
Synchronization Strings: Codes for Insertions and Deletions
Approaching the Singleton Bound∗

Bernhard Haeupler
Carnegie Mellon University

Pittsburgh, PA, USA
haeupler@cs.cmu.edu

Amirbehshad Shahrasbi
Carnegie Mellon University

Pittsburgh, PA, USA
shahrasbi@cs.cmu.edu

ABSTRACT

We introduce synchronization strings, which provide a novel way

to efficiently deal with synchronization errors, i.e., insertions
and deletions. Synchronization errors are strictly more general
and much harder to cope with than more commonly considered
half-errors, i.e., symbol corruptions and erasures. For every ε > 0,

synchronization strings allow to index a sequence with an ε−O (1)

size alphabet such that one can efficiently transform k synchro-

nization errors into (1 + ε)k half-errors. This powerful new
technique has many applications. In this paper, we focus on de-
signing insdel codes, i.e., error correcting block codes (ECCs) for
insertion-deletion channels.

While ECCs for both half-errors and synchronization errors have
been intensely studied, the later has largely resisted progress. As
Mitzenmacher puts it in his 2009 survey: “Channels with synchro-

nization errors . . . are simply not adequately understood by current

theory. Given the near-complete knowledge we have for channels with

erasures and errors ... our lack of understanding about channels with

synchronization errors is truly remarkable.” Indeed, it took until 1999
for the first insdel codes with constant rate, constant distance, and
constant alphabet size to be constructed and only since 2016 are
there constructions of constant rate insdel codes for asymptotically
large noise rates. Even in the asymptotically large or small noise
regime these codes are polynomially far from the optimal rate-
distance tradeoff. This makes the understanding of insdel codes
up to this work equivalent to what was known for regular ECCs
after Forney introduced concatenated codes in his doctoral thesis
50 years ago.

A straight forward application of our synchronization strings
based indexingmethod gives a simple black-box construction which
transforms any ECC into an equally efficient insdel code

with only a small increase in the alphabet size. This instantly trans-
fers much of the highly developed understanding for regular ECCs
into the realm of insdel codes. Most notably, for the complete noise
spectrum we obtain efficient “near-MDS” insdel codes which get
arbitrarily close to the optimal rate-distance tradeoff given by the

∗Supported in part by the National Science Foundation through grants CCF-1527110
and CCF-1618280.
A full version of this article is available at [18].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC’17, Montreal, Canada

© 2017 ACM. 978-1-4503-4528-6/17/06. . . $15.00
DOI: 10.1145/3055399.3055498

Singleton bound. In particular, for any δ ∈ (0, 1) and ε > 0 we give
insdel codes achieving a rate of 1−δ−ε over a constant size alphabet
that efficiently correct a δ fraction of insertions or deletions.

CCS CONCEPTS

• Mathematics of computing→ Coding theory;

KEYWORDS

Coding for Insertions and Deletions, Synchronization

ACM Reference format:

Bernhard Haeupler and Amirbehshad Shahrasbi. 2017. Synchronization

Strings: Codes for Insertions and Deletions Approaching the Singleton

Bound. In Proceedings of 49th Annual ACM SIGACT Symposium on the Theory

of Computing, Montreal, Canada, June 2017 (STOC’17), 14 pages.

DOI: 10.1145/3055399.3055498

1 INTRODUCTION

Since the fundamental works of Shannon, Hamming, and others
the field of coding theory has advanced our understanding of how
to efficiently correct symbol corruptions and erasures. The practical
and theoretical impact of error correcting codes on technology and
engineering as well as mathematics, theoretical computer science,
and other fields is hard to overestimate. The problem of coding for
timing errors such as closely related insertion and deletion errors,
however, while also studied intensely since the 60s, has largely
resisted such progress and impact so far. An expert panel [8] in
1963 concluded: “There has been one glaring hole in [Shannon’s]

theory; viz., uncertainties in timing, which I will propose to call time

noise, have not been encompassed Our thesis here today is that

the synchronization problem is not a mere engineering detail, but

a fundamental communication problem as basic as detection itself!”

however as noted in a comprehensive survey [25] in 2010: “Un-
fortunately, although it has early and often been conjectured that

error-correcting codes capable of correcting timing errors could im-

prove the overall performance of communication systems, they are

quite challenging to design, which partly explains why a large collec-

tion of synchronization techniques not based on coding were developed

and implemented over the years.” or as Mitzenmacher puts in his
survey [26]: “Channels with synchronization errors, including both in-
sertions and deletions as well as more general timing errors, are simply

not adequately understood by current theory. Given the near-complete

knowledge we have for channels with erasures and errors . . . our lack

of understanding about channels with synchronization errors is truly

remarkable.” We, too, believe that the current lack of good codes
and general understanding of how to handle synchronization errors
is the reason why systems today still spend significant resources
and efforts on keeping very tight controls on synchronization while

33

STOC’17, June 2017, Montreal, Canada Bernhard Haeupler and Amirbehshad Shahrasbi

other noise is handled more efficiently using coding techniques. We
are convinced that a better theoretical understanding together with
practical code constructions will eventually lead to systems which
naturally and more efficiently use coding techniques to address
synchronization and noise issues jointly. In addition, we feel that
better understanding the combinatorial structure underlying (codes
for) insertions and deletions will have impact on other parts of
mathematics and theoretical computer science.

This paper introduces synchronization strings, a new combinato-
rial structure which allows efficient synchronization and indexing
of streams under insertions and deletions. Synchronization strings
and our indexing abstraction provide a powerful and novel way to
deal with synchronization issues. They make progress on the issues
raised above and have applications in a large variety of settings and
problems. We already found applications to channel simulations,
synchronization sequences [25], interactive coding schemes [4–
7, 16, 21], edit distance tree codes [2], and error correcting codes for
insertion and deletions and suspect there will be many more. This
paper focuses on the last application, namely, designing efficient
error correcting block codes over large alphabets for worst-case
insertion-deletion channels.

The knowledge on efficient error correcting block codes for
insertions and deletions, also called insdel codes, severely lacks
behind what is known for codes for Hamming errors. While Leven-
shtein [22] introduced and pushed the study of such codes already
in the 60s it took until 1999 for Schulman and Zuckerman [29] to
construct the first insdel codes with constant rate, constant dis-
tance, and constant alphabet size. Very recent work of Guruswami
et al. [10, 14] in 2015 and 2016 gave the first constant rate insdel
codes for asymptotically large noise rates, via list decoding. These
codes are however still polynomially far from optimal in their rate
or decodable distance respectively. In particular, they achieve a rate
of Ω(ε5) for a relative distance of 1−ε or a relative distance ofO(ε2)
for a rate of 1 − ε , for asymptotically small ε > 0 (see Section 1.5
for a more detailed discussion of related work).

This paper essentially closes this line of work by designing ef-
ficient “near-MDS” insdel codes which approach the optimal rate-
distance trade-off given by the Singleton bound. We prove that for
any 0 ≤ δ < 1 and any constant ε > 0, there is an efficient insdel
code over a constant size alphabet with block length n and rate
1 − δ − ε which can be uniquely and efficiently decoded from any
δn insertions and deletions. The code construction takes polyno-
mial time; and encoding and decoding can be done in linear and
quadratic time, respectively. More formally, let us define the edit
distance of two given strings as the minimum number of insertions
and deletions required to convert one of them to the other one.

Theorem 1.1. For any ε > 0 and δ ∈ (0, 1) there exists an encoding
map E : Σk → Σ

n and a decoding map D : Σ∗ → Σ
k , such that, if

EditDistance(E(m),x) ≤ δn then D(x) =m. Further k
n > 1 − δ − ε ,

|Σ| = f (ε), and E and D are explicit and can be computed in linear

and quadratic time in n.

This code is obtained via a black-box construction which trans-

forms any ECC into an equally efficient insdel codewith only
a small increase in the alphabet size. This transformation, which is
a straight forward application of our new synchronization strings

based indexing method, is so simple that it can be summarized in
one sentence:

For any efficient length n ECC with alphabet bit size
log ε−1

ε ,

attaching to every codeword, symbol by symbol, a random

or suitable pseudorandom string over an alphabet of bit

size log ε−1 results in an efficient insdel code with a rate and

decodable distance that changed by at most ε .

Far beyond just implying Theorem 1.1, this allows to instantly
transfer much of the highly developed understanding for regular
ECCs into the realm of insdel codes.

Theorem 1.1 is obtained by using the “near-MDS” expander
codes of Guruswami and Indyk [9] as a base ECC. These codes
generalize the linear time codes of Spielman [31] and can be en-
coded and decoded in linear time. Our simple encoding strategy,
as outlined above, introduces essentially no additional computa-
tional complexity during encoding. Our quadratic time decoding
algorithm, however, is slower than the linear time decoding of the
base codes from [9] but still pretty fast. In particular, a quadratic
time decoding for an insdel code is generally very good given that,
in contrast to Hamming codes, even computing the distance be-
tween the received and the sent/decoded string is an edit distance
computation. Edit distance computations in general do usually not
run in sub-quadratic time, which is not surprising given the recent
SETH-conditional lower bounds [1]. For the settings of insertion-
only and deletion-only errors we furthermore achieve analogs of
Theorem 1.1 with linear decoding complexities (see [18]).

1.1 High-level Overview, Intuition and Overall

Organization

While extremely powerful, the concept and idea behind synchro-
nization strings is easily demonstrated. In this section, we explain
the high-level approach taken and provide intuition for the for-
mal definitions and proofs to follow. This section also explains the
overall organization of the rest of the paper.

1.1.1 Synchronization Errors and Half-Errors. Consider a stream
of symbols over a large but constant size alphabet Σ in which some
constant fraction δ of symbols is corrupted.

There are two basic types of corruptions we will consider, half-
errors and synchronization errors. Half-errors consist of erasures,
that is, a symbol being replaced with a special “?” symbol indicating
the erasure, and symbol corruptions in which a symbol is replaced
with any other symbol in Σ. The wording half-error comes from
the realization that when it comes to code distances erasures are
half as bad as symbol corruptions. An erasure is thus counted as
one half-error while a symbol corruption counts as two half-errors
(see Section 2 for more details). Synchronization errors consist of
deletions, that is, a symbol being removed without replacement, and
insertions, where a new symbol from Σ is added anywhere.

