————–

TA ← ∅
x← nil
kA, k̃A, cA, syncA ← 1
EA, v1, v2, jA, speakA, a,m, MP1, MP2← 0

InitSharedRandomness()

if Alice speaks in the first block of Πblk then
speakA ← 1
x← contents of first block of Πblk

y = y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
end if

TB ← ∅
x← nil
kB , k̃B , cB , syncB ← 1
EB , v1, v2, jB , speakB , a,m, MP1, MP2← 0

InitSharedRandomness()

if Bob speaks in the first block of Πblk then
speakB ← 1
x← contents of first block of Πblk

y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
end if

—————– Block transmission (repeat Niter times) —————–

AliceUpdateControl()

Send r[i] in slot zAm,i for i = 1, . . . , (b′ − b)/2
Listen during slots z̃Bm,i for i = 1, . . . , (b′ − b)/2 and
write bits to r̃

if syncA = 1 and speakA = 1 then
Send the bits of ym mod 2s in the b
remaining slots

else
Listen during the b remaining slots and
store as gA

end if

AliceControlFlow()

BobUpdateControl()

Send r[i] in slot zBm,i for i = 1, . . . , (b′ − b)/2
Listen during slots z̃Am,i for i = 1, . . . , (b′ − b)/2 and
write bits to r̃

if syncB = 1 and speakB = 1 then
Send the bits of ym mod 2s in the b
remaining slots

else
Listen during the b remaining slots and
store as gB

end if

BobControlFlow()

—————– End of repeat —————–

w
w̃

Figure 3: Encoded protocol Πoblivious
enc for tolerating oblivious adversarial errors.

2137 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Algorithm 1 Procedure for Alice to process received data bits and control info from a mini-block

1: function AliceControlFlow

⊲ Update phase:

2: c̃trl
(m)

B ← AliceDecodeControl

3: if c̃trl
(m)

B 6=⊥ then

4:

(
h̃
(m)
B,c , h̃

(m)
B,x, h̃

(m)
B,k , h̃

(m)
B,T , h̃

(m)
B,MP1, h̃

(m)
B,MP2, j̃B , s̃yncB

)
← c̃trl

(m)

B

5: if syncA = 0 then

6: if h̃
(m)
B,k 6= hash

(m)
B,k(kA) or s̃yncB = 1 then

7: EA ← EA + 1
8: else if hash

(m)
B,MP1(TA[1 . . . MP1]) = h̃

(m)
B,MP1 or hash

(m)
B,MP2(TA[1 . . . MP1]) = h̃

(m)
B,MP2 then

9: v1 ← v1 + 1
10: else if hash

(m)
B,MP1(TA[1 . . . MP2]) = h̃

(m)
B,MP1 or hash

(m)
B,MP2(TA[1 . . . MP2]) = h̃

(m)
B,MP2 then

11: v2 ← v2 + 1
12: end if
13: end if
14: else if syncA = 0 then
15: EA ← EA + 1
16: end if

17: if syncA = 0 then
18: kA ← kA + 1
19: k̃A ← 2⌊log2

kA⌋

20: end if

21: AliceUpdateSyncStatus

⊲ Transition phase:

22: if kA = k̃A ≥ 2 and v1 ≥ 0.2kA then
23: AliceRollback(MP1)

24: else if kA = k̃A ≥ 2 and v2 ≥ 0.2kA then
25: AliceRollback(MP2)

26: else if kA = k̃A ≥ 2 and EA ≥ 0.2kA then
27: a← (m+ 1) mod 2s

28: kA, k̃A, syncA ← 1
29: EA, v1, v2, jA ← 0
30: else if kA = k̃A ≥ 2 then
31: v1, v2 ← 0
32: end if

33: MP1← k̃AB
⌊

|TA|

k̃AB

⌋

34: MP2← MP1− k̃AB
35: m← m+ 1
36: end function

2138 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Algorithm 2 Procedure for Alice to update sync status

1: function AliceUpdateSyncStatus

2: syncA ← 0

3: if kA = 1 then

4: if c̃trl
(m)

B 6= ⊥ and h̃
(m)
B,k = hash

(m)
B,k(1) then

5: if s̃yncB = 0 then
6: syncA ← 1; jA ← 0; a← (m+ 1) mod 2s

7: else if hash
(m)
B,c (cA) = h̃

(m)
B,c and hash

(m)
B,T (TA) = h̃

(m)
B,T then

8: syncA ← 1
9: if speakA = 0 then

10: if jA ≤ j̃B then
11: AliceUpdateEstimate

12: else
13: jA ← 0; a← (m+ 1) mod 2s
14: end if
15: else
16: jA ← min{jA + 1, 2s}
17: end if
18: else if speakA = 1 and hash

(m)
B,c (cA + 1) = h̃

(m)
B,c and hash

(m)
B,T (TA ◦ x) = h̃

(m)
B,T then

19: syncA ← 1
20: AliceAdvanceBlock

21: else if Bob speaks in block (cA−1) of Πblk and hash
(m)
B,c (cA−1) = h̃

(m)
B,c and hash

(m)
B,T (TA[1 . . . (cA−

2)B]) = h̃
(m)
B,T and hash

(m)
B,x(TA[((cA − 2)B + 1) . . . (cA − 1)B]) = h̃

(m)
B,x then

22: syncA ← 1
23: if speakA = 0 then
24: jA ← 0; a← (m+ 1) mod 2s
25: else
26: jA ← min{jA + 1, 2s}
27: end if
28: end if

