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Abstract

We study the communication rate of coding schemes for
interactive communication that transform any two-party
interactive protocol into a protocol that is robust to noise.
Recently, Haeupler [11] showed that if an € > 0 fraction
of transmissions are corrupted, adversarially or randomly,
then it is possible to achieve a communication rate of

1 — O(y/e). Furthermore, Haeupler conjectured that this
rate is optimal for general input protocols. This stands in
contrast to the classical setting of one-way communication in
which error-correcting codes are known to achieve an optimal

communication rate of 1 — ©(H(e)) =1 — O(e).

In this work, we show that the quadratically smaller rate
loss of the one-way setting can also be achieved in interactive
coding schemes for a very natural class of input protocols.
We introduce the notion of average message length, or the
average number of bits a party sends before receiving a
reply, as a natural parameter for measuring the level of
interactivity in a protocol. Moreover, we show that any
protocol with average message length ¢ = Q(poly(1/¢€)) can
be simulated by a protocol with optimal communication
rate 1 — O(H(e)) over an oblivious adversarial channel
with error fraction e. Furthermore, under the additional
assumption of access to public shared randomness, the
optimal communication rate is achieved ratelessly, i.e., the
communication rate adapts automatically to the actual error
rate e without having to specify it in advance.

This shows that the capacity gap between one-way and
interactive communication can be bridged even for very
small (constant in €) average message lengths, which are
likely to be found in many applications.

1 Introduction

In this work, we study the communication rate of coding
schemes for interactive communication that transform
any two-party interactive protocol into a protocol that
is robust to noise.
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1.1 Error-Correcting Codes The study of reliable
transmission over a noisy channel was pioneered by
Shannon’s work in the 1940s. He and others showed
that error-correcting codes allow one to add redundancy
to a message, thereby transforming the message into a
longer sequence of symbols, such that one can recover
the original message even if some errors occur. This
allows fault-tolerant transmissions and storage of infor-
mation. FError-correcting codes have since permeated
most modern computation and communication tech-
nologies.networks, data storage, computation, or data
computation, dainvolving data storage, transmission or
csuch as storage devices (e.g., disk drives, RAM, DVDs),
satellite systems, wireless LAN, etc.

One focus of study has been the precise tradeoff
between redundancy and fault-tolerance. In particular,
if one uses an error-correcting code that encodes a
binary message of length k into a sequence of n bits,
then the communication rate of the code is said to
be k/n. One wishes to make the rate as high as
possible. Shannon showed that for the random binary
symmetric channel (BSC) with error probability e the
(asymptotically) best achievable rate is C' = 1 — H(e),
where H(e) = —elogy € — (1 — €) log,(1 — €) denotes the
binary entropy function.

Another realm of interest is the case of adversarial
errors. In this case, the communication channel cor-
rupts at most an e fraction of the total number of bits
that are transmitted. Moreover, one wishes to allow
the receiver to correctly decode the message in the pres-
ence of any such error pattern. The work of Hamming
shows that one can achieve a communication rate of
R =1—- 0O(H(e)), in particular, the so-called Gilbert-
Varshamov bound of 1—H (2¢) > 1—-2H (¢). Finding the
optimal rate, or even just the constant in the asymptotic
©(H (¢)) term, remains a major open question.

1.2 Interactive Communication The work of
Shannon and Hamming applies to the problem of one-
way communication, in which one party, say Alice,
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wishes to send a message to another party, say Bob.
However, in many applications, underlying (two-party)
communications are interactive, i.e., Bob’s response to
Alice may be based on what he received from her previ-
ously and vice versa. As in the case of one-way commu-
nication, one wishes to make such interactive communi-
cations robust to noise by adding some redundancy.

At first sight, it seems plausible that one could use
error-correcting codes to encode each round of com-
munication separately. However, this does not work
correctly because the channel might corrupt the code-
word of one such round of communication entirely and
as a result derail the entire future conversation. With
the naive approach being insufficient, it is not obvious
whether it is possible at all to encode interactive pro-
tocols in a way that can tolerate some small constant
fraction of errors in an interactive setting. Nonetheless,
Schulman [14, 15, 16] showed that this is possible and
numerous follow-up works over the past several years
have led to a drastically better understanding of error-
correcting coding schemes for interactive communica-
tions.

1.3 Communication Rates of Interactive Cod-
ing Schemes Only recently, however, has this study
led to results shedding light on the tradeoff between the
achievable communication rate for a given error fraction
or amount of noise.

Kol and Raz [12] gave a communication scheme for
random errors that achieves a communication rate of
1—0(y/H (€)) for any alternating protocol, where € > 0
is the error rate. [12] also developed powerful tools to
prove upper bounds on the communication rate. Hae-
upler [11] showed communication schemes that achieve
a communication rate of 1 — O(y/€) for any oblivious
adversarial channel, including random errors, as well as
a communication rate of 1 — O(y/eloglog(1/e)) for any
fully adaptive adversarial channel. These results apply
to alternating protocols as well as adaptively simulated
non-alternating protocols (see [11] for a more detailed
discussions). Lastly, given [12], Haeupler conjectured
these rates to be optimal for their respective settings.
Therefore, there is an almost quadratic gap between
the conjectured rate achievable in the interactive set-
ting and the 1 — ©(H (¢€)) rate known to be optimal for
one-way communications.

1.4 Results In this paper, we investigate this com-
munication rate gap. In particular, we show that for a
natural and large class of protocols this gap disappears.
Our primary focus is on protocols for oblivious adversar-
ial channels. Such a channel can corrupt any e fraction
of bits that are exchanged in the execution of a proto-
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col, and the simulation is required to work, with high
probability, for any such error pattern. This is signif-
icantly stronger, more interesting, and, as we will see,
also much more challenging than the case of indepen-
dent random errors. We remark that, in contrast to a
fully adaptive adversarial channel, the decision whether
an error happens in a given round is not allowed to de-
pend on the transcript of the execution thus far. This
seems to be a minor but crucially necessary restriction
(see also Section 5).

As mentioned, the conjectured optimal communi-
cation rate of 1 — O(y/€) for the oblivious adversarial
setting is worse than the 1 — O(H(€)) communication
rate achievable in the one-way communication settings.
However, the conjectured upper bound seems to be tight
mainly for “maximally interactive” protocols, i.e., pro-
tocols in which the party that is sending bits changes
frequently. In particular, alternating protocols, in which
Alice and Bob take turns sending a single bit, seem to
require the most redundancy for a noise-resilient encod-
ing. On the other hand, the usual one-way communi-
cation case in which one party just sends a single mes-
sage consisting of several bits is an example of a “min-
imally interactive” protocol. It is a natural question to
consider what the tradeoff is between achievable com-
munication rate and the level of interaction that takes
place. In particular, most natural real-world protocols
are rarely “maximally interactive” and could potentially
be simulated with communication rates going well be-
yond 1 — O(y/€). We seek to investigate this possibility.

Our first contribution is to introduce the notion
of average message length as a natural measure of the
interactivity of a protocol in the context of analyzing
communication rates. Loosely speaking, the average
message length of an n-round protocol corresponds to
the average number of bits a party sends before receiving
a reply from the other party. A lower average message
length roughly corresponds to more interactivity in a
protocol, e.g., a maximally interactive protocol has
average message length 1, while a one-way protocol with
no interactivity has average message length n. The
formal definition of average message length appears as
Definition 3.1 in Section 3.

Our second and main contribution in this paper
is to show that for protocols with an average message
length of at least some constant in e (but independent
of the number of rounds n) one can go well beyond
the 1 — ©(y/e) communication rate achieved by [11] for
channels with oblivious adversarial errors. In fact, we
show that for such protocols one can actually achieve
a communication rate of 1 — ©(H(¢)), matching the
communication rate for one-way communication up to
the (unknown) constant in the H(e) term.
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THEOREM 1.1. For any ¢ > 0 and any n-round in-
teractive protocol 11 with average message length ¢ =
Q(poly(1/e)), it is possible to encode I into a protocol
over the same alphabet which, with probability at least
1 —exp(—ne), simulates I1 over an oblivious adversar-
1al channel with an € fraction of errors while achieving a
communication rate of 1 —O(H (¢)) = 1 —0O(elog(1/e)).

Under the (simplifying) assumption of public shared
randomness, our protocol can furthermore be seen to
have the nice property of being rateless. This means
that the communication rate adapts automatically and
only depends on the actual error rate ¢ without having
to specify or know in advance what amount of noise to
prepare for.