It is clear that synchronization errors are strictly more gen-

eral and harsher than half-errors. In particular, any symbol
corruption, worth two half-errors, can also be achieved via a dele-
tion followed by an insertion. Any erasure can furthermore be
interpreted as a deletion together with the often very helpful extra
information where this deletion took place. This makes synchro-
nization errors at least as hard as half-errors. The real problem that
synchronization errors bring with them however is that they cause

34

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound STOC’17, June 2017, Montreal, Canada

sending and receiving parties to become “out of synch”. This easily
changes how received symbols are interpreted and makes design-
ing codes or other systems tolerant to synchronization errors an
inherently difficult and significantly less well understood problem.

1.1.2 Indexing and Synchronization Strings: Reducing Synchro-

nization Errors to Half-Errors. There is a simple folklore strategy,
which we call indexing, that avoids these synchronization problems:
Simply enhance any element with a time stamp or element count.
More precisely, consecutively number the elements and attach this
position count or index to each stream element. Now, if we deal with
only deletions it is clear that the position of any deletion is easily
identified via a missing index, thus transforming it into an erasure.
Insertions can be handled similarly by treating any stream index
which is received more than once as erased. If both insertions and
deletions are allowed one might still have elements with a spoofed
or incorrectly received index position caused by a deletion of an
indexed symbol which is then replaced by a different symbol with
the same index. This however requires two insdel errors. Generally
this trivial indexing strategy can seen to successfully transform any

k synchronization errors into at most k half-errors.
In many applications, however, this trivial indexing cannot be

used, because having to attach a logn bit1 long index description to
each element of an n long stream is prohibitively costly. Consider
for example an error correcting code of constant rate R over some
potentially large but nonetheless constant size alphabet Σ, which

encodes Rn
log |Σ | bits into n symbols from Σ. Increasing Σ by a factor

of n to allow each symbol to carry its logn bit index would destroy
the desirable property of having an alphabet which is independent
from the block length n and would furthermore reduce the rate of

the code from R to Θ(R
logn

), which approaches zero for large block

lengths. For streams of unknown or infinite length such problems
become even more pronounced.

This is where synchronization strings come to the rescue. Essen-
tially, synchronization strings allow to index every element in

an infinite stream using only a constant size alphabet while
achieving an arbitrarily good approximate reduction from synchro-
nization errors to half-errors. In particular, using synchronization
strings k synchronization errors can be transformed into at

most (1 + ε)k half-errors using an alphabet of size indepen-

dent of the stream length and in fact only polynomial in 1
ε . More-

over, these synchronization strings have simple constructions and
fast and easy decoding procedures.

Attaching our synchronization strings to the codewords of any
efficient error correcting code, which efficiently tolerates the usual
symbol corruptions and erasures, transforms any such code into an
efficiently decodable insdel code while only requiring a negligible
increasing in the alphabet size. This allows to use the decades of
intense research in coding theory for Hamming-type errors to be
transferred into the much harder and less well understood insertion-
deletion setting.

1Throughout this paper all logarithms are binary.

1.2 Synchronization Strings: Definition,

Construction, and Decoding

Next, we want to briefly motivate and explain how we arrive at
a natural definition of these magical indexing sequences S over
a finite alphabet Σ and what intuition lies behind their efficient
constructions and decoding procedures.

Suppose a sender has attached some indexing sequence S one-
by-one to each element in a stream and consider a time t at which
a receiver has received a corrupted sequence of the first t index
descriptors, i.e., a corrupted version of the length t prefix of S . When
the receiver tries to guess or decode the current index it should
naturally consider all indexing symbols received so far and find
the “best” prefix of S . This suggests that the prefix of length l of a
synchronization string S acts as a codeword for the index position
l and that one should think of the set of prefixes of S as a code
associated with the synchronization string S . Naturally one would
want such a code to have good distance properties between any
two codewords under some distance measure. While edit distance,
i.e., the number of insertions and deletions needed to transform
one string into another seems like the right notion of distance
for insdel errors in general, the prefix nature of the codes under
consideration will guarantee that codewords for indices l and l ′ > l

will have edit distance exactly l ′ − l . This implies that even two
very long codewords only have a tiny edit distance. On the one
hand, this precludes synchronization codes with a large relative
edit distance between its codewords. On the other hand, one should
see this phenomenon as simply capturing the fact that at any time
a simple insertion of an incorrect symbol carrying the correct next
indexing symbol will lead to an unavoidable decoding error. Given
this natural and unavoidable sensitivity of synchronization codes to
recent corruptions, it makes sense to instead use a distance measure
which captures the recent density of errors. In this spirit, we suggest
the definition of a, to our knowledge, new string distance measure
which we call relative suffix distance, which intuitively measures the
worst fraction of insdel errors to transform suffixes, i.e., recently
sent parts of two strings, into each other. This natural measure, in
contrast to a similar measure defined in [2], turns out to induce a
metric space on any set of strings.

With this natural definitions for an induced set of codewords and
a natural distance metric associated with any such set the next task
is to design a string S for which the set of codewords has as large of a
minimum pairwise distance as possible. When looking for (infinite)
sequences that induce such a set of codewords and thus can be
successfully used as synchronization strings it became apparent that
one is looking for highly irregular and non-self-similar strings over
a fixed alphabet Σ. It turns out that the correct definition to capture
these desired properties, which we call ε-synchronization property,
states that any two neighboring intervals of S with total length l

should require at least (1− ε)l insertions and deletions to transform
one into the other, where ε ≥ 0. A one line calculation also shows
that this clean property also implies a large minimum relative suffix
distance between any two codewords. Not surprisingly, random
strings essentially satisfy this ε-synchronization property, except
for local imperfections of self-similarity, such as, symbols repeated
twice in a row, which would naturally occur in random sequences
about every |Σ| positions. This allows us to use the probabilistic
method and the general Lovász local lemma to prove the existence

35

STOC’17, June 2017, Montreal, Canada Bernhard Haeupler and Amirbehshad Shahrasbi

ε-synchronization strings. This also leads to an efficient randomized
construction.

Finally, decoding any string to the closest codeword, i.e., the
prefix of the synchronization string S with the smallest relative
suffix distance, can be easily done in polynomial time because the
set of synchronization codewords is linear and not exponential in
n and (edit) distance computations (to each codeword individually)
can be done via the classicalWagner-Fischer dynamic programming
approach.

1.3 More Sophisticated Decoding Procedures

All this provides an indexing solution which transforms any k

synchronization errors into at most (5+ε)k half-errors. This already
leads to insdel codes which achieve a rate approaching 1 − 5δ for

any δ fraction of insdel errors with δ < 1

5
. While this is already a

drastic improvement over the previously best 1 −O(
√
δ) rate codes

from [10], which worked only for sufficiently small δ , it is a far less
strong result than the near-MDS codes we promised in Theorem 1.1
for every δ ∈ (0, 1).

In order to achieve our main theorem we developed an different
strategy. Fortunately, it turned out that achieving a better indexing
solution and the desired insdel codes does not require any changes
to the definition of synchronization codes, the indexing approach
itself, or the encoding scheme but solely required a very different
decoding strategy. In particular, instead of decoding indices in a
streaming manner we consider more global decoding algorithms.
We provide several such decoding algorithms in Section 6. In partic-
ular, we give a simple global decoding algorithm which for which
the number of misdecodings goes to zero as the quality ε of the
ε-synchronization string used goes to zero, irrespectively of how
many insdel errors are applied.

Our global decoding algorithms crucially build on another key-
property which we prove holds for any ε-synchronization string S ,
namely that there is no monotone matching between S and itself
which mismatches more than a ε fraction of indices. Besides being
used in our proofs, considering this ε-self-matching property has
another advantage. We show that this property is achieved easier
than the full ε-synchronization property and that indeed a random
string satisfies it with good probability. This means that, in the con-
text of error correcting codes, one can even use a simple uniformly
random string as a “synchronization string”. Lastly, we show that

even a n−O (1)-approximate O
(

logn
log(1/ε)

)

-wise independent random

strings satisfy the desired ε-self-matching property which, using
the celebrated small sample space constructions from [28] also leads
to a deterministic polynomial time construction.

1.4 Organization of this Paper

The organization of this paper closely follows the flow of the high-
level description above. We start by giving more details on related
work in Section 1.5 and introduce notation used in the paper in
Section 2. In Section 3, we formalize the indexing problem. Sec-
tion 4 shows how any solution to the indexing problem can be
used to transform any regular error correcting codes into an ins-
del code. Section 5 introduces the relative suffix distance and ε-
synchronization strings, proves the existence of ε-synchronization
strings and provides an efficient construction. Section 5.2 shows

that the minimum suffix distance decoder is efficient and leads to a
good indexing solution. We elaborate on the connection between
ε-synchronization strings and the ε-self-matching property in Sec-
tion 6.1, introduce an efficient deterministic construction of ε-self
matching strings in Section 6.2, and provide our improved decoding
algorithms in the remainder of Section 6.

1.5 Related Work

Shannon was the first to systematically study reliable communica-
tion. He introduced random error channels, defined information
quantities, and gave probabilistic existence proofs of good codes.
Hamming was the first to look at worst-case errors and code dis-
tances as introduced above. Simple counting arguments on the
volume of balls around codewords given in the 50’s by Hamming
and Gilbert-Varshamov produce simple bounds on the rate of q-ary
codes with relative distance δ . In particular, they show the existence
of codes with relative distance δ and rate at least 1 − Hq (δ) where
Hq (x) = x log(q − 1) − x log x−(1−x) log(1−x)

logq
is the q-ary entropy

function. This means that for any δ < 1 and q = ω(1/δ) there exists
codes with distance δ and rate approaching 1 − δ . Concatenated
codes and the generalized minimum distance decoding procedure
introduced by Forney in 1966 led to the first codes which could
recover from constant error fractions δ ∈ (0, 1) while having poly-
nomial time encoding and decoding procedures. The rate achieved
by concatenated codes for large alphabets with sufficiently small

distance δ comes out to be 1 − O(
√
δ). On the other hand, for δ

sufficiently close to one, one can achieve a constant rate of O(δ2).
Algebraic geometry codes suggested by Goppa in 1975 later lead to
error correcting codes which for every ε > 0 achieve the optimal
rate of 1 − δ − ε with an alphabet size polynomial in ε while being
able to efficiently correct for a δ fraction of half-errors [33].