29: else if c̃trl
(m)

B = ⊥ then
30: syncA ← 1
31: if speakA = 0 then
32: if jA 6= 0 then
33: AliceUpdateEstimate

34: else
35: a← (m+ 1) mod 2s
36: end if
37: else
38: jA ← min{jA + 1, 2s}
39: end if
40: end if
41: end if
42: end function

2139 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Algorithm 3 Procedure for Alice to update control information

1: function AliceUpdateControl

2: ctrl
(m)
A ← (hashA,m(cA), hash

(m)
A,x(x), hash

(m)
A,k (kA), hash

(m)
A,T (TA), hash

(m)
A,MP1(TA[1 . . . MP1]),

hash
(m)
A,MP2(TA[1 . . . MP2]), jA, syncA)

3: r← Chash
(
ctrl

(m)
A ◦ hash(m)

A,ctrl

(
ctrl

(m)
A

))
⊕ V

(m)
A

4: end function

Algorithm 4 Procedure for Alice to decode control information sent by Bob

1: function AliceDecodeControl

2: z← decoding of r̃⊕ V
(m)
B under Chash (inverse of Chash applied to nearest codeword)

3: zc ◦ zh ← z, where zc has length (b′ − b)/2

4: if hash
(m)
B,ctrl(z

c) = zh then
5: return zc

6: else
7: return ⊥
8: end if
9: end function

Algorithm 5 Procedure for Alice to advance the block index and prepare for future transmissions

1: function AliceAdvanceBlock

2: if speakA = 1 then
3: TA ← TA ◦ x
4: else
5: TA ← TA ◦ x̃
6: end if

7: cA ← cA + 1
8: jA ← 0

9: if Alice speaks in block cA of Πblk then
10: speakA ← 1
11: x← contents of block cA of Πblk

12: y = y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
13: else
14: speakA ← 0
15: a← (m+ 1) mod 2s
16: x← nil
17: end if
18: end function

2140 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Algorithm 6 Procedure for Alice to update her estimate of the contents of the current block based on past data
blocks
1: function AliceUpdateEstimate

2: g̃jA ← gA
3: jA ← jA + 1

4: if jA > s then
5: x̃← result after decoding (g̃0, g̃1, . . . , g̃jA−1) via the nearest codeword in Cratelessa,jA

6: if hash
(m)
B,x(x̃) = h̃

(m)
B,x then

7: AliceAdvanceBlock

8: else if jA = 2s then
9: jA ← 0

10: a← (m+ 1) mod 2s
11: end if
12: end if
13: end function

Algorithm 7 Procedure for Alice to backtrack to a previous meeting point

1: function AliceRollback(MP)
2: TA ← TA[1 . . . MP]
3: cA ← MP

B + 1

4: kA, k̃A, syncA ← 1
5: EA, v1, v2, jA ← 0

6: if Alice speaks in block cA of Πblk then
7: speakA ← 1
8: x← contents of block cA of Πblk

9: y = y0 ◦ y1 ◦ · · · ◦ y2s−1 ← Crateless(x)
10: else
11: speakA ← 0
12: a← (m+ 1) mod 2s
13: x← nil
14: end if
15: end function

2141 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

Algorithm 8 Procedure for Alice and Bob to use exchanged random string to initialize hash functions, information
hiding mechanism, and encoding functions for control information

1: function InitSharedRandomness

2: p← Θ(log(1/ǫ′))
3: δ ← 2−Θ(Niter·p)

4: L← Θ(Nitern log(1/ǫ′))
5: Let str = strloc ◦ str′, where strloc is of length Θ(Niter · log2(1/ǫ′)) and str′ is of length Θ(log(L/δ))
6: S ← δ-biased length L pseudorandom string derived from str′ (via the biased sample space of [13])

⊲ Generate locations for information hiding in each iteration:

7: for i = 0 to Niter − 1 do
8: Choose zAi,1, z

A
i,2, . . . , z

A
i,(b′−b)/2, z

B
i,1, z

B
i,2, . . . , z

B
i,(b′−b)/2 to be distinct numbers in {1, 2, . . . , b′} using

O(log2(1/ǫ′)) fresh random bits from strloc

9: end for

⊲ Set up parameters for encoding control information during each iteration

10: for i = 0 to Niter − 1 do
11: V

(i)
A ← (b′ − b)/2 fresh random bits from strloc

12: V
(i)
B ← (b′ − b)/2 fresh random bits from strloc

13: Initialize hash
(i)
A,ctrl, hash

(i)
B,ctrl to an inner product hash function with output length Θ(log(1/ǫ′))

and seed fixed as Θ(log(1/ǫ′)) fresh random bits from strloc

14: end for

⊲ Initialize hash functions for control information in each iteration:

15: for i = 0 to Niter − 1 do
16: Initialize hash

(i)
A,c, hash

(i)
A,x, hash

(i)
A,k, hash

(i)
A,T , hash

(i)
A,MP1, hash

(i)
A,MP2, hash

(i)
B,c, hash

(i)
B,x, hash

(i)
B,k,

hash
(i)
B,T , hash

(i)
B,MP1, hash

(i)
B,MP2 to be inner product hash functions with output length Θ(log(1/ǫ′))

and seed fixed using fresh random bits from S
17: end for
18: end function

2142 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
o

w
n
lo

ad
ed

 1
0
/1

8
/1

9
 t

o
 1

2
8
.2

3
7
.1

4
6
.6

8
.
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