THEOREM 1.2. Suppose Alice and Bob have access to
public shared randomness. For any ¢ > 0 and any
n-round interactive protocol 11 with average message
length £ = Q(poly(1/¢)), it is possible to encode II
into protocol I ae1ess OvEr the same alphabet such that
for any true error rate €, executing Il ateless for n(l +
O(H(e)) 4+ O(€ polylog(1/€'))) rounds simulates I1 with
probability at least 1 — exp(—ne’3)

We note that one should think of ¢ in Theorem 1.2
as chosen to be very small, in particular, smaller
than the smallest amount of noise one expects to
encounter. In this case, the communication rate of
the protocol simplifies to the optimal 1 — O(H(e))
for essentially any € > ¢/. The only reason for not
choosing € too small is that it very slightly increases the
failure probability. As an example, choosing ¢ = o(1)
suffices to get ratelessness for any constant ¢ and still
leads to an essentially exponential failure probability.
Alternatively, one can even set ¢ = n~'/6 which leads to
optimal communication rates even for tiny sub-constant
true error fractions ¢ > n~%2 while still achieving a
strong sub-exponential failure probability of at most
exp(—v/n).

In Section 2, we introduce preliminaries about in-
teractive coding. In Section 3, we describe the notion
of average message length and its use in blocking. In
Section 4, we provide some simple coding schemes for
random channels as a warmup for our main result for the
much more difficult case of adversarial channels. This
leads up to Section 5, in which we describe some concep-
tual challenges and ideas needed to go beyond commu-
nication rates established in previous works. Finally,
Section 6 provides a high-level description along with
pseudocode of our interactive coding scheme, which al-
lows us to obtain Theorems 1.1 and 1.2. Note that the
proof of correctness of our coding scheme is omitted
in this paper. A full analysis of our interactive coding
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scheme, which proves Theorems 1.1 and 1.2, is provided
in the full version of this paper.

1.5 Further Related Works Schulman was the
first to consider the question of coding for interactive
communication and showed that one can tolerate an ad-
versarial error fraction of € = 1/240 with an unspecified
constant communication rate [14, 15, 16]. Schulman’s
result also implies that for the easier setting of random
errors, one can tolerate any error rate bounded away
from 1/2 by repeating symbols multiple times. Since
Schulman’s seminal work, there has been a number of
subsequent works pinning down the tolerable error frac-
tion. For instance, Braverman and Rao [5] showed that
any error fraction € < 1/4 can be tolerated in the realm
of adversarial errors, provided that one can use larger
alphabet sizes, and this bound was shown to be opti-
mal. A series of subsequent works [4, 9, 10, 6, 7] worked
to determine the error rate region under which non-
zero communication rates can be obtained for a variety
of models, e.g., adversarial errors, random errors, list-
decoding, adaptivity, and channels with feedback. Un-
like the initial coding schemes of [16] and [5] that relied
on tree codes and as a result required exponential time
computations, many of the newer coding schemes are
computationally efficient [1, 3, 2, 8, 9]. All these results
achieve small often unspecified constant communication
rate of ©(1) which is fixed and independent of amount of
noise. Only the works of [12] and [11], which are already
discussed above in Section 1.3 achieve a communication
rate approaching 1 for error fractions going to zero.

2 Preliminaries

An interactive protocol II consists of communication
performed by two parties, Alice and Bob, over a channel
with alphabet . Alice has an input x and Bob has an
input y, and the protocol consists of n rounds. During
each round of a protocol, each party decides whether to
listen or transmit a symbol from X, based on his input
and the player’s transcript thus far. Alice’s transcript
is defined as a tuple of symbols from 3, one for each
round that has occurred, such that the i'" symbol is
either (a.) the symbol that Alice sent during the ‘P
round, if she chose to transmit, or (b.) the symbol that
Alice received, otherwise.

Moreover, protocols can utilize randomness. In the
case of private randomness, each party is given its own
infinite string of independent uniformly random bits as
part of its input. In the case of shared randomness, both
parties have access to a common infinite random string
during each round. In general, our protocols will utilize
private randomness, unless otherwise specified.

In a noiseless setting, we can assume that in any
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round, exactly one party speaks and one party listens.
In this case, the listening party simply receives the
symbol sent by the speaking party.

The communication order of a protocol refers to
the order in which Alice and Bob choose to speak or
listen. A protocol is non-adaptive if the communication
order is fixed prior to the start of the protocol, in which
case, whether a party transmits or listens depends only
on the round number. A simple type of non-adaptive
protocol is an alternating protocol, in which one party
transmits during odd numbered rounds, while the other
party transmits during even numbered rounds. On the
other hand, an adaptive protocol is one in which the
communication order is not fixed prior to the start;
therefore, the communication order can vary depending
on the transcript of the protocol. In particular, each
party’s decision whether to speak or listen during a
round will depend on his input, randomness, as well
as the transcript of the protocol thus far.

For an n-round protocol over alphabet ¥, one can
define an associated protocol tree of depth m. The
protocol tree is a rooted tree in which each non-leaf
node of the tree has |X| children, and the outgoing edges
are labeled by the elements of ¥. Each non-leaf node
is owned by some player, and the owner of the node
has a preferred edge that emanates from the node. The
preferred edge is a function of the owner’s input and
any randomness that is allowed. Also, leaf nodes of the
protocol tree correspond to ending states.

A proper execution of the protocol corresponds to
the unique path from the root of the protocol tree to a
leaf node, such that each traversed edge is the preferred
edge of the parent node of the edge. In this case, each
edge along the path can be viewed as a successive round
in which the owner of the parent node transmits the
symbol along the edge.

An example of a protocol tree is shown in Figure 1.

2.1 Communication Channels For our purposes,
the communication between the two parties occurs
over a communication channel that delivers a possibly
corrupted version of the symbol transmitted by the
sending party. In this work, transmissions will be from
a binary alphabet, i.e., ¥ = {0,1}.

In a random error channel, each transmission oc-
curs over a binary symmetric channel with crossover
probability €. In other words, in each round, if only one
party is speaking, then the transmitted bit gets cor-
rupted with probability e.

This work mainly considers the oblivious adversarial
channel, in which an adversary gets to corrupt at most
e fraction of the total number of rounds. However,
the adversary is restricted to making his decisions prior
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Figure 1: An example of a protocol tree for a 3-round
interactive protocol. Nodes owned by Alice are colored
red, while those owned by Bob are colored blue. Note
that Alice always speaks during the first and third
rounds, while Bob speaks during the second round. The
orange edges are the set of preferred edges for some
choice of inputs of Alice and Bob. In this case, a proper
execution of the protocol corresponds to the path “011.”

to the start of the protocol, i.e., the adversary must
decide which rounds to corrupt independently of the
communication history and randomness used by Alice
and Bob. For each round that the adversary decides
to corrupt, he can either commit a flip error or replace
error. Suppose a round has one party that speaks and
one party that listens. Then, a flip error means that the
listening party receives the opposite of the bit that the
transmitting party sends. On the other hand, a replace
error requires the adversary to specify a symbol a € %
for the round. In this case, the listening party receives «
regardless of the symbol sent by the transmitting party.

An adaptive adversarial channel allows an adver-
sary to corrupt at most € fraction of the total number
of rounds. However, in this case, the adversary does not
have to commit to which rounds to corrupt prior to the
start of the protocol. Rather, the adversary can decide
to corrupt a round based on the communication history
thus far, including what is being sent in the current
round. Thus, in any round that the adversary chooses
to corrupt in which one party transmits and one party
receives, the adversary can make the listening party re-
ceive any symbol of his choice.

Note that we have not yet specified the behavior
for rounds in which both parties speak or listen. Such
rounds can occur for adaptive protocols when the com-
munication occurs over a noisy communication channel.

If both parties speak during a round, we stipulate
that neither party receives any symbol during that
round (as neither party expects to receive a symbol).

Moreover, we stipulate that in rounds during which
both parties listen, the symbols received by Alice and
Bob are unspecified. In other words, an arbitrary
symbol may be delivered to each of the parties, and we
require that the protocol work for any choice of received
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symbols.  Alternatively, one can imagine that the
adversary chooses arbitrary symbols for Alice and Bob
to receive without this being counted as a corruption
(i.e., a free corruption that is not counted toward the
budget of e fraction of corruptions). The reason for
this model is to disallow the possibility of transmitting
information by using silence. An extensive discussion on
the suitability of this error model can be found in [10].

3 Average Message Length and Blocked
Protocols

One conceptual contribution of this work is to introduce
the notion of average message length as a natural
measure of the level of interactivity of a protocol. While
this paper uses it only in the context of analyzing the
optimal rate of interactive coding schemes, we believe
that this notion and parametrization will also be useful
in other settings, such as compression. Next, we define
this notion formally.

DEFINITION 3.1. The average message length ¢ of an
n-round interactive protocol 11 is the minimum, over all
paths in the protocol tree of 11, of the average length in
bits of a mazimal contiguous block (spoken by a single
party) down the path.