While this answered the most basic questions, research since
then has developed a tremendously powerful toolbox and selection
of explicit codes. It attests to the importance of error correcting
codes that over the last several decades this research direction has
developed into the incredibly active field of coding theory with
hundreds of researchers studying and developing better codes. A
small and highly incomplete subset of important innovations in-
clude rateless codes, such as, LT codes [24], which do not require
to fix a desired distance at the time of encoding, explicit expander
codes [9, 31] which allow linear time encoding and decoding, polar
codes [13, 15] which can approach Shannon’s capacity polynomi-
ally fast, network codes [23] which allow intermediate nodes in
a network to recombine codewords, and efficiently list decodable
codes [12] which allow to list-decode codes of relative distance δ
up to a fraction of about δ symbol corruptions.

While error correcting codes for insertions and deletions have
also been intensely studied, our understanding of them is much
less well developed. We refer to the 2002 survey by Sloan [30] on
single-deletion codes, the 2009 survey by Mitzenmacher [26] on
codes for random deletions and the most general 2010 survey by
Mercier et al. [25] for the extensive work done around codes for
synchronization errors and only mention the results most closely
related to Theorem 1.1 here: Insdel codes were first considered by
Levenshtein [22] and since then many bounds and constructions
for such codes have been given. However, while essentially the

36

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound STOC’17, June 2017, Montreal, Canada

same volume and sphere packing arguments as for regular codes
show that there exists insdel codes capable of correcting a frac-
tion δ of insdel erros with rate 1 − δ , no efficient constructions
anywhere close to this rate-distance tradeoff are known. Even the
construction of efficient insdel codes over a constant alphabet with
any (tiny) constant relative distance and any (tiny) constant rate
had to wait until Schulman and Zuckerman gave the first such code
in 1999 [29]. Over the last two years Guruswami et al. provided
new codes improving over this state of the art the asymptotically
small or large noise regime by giving the first codes which achieve
a constant rate for noise rates going to one and codes which provide
a rate going to one for an asymptotically small noise rate. In partic-
ular, [14] gave the first efficient codes codes over fixed alphabets
to correct a deletion fraction approaching 1, as well as efficient
binary codes to correct a small constant fraction of deletions with
rate approaching 1. These codes could, however, only be efficiently
decoded for deletions and not insertions. A follow-up work gave
new and improved codes with similar rate-distance tradeoffs which
can be efficiently decoded from insertions and deletions [10]. In

particular, these codes achieve a rate of Ω(δ5) and 1 − Õ(
√
δ) while

being able to efficiently recover from a δ fraction of insertions and
deletions. These works put the current state of the art for error
correcting codes for insertions and deletions pretty much equal to
what was known for regular error correcting codes 50 years ago,
after Forney’s 1965 doctoral thesis.

2 DEFINITIONS AND PRELIMINARIES

In this section, we provide the notation and definitions we will use
throughout the rest of the paper.

2.1 String Notation and Edit Distance

String Notation. For two strings S ∈ Σ
n and S ′ ∈ Σ

n′
be two

strings over alphabet Σ. We define S · S ′ ∈ Σ
n+n′

to be their con-

catenation. For any positive integer k we define Sk to equal k
copies of S concatenated together. For i, j ∈ {1, . . . ,n}, we denote
the substring of S from the ith index through and including the

jth index as S[i, j]. Such a consecutive substring is also called a
factor of S . For i < 1 we define S[i, j] = ⊥−i+1 · S[1, j] where ⊥
is a special symbol not contained in Σ. We refer to the substring

from the ith index through, but not including, the jth index as
S[i, j). The substrings S(i, j] and S[i, j] are similarly defined. Finally,

S[i] denotes the ith symbol of S and |S | = n is the length of S .
Occasionally, the alphabets we use are the cross-product of several
alphabets, i.e. Σ = Σ1 × · · · × Σn . If T is a string over Σ, then we
write T [i] = [a1, . . . ,an], where ai ∈ Σi .

Edit Distance. Throughout this work, we rely on the well-known
edit distance metric defined as follows.

Definition 2.1 (Edit distance). The edit distance ED(c, c ′) between
two strings c, c ′ ∈ Σ

∗ is the minimum number of insertions and
deletions required to transform c into c ′.

It is easy to see that edit distance is a metric on any set of strings
and in particular is symmetric and satisfies the triangle inequality
property. Furthermore, ED (c, c ′) = |c | + |c ′ | − 2 · LCS (c, c ′), where
LCS (c, c ′) is the longest common substring of c and c ′.

We also use some string matching notation from [2]:

Definition 2.2 (String matching). Suppose that c and c ′ are two
strings in Σ

∗, and suppose that ∗ is a symbol not in Σ. Next, sup-
pose that there exist two strings τ1 and τ2 in (Σ ∪ {∗})∗ such that
|τ1 | = |τ2 |, del (τ1) = c , del(τ2) = c ′, and τ1[i] ≈ τ2[i] for all
i ∈ {1, . . . , |τ1 |}. Here, del is a function that deletes every ∗ in the
input string and a ≈ b if a = b or one of a or b is ∗. Then we say
that τ = (τ1,τ2) is a string matching between c and c ′ (denoted
τ : c → c ′). We furthermore denote with sc (τi) the number of ∗’s
in τi .

Note that the edit distance ED(c, c ′) between strings c, c, ∈ Σ
∗ is

exactly equal to minτ :c→c ′ {sc (τ1) + sc (τ2)}.

3 THE INDEXING PROBLEM

In this section, we formally define the indexing problem. In a nut-
shell, this problem is that of sending a suitably chosen string S of
length n over an insertion-deletion channel such that the receiver
will be able to figure out the indices of most of the symbols he
receives correctly. This problem can be trivially solved by sending
the string S = 1, 2, . . . ,n over the alphabet Σ = {1, . . . ,n} of size n.
Interesting solution to the indexing problem, however, do almost
as well while using a finite size alphabet. While very intuitive and
simple, the formalization of this problem and its solutions enables
an easy use in many applications.

To set up an (n,δ)-indexing problem, we fix n, i.e., the number
of symbols which are being sent, and the maximum fraction δ of
symbols that can be inserted or deleted. We further call the string
S the synchronization string. Lastly, we describe the influences of
the nδ worst-case insertions and deletions which transform S into
the related string Sτ in terms of a string matching τ . In particular,
τ = (τ1,τ2) is the string matching from S to Sτ such thatdel(τ1) = S ,
del(τ2) = Sτ , and for every k

(τ1[k],τ2[k]) =
{ (S[i], ∗) if S[i] is deleted

(S[i], Sτ [j]) if S[i] is delivered as Sτ [j]
(∗, Sτ [j]) if Sτ [j] is inserted

where i = |del(τ1[1,k])| and j = |del(τ2[1,k])|.

Definition 3.1 ((n,δ)-Indexing Algorithm). The pair (S,DS) con-
sisting of a synchronization string S ∈ Σ

n and an algorithm DS

is called a (n,δ)-indexing algorithm over alphabet Σ if for any set
of nδ insertions and deletions represented by τ which alter S to
a string Sτ , the algorithm DS (Sτ) outputs either ⊥ or an index
between 1 and n for every symbol in Sτ .

The ⊥ symbol here represents an “I don’t know” response of the

algorithm while an index j output by DS (Sτ) for the ith symbol of
Sτ should be interpreted as the (n,δ)-indexing algorithm guessing

that this was the jth symbol of S . One seeks algorithms that decode
as many indices as possible correctly. Naturally, one can only cor-

rectly decode indices that were correctly transmitted. Next we give
formal definitions of both notions:

Definition 3.2 (Correctly Decoded Index). An (n,δ) indexing algo-
rithm (S,DS) decodes index j correctly under τ if DS (Sτ) outputs
i and there exists a k such that i = |del(τ1[1,k])|, j = |del(τ2[1,k])|,
τ1[k] = S[i], and τ2[k] = Sτ [j].

We remark that this definition counts any ⊥ response as an
incorrect decoding.

37

STOC’17, June 2017, Montreal, Canada Bernhard Haeupler and Amirbehshad Shahrasbi

Definition 3.3 (Successfully Transmitted Symbol). For string Sτ ,
which was derived from a synchronization string S via τ = (τ1,τ2),
we call the jth symbol Sτ [j] successfully transmitted if it stems
from a symbol coming from S , i.e., if there exists a k such that
|del(τ2[1,k])| = j and τ1[k] = τ2[k].

We now define the quality of an (n,δ)-indexing algorithm by
counting the maximum number of misdecoded indices among those
that were successfully transmitted. Note that the trivial indexing
strategy with S = 1, . . . ,n which outputs for each symbol the
symbol itself has no misdecodings. One can therefore also interpret
our quality definition as capturing how far from this ideal solution
an algorithm is (stemming likely from the smaller alphabet which
is used for S).

Definition 3.4 (Misdecodings of an (n,δ)-Indexing Algorithm). Let
(S,DS) be an (n,δ)-indexing algorithm. We say this algorithm has
at most k misdecodings if for any τ corresponding to at most nδ
insertions and deletions the number of correctly transmitted indices
that are incorrectly decoded is at most k .

Now, we introduce two further useful properties that a (n,δ)-
indexing algorithm might have.

Definition 3.5 (Error-free Solution). We call (S,DS) an error-free
(n,δ)-indexing algorithm with respect to a set of deletion or inser-
tion patterns if every index output is either ⊥ or correctly decoded.
In particular, the algorithm never outputs an incorrect index, even
for indices which are not correctly transmitted.