More precisely, given any string s € {0,1}", there
exist integer message lengths lg,...,lx, > 0 such that
along the path of 11 given by s one player (either Alice
or Bob) speaks between round 1+ 37, ;1; and round
ngilj for even i while the other speaks during the
remaining intervals, i.e., those for odd i. We then
define €5 to be the average of these message lengths
lo,...,lp and define the average message length of
II to be minimum owver all possible inputs, i.e., £ =
minge (o130 s-

An alternate characterization of the amount of interac-
tion in a protocol involves the number of alternations in
the protocol:

DEFINITION 3.2. An n-round protocol 11 is said to be
k-alternating if any path in the protocol tree of I1 can
be divided into at most k blocks of consecutive rounds
such that only one person (either Alice or Bob) speaks
during each block.

More precisely, 11 is k-alternating if, given any
string s € {0,1}", there exist k' < k integers

70,71, .-, Tk With 0 = 19 < -+ < 1y = n, such that
along the path of II given by s, only one player (either
Alice or Bob) speaks for rounds r; +1,...,1;41 for any
0<i<Kk.

It is easy to see that the two notions are essen-
tially equivalent, as an n-round protocol with average
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message length ¢ is an (n/f)-alternating protocol, and
a k-alternating n-round protocol has average message
length n/k. Note that an n-round alternating protocol
has average message length 1, while a one-way proto-
col has average message length n. The average message
length can thus be seen as a natural measure for the
interactivity of a protocol.

We emphasize that the average message length def-
inition does not require message lengths to be uniform
along any path or across paths. In particular, this al-
lows for the length of a response to vary depending on
what was communicated before, e.g., the statement the
other party has just made—a common phenomenon in
many applications. Taking as an example real-world
conversations between two people, responses to state-
ments can be as short as a simple “I agree” or much
longer, depending on what the conversation has already
covered and what the opinion or input of the receiv-
ing party is. Thus, a sufficiently large average message
length roughly states that while the i*® response of a
person can be short or long depending on the history of
the conversation, no sequence of responses can lead to
two parties going back and forth with super short state-
ments for too long a period of time. This flexibility
makes the average message length a highly applicable
parameter that is reasonably large in most settings of
interest. We expect it to be a very useful parametriza-
tion for questions going beyond the communication rate
considered here.

However, the non-uniformity of protocols with an
average message length bound can make the design
and analysis of protocols somewhat harder than one
would like. Fortunately, adding some dummy rounds of
communication in a simple procedure we call blocking
allows us to transform any protocol with small number
of alternations into a much more regularly structured
protocol which we refer to as blocked.

DEFINITION 3.3. An n-round protocol 11 is said to be
b-blocked if for any 1 < j < [n/b], only one person
(either Alice or Bob) speaks during all rounds r such
that (7 —1)b < r < jb.

LEMMA 3.1. Any n-round k-alternating protocol I1 can
be simulated by a b-blocked protocol I that consists of
at most n + kb rounds.

We omit the proof of Lemma 3.1 here, but it can be
found in the full version of this paper.

4 Warmup: Interactive Coding for Random
Errors

As a warmup for the much more difficult adversarial
setting, we first consider the setting of random errors, as
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this will illustrate several ideas including blocking, the
use of error-correcting codes, and how to incorporate
those with known techniques in coding for interactive
communication.

In this section, we suppose that each transmission of
Alice and Bob occurs over a binary symmetric channel
with an e probability of corruption. Recall that we wish
to encode an n-round protocol IT into a protocol TI:andeom
such that with high probability over the communication
channel, execution of IT:224°™ rohustly simulates II. By
[11], it is known that one can achieve a communication
rate of 1 — O(y/€). In this section, we show how to go
beyond the rate of 1 —O(+/€) for protocols with at least

a constant (in €) average message length.

4.1 Trivial Scheme for Non-Adaptive Protocols
with Minimum Message Length The first coding
scheme we present for completeness is a completely triv-
ial and straightforward application of error correcting
codes which works for non-adaptive protocols IT with
a guaranteed minimum message length. In particular,
the coding scheme achieves a communication rate of
1 — O(H (¢)) for non-adaptive protocols with minimum
message length Q((1/€) logn).

In particular, we assume that II is a a non-
adaptive n-round protocol with message lengths of size
by, ba, ..., bk, i.e., Alice sends by bits, then Bob sends
by bits, and so on. Moreover, we assume that that
b1,ba, ..., b > b, where b = Q((1/¢)logn) is the mini-
mum message length.

Now, we can form the encoded protocol ITiandom
by simply having the transmitting party replace its
intended message in II (of b; bits) with the encoding (of
length, say, b.) of the message under an error-correcting
code of minimum relative distance Q(e) and rate 1 —
O(H (e)) and then transmitting the resulting codeword.
The receiver then decodes the word according to the
nearest codeword of the appropriate code.

Note that for any given message (codeword) of
length b}, the expected number of corruptions due
to the channel is eb;. Thus, by Chernoff bound,
the probability that the corresponding codeword is
corrupted beyond half the minimum distance of the
relevant error-correcting code is e~ AD) = 20,
Since k& = O(n/b) = O(ne/logn), the union bound
implies that the probability that any of the k <
n messages is corrupted beyond half the minimum
distance is also n=®().  Thus, with probability 1 —
n~ 1) [rrandom gimylates the original protocol without
error. Moreover, the overall communication rate is
clearly 1 — O(H(e)) due to the choice of the error-
correcting codes.

REMARK 4.1. Note that the aforementioned trivial cod-
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ing scheme has the disadvantage of working only for
nonadaptive protocols with a certain minimum message
length, which is a much stronger assumption than aver-
age message length. In Section 4.2, we show how to get
around this problem by converting the input protocol to
a blocked protocol.

Another problem with the coding scheme is that the
minimum message length is required to be Q.(logn).
This is in order to ensure that the probability of error
survives a union bound, as the trivial coding scheme has
no mechanism for recovering if a particular message gets
corrupted. This also results in a success probability of
only 1 — 1/poly(n) instead of the 1 — exp(n) one would
like to have for a coding scheme. Section 4.2 shows how
to rectify both problems by combining the reduced error
probability of a error correcting code failing with any
existing interactive coding scheme, such as [11].

4.2 Coding Scheme for Protocols with Average
Message Length of Q(log(1/¢)/€?) In this section,
we build on the trivial scheme discussed earlier to
provide an improved coding scheme that handles any
protocol II with an average message length of at least
= Qlog(1/€)/€?).

The first step is to transform II into a protocol
that is blocked. Note that the II is a k-alternating
protocol, where k = n/f = O(ne®/log(1/e)). Thus,
by Lemma 3.1, we can transform II into a b-blocked
protocol Iy, for b = O(log(1/€)/€), such that Iy
simulates IT and has n, = n + kb = n(1 + O(¢)) rounds.

Now, we view Il as a g-ary protocol with ny/b
rounds, where ¢ = 2°. This can be done by grouping
the symbols in each b-sized block as a single symbol
from an alphabet of size q. Next, we can use the coding
scheme of [11] in a blackbox manner to encode this g-
ary protocol as a g-ary protocol II" with %2 (14 o(Ve))
rounds such that II’ simulates IT under oblivious random
errors with error fraction € (i.e., each g-ary symbol is
corrupted (in any way) with an independent probability
of at most €’). We pick ¢ = €.

Finally, we transform II’ into a binary protocol
[Trandom aq follows: We expand each g-ary symbol of
IT" back into a sequence of b bits and then expand
the b bits into ¥’ > b bits using an error-correcting
code. In particular, we use an error-correcting code
C : {0,1}* — {0,1}* with block length o' = b +
(2¢+ 6) log?(1/€) and minimum distance 2¢log(1/e) for
appropriate constants ¢, d (such a code is guaranteed to
exist by the Gilbert-Varshamov bound). Thus, [T:2ndom

is a b’-blocked binary protocol with n,- % (1+0(Ve)) =
n(l + O(elog(1/e)) rounds. Moreover, each b'-sized
block of ITF2ndem gimply simulates each g-ary symbol of

IT" and the listening party simply decodes the received
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b’ bits to the nearest codeword of C.

To see that IT:andem gyccessfully simulates IT in the
presence of random errors with error fraction €, observe
that a &’-block is decoded incorrectly if and only if more
than d/2 of the b’ bits are corrupted. By the Chernoff
bound, the probability of such an event is < €* (for
appropriate choice of ¢,d). Thus, since II' is known to
simulate IT under oblivious errors with error fraction e?,
it follows that IT}22dom gatisfies the desired property.

enc

5 Conceptual Challenges and Key Ideas

In this section, we wish to provide some intuition for the
difficulties in surpassing the 1 — ©(y/€) communication
rate for interactive coding when dealing with non-
random errors. We do this because the adversarial
setting comes with a completely new set of challenges
that are somewhat subtle but nonetheless fundamental.
As such, the techniques used in the previous section
for interactive coding under random errors still provide
a good introduction to some of the building blocks
in the framework we use to deal with the adversarial
setting, but they are not sufficient to circumvent the
main technical challenges. Indeed, we show in this
section that the adversarial setting inherently requires
several completely new techniques to beat the 1—0(y/¢)
communication rate barrier.