It is noteworthy that error-free solutions are essentially only
obtainable when dealing with the insertion-only or deletion-only
setting. In both cases, the trivial solution with S = 1, · · · ,n which
decodes any index that was received exactly once is error-free. We
later give some algorithms which preserve this nice property, even
over a smaller alphabet, and show how error-freeness can be useful
in the context of error correcting codes.

Lastly, another very useful property of some (n,δ)-indexing al-
gorithms is that their decoding process operates in a streaming
manner, i.e, the decoding algorithm decides the index output for
Sτ [j] independently of Sτ [j ′] where j ′ > j. While this property is
not particularly useful for the error correcting block code appli-
cation put forward in this paper, it is an extremely important and
strong property which is crucial in several applications we know
of, such as, rateless error correcting codes, channel simulations,
interactive coding, edit distance tree codes, and other settings.

Definition 3.6 (Streaming Solutions). We call (S,DS) a streaming
solution if the decoded index for the ith element of the received
string Sτ only depends on Sτ [1, i].

Again, the trivial solution for (n,δ)-index decoding problem over
an alphabet of sizen with zero misdecodings can be made streaming
by outputting for every received symbols the received symbol itself
as an index. This solution is also error-free for the deletion-only
setting but not error-free for the insertion-only setting. In fact, it
is easy to show that an algorithm cannot be both streaming and
error-free in any setting which allows insertions.

Overall, the important characteristics of an (n,δ)-indexing al-
gorithm are (a) its alphabet size |Σ|, (b) the bound on the number
of misdecodings, (c) the complexity of the decoding algorithm D,

(d) the preprocessing complexity of constructing the string S , (e)
whether the algorithm works for the insertion-only, the deletion-
only or the full insdel setting, and (f) whether the algorithm satisfies
the streaming or error-freeness property.

4 INSDEL CODES VIA INDEXING

Next, we show how a good (n,δ)-indexing algorithms (S,DS) over
alphabet ΣS allows one to transform any regular ECC C with block
length n over alphabet ΣC which can efficiently correct half-errors,
i.e., symbol corruptions and erasures, into a good insdel code over
alphabet Σ = ΣC × ΣS .

To this end, we simply attach S symbol-by-symbol to every
codeword of C. On the decoding end, we first decode the indices
of the symbols arrived using the indexing part of each received
symbol and then interpret the message parts as if they have arrived
in the decoded order. Indices where zero or multiple symbols are
received get considered as erased. We will refer to this procedure
as the indexing procedure. Finally, the decoding algorithm DC for
C is used.

Theorem 4.1. If (S,DS) guarantees k misdecodings for the (n,δ)-
index problem, then the indexing procedure recovers the codeword sent

up to nδ + 2k half-errors, i.e., half-error distance of the sent codeword

and the one recovered by the indexing procedure is at most nδ + 2k .

If (S,DS) is error-free, the indexing procedure recovers the codeword
sent up to nδ + k half-errors.

Proof. Consider a set insertions and deletions described by
τ consisting of Dτ deletions and Iτ insertions. Note that among
n encoded symbols, at most Dτ were deleted and less than k of
are decoded incorrectly. Therefore, at least n − Dτ − k indices
are decoded correctly. On the other hand at most Dτ + k of the
symbols sent are not decoded correctly. Therefore, if the output only
consisted of correctly decoded indices for successfully transmitted
symbols, the output would have contained up to Dτ + k erasures
and no symbol corruption, resulting into a total of Dτ + k half-
errors. However, any symbol which is being incorrectly decoded
or inserted may cause a correctly decoded index to become an
erasure bymaking it appearmultiple times or change one of original
Iτ + k erasures into a corruption error by making the indexing
procedure mistakenly decode an index. Overall, this can increase
the number of half-errors by at most Iτ + k for a total of at most
Dτ + k + Iτ + k = Dτ + Iτ + 2k = nδ + 2k half-errors. For error-
free indexing algorithms, any misdecoding does not result in an
incorrect index and the number of incorrect indices is Iτ instead of
Iτ +k leading to the reduced number of half-errors in this case. �

This makes it clear that applying an ECC C which is resilient to
nδ + 2k half-errors enables the receiver side to fully recoverm.

Next, we formally state how a good (n,δ)-indexing algorithm
(S,DS) over alphabet ΣS allows one to transform any regular ECC
C with block length n over alphabet ΣC which can efficiently cor-
rect half-errors, i.e., symbol corruptions and erasures, into a good
insdel code over alphabet Σ = ΣC × ΣS . The following Theorem
is a corollary of Theorem 4.1 and the definition of the indexing
procedure:

38

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound STOC’17, June 2017, Montreal, Canada

Theorem 4.2. Given an (efficient) (n,δ)-indexing algorithm (S,DS)
over alphabet ΣS with at most k misdecodings, and decoding com-

plexity TDS
(n) and an (efficient) ECC C over alphabet ΣC with rate

RC , encoding complexity TEC , and decoding complexity TDC that

corrects up to nδ + 2k half-errors, one obtains an insdel code that can

be (efficiently) decoded from up to nδ insertions and deletions. The

rate of this code is RC ·
(

1 − log ΣS
log ΣC

)

. The encoding complexity remains

TEC , the decoding complexity isTDC +TDS
(n) and the preprocessing

complexity of constructing the code is the complexity of construct-

ing C and S . Furthermore, if (S,DS) is error-free, then choosing a C
which can recover only from nδ + k erasures is sufficient to produce

the same quality code.

Note that if one chooses ΣC such that
log ΣS
log ΣC

= o(δ), the rate loss
due to the attached symbols will be negligible. With all this in place
one can obtain Theorem 1.1 as a consequence of Theorem 4.2.

Proof of Theorem 1.1. Given the δ and ε from the statement
of Theorem 1.1 we choose ε ′ = O ((ε/6)2) and use Theorem 6.13

to construct a string S of length n over alphabet ΣS of size ε−O (1)

with the ε ′-self-matching property. We then use the (n,δ)-indexing
algorithm (S,DS) where given in Section 6.3 which guarantees

that it has at most
√
ε ′ = ε

3 misdecodings. Finally, we choose a
near-MDS expander code [9] C which can efficiently correct up
to δC = δ + ε

3 half-errors and has a rate of RC > 1 − δC − ε
3

over an alphabet ΣC = exp(ε−O (1)) such that log |ΣC | ≥
3 log |ΣS |

ε .

This ensures that the final rate is indeed at least RC − log ΣS
log ΣC

=

1 − δ − 3 ε3 and the number of insdel errors that can be efficiently
corrected is δC − 2 ε3 ≥ δ . The encoding and decoding complexities
are furthermore straight forward and as is the polynomial time
preprocessing time given Theorem 6.13 and [9]. �

5 SYNCHRONIZATION STRINGS

In this section, we formally define and develop ε-synchronization
strings, which can be used as our base synchronization string S in
our (n,δ)-indexing algorithms.

As explained in Section 1.2 it makes sense to think of the prefixes
S[1, l] of a synchronization string S as codewords encoding their
length l , as the prefix S[1, l], or a corrupted version of it, will be
exactly all the indexing information that has been received by the

time the lth symbol is communicated:

Definition 5.1 (Codewords Associated with a Synchronization String).

Given any synchronization string S we define the set of codewords
associated with S to be the set of prefixes of S , i.e., {S[1, l] | 1 ≤ l ≤
|S |}.

Next, we define a distance metric on any set of strings, which
will be useful in quantifying how good a synchronization string S
and its associated set of codewords is:

Definition 5.2 (Relative Suffix Distance). For any two strings
S, S ′ ∈ Σ

∗ we define their relative suffix distance RSD as follows:

RSD(S, S ′) = max
k>0

ED (S(|S | − k, |S |], S ′(|S ′ | − k, |S ′ |])
2k

Next we show that RSD is indeed a distance which satisfies all
properties of a metric for any set of strings. To our knowledge, this

metric is new. It is, however, similar in spirit to the suffix “distance”
defined in [2], which unfortunately is non-symmetric and does not
satisfy the triangle inequality but can otherwise be used in a similar
manner as RSD in the specific context here.

Lemma 5.3. For any strings S1, S2, S3 we have

• Symmetry: RSD(S1, S2) = RSD(S2, S1),
• Non-Negativity and Normalization: 0 ≤ RSD(S1, S2) ≤ 1,
• Identity of Indiscernibles: RSD(S1, S2) = 0 ⇔ S1 = S2, and

• Triangle Inequality:RSD(S1, S3) ≤ RSD(S1, S2)+RSD(S2, S3).
In particular, RSD defines a metric on any set of strings.

Proof. Symmetry and non-negativity follow directly from the
symmetry and non-negativity of edit distance. Normalization fol-
lows from the fact that the edit distance between two length k

strings can be at most 2k . To see the identity of indiscernibles note
that RSD(S1, S2) = 0 if and only if for all k the edit distance of the k
prefix of S1 and S2 is zero, i.e., if for every k the k-prefix of S1 and
S2 are identical. This is equivalent to S1 and S2 being equal. Lastly,
the triangle inequality also essentially follows from the triangle
inequality for edit distance. To see this let δ1 = RSD(S1, S2) and
δ2 = RSD(S2, S3). By the definition of RSD this implies that for all
k the k-prefixes of S1 and S2 have edit distance at most 2δ1k and
the k-prefixes of S2 and S3 have edit distance at most 2δ2k . By the
triangle inequality for edit distance, this implies that for every k
the k-prefix of S1 and S3 have edit distance at most (δ1 + δ2) · 2k
which implies that RSD(S1, S3) ≤ δ1 + δ2. �

With these definitions in place, it remains to find synchronization
strings whose prefixes induce a set of codewords, i.e., prefixes, with
large RSD distance. It is easy to see that the RSD distance for any two
strings ending on a different symbol is one. This makes the trivial
synchronization string, which uses each symbol in Σ only once,
induce an associated set of codewords of optimal minimum-RSD-
distance one. Such trivial synchronization strings, however, are not
interesting as they require an alphabet size linear in the length n.
To find good synchronization strings over constant size alphabets,
we give the following important definition of an ε-synchronization
string. The parameter 0 < ε < 1 should be thought of measuring
how far a string is from the perfect synchronization string, i.e., a
string of n distinct symbols.