We begin by noting that all existing interactive
coding schemes encode the input protocol II into a
protocol IT" with a certain type of structure: There are
some, a priori specified, communication rounds which
simulate rounds of the original protocol (i.e., result
in a walk down the protocol tree of II), while other
rounds constitute redundant information which is used
for error correction. In the case of protocols that use
hashing (e.g., [11], [12]), this is directly apparent in
their description, as rounds in which hashes and control
information are communicated constitute redundant
information. However, this is also the case for all
protocols based on tree codes (e.g., [5, 10, 9]): To see
this, note that in such protocols, one can simply use
an underlying tree code that is linear and systematic,
with the non-systematic portion of the tree code then
corresponding to redundant rounds.

We next present an argument which shows that,
due to the above structure, no existing coding scheme
can break the natural 1 — Q(y/€) communication rate
barrier, even for protocols with near-linear o(n) average
message lengths. This will also provide some intuition
about what is required to surpass this barrier.

Suppose that for a (randomized) n-round commu-
nication protocol II, the simulating protocol II’ has the
above structure and a communication rate of 1 —¢’. The
simulation II" thus consists of exactly N = n/(1 — ¢€)
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rounds. Note that, since every simulation must have
at least n non-redundant rounds, the fraction of redun-
dant rounds in II’ can be at most ¢’. Given that the
position of the redundant rounds is fixed, it is therefore
possible to find a window of (e/€’) N consecutive rounds
in II” which contain at most €N redundant rounds, i.e.,
an ¢ fraction. Now, consider an oblivious adversarial
channel that corrupts all the redundant information in
the window along with a few extra rounds. Such an ad-
versary renders any error correction technique useless,
while the few extra errors derail the unprotected parts of
the communication, thereby rendering essentially all the
non-redundant information communicated in this win-
dow useless as well—all while corrupting essentially only
eN rounds in total. This implies that in the remaining
N — (¢/€¢')N communication rounds outside of this win-
dow, there must be at least n non-redundant rounds in
order for IT" to be able to successfully simulate ITI. How-
ever, it follows that N — (¢/¢')N > n = N(1 —¢') which
simplifies to 1 — (e/€') > 1 — €, or €? > ¢, implying
that the communication rate of 1 — ¢ can be at most
1 — Q(y/e), where € is the fraction of errors applied by
the channel.

One can note that a main reason for the 1 — Q(v/e)
limitation in the above argument is that the adversary
can target the rounds with redundant information in the
relevant window. For instance, in the interactive coding
scheme of [11], the rounds with control information are
in predetermined positions of the encoded protocol, and
so, the adversary knows which locations to corrupt.

Our idea for overcoming the aforementioned limi-
tations in the case of an oblivious adversarial channel
is to use some type of information hiding to hide
the locations of the redundant rounds carrying con-
trol/verification information. In particular, we random-
ize the locations of control information bits within the
output protocol, which allows us to guard against at-
tacks that target solely the redundant information. In
order to allow for this synchronized randomization in
the standard private randomness model assumed in this
paper, Alice and Bob use the standard trick of running
an error-corrected randomness exchange procedure that
allows them to establish some shared randomness hid-
den from the oblivious adversary that can be used for
the rest of the simulation. Note that this inherently
does not work for a fully adaptive adversary, as the ad-
versary can adaptively choose which locations to corrupt
based on any randomness that has been shared over the
channel. In fact, we believe that beating the 1 — Q(y/¢)
rate barrier against fully adaptive adversaries may be
fundamentally impossible for precisely this reason.

Information hiding, while absolutely crucial, does
not, however, make use of a larger average message
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length which, according to the conjectures of [11], is
necessary to beat the 1 — Q(4/€) barrier. The idea we
use for this, as already demonstrated in Section 4, is
the use of blocking and the subsequent application of
error-correcting codes on each such block.

Unfortunately, the same argument as given above
shows that a straightforward application of block error-
correcting codes, as done in Section 4, cannot work
against an oblivious adversarial channel. The reason
is that in such a case, an application of systematic
block error-correcting codes would be possible as well,
and such codes again have pre-specified positions of
redundancy which can be targeted by the adversarial
channel. In particular, one could again disable all
redundant rounds including the non-systematic parts of
block error-correcting codes in a large window of (e/e') N
rounds and make the remaining communication useless
with few extra errors. More concretely, suppose that
one simply encodes all blocks of data with a standard
block error-correcting code. For such block codes, one
needs to specify a priori how much redundancy should
be added, and the natural direction would be to set the
relative distance to, say, 100e given that one wants to
prepare against an error rate of e. However, this would
allow the adversary to corrupt a constant fraction (e.g.,
1/200) of error correcting codes beyond their distance,
thus making a constant fraction of the communicated
information essentially useless. This would lead to
a communication rate of 1 — ©(1). It can again be
easily seen that in this tradeoff, the best fixed relative
distance one can choose for block error-correcting codes
is essentially /¢, which would lead to a rate loss of
H(4/€) for the error-correcting codes but would also
allow the adversary to corrupt at most a /e fraction
of all codewords. This would again lead to an overall
communication rate of 1 — Q(y/€).

Our solution to the hurdle of having to commit
to a fixed amount of redundancy in advance is to use
rateless error-correcting codes. Unlike block error-
correcting codes with fixed block length and minimum
distance, rateless codes encode a message into a poten-
tially infinite stream of symbols such that having ac-
cess to enough uncorrupted symbols allows a party to
decode the desired message with a resulting communi-
cation rate that adapts to the true error rate without
requiring a priort knowledge of the error rate. Since it is
not possible for Alice and Bob to know in advance which
data bits the adversary will corrupt, rateless codes allow
them to adaptively adjust the amount of redundancy for
each communicated block, thereby allowing the correc-
tion of errors without incurring too great a loss in the
overall communication rate.
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6 Main Result: Interactive Coding for
Oblivious Adversarial Errors

In this section, we develop our main result. We
remind the reader that in the oblivious adversarial
setting assumed throughout the rest of this paper, the
adversary is allowed to corrupt up to an e fraction of
the total number of bits exchanged by Alice and Bob.
The adversary commits to the locations of these bits
before the start of the protocol. Alice and Bob will
use randomness in their encoding, and one asks for a
coding scheme that allows Alice and Bob to recover the
transcript of the original protocol with exponentially
high probability in the length of the protocol (over the
randomness that Alice and Bob use) for any fixed error
pattern chosen by the adversary.

For simplicity in exposition, we assume that the
input protocol is binary, so that the simulating output
protocol will also be binary. However, the results hold
virtually as-is for protocols over larger alphabet. We
first provide a high-level overview of our construction of
an encoded protocol. The pseudocode of the algorithm
appears in Figure 3.

6.1 High-Level Description of Coding Scheme
Let us describe the basic structure of our interactive
coding scheme. Suppose Il is an n-round binary input
protocol with average message length ¢ > poly(1/e).
Using Lemma 3.1, we first produce a B-blocked binary
protocol Iy with n’ rounds that simulates II.

Our encoded protocol TIPLvious will begin by hav-
ing Alice and Bob performing a randomness exchange
procedure. More specifically, Alice will generate some
number of bits from her private randomness and encode
the random string using an error-correcting code of an
appropriate rate and distance. Alice will then trans-
mit the encoding to Bob, who can decode the received
string. This allows Alice and Bob to maintain shared
random bits. The randomness exchange procedure is
described in further detail in Section 6.3.

Next, IIoPlvious will simulate the B-sized blocks
(which we call B-blocks) of Iy in order in a structured
manner. Each B-block will be encoded as a string of 2B
bits using a rateless code, and the encoded string will
be divided into chunks of size b < B. For a detailed
discussion on the encoding procedure via rateless codes,
see Section 6.4.

Now, Hgggivious will consist of a series of Niter
iterations. FEach iteration consists of transmitting b’
rounds, and we call such a b'-sized unit a mini-block,
where b’ > b. Each mini-block will consist of b data bits,
as well as b’ —b bits of control information. The data bits
in successive mini-blocks will taken from the successive
b-sized chunks obtained by the encoding under the
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rateless code. Meanwhile, the control information bits
are sent by Alice and Bob in order to check whether they
are in sync with each other and to allow a backtracking
mechanism to tack place if they are not.

For a particular B-block that is being simulated,
mini-blocks keep getting sent until the receiving party
of the B-block is able to decode the correct B-block,
after which Alice and Bob move on to the next B-block
in II.