Definition 5.4 (ε-Synchronization String). String S ∈ Σ
n is an

ε-synchronization string if for every 1 ≤ i < j < k ≤ n + 1 we have
that ED (S[i, j), S[j,k)) > (1 − ε)(k − i). We call the set of prefixes
of such a string an ε-synchronization string.

The next lemma shows that the ε-synchronization string prop-
erty is strong enough to imply a good minimum RSD distance
between any two codewords associated with it.

Lemma 5.5. If S is an ε-synchronization string, then RSD(S[1, i],
S[1, j]) > 1 − ε for any i < j, i.e., any two codewords associated with

S have RSD distance of at least 1 − ε .

Proof. Let k = j − i . The ε-synchronization string property of
S guarantees that ED (S[i − k, i), S[i, j)) > (1 − ε)2k . Note that this
holds even if i−k < 1. To finish the proof we note that the maximum

in the definition of RSD includes the term
ED(S [i−k,i),S [i, j))

2k
> 1−ε ,

which implies that RSD(S[1, i], S[1, j]) > 1 − ε . �

39

STOC’17, June 2017, Montreal, Canada Bernhard Haeupler and Amirbehshad Shahrasbi

5.1 Existence and Construction

The next important step is to show that the ε-synchronization
strings we just defined exist, particularly, over alphabets whose
size is independent of the length n. We show the existence of ε-
synchronization strings of arbitrary length for any ε > 0 using an
alphabet size which is only polynomially large in 1/ε . We remark
that ε-synchronization strings can be seen as a strong generaliza-
tion of square-free sequences [32] in which any two neighboring
substrings S[i, j) and S[j,k) only have to be different and not also
far from each other in edit distance.

Theorem 5.6. For any ε ∈ (0, 1) and n ≥ 1, there exists an ε-

synchronization string of length n over an alphabet of size Θ(1/ε4).
Proof. Let S be a string of length n obtained by concatenating

two stringsT and R, whereT is simply the repetition of 0, . . . , t − 1

for t = Θ(1/ε2), and R is a uniformly random string of length n

over alphabet Σ. In particular, Si = (i mod t ,Ri).
We prove that S is an ε-synchronization string by showing that

there is a positive probability that S contains no bad triple, where
(x ,y, z) is a bad triple if ED(S[x ,y), S[y, z)) ≤ (1 − ε)(z − x).

First, note that a triple (x ,y, z) for which z − x < t cannot be a
bad triple as it consists of completely distinct symbols by courtesy
ofT . Therefore, it suffices to show that there is no bad triple (x ,y, z)
in R for x ,y, z such that z − x > t .

Let (x ,y, z) be a bad triple and let a1a2 · · ·ak be the longest
common subsequence of R[x ,y) and R[y, z). It is straightforward to
see that ED(R[x ,y),R[y, z)) = (y − x) + (z − y) − 2k = z − x − 2k .
Since (x ,y, z) is a bad triple, we have that z −x − 2k ≤ (1− ε)(z −x),
which means that k ≥ ε

2 (z − x). With this observation in mind,
we say that R[x , z) is a bad interval if it contains a subsequence
a1a2 · · ·aka1a2 · · ·ak such that k ≥ ε

2 (z − x).
To prove the theorem, it suffices to show that a randomly gen-

erated string does not contain any bad intervals with a non-zero
probability. We first upper bound the probability that an interval
of length l is bad:

Pr
I∼Σl

[I is bad] ≤
(

l

εl

)

|Σ|−
εl
2 ≤

(

el

εl

)εl

|Σ|−
εl
2 =

(

e/ε
√

|Σ|
)εl
,

where the first inequality holds because if an interval of length l is

bad, then it must contain a repeating subsequence of length l ε
2 . Any

such sequence can be specified via εl positions in the l long interval

and the probability that a given fixed sequence is valid is |Σ|− εl
2 .

The second inequality comes from the fact that
(n
k

)

< (ne/k)k .
The resulting inequality shows that the probability of an interval

of length l being bad is bounded above by C−εl , where C can be
made arbitrarily large by taking a sufficiently large alphabet size.

To show that there is a non-zero probability that the uniformly
random string R contains no bad interval I of size t or larger, we use
the general Lovász local lemma. Note that the badness of interval I
is mutually independent of the badness of all intervals that do not
intersect I .We need to find real numbersxp,q ∈ [0, 1) corresponding
to intervals R[p,q) for which

Pr [Interval R[p,q) is bad] ≤ xp,q

∏

R[p,q)∩R[p′,q′),∅
(1 − xp′,q′).

We have seen that the left-hand side can be upper bounded

by C−ε |R[p,q) |
= Cε (p−q). Furthermore, any interval of length l ′

intersects at most l + l ′ intervals of length l . We propose xp,q =

D−ε |R[p,q) |
= Dε (p−q) for some constant D > 1. This means that it

suffices to find a constant D that for all substrings R[p,q) satisfies
Cε (p−q) ≤ Dε (p−q)∏n

l=t
(1 − D−εl)l+(q−p), or more clearly, for all

l ′ ∈ {1, · · · ,n},

C−l ′ ≤ D−l ′
n
∏

l=t

(

1 − D−εl
)
l+l ′
ε ⇒ C ≥ D

∏n
l=t

(

1 − D−εl)
1+l/l ′
ε

.

(1)
For D > 1, the right-hand side of Equation (1) is maximized when
n = ∞ and l ′ = 1, and since we want Equation (1) to hold for
all n and all l ′ ∈ {1, · · · ,n}, it suffices to find a D such that C ≥
D/∏∞

l=t
(1 − D−εl) l+1ε .

To this end, let L = minD>1

{

D
/

∏∞
l=t

(1 − D−εl) l+1ε
}

. Then, it

suffices to have |Σ| large enough so that C = ε
√

|Σ|/e ≥ L, which

means that |Σ| ≥ e2L2

ε2
suffices to allow us to use the Lovász local

lemma. We claim that L = Θ(1), which will complete the proof.

Since t = ω
(

log(1/ε)
ε

)

, for all l ≥ t , D−εl · l+1ε ≪ 1. Therefore, we

can use the fact that (1 − x)k > 1 − xk to show that:

D

∏∞
l=t

(

1 − D−εl) l+1ε
<

D
∏∞

l=t

(

1 − (l + 1)/ε · D−εl) (2)

<
D

1 −∑∞
l=t

l+1
ε · D−εl

(3)

= D
/

[

1 − 1

ε

2t (D−ε)t

(1 − D−ε)2

]

(4)

= D
/

[

1 − 2

ε3
D− 1

ε

(1 − D−ε)2

]

. (5)

Equation (3) is derived using the fact that
∏∞

i=1(1 − xi) ≥ 1 −
∑∞
i=1 xi and Equation (4) is a result of the following equality for

x < 1:
∑∞
l=t

(l + 1)x l = xt (1 + t − tx)/(1 − x)2 < 2txt /(1 − x)2.

One can see that for D = 7, maxε

{

2
ε3

D− 1
ε

(1−D−ε)2

}

< 0.9, and there-

fore step (3) is legal and (5) can be upper-bounded by a constant.
Hence, L = Θ(1) and the proof is complete. �

Remarks on the alphabet size: Theorem 5.6 shows that for any
ε > 0 there exists an ε-synchronization string over alphabets of
size O(ε−4). A polynomial dependence on ε is also necessary. In
particular, there do not exist any ε-synchronization string over
alphabets of size smaller than ε−1. In fact, any consecutive sub-
string of size ε−1 of an ε-synchronization string has to contain
completely distinct elements. This can be easily proven as follows:
For sake of contradiction let S[i, i + ε−1) be a substring of an ε-
synchronization string where S[j] = S[j ′] for i ≤ j < j ′ < i + ε−1.
Then, ED (S[j], S[j + 1, j ′ + 1))) = j ′ − j − 1 = (j ′ + 1 − j) − 2 ≤
(j ′ + 1 − j)(1 − 2ε). We believe that using the Lovász Local Lemma
together with a more sophisticated non-uniform probability space,
which avoids any repeated symbols within a small distance, allows
avoiding the use of the string T in our proof and improving the
alphabet size to O(ε−2). It seems much harder to improved the al-
phabet size to o(ε−2) and we are not convinced that it is possible.

40

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound STOC’17, June 2017, Montreal, Canada

This work thus leaves open the interesting question of closing the
quadratic gap between O(ε−2) and Ω(ε−1) from either side.

Theorem 5.6 also implies an efficient randomized construction.

Lemma 5.7. There exists a randomized algorithmwhich for any ε >

0 constructs a ε-synchronization string of length n over an alphabet

of size O(ε−4) in expected time O(n5).

Proof. Using the algorithmic framework for the Lovász local
lemma given by Moser and Tardos [27] and the extensions by Hae-
upler et al.[17] one can get such a randomized algorithm from the
proof in Theorem 5.6. The algorithm starts with a random string

over any alphabet Σ of size ε−C for some sufficiently largeC . It then
checks all O(n2) intervals for a violation of the ε-synchronization
string property. For every interval this is an edit distance computa-
tion which can be done in O(n2) time using the classical Wagner-
Fischer dynamic programming algorithm. If a violating interval is
found the symbols in this interval are assigned fresh random values.
This is repeated until no more violations are found. [17] shows that
this algorithm performs onlyO(n) expected number of re-samplings.
This gives an expected running time of O(n5) overall. �

We remark that any string produced by the randomized construc-
tion of Lemma 5.7 is guaranteed to be a correct ε-synchronization
string (not just with probability one). This randomized synchro-
nization string construction is furthermore only needed once as a
pre-processing step. The encoder or decoder of any resulting error
correcting codes do not require any randomization. Furthermore,
in Section 6 we will provide a deterministic polynomial time con-
struction of a relaxed version of ε-synchronization strings that can
still be used as a basis for good (n,δ)-indexing algorithms thus
leading to insdel codes with a deterministic polynomial time code
construction as well.

5.2 Decoding

We now provide an algorithm for decoding synchronization strings,
i.e., an algorithm that can form a solution to the indexing problem
along with ε-synchronization strings. In the beginning of Section 5,
we introduced the notion of relative suffix distance between two
strings. Theorem 5.5 stated a lower bound of 1− ε for relative suffix
distance between any two distinct codewords associated with an ε-
synchronization string, i.e., its prefixes. Hence, a natural decoding
scheme for detecting the index of a received symbol would be
finding the prefix with the closest relative suffix distance to the
string received thus far. We call this algorithm the minimum relative

suffix distance decoding algorithm.
We define the notion of relative suffix error density at index i

which presents the maximized density of errors taken place over
suffixes of S[1, i]. We will introduce a very natural decoding ap-
proach for synchronization strings that simply works by decoding
a received string by finding the codeword of a synchronization
string S (prefix of synchronization string) with minimum distance
to the received string. We will show that this decoding procedure
works correctly as long as the relative suffix error density is not

larger than 1−ε
2
. Then, we will show that if adversary is allowed to

perform c many insertions or deletions, the relative suffix distance

may exceed 1−ε
2

upon arrival of at most 2c
1−ε many successfully

transmitted symbols. Finally, we will deduce that this decoding

scheme decodes indices of received symbols correctly for all but
2c
1−ε many of successfully transmitted symbols. Formally, we claim
that:

Theorem 5.8. Any ε-synchronization string of length n along

with the minimum relative suffix distance decoding algorithm form

a solution to (n,δ)-indexing problem that guarantees 2

1−ε nδ or less

misdecodings. This decoding algorithm is streaming and can be im-

plemented so that it works in O(n4) time.

Before proceeding to the formal statement and the proofs of the
claims above, we first provide the following useful definitions.

Definition 5.9 (Error Count Function). Let S be a string sent over
an insertion-deletion channel. We denote the error count from index

i to index j with E(i, j) and define it to be the number of insdels
applied to S from the moment S[i] is sent until the moment S[j] is
sent. E(i, j) counts the potential deletion of S[j]. However, it does
not count the potential deletion of S[i].

Definition 5.10 (Relative Suffix Error Density). Let string S be sent
over an insertion-deletion channel and let E denote the correspond-
ing error count function. We define the relative suffix error density

of the communication as maxi≥1
E(|S |−i, |S |)

i .

The following lemma relates the suffix distance of the message
being sent by sender and the message being received by the receiver
at any point of a communication over an insertion-deletion channel
to the relative suffix error density of the communication.

Lemma 5.11. Let string S be sent over an insertion-deletion channel

and the corrupted message S ′ be received on the other end. The relative
suffix distance RSD(S, S ′) between the string S that was sent and the

string S ′ which was received is at most the relative suffix error density

of the communication.

Proof. Let τ̃ = (τ̃1, τ̃2) be the string matching from S to S ′ that
characterizes insdels that have turned S into S ′. Then:

RSD(S, S ′) = max
k>0

ED(S(|S | − k, |S |], S ′(|S ′ | − k, |S ′ |])/2k (6)

= max
k>0

min
τ :S (|S |−k, |S |]→S ′(|S ′ |−k, |S ′ |]

sc(τ1) + sc(τ2)

2k
(7)

≤ max
k>0

(sc(τ ′1) + sc(τ
′
2))/k ≤ Rel. Suff. Error Dens. (8)

where τ ′ is τ̃ limited to its suffix corresponding to S(|S | − k, |S |]).
Note that Steps (6) and (7) follow from the definitions of edit dis-
tance and relative suffix distance. Moreover, to see Step (8), one has
to note that one single insertion or deletion on the k-element suffix
of a string may result into a string with k-element suffix of edit
distance two of the original string’s k-element suffix; one stemming
from the inserted/deleted symbol and the other one stemming from
a symbol appearing/disappearing at the beginning of the suffix in
order to keep the size of suffix k . �

A key consequence of Lemma 5.11 is that if an ε-synchronization
string is being sent over an insertion-deletion channel and at some
step the relative suffix error density corresponding to corruptions

is smaller than 1−ε
2 , the relative suffix distance of the sent string

and the received one at that point is smaller than 1−ε
2 ; therefore, as

RSD of all pairs of codewords associated with an ε-synchronization

41

STOC’17, June 2017, Montreal, Canada Bernhard Haeupler and Amirbehshad Shahrasbi

string are greater than 1 − ε , the receiver can correctly decode the
index of the corrupted codeword he received by simply finding the
codeword with minimum relative suffix distance.

The following lemma states that such a guarantee holds most of
the time during transmission of a synchronization string:

Lemma 5.12. Let ε-synchronization string S be sent over an insertion-

channel channel and corrupted string S ′ be received on the other end.

If there are ci symbols inserted and cd symbols deleted, then, for any

integer t , the relative suffix error density is smaller than 1−ε
t upon

arrival of all but
t (ci+cd)

1−ε − cd many of the successfully transmitted

symbols.

Proof. Let E denote the error count function of the commu-
nication. We define the potential function Φ over {0, 1, · · · ,n} as
Φ(i) = max1≤s≤i

{

t ·E(i−s,i)
1−ε − s

}

. Also, set Φ(0) = 0. We prove the

theorem by showing the correctness of the following claims:

(1) If E(i − 1, i) = 0, i.e., the adversary does not insert or
delete any symbols in the interval starting right after the
moment S[i − 1] is sent and ending at when S[i] is sent,
then the value of Φ drops by 1 or becomes/stays zero, i.e.,
Φ(i) = max {0,Φ(i − 1) − 1}.

(2) If E(i −1, i) = k , i.e., adversary inserts or deletes k symbols
in the interval starting right after the moment S[i − 1] is
sent and ending at when S[i] is sent, then the value of Φ

increases by at most tk
1−ε − 1, i.e., Φ(i) ≤ Φ(i − 1)+ tk

1−ε − 1.
(3) If Φ(i) = 0, then the relative suffix error density of the

string that is received when S[i] arrives at the receiving
side is not larger than 1−ε

t .

Given the correctness of claims made above, the lemma can be
proved as follows. As adversary can apply at most ci +cd insertions

or deletions, Φ can gain a total increase of
t ·(ci+cd)

1−ε . Therefore, the

value of Φ can be non-zero for at most
t ·(ci+cd)

1−ε many inputs. As
value of Φ(i) is non-zero for all i’s where S[i] has been removed by

adversary, there are at most
t ·(ci+cd)

1−ε −cd indices i whereΦ(i) is non-
zero and i is successfully transmitted. Hence, at most

t ·(ci+cd)
1−ε − cd

many of correctly transmitted symbols can be decoded incorrectly.
We now proceed to the proof of above claims to finish the proof:

(1) In this case, E(i − s, i) = E(i − s, i − 1). So,

Φ(i) = max
1≤s≤i

{t · E(i − s, i − 1)/(1 − ε) − s}

= max{0, max
2≤s≤i

{t · E(i − s, i − 1)/(1 − ε) − s}}

= max

{

0, max
1≤s≤i−1

{

t · E(i − 1 − s, i − 1)
1 − ε

− s − 1

}}

= max {0,Φ(i − 1) − 1}
(2) In this case, E(i − s, i) = E(i − s, i − 1) + k . So,

Φ(i) = max
1≤s≤i

{t · E(i − s, i)/(1 − ε) − s}

= max

{

tk

1 − ε
− 1, max

2≤s≤i

{

t · E(i − s, i − 1) + tk
1 − ε

− s

}}

=

tk

1 − ε
− 1 +max

{

0, max
1≤s≤i−1

{

t · E(i − 1 − s, i − 1)
1 − ε

− s

}}

= Φ(i − 1) + tk/(1 − ε) − 1

(3) As Φ(i) = 0, for all 1 ≤ s ≤ i ,
t ·E(i−s,i)

1−ε − s ≤ 0. There-
fore, for all 1 ≤ s ≤ i , t · E(i−s, i) ≤ s(1−ε). This gives that
Relative Suffix Error Density = max1≤s≤i {E(i − s, i)/s} ≤
(1 − ε)/t .

These finish the proof of the lemma. �

Now, we have all necessary tools to analyze the performance of
the minimum relative suffix distance decoding algorithm:

Proof of Theorem 5.8. As adversary is allowed to insert or

delete up nδ symbols, by Lemma 5.12, there are at most 2nδ
1−ε suc-

cessfully transmitted symbols during the arrival of which at the

receiving side, the relative suffix error density is greater than 1−ε
2 ;

Hence, by Lemma 5.11, there are at most 2nδ
1−ε misdecoded success-

fully transmitted symbols.
Further, we remark that this algorithm can be implemented in

O(n4) as follows: Using dynamic programming, we can pre-process
the edit distance of any consecutive substring of S , like S[i, j] to any
consecutive substring of S ′, like S ′[i ′, j ′], in O(n4). Then, for each
symbol of the received string, like S ′[l ′], we can find the codeword
with minimum relative suffix distance to S ′[1, l ′] by calculating
the relative suffix distance of it to all n codewords. Finding suffix
distance of S ′[1, l ′] and a codeword like S[1, l] can also be simply

done by minimizing
ED(S (l−k,l],S ′(l ′−k,l ′])

k
over k which can be

done in O(n). With a O(n4) pre-process and a O(n3) computation
as mentioned above, we have shown that the decoding process can
be implemented in O(n4). �

6 MORE ADVANCED GLOBAL DECODING

ALGORITHMS

Thus far, we have introduced ε-synchronization strings as fitting
solutions to the indexing problem. In Section 5.2, we provided an
algorithm to solve the indexing problem alongwith synchronization
strings with an asymptotic guarantee of 2nδ misdecodings. As
explained in Section 1.3, such a guarantee falls short of giving
Theorem 1.1. In this section, we thus provide a more advanced
decoding algorithm that achieves a misdecoding fraction which
vanishes as ε goes to zero.