In addition to data bits, each mini-block also con-
tains b’ — b bits of control information. A party’s unen-
coded control information during a mini-block consists
of some hashes of his view of the current state of the
protocol as well as some backtracking parameters. The
aforementioned quantities are encoded using a hash for
verification as well as an error-correcting code. Each
party sends his encoded control information as part of
each mini-block. The locations of the control informa-
tion within each mini-block will be randomized for the
sake of information hiding, using bits from the shared
randomness of Alice and Bob. This is described in fur-
ther detail in Section 6.5. Moreover, we note that the
hashes used for the control information in each mini-
block are seeded using bits from the shared randomness.
The structure of each mini-block is shown in Figure 2.

After each iteration, Alice and Bob try to decode
each other’s control information in order to determine
whether they are in sync. If not, the parties decide
whether to backtrack in a controlled manner (see Sec-
tion 6.6 for details).

Throughout the protocol, Alice maintains a block
index c4 (which indicates which block of Il she
believes is currently being simulated), a chunk counter
ja, a transcript (of the blocks in Iy that have been
simulated so far) T4, a global counter m (indicating
the number of the current iteration), a backtracking
parameter ka, as well as a sync parameter syncg,.
Similarly, Bob maintains cp, jp, Ts, m, kg, and syncg.

6.2 Parameters We now set the parameters of the
protocol. For convenience, we will define a loss pa-
rameter € < e. Our interactive coding scheme will
incur a rate loss of (¢’ polylog(1/€’)), in addition to
the usual rate loss of ©(H(e)). Alice and Bob are
free to decide on an ¢ based on what rate loss they
are willing to tolerate in the interactive coding scheme.
In particular, note that if ¢ = ©(e?), then the rate
loss of ©(€ polylog(1/€’)) is overwhelmed by O(H (¢)).
For the purposes of Theorem 1.1, it will suffice to take
€ = O(€?) at then end, but for the sake of generality,
we maintain € as a separate parameter.

We now take the average message length threshold
to be Q(1/€?), i.e., we assume that our input protocol II
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Figure 2: Each B-block of T,k gets encoded into chunks
of size b using a rateless code. Every b'-sized mini-
block in TISPNVIOUs consists of the b bits of such a chunk,
along with (b’ — b)/2 bits of Alice’s control information
and (b — b)/2 bits of Bob’s control information. The
positions of the control information within a mini-
block are randomized. Note that rounds with Alice’s
control information are in green, while rounds with
Bob’s control information are in light blue.

—

has average message length ¢ = Q(1/¢’®). Then, II has
at most alt = n/¢ = O(ne’3) alternations. Moreover, we
take B = O(1/¢?) and b = s = O(1/¢), with B = sb.
Then, by Lemma 3.1, note that n’ < n + alt- B =
n(1+ O(€)).

We also take b’ = b+2clog(1/€’), so that within each
b'-sized mini-block, each party transmits clog(1/€’) bits
of (encoded) control information.

Finally, we take N = 77T,(l + O(elog(1/e)) itera-
tions. This will guarantee, with high probability, that at
the end of the protocol, Alice and Bob have successfully
simulated all blocks of Ily, and therefore, II. Also,
it should be noted that we append trivial blocks of ze-
ros (sent by, say, Alice) to the end of Ik to simulate in
case TISPEVIoUs ayer runs out of blocks of Ty to simulate
(because it has reached the bottom of the protocol tree)
before N, iterations of TISPEVIOUs hayve been executed.

6.3 Randomness Exchange Alice and Bob will
need to have some number of shared random bits
throughout the course of the protocol. The random
bits will be used for two main purposes: information
hiding and seeding hash functions, which will be dis-
cussed in Section 6.5. As it turns out, it will suffice for
Alice and Bob to have I’ = O(ne’ polylog(1/€¢’)) shared
random bits for the entirety of the protocol, using some
additional tricks.

Thus, in the private randomness model, it suffices
for Alice to generate the necessary number of random
bits and transmit them to Bob using an error-correcting
code. More precisely, Alice generates a uniformly
random string str € {0, 1}1,, uses an error-correcting
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code Cohange . [0 1} — {0,1}10Neerd’ of relative

distance 2/5 to encode str, and transmits the encoded
string to Bob. Since the adversary can corrupt only
at most e fraction of all bits, the transmitted string
cannot be corrupted beyond half the minimum distance
of C¥hanee Hence, Bob can decode the received string
and determine str.

Note that the exchange of randomness via the
codeword in C&“hange regults in a rate loss of ©(¢), which
is still overwhelmed by ©(H (¢)).

6.4 Sending Data Bits Using “Rateless” Error-
Correcting Codes To transmit data from blocks of
Ik, we will use an error-correcting code that has
incremental distance properties. One can think of this
as a rateless code with minimum distance properties.
Recall that b = s = O(1/¢') and B = sb. In particular,
we require an error-correcting code C'2tless : {0, 1} —
{0,1}2B for which the output is divided in to 2s chunks
of b bits each such that the code restricted to any
contiguous (cyclic) block of > s chunks has a certain
guaranteed minimum distance. The following lemma
guarantees the existence of such a code. We omit the
proof, but it appears in the full version of this paper.

LEMMA 6.1. For sufficiently large b, s, there exists an
error-correcting code C : {0,1}%% — {0,1}2® such that
foranya=0,1,...,2s—1and j=s+1,s+2,...,2s,
the code Cq j : {0,1}%% — {0, 1} formed by restricting
C to the bits ab,ab+1,...,ab+ jb—1 (modulo 2sb) has
relative distance at least §; = H " (]j;s - i), while C

has relative distance at least 095 = % (Here, H™1 is
the unique inverse of H that takes values in [0,1/2].)

REMARK 6.1. We set b = s = O(1/¢'). Thus, for
suitably small € > 0, there exists such a code C as
guaranteed by Lemma 6.1. Moreover, it is possible to
find such a code by brute force in time poly(1/€).

Thus, Alice and Bob can agree on a fixed error-
correcting code Cr®'ess of the type guaranteed by
Lemma 6.1 prior to the start of the algorithm. Now,
let us describe how data bits are sent during the itera-
tions of TISPLvious  The blocks of TTSPLVieUs are simulated
in order as follows.

First, suppose Alice’s block index ¢4 indicates a B-
block in Il during which Alice is the sender. Then
in TIgPlvious  Alice will transmit up to a maximum
of 2s chunks (of size b) that will encode the data z
from that block. More specifically, Alice will compute
y = Crateless(y) ¢ {0,1}?8 and decompose it as y =
YooYy 0 --0Yzs_1, where o denotes concatenation and
Yo, Y1, -, Y2s—1 € {0,1}0.

2132

Recall that each mini-block of TISPivious contains b
data bits (in addition to b’ — b control bits). Thus, Alice
can send each y; as the data bits of a mini-block. The
chunk that Alice sends in a given iteration depends on
the global counter m. In particular, Alice always sends
the chunk ¥,, moq 2s- Moreover, Alice keeps a chunk
counter j 4, which is set to 0 during the first iteration in
which she transmits a chunk from y and then increases
by 1 during each subsequent iteration (until j4 = 2s, at
which point j4 stops increasing).

On the other hand, suppose Alice’s block index
ca indicates a B-block in Il during which Alice is
the receiver. Then, Alice listens for data during each
mini-block. Alice stores her received b-sized chunks as
Jo, g1, ... and increments her chunk counter j4 after
each iteration to keep track of how many chunks she
has stored, along with a, an index indicating which y,
she expects the first chunk gy to be. Once Alice has
received more than s chunks (i.e., j4 > s), she starts to
keep an estimate x of the data x that Bob is sending that
Alice has by decoding gpogio---0gj,—1 to the nearest
codeword of C{f;ﬂess. This estimate is updated after each
subsequent iteration. As soon as Alice undergoes an
iteration in which she receives valid control information
suggesting that z = z (if Alice’s estimate Z matches
the hash of x that Bob sends as control information,
see Section 6.5), she advances her block index c4 and
appends her transcript T4 with .

Note that it is possible that j4 reaches 2s and Alice
has not yet received valid control information suggest-
ing that he has decoded z. In this case, Alice resets
ja to 0 and also resets a to the current value of m,
thereby restarting the listening process. Also, during
any iteration, if Alice receives control information sug-
gesting that jp < ja (i.e., Alice has been listening for a
greater number of iterations than Bob has been trans-
mitting), then again, Alice resets j4 and a and restarts
the process.

REMARK 6.2. Using a rateless code allows the amount
of redundancy in data that the sender sends to adapt to
the number of errors introduced by the adversary, rather
than wasting extra bits or not sending enough of them.