We start by pointing out a very useful property of ε-synchroniza-
tion strings in Section 6.1. We define a monotone matching between
two strings as a common subsequence of them. We will next show
that in a monotone matching between an ε-synchronization string
and itself, the number of matches that both correspond to the same
element of the string is fairly large. We will refer to this property
as ε-self-matching property. We show that one can very formally
think of this ε-self-matching property as a robust global guarantee
in contrast to the factor-closed strong local requirements of the
ε-synchronization property. One advantage of this relaxed notion
of ε-self-matching is that one can show that a random string over
alphabets polynomially large in ε−1 satisfies this property (Sec-
tion 6.2). This leads to a particularly simple generation process for
S . Finally, showing that this property even holds for approximately
logn-wise independent strings directly leads to a deterministic
polynomial time algorithm generating such strings as well.

In Section 6.3, we propose a decoding algorithm for insdel errors
that basically works by finding monotone matchings between the
received string and the synchronization string. Using the ε-self-
matching property we show that this algorithm guaranteesO

(

n
√
ε
)

42

STOC’17, June 2017, Montreal, Canada Bernhard Haeupler and Amirbehshad Shahrasbi

On the other hand, in the following lemma, we will show that
within a given ε-self matching string, there can be a limited number
of ε ′-bad indices for sufficiently large ε ′ > ε . The proof of Lemma 6.7
is available in the full version of this paper [18].

Lemma 6.7. Let S be an ε-self matching string of length n. Then,

for any 3ε < ε ′ < 1, at most 3nε
ε ′ many indices of S can be ε ′-bad.

As the final remark on the ε-self matching property and its
relation with the more strict ε-synchronization property, we show
that using the minimum RSD decoder for indexing together with
an ε-self matching string leads to guarantees on the misdecoding
performance which are only slightly weaker than the guarantee
obtained by ε-synchronization strings. In order to do so, we first
show that the (1 − ε) RSD distance property of prefixes holds for
any non-ε-bad index in any arbitrary string in Theorem 6.8. Then,
using Theorem 6.8 and Lemma 6.7, we upper-bound the number
of misdecodings that may happen using a minimum RSD decoder
along with an ε-self matching string in Theorem 6.9.

Lemma 6.8. Let S be an arbitrary string of length n and 1 ≤ i ≤ n

be such that i’th index of S is not an ε-bad index. Then, for any j , i ,

RSD(S[1, i], S[1, j]) > 1 − ε .

The proof of Lemma 6.8 is available in [18].

Theorem 6.9. Using any ε-self matching string along with mini-

mum RSD algorithm, one can solve the (n,δ)-indexing problem with

a guarantee of n(4δ + 6ε) misdecodings.

Proof. Note that applying Lemma 6.7 for ε ′ gives that there
are at most 3nε

ε ′ indices in S that are ε ′-bad. Further, using Theo-

rem 5.8 and Lemma 6.8, atmost 2nδ
1−ε ′ many of the other indicesmight

be decoded incorrectly upon their arrivals. Therefore, this solution

for the (n,δ)-indexing problem can contain at most n
(

3ε
ε ′ +

2δ
1−ε ′

)

many incorrectly decoded indices. Setting ε ′ = 3ε
3ε+2δ

gives an

upper bound of n(4δ + 6ε) on the number of misdecodings. �

6.2 Construction of ε-Self Matching Strings

In this section, we will use Lemma 6.6 to show that there is a
polynomial deterministic construction of a string of length n with
the ε-self-matching property, which can then for example be used
to obtain a deterministic code construction. We start by showing
that even random strings satisfy the ε-selfmatching property for
an ε polynomial in the alphabet size:

Theorem 6.10. A random string on an alphabet of size O(ε−3)
satisfies ε-selfmatching property with a constant probability.

Proof. Let S be a random string on alphabet Σ of size |Σ| = ε−3.
We are going to find the expected number of ε-bad indices in S .
We first count the expected number of ε-bad indices that blame

intervals of length 2

ε or smaller. If index k blames interval S[i, j]
where j − i < 2ε−1, there has to be two identical symbols appearing
in S[i, j] which gives that there are two identical elements in 4ε−1

neighborhood of S . Therefore, the probability of index k being
ε-bad blaming S[i, j] for j − i < 2ε−1 can be upper-bounded by
(

4ε−1
2

)

1

|Σ | ≤ 8ε . Thus, the expected fraction of ε-bad indices that

blame intervals of length 2

ε or smaller is less than 8ε .

We now proceed to finding the expected fraction of ε-bad indices
in S blaming intervals of length 2ε−1 or more. Let Bi, j denote the
event that S[i, j) does not satisfy ε-self-matching property. Since
every interval of length l which does not satisfy ε-self-matching
property causes at most l ε-bad indices, we get that the expected
fraction of such indices, i.e., γ ′, is at most:

E[γ ′] = 1

n

n
∑

l=2ε−1

n
∑

i=1

l · Pr[B[i,i+l)] ≤
n
∑

l=2ε−1
l

(

l

lε

)2 1

|Σ|l ε
(11)

Last inequality holds because the number of possible matchings is

at most
(l
l ε

)2
. Further, fixing the matching edges, the probability

of the elements corresponding to pair (a,b) of the matching being
identical is independent from all pairs (a′,b ′) where a′ < a and
b ′ < b. Hence, the probability of the set of pairs being a matching

between random string S and itself is 1
|Σ |l ε . Then,

E[γ ′] ≤
n
∑

l=2ε−1
l

(

le

lε

)2l ε 1

|Σ|l ε
≤

∞
∑

l=2ε−1
l

[

(

e/ε
√

|Σ|
)2ε

] l

Note that
∑∞
l=2ε−1

lx l = 2ε−1x2ε
−1 − (2ε−1 − 1)x2ε−1+1/(1 − x)2 for

|x | < 1. Therefore, for 0 < x < 1
2 ,
∑∞
l=l0

lx l < 8ε−1x2ε
−1
. So,

E[γ ′] ≤ 8ε−1
(

e/2ε
√

|Σ|
)4εε−1

= e4ε−5 |Σ|−2/2 ≤ e4ε/2

Using Lemma 6.6, this random structure has to satisfy (ε + 2γ)-
self-matching property where E[ε + 2γ] = ε + 16ε + e4ε = O(ε).
Therefore, using Markov inequality, a randomly generated string
over alphabet O(ε−3) satisfies ε-matching property with constant
probability. The constant probability can be as high as one wishes
by applying higher constant factor in alphabet size. �

As the next step, we prove a similar claim for strings of length
n whose symbols are chosen from an Θ (logn/log(1/ε))-wise inde-
pendent [28] distribution over a larger, yet still ε−O (1) size, alphabet.
This is the key step in allowing for a derandomization using the
small sample spaces of Naor and Naor [28]. The proof of Theo-
rem 6.11 follows a similar strategy as was used in [3] to derandom-
ize the constructive Lovász local lemma. In particular the crucial
idea, given by Claim 6.12, is to show that for any large obstruction
there has to exist a smaller yet not too small obstruction. This al-
lows one to prove that in the absence of any small and medium size
obstructions no large obstructions exist either.

Theorem 6.11. A
c logn
log(1/ε) -wise independent random string of size

n on an alphabet of size O(ε−6) satisfies ε-matching property with a

non-zero constant probability. c is a sufficiently large constant.

Proof. Let S be a pseudo-random string of lengthnwith
c logn
log(1/ε) -

wise independent symbols. Then, Step (11) is invalid as the pro-

posed upper-bound does not work for l >
c logn

ε log(1/ε) . To bound the

probability of intervals of size Ω

(

c logn
ε log(1/ε)

)

not satisfying ε-self

matching property, we claim that:

Claim 6.12. Any string of size l > 100m which contains an ε-self-

matching contains two sub-intervals I1 and I2 of sizem where there

is a matching of size 0.99mε
2 between I1 and I2.

44

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound STOC’17, June 2017, Montreal, Canada

Using Claim 6.12, one can conclude that any string of size l >

100
c logn

ε log(1/ε) which contains an ε-self-matching contains two sub-

intervals I1 and I2 of size
c logn

ε log(1/ε) where there is a matching of

size
c logn

2 log(1/ε) between I1 and I2. Then, Step (11) can be revised

by upper-bounding the probability of a long interval having an
ε-self-matching by a union bound over the probability of pairs of its

subintervals having a dense matching. Namely, for l > 100
c logn

ε log(1/ε) ,
let us denote the event of S[i, i + l) containing a ε-self-matching by
Ai,l . Then,

Pr[Ai,l] ≤ Pr

[

S contains I1, I2 : |Ii | =
c logn

ε log(1/ε)

and LCS(I1, I2) ≥ 0.99
c logn

2 log(1/ε)

]

≤ n2
(

ε−1c logn/log(1/ε)
0.99c logn/2 log(1/ε)

)2 (
1

|Σ|

)

c logn
2 log(1/ε)

≤ n2
(

2.04eε−1
)

2×0.99c logn
2 log(1/ε)

ε
6c logn
2 log(1/ε)

= n2 (2.04e)
0.99c logn
log(1/ε) ε

4.02c logn
2 log(1/ε)

= n
2+

c ln(2.04e)
log(1/ε) −2.01c

< n2−c/4 = O
(

n−c
′)

where first inequality follows from the fact there can be at most n2

pairs of intervals of size
c logn

ε log(1/ε) in S and the number of all possible

matchings of size
c logn
log(1/ε) between them is atmost

(ε−1c logn/log(1/ε)
c logn/2 log(1/ε)

)
2
.