6.5 Control Information Alice’s unencoded con-
trol information in the m'! iteration consists of (1.)

a hash hixm) = hash(ca,S) of the block index cgu,

(2.) a hash hffg = hash(z,S) of the data in the cur-
rent block of Il being communicated, (3.) a hash

h(f,z = hash(ky,S) of the backtracking parameter k4,

(4.) a hash hfqnf% = hash(T4,S) of Alice’s transcript
T4, (5.) a hash himpl = hash(Ta[1,MP1],S) of Alice’s
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transcript up till the first meeting point, (6.) a hash
hilm)m = hash(T4[1,MP2], S) of Alice’s transcript up till
the second meeting point, (7.) the chunk counter ja,
and (8.) the sync parameter sync 4. Here, S refers to a
string of fresh random bits used to seed the hash func-
tions (note that S is different for each instance). Thus,
we write Alice’s unencoded control information as

ctrlim)

= (R B R B B e G synea )

Bob’s unencoded control information ctrlgn) is similar
in the analogous way.

For the individual hashes, we can use the following
Inner Product hash function hash : {0,1}! x {0,1}" —

{0,1}?, where r = Ip:
ha’Sh(X> R) = (<Xa R[l,l]>a <Xa R[l+1,2l]>7
ceey <X7 R[lp—(l—l),lp]>> 5

where X is the quantity to be hashed, and R is a
random seed. This choice of hash function guarantees
the following property:

PROPERTY 6.1. For any X,Y € {0,1}! such that
X # Y, we have that Prr.unit({o,13)[hash(X, R) =
hash(Y,R)] <27P.

Now, we wish to take output size p = O(log(1/¢’)) for
each of the hashes so that the total size of each party’s
control information in any iteration is O(log(1/€¢')).
Note that some of the quantities we hash (e.g., Ta,
Tg) actually have size | = Q(n). Thus, for the
corresponding hash function, we would naively require
r=1Ip = Q(nlog(1/€)) fresh bits of randomness for the
seed (per iteration), for a total of Q(Nitern log(1/€)) bits
of randomness. However, as described in Section 6.3,
Alice and Bob only have access to O(ne'polylog(1/¢€'))
bits of shared randomness!

To get around this problem, we make use of §-biased
sources to minimize the amount of randomness we need.
In particular, we can use the d-biased sample space of
[13] to stretch ©(log(L/J)) independent random bits
into a string of L = O(Njemnlog(1/€')) pseudorandom
bits that are d-biased. We take § = 27 ©WierP)  The
sample space guarantees that the L pseudorandom bits
are 6°(W_statistically close to being k-wise independent
fOI‘ k = log(l/é) = @(Mter : P) = @(Mter 10g<1/6/))
Moreover, the Inner Product Hash Function satisfies
the following modified collision property, which follows
trivially from Property 6.1 and the definition of d-bias:

PROPERTY 6.2. For any X,Y € {0,1}! such that X #
Y, we have that Prrlhash(X,R) = hash(Y,R)] <
2P + §, where R is sampled from a §-biased source.
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As it turns out, this property is good enough for our
purposes. Thus, after the randomness exchange, Alice
and Bob can simply take ©(log(L/d)) bits from str and
stretch them into an L-bit string strgyretch as described.
Then, for each iteration, Alice and Bob can simply seed
their hash functions using bits from strgtretch-

6.5.1 Encoding and Decoding Control Informa-
tion In this section, we describe the encoding and de-
coding functions that Alice and Bob use for their control
information. We start by listing the desired properties:

DEFINITION 6.1. Suppose X € {0,1} and V €
{%,7,0,1}' for some I > O. Then, we define
Corrupty (X) =Y € {0,1} as follows:

Vi if Vi € {0,1}
Vi=<{X;®1 ifVi=-

Moreover, we define wt(V') to be the number of coordi-
nates of V' that are not equal to *.

REMARK 6.3. Note that V corresponds to an error pat-
tern, in which x indicates a position that is not cor-
rupted, while — indicates a bit flip, and 0/1 indicates
a bit that is fized to the appropriate symbol (see Sec-
tion 2.1 for details about flip and replace errors). The
function Corrupty, applies the error pattern V to the bit
string given as an argument. Also, wt(V') is equal to the
number of positions that are targeted for corruption.

We require a seeded encoding function Enc
{0,1}! x {0,1}" — {0,1}° as well as a seeded decod-
ing function Dec : {0,1}° x {0,1}" — {0, 1} U{L} such
that the following property holds:

PROPERTY 6.3. The following holds:

1. For any X € {0,1}}, R € {0,1}", and V €
{#,2,0,1}° such that wt(V) < %o,

Dec(Corrupty, (Enc(X, R)), R) = X.

2. For any X € {0,1} and V € {0,1}° such that
wt(V) > %o,

P Dec(Corrupty, (Enc(X
RNUnif(lj{og}r)[ ec(Corrupty (Enc(X, R)), R)

¢ {X,1}] <2790,

REMARK 6.4. The second argument of Enc and Dec will
be a seed, generated by taking r fresh bits from the
shared randomness of Alice and Bob. A decoding output
of L indicates a decoding failure. Moreover, (1.) of
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Property 6.3 guarantees that a party can successfully
decode the other party’s control information if at most a
constant fraction of the encoded control information bits
are corrupted. On the other hand, (2.) of Property 6.3
guarantees that if a larger fraction of the encoded control
information bits are corrupted, then the decoding party
can detect any possible corruption with high probability.

We now exhibit Enc, Dec that satisfy Property 6.3.
Our Enc consists of a three-stage encoding: (1.) append
a hash value to the unencoded control information, (2.)
encode the resulting string using an error-correcting
code, and (3.) XOR each output bit with a fresh random
bit taken from the shared randomness.

For our purposes, we want [ = O(log(1/€')) to
be the number of bits in ctrlgm) (or ctrlggm)) and o =
clog(1/€'). First, we choose a hash function h : {0, 1} x
{0,1}* — {0,1}° that has the following property:

PROPERTY 6.4. Suppose X,U € {0,1}!, where U is not
the all-zeros vector, and W € {0,1}° . Then,

Pr [W(X+UR)=h(X,R)+ W] <2,
R~Unif({0,1}t)

In particular, we can use the simple Inner Product Hash
Function with t =1 -0’ and o’ = ©(log(1/€)):

h’(X? R) = <<Xa R[l,l]> ) <Xa R[l+1,2l]> PR
(X, Rpor—(-1),001)) -

Next, we choose a linear error-correcting code Chsh :

{0,1}+°" — {0,1}° of constant relative distance 1/4
and constant rate. We take r = ¢ + o and define Enc as

Enc(X, R) = C"*"(X o h(X, Rjps1.1)) @ Rp1.0-

Moreover, we define Dec as follows: Given Y, R, let X'
be the decoding of Y + R[;, under chash (using the

Chash

nearest codeword of and then inverting the map

Chash). We then define
X[/1,z] if h(X[ll,z]vR[OJrl,r]) = X[/l+1,l+o’] )

Dec(Y, R) = . /
{J_ if h(X[Ll],R[oH,r]) # X[,l+1,l+o’]

As it turns out, the above functions Enc and Dec
satisfy Property 6.3. We do not prove this fact here,
but a proof appears in the full version of this paper.

6.5.2 Information Hiding We now describe how
the encoded control information bits are sent within
each mini-block. Recall that in the mt" iteration,
Alice chooses a fresh random seed R4 taken from
the shared randommness str and computes her encoded
control information Enc(ctrli‘m),RA). Similarly, Bob
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chooses R and computes Enc(ctrl " RB). Recall that
R”, RB are known to both Alice and Bob.

As discussed previously, the control information bits
in each mini-block are not sent contiguously. Rather,
the locations of the control information bits within
each b'-sized mini-block are hidden from the oblivious
adversary by using the shared randomness to agree on
a designated set of 2clog(1/€') locations. In particular,
the locations of the control information bits sent by
Alice and Bob during the m'™ iteration are given by
the variables 27, and zJ . (i = 1,...,clog(1/¢)),
respectively. For each m, these variables are chosen
randomly at the beginning using O(log®(1/¢')) fresh
random bits from the preshared string str. Since there
are N, iterations, this will require a total of ©(Njt, -
log?(1/€')) = O(ne log?(1/¢')) random bits from str.

Thus, Alice sends the clog(1l/¢’) bits of
Enc(ctrl (™, R4) in positions zh i (i=1,...,clog(1/€))
of the mini-block of the m!" iteration, and similarly,
Bob sends the bits of Enc(ctrlggm)7RB) in positions
z%i (t = 1,...,clog(1/€)). Meanwhile, Bob listens
for Alice’s encoded control information in positions
24 of the mini-block and assembles the received bits

m,i
as a string Y € {0,1}¢°8(1/<) after which Bob tries
to decode Alice’s control information by computing
Dec(Y, R*). Similarly, Alice listens for Bob’s encoded
control information in locations zfm- and tries to decode
the received bits.

After each iteration, Alice and Bob use their decod-
ings of each other’s control information to decide how
to proceed. This is described in detail in Section 6.6.

6.6 Flow of the Protocol and Backtracking
Throughout TTSP1vious "each party maintains a state that
indicates whether both parties are in sync as well as
parameters that allow for backtracking in the case that
the parties are not in sync. After each iteration, Alice
and Bob use their decodings of the other party’s control
information from that iteration to update their states.
We describe the flow of the protocol in detail.

Alice and Bob maintain binary variables sync,
and syncp, respectively, which indicate the players’
individual perceptions of whether they are in sync. Note
that sync, = 1 implies k4 = 1 (and similarly, syncg = 1
implies kg = 1). Also, in the case that sync, =1 (resp.
syncg = 1), the variable speak 4, (resp. speaky) indicates
whether Alice (resp. Bob) speaks in the ' (vesp. ctt)
block of Ik, based on the transcript thus far.

Let us describe the protocol from Alice’s point
of view, as Bob’s procedure is analogous. Note that
after each iteration, Alice attempts to decode Bob’s
control information for that iteration. We say that
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Alice successfully decodes Bob’s control information if
the decoding procedure (see Section 6.5.1) does not
output L. In this case, we write the output of the
control information decoder (for the m*™ iteration) as

—~ (m)
ctrlg

= (R R B B B s i S )

We now split into two cases: syncy, = 1 and sync, = 0.

Case 1 (syncy = 1): The general idea is that whenever
Alice thinks she is in sync with Bob (i.e., sync, = 1), she
either (a.) listens for data bits from Bob while updating
her estimate x of block ca of Iy, if speaky, = O,
or (b.) transmits, as data bits of the next iteration,
the (m mod 2s)-th chunk of the encoding of = (the ca-
th B-block of Iy ) under Crteless if speak , = 1 (see
Section 6.4 for details).

If Alice is listening for data bits, then Alice expects
that k4 = kg = 1 and either (1.) ¢y = cp, Ta =Tp or
(2.) ca=cp+1,Tg =Ta[l...(cg —1)B]. Condition
(1.) is expected to hold if Alice has still not managed
to decode the B-block z that Bob is trying to relay,
while (2.) is expected if Alice has managed to decode
2 and has advanced her transcript but Bob has not yet
realized this.

On the other hand, if Alice is transmitting data bits,
then Alice expects that k4 = kp = 1, as well as either
(1.) ca=cp,Ta =Tp,or (2.) cg = ca+l,Tp = Tyozx,
or (3.) ca=cp+1,Tp =T4[l...(cg—1)B]. Condition
(1.) is expected to hold if Bob is still listening for data
bits and has not yet decoded Alice’s z, while (2.) is
expected to hold if Bob has already managed to decode
x and advanced his block index and transcript, and (3.)
is expected to hold if Bob has been transmitting data
bits to Alice (for the (c4 — 1)-th B-block of IIyx), but
Bob has not realized that Alice has decoded the correct
B-block and moved on.

Now, if Alice manages to successfully decode Bob’s
control information in the most recent iteration, then
Alice checks whether the hashes Egnc) , Egmlz, Efgm:)p, iNLgnz,
as well as syncy are consistent with Alice’s expectations
(as outlined in the previous two paragraphs). If not,
then Alice sets sync, = 0. Otherwise, Alice proceeds
normally.

REMARK 6.5. Note that in general, if a party is trying
to transmit the contents x of a B-block and the other
party is trying to listen for x, then there is a delay of
at least one iteration between the time that the listening
party decodes x© and the time that the transmitting party
receives control information suggesting that the other
party has decoded x. However, since b/B = O(€'), the
rate loss due to this delay turns out to be just O(€').

2135

Case 2 (sync, = 0): Now, we consider what happens
when Alice believes she is out of sync (i.e., sync, =
0). In this case, Alice uses a meeting point based
backtracking mechanism along the lines of [14] and [11].
We sketch the main ideas below.

Specifically, Alice keeps a backtracking parameter
k4 that is initialized as 1 when Alice first believes she
has gone out of sync and increases by 1 each iteration
thereafter. (Note that k4 is also maintained when
sync4 = 1, but it is always set to 1 in this case.) Alice
also maintains a counter F4 that counts the number
of discrepancies between k4 and kg, as well as meeting
point counters vy and vy. The counters E4,v1,vq are
initialized to zero when Alice first sets sync4 to 0.

The parameter k4 measures the amount by which
Alice is willing to backtrack in her transcript T4. More
specifically, Alice creates a scale ky = 2llog2kal by
rounding k4 to the largest power of two that does not
exceed it. Then, Alice defines two meeting points MP1
and MP2 on this scale to be the two largest multiples
of ksaB not exceeding |T4|. More precisely, MP1 =
EAB L%J and MP2 = MP1 — EAB. Alice is willing
to rewind her transcript to either one of T4[1...MP1]
and Ty [1...MP2], the last two positions in her transcript
where the number of B-blocks of Il that have been
simulated is an integral multiple of k4.

If Alice is able to successfully decode Bob’s control
information, then she checks Tlgn]g If it does not agree
with the hash of k4, then Alice increments F 4. She also
increments E4 if syncy = 1.

Otherwise, if Eggmlz matches her computed hash of

k4, then Alice checks whether either of Tz%mgpl,i:g_gm
matches the appropriate hash of Ty[l.. .Ml:;l}. If so,
then Alice increments her counter vy, which counts the
number of times her first meeting point matches one
of the meeting points of Bob. If not, then Alice then
checks whether either of ﬁ;ml\zpl, ?Lgmbzm matches the hash
of T4[1...MP2] and if so, she increments her counter vs,
which counts the number of times her second meeting
point matches one of the meeting points of Bob.

If Alice is not able to successfully decode Bob’s
control information from the most recent iteration (i.e.,
the decoder outputs L), she increments E4.

Regardless of which of the above scenarios holds,
Alice then increments k4 and updates k4, MP1, MP2.

Next, Alice checks whether to initiate a transition.
Alice only considers making a transition if k4 = k4 > 2
(i.e., ka is a power of two and is > 2). Alice first
decides whether to initiate a meeting point transition. If
v1 > 0.2k 4, then Alice rewinds Ty to Ty[l...MP1] and
resets kA,EA,syncA to 1 and E4,v1,vs to 0. Otherwise,
if vy > 0.2k4, then Alice rewinds T4 to T[l...MP2]
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and again resets k‘A,%A,syncA to 1 and F4, vy, v to 0.
If Alice has not made a meeting point transition,
then Alice checks whether E4 > 0.2k4. If so, Alice
undergoes an error transition, in which she simply resets
ka,ka,syncy to 1 and E4,v1,v2 to 0.
Finally, if k4 = %A > 2 but Alice has not made any
transition, then she simply resets vy, vy to 0.

REMARK 6.6. If T4 and T have not diverged too far,
then there is a common meeting point up to which
Ta and Tp agree. Thus, as control information of
each iteration, Alice and Bob send hash values of their
two meeting points in the hope that there is a match.
For a given ka, there are ks hash comparisons that
are generated. If at least a constant fraction of these
comparisons result in a match, then Alice decides to
rewind her transcript to the relevant meeting point. This
ensures that in order for an adversary to cause Alice
to backtrack incorrectly, he must corrupt the control
information in a constant fraction of iterations.

6.7 Pseudocode We are now ready to provide the
pseudocode for the protocol ITSPHVIous which follows
the high-level description outlined in Section 6.1 and is
shown in Figure 3. The pseudocode for the helper func-
tions AliceControlFlow, AliceUpdateSyncStatus,
AliceUpdateControl, AliceDecodeControl,
AliceAdvanceBlock, AliceUpdateEstimate, and
AliceRollback for Alice is also displayed. Bob’s
functions BobControlFlow, BobUpdateSyncStatus,
BobUpdateControl, BobDecodeControl,
BobAdvanceBlock, BobUpdateEstimate, and
BobRollback are almost identical, except that “A”
subscripts are replaced with “B.” Also, the function
InitSharedRandomness is the same for Alice and Bob.
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b = b+ 2clog(1/¢)
Niter = %(1 + @(elOg(1/€)))

¢ =2
b=s=0(1/¢)
B =sb

Global parameters
Iy = B-blocked simulating protocol for II (see Lemma 3.1)
I' = O(ne polylog(1/¢'))
chh . 10,1300/ 10 1390980/ (see Section 6.5.1)
gexchange . {0, 1}1/ — {0, 1}106Ni‘e'b/ (see Section 6.3)
™. {0,1}" — {0,1}*” (see Lemma 6.1)

Random string exchange

Choose a random string str € {0, 1}1,
w — Cexchange(str)

w
w
w’ < nearest codeword of C¥"a"ee o @
Str < (Cexchange)fl(w/)
Initialization
Ta+—0 Tg + 0
x < nil x < nil
ka,ka,ca,syncy <1 ks,kB,c,syncg + 1
E4,v1,v2,j4,speak 4, a, m,MP1,MP2 < 0 Ep,v1,v2, jB,speaky, a, m,MP1,MP2 < 0
InitSharedRandomness () InitSharedRandomness ()
if Alice speaks in the first block of IIy then if Bob speaks in the first block of IIy then
speak, + 1 speaky < 1
x < contents of first block of Iy x < contents of first block of ITyk
Y=YoOUYL O OYas_1 crateIeSS(x) YoO YL OO Yps_1 CrateIeSS(x)
end if end if

Block transmission (repeat Ni.r times)

AliceUpdateControl() BobUpdateControl ()
Send rfi] in slot 2} ; fori=1,..., (b —b)/2 Send r[i] in slot 2z ; fori=1,..., (b —b)/2
Listen during slots me fori=1,...,(b' —b)/2 and Listen during slots Ef}w- fori =1,...,(b' —b)/2 and

write bits to T

if sync, =1 and speak, = 1 then
Send the bits of ¥m mod 25 in the b
remaining slots

else
Listen during the b remaining slots and
store as ga

end if

AliceControlFlow()

write bits to T

if sync; = 1 and speaky = 1 then
Send the bits of ¥, mod 25 in the b
remaining slots

else
Listen during the b remaining slots and
store as gB

end if

BobControlFlow()

——————— End of repeat —————

Figure 3: Encoded protocol II

oblivious

one for tolerating oblivious adversarial errors.
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Algorithm 1 Procedure for Alice to process received data bits and control info from a mini-block

1: function ALICECONTROLFLOW

11:
12:
13:
14:
15:
16:

17:
18:
19:
20:

21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:

34:
35:

> Update phase:

—~ (m)
ctrlz ~ <~ ALICEDECODECONTROL

if cirly” £1 then
(ﬁ(m) Bim) Fm) T(m) 3(m)  F(m)

~ o —~ (m
B,er "'Bar VB ks VBT VB wp1s B,MPQJB7SY”CB><_C”|B

if sync4, = 0 then
if 1) # hash$")(ka) or syncy = 1 then
Ep+— Ep+1

(m)

else if hash{T), (Ta[l...MP1]) = RS )L, or hash(b, (Ta[l.. . MP1]) = A7) then

B,MP1
v v+ 1

B,MP1

else if hashy', (Ta[l...MP2]) = hiy'y, or hash

Vg < Vg + 1
end if
end if
else if syncy, = 0 then
Fp<+— FE4q4+1
end if
if syncy, = 0 then
]fA —ka+1
kA — 2L10g2 kal
end if

ALICEUPDATESYNCSTATUS

> Transition phase:

if ky = EA > 2 and v; > 0.2k, then
ALICEROLLBACK(MP1)

else if k4 = EA > 2 and vy > 0.2k then
ALICEROLLBACK (MP2)

else if ky = EA >2and EF4 > 0.2k, then
a < (m+1) mod 2s
kA,EA,syncA «—1
EA7U17U2,~jA +~0

else if k4 = k4 > 2 then
V1, Vg < 0

end if

MP1 < kuB {%J

MP2 < MP1 — k4B

m+—m+1

36: end function

B,MP2

MP2

o a(TalL...MP2]) = B}, then
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Algorithm 2 Procedure for Alice to update sync status

1: function ALICEUPDATESYNCSTATUS
2: syncy < 0

3 if k4 =1 then
1 if ctrly” # 1 and A7) = hash'y") (1) then
5 if syncy =0 then
6: syncy < 1; ja < 0; a < (m+ 1) mod 2s
7 else if hash{7” (ca) = h'7") and hash')").(T4) = B then
8 Sync, 1 , ’ 7
9: if speak, = 0 then
10: if ja <7JB then
11: ALICEUPDATEESTIMATE
12: else
13: ja < 0; a4 (m+1) mod 2s
14: end if
15: else
16: jA%min{jA—&—l,Zs}
17: end if B _
18: else if speak, =1 and hashg'?g (ca+1) = hg”c) and hashg"%(TA ox) = h%”% then
19: syncy « 1 ' 7 7 ’
20: ALICEADVANCEBLOCK _
21: else if Bob speaks in block (¢4 —1) of IT,, and hashg?c) (ca—1) = hg’g and hashgtl:)F(TA[l oo (ca—
2)B]) = 1\ and hash")(Ta[((ca —2)B+1)...(ca — 1)B]) = h}j") then
22: 7 syncy <+ 1
23: if speaky = 0 then
24: ja < 0; a4 (m+1) mod 2s
25: else
26: jA<—min{jA+1,2s}
27: end if
28: end if
29: else if cftTIgn) = 1 then
30: syncy <1
31: if speaky, = 0 then
32: if j4 # 0 then
33: ALICEUPDATEESTIMATE
34: else
35: a < (m+ 1) mod 2s
36: end if
37: else
38: ja + min{ja + 1,2s}
39: end if
40: end if
41: end if

42: end function
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Algorithm 3 Procedure for Alice to update control information
1: function ALICEUPDATECONTROL
2 ctrl (Y - (hasham(ca), hash{") (x), hash") (k4), hash ' (Ta), hashY g (TalL ... MP1]),

hashgﬁ,,l)PQ(TA[l ...MP2]), ja,syncy)
3 r < Chash (ctrlxn) o hash(g?c)trl (ctrl&m’)>) &b VX”)
4: end function

Algorithm 4 Procedure for Alice to decode control information sent by Bob
1: function ALICEDECODECONTROL
2: z < decoding of T & V]ém) under Ch" (inverse of C"2M applied to nearest codeword)
3: z¢ 0 z" < z, where z° has length (' —b)/2

4 if hashg?c)trl(zc) = z" then
5 return z°€
6 else

7: return |
8 end if

9: end function

Algorithm 5 Procedure for Alice to advance the block index and prepare for future transmissions
1: function ALICEADVANCEBLOCK
2 if speak, =1 then

3 Ty Typox

4: else
5

6

Ty Tyo T
end if

: cp+—ca+1
8: ja+0

9: if Alice speaks in block c4 of Il then

10: speaky <1

11: x <— contents of block c4 of Il

12: Y=Y OY1 O - 0Yas—1 < Cratdess(gc)
13: else

14: speaky <0

15: a <+ (m+ 1) mod 2s

16: x < nil

17: end if

18: end function
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Algorithm 6 Procedure for Alice to update her estimate of the contents of the current block based on past data
blocks

1: function ALICEUPDATEESTIMATE
2 gja9ga
3: Jasja+1

4 if j4 > s then

5 T < result after decoding (go, g1, -, g;j.—1) via the nearest codeword in C[f:;-ﬂess
6 if hash}")(Z) = hiy") then

7: ALICEADVANCEBLOCK

8 else if j4 = 2s then

9: ja <0

10: a + (m+1) mod 2s

11: end if

12: end if

13: end function

Algorithm 7 Procedure for Alice to backtrack to a previous meeting point

1: function ALICEROLLBACK(MP)

2: TA(—TA[l...MP]

3: cpA % +1

4 kA,EA,syncAel

5 EA,Ul,U27jA<—O

6: if Alice speaks in block ¢4 of Il then
7: speaky 1

8: x < contents of block c4 of Iy

0: Y=1YgOYLO - 0Ygg_q Crateless(x)
10: else

11: speak, + 0
12: a + (m+ 1) mod 2s
13: x < nil
14: end if

15: end function
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Algorithm 8 Procedure for Alice and Bob to use exchanged random string to initialize hash functions, information
hiding mechanism, and encoding functions for control information

1

I

: function INITSHAREDRANDOMNESS

p < O(log(1/€"))
5 — Q*G(Niter']?)

L + O(Niyernlog(1/€))
Let str = str'°® o str’, where str'® is of length ©(Niter - log?(1/¢')) and str’ is of length ©(log(L/d))
S < d-biased length L pseudorandom string derived from str’ (via the biased sample space of [13])

> Generate locations for information hiding in each iteration:
for i = 0 to Nijter — 1 do
Choose z{}l, zf}2, ey Zf(b/—b)/w zfl, 252, ey zf(b,_b)/Q to be distinct numbers in {1,2,...,0’'} using

O(log?(1/€')) fresh random bits from str'oc
end for

> Set up parameters for encoding control information during each iteration

for i = 0 to Njter — 1 do
VY < (0 = b)/2 fresh random bits from strl°c

Vg) < (' —b)/2 fresh random bits from strlo

Initialize hash%?ctrl,hashg?cm to an inner product hash function with output length ©(log(1/€'))

and seed fixed as O(log(1/¢€')) fresh random bits from str'°c
end for

> Initialize hash functions for control information in each iteration:

for i =0t0 Nite —1do , , , , , : :
Initialize hashfj)c, hashfz) , hash(i?k, hash(j?T, hashfz)m,i, hashEZ?MPQ, hash%)c, ha.shsé)_m7 hashg)‘k,

X

hashg),T, hashg?Mpl, imsh%)’MP2 to be inner product hash functions with output length ©(log(1/€¢'))

and seed fixed using fresh random bits from S
end for

: end function
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