Further, for small enough ε , constant c ′ can be as large as one de-
sires by setting constant c large enough. Thus, Step (11) can be
revised as:

E[γ ′] ≤

100c logn
ε log(1/ε)
∑

l=ε−1
l ·

[

(

e/ε
√

|Σ|
)2ε

] l

+

n
∑

l=
100c logn
ε log(1/ε)

l Pr[Ai,l]

≤
∞
∑

l=ε−1
l ·

[

(

e/ε
√

|Σ|
)2ε

] l

+ n2 ·O(n−c ′) ≤ O(ε + n2−c ′)

For an appropriately chosen c , 2 − c ′ < 0; hence, the later term
vanishes as n grows. Therefore, the conclusion E[γ] ≤ O(ε) holds
for the limited

logn
log(1/ε) -wise independent string as well. �

Proof of Claim 6.12. Let M be a self-matching of size lε or
more between S and itself containing only bad edges. We chop S

into l
m intervals of sizem. On the one hand, the size ofM is greater

than lε and on the other hand, we know that the size ofM is exactly
∑

i, j |Ei, j | where Ei, j denotes the number of edges between interval

i and j. Thus, lε ≤ ∑

i, j |Ei, j | ⇒ ε
2 ≤

∑

i, j |Ei, j |/m
2l/m . Note that

|Ei, j |
m

represents the density of edges between interval i and interval j.
Further, SinceM is monotone, there are at most 2l/m intervals for
which |Ei, j | , 0 and subsequently |Ei, j |/m , 0 . Hence, on the
right hand side we have the average of 2l/m many non-zero terms
which is greater than ε/2. So, there has to be some i ′ and j ′ for

which ε
2 ≤ |Ei′, j′ |

m ⇒ mε
2 ≤ |Ei′, j′ |. To analyze more accurately, if

l is not divisible bym, we simply throw out up tom last elements
of the string. This may decrease ε by m

l
<

ε
100 . �

Note that using the polynomial sample spaces of [28] Theo-
rem 6.11 directly leads to a deterministic algorithm for finding a
string of size n with ε-self-matching property. For this one simply

checks all possible points in the sample space of the
c logn
log(1/ε) -wise

independent strings and finds a string S with γS ≤ E[γ] = O(ε).
In other words, using brute-force, one can find a string satisfying

O(ε)-self-matching property in O(|Σ|c logn/log(1/ε)) = nO (1).

Theorem 6.13. There is a deterministic algorithm running innO (1)

that finds a string of length n satisfying ε-self-matching property over

an alphabet of size O(ε−6).

6.3 Global Decoding Algorithm

Now, we provide an alternative indexing algorithm to be used along
with ε-synchronization strings. Throughout the following sections,
we let ε-synchronization string S be sent as the synchronization
string in an instance of (n,δ)-indexing problem and string S ′ be
received at the receiving end being affected by up to nδ insertions
or deletions. Furthermore, let di symbols be inserted into the com-
munication and dr symbols be deleted from it.

The algorithmworks as follows. On the first round, the algorithm
finds the longest common subsequence between S and S ′. Note that
this common subsequence corresponds to a monotone matching
M1 between S and S ′. On the next round, the algorithm finds the
longest common subsequence between S and the subsequence of
unmatched elements of S ′ (those that have not appeared in M1).
This common subsequence corresponds to a monotone matching
between S and the elements of S ′ that do not appear in M1. The

algorithm repeats this procedure 1
β
times to obtainM1, · · · ,M1/β

where β is a parameter that we will fix later.
In the output of this algorithm, S ′[ti] is decoded as S[i] if and

only if S[i] is only matched to S ′[ti] in allM1, · · · ,M1/β . Note that
the longest common subsequence of two strings of length O(n)
can be found in O(n2) using dynamic programming. Therefore, the
whole algorithm runs in O

(

n2/β
)

.
Now we proceed to analyzing the performance of the algorithm

by bounding the number of misdecodings.

Theorem 6.14. This decoding algorithm guarantees a maximum

misdecoding count of (n+di−dr)β+ ε
β
n. More specifically, for β =

√
ε ,

the number of misdecodings will be O
(

n
√
ε
)

and running time will

be O
(

n2/
√
ε
)

.

Proof. First, we claim that at most (n + di − dr)β many of the
symbols that have been successfully transmitted are not matched
in any of M1, · · · ,M1/β . Assume by contradiction that more than

(n+di −dr)β of the symbols that pass through the channel success-
fully are not matched in any ofM1, · · · ,M1/β . Then, there exists a
monotone matching of size greater than (n +di −dr)β between the

unmatched elements of S ′ and S after 1
β
rounds of finding longest

common substrings. Hence, size of any ofMi s is at least (n+di−dr)β .
So, the summation of their sizes exceeds (n + di − dr)β × 1

β
= |S ′ |

which brings us to a contradiction.
Furthermore, as a result of Theorem 6.4, any of Mi s contain

at most εn many incorrectly matched elements. Hence, at least
ε
β
n many of the matched symbols are matched to incorrect index.

Therefore, the total number of misdecodings can be bounded by
(n + di − dr)β + ε

β
n. �

45

STOC’17, June 2017, Montreal, Canada Bernhard Haeupler and Amirbehshad Shahrasbi

7 CONCLUSION AND FUTUREWORK

This paper introduced synchronization strings as simple yet very
powerful mathematical objects that are designed to deal with syn-
chronization errors in communications. In particular, one can use
them to efficiently transform insertion and deletion errors into
much simpler Hamming-type errors. This, e.g., transforms regular
ECCs into insdel codes with the same optimal rate/distance tradeoff.

The main focus of this paper lies in developing the theory of
synchronization strings and its application to the design of essen-
tially optimal insdel codes over large finite alphabets. However, our
method can also be ported into the setting of binary codes [20]: One
can fairly easily obtain binary error correcting codes that tolerate
a ε fraction of synchronization errors while achieving a rate of

1−O(
√

ε log(1/ε)) with a linear encoding and anO(n2) time decod-
ing algorithm. This is improves over the current state of the art
insdel codes [11] in terms of simplicity, encoding and decoding com-

plexity (which for the codes in [11] is nε
−O (1)

or nO (1)(logn)ε−O (1)

at the cost of a quadratically worse distance), and slightly also in
the rate/distance tradeoff.

In this article, we give a randomizednO (1) time construction for ε-

synchronization strings and a nO (1) time deterministic construction
for ε-selfmatching strings of length n. In [19] several highly paral-
lel, deterministic linear time constructions for ε-synchronization
strings are given. In fact, these constructions provide highly-explicit
infinite synchronization strings ε-synchronization strings in which

the ith symbol can be computed deterministically in O(log i) time.
We also give strengthened versions of ε-synchronization strings
which come with very fast local decoding procedures and discuss
several further applications.

In [20] it is shown that our synchronization string based indexing
method can be extended to fully simulate an ordinary corruption
channel over a insertion-deletion channel. This is much stronger
than constructing insdel codes and allows to completely hide the ex-
istence of synchronization errors in many applications that go way
beyond codes, such as, settings with feedback, real-time control,
or settings with interactive communications. This directly leads
to new interactive coding schemes for the setting with synchro-
nization errors [2] including the first efficient scheme and the first
scheme with good (and in fact likely near optimal) communication
rate for small error fractions.

We strongly believe that synchronization strings, our indexing
method, and channel simulations will lead to many further applica-
tions in the future. We also believe that ε-synchronization strings,
in their own right, are a worthwhile and interesting combinatorial
structure to study.

ACKNOWLEDGEMENTS

The authors want to thank Ellen Vitercik and Allison Bishop for
valuable discussions in the early stages of this work.

REFERENCES
[1] Arturs Backurs and Piotr Indyk. 2015. Edit distance cannot be computed in

strongly subquadratic time (unless SETH is false). Proceedings of the ACM
Symposium on Theory of Computing (STOC) (2015), 51–58.

[2] Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. 2016. Coding
for interactive communication correcting insertions and deletions. Proceedings of
the International Conference on Automata, Languages, and Programming (ICALP)
55 (2016), 61:1–61:14.

[3] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. 2013. De-
terministic algorithms for the Lovász local lemma. SIAM J. Comput. 42, 6 (2013),
2132–2155.

[4] Ran Gelles. 2015. Coding for Interactive Communication: A Survey. (2015).
[5] Ran Gelles and Bernhard Haeupler. 2015. Capacity of Interactive Communication

over Erasure Channels and Channels with Feedback. Proceeding of the ACM-SIAM
Symposium on Discrete Algorithms (SODA) (2015), 1296–1311.

[6] Mohsen Ghaffari and Bernhard Haeupler. 2014. Optimal Error Rates for Interac-
tive Coding II: Efficiency and List Decoding. Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS) (2014), 394–403.

[7] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. 2014. Optimal Error
Rates for Interactive Coding I: Adaptivity and other Settings. Proceedings of the
ACM Symposium on Theory of Computing (STOC) (2014), 794–803.

[8] SW Golomb, J Davey, I Reed, H Van Trees, and J Stiffler. 1963. Synchronization.
IEEE Transactions on Communications Systems 11, 4 (1963), 481–491.

[9] Venkatesan Guruswami and Piotr Indyk. 2005. Linear-time encodable/decodable
codes with near-optimal rate. IEEE Transactions on Information Theory (TransInf)
51, 10 (2005), 3393–3400.

[10] Venkatesan Guruswami and Ray Li. 2016. Efficiently decodable insertion/deletion
codes for high-noise and high-rate regimes. Proceedings of IEEE International
Symposium on Information Theory (ISIT) (2016), 620–624.

[11] Venkatesan Guruswami and Ray Li. 2016. Efficiently decodable insertion/deletion
codes for high-noise and high-rate regimes. arXiv:1605.04611 (2016).

[12] Venkatesan Guruswami and Atri Rudra. 2008. Explicit codes achieving list
decoding capacity: Error-correction with optimal redundancy. IEEE Transactions
on Information Theory (TransInf) 54, 1 (2008), 135–150.

[13] Venkatesan Guruswami and Ameya Velingker. 2015. An entropy sumset inequal-
ity and polynomially fast convergence to shannon capacity over all alphabets.
Proceedings of the 30th Conference on Computational Complexity (2015), 42–57.

[14] Venkatesan Guruswami and Carol Wang. 2017. Deletion codes in the high-noise
and high-rate regimes. IEEE Transactions on Information Theory (TransInf) 63, 4
(2017), 1961–1970.

[15] Venkatesan Guruswami and Patrick Xia. 2015. Polar codes: Speed of polariza-
tion and polynomial gap to capacity. IEEE Transactions on Information Theory
(TransInf) 61, 1 (2015), 3–16.

[16] Bernhard Haeupler. 2014. Interactive Channel Capacity Revisited. Proceeding of
the IEEE Symposium on Foundations of Computer Science (FOCS) (2014), 226–235.

[17] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. 2011. New Constructive
Aspects of the Lovász Local Lemma. Journal of the ACM (JACM) 58, 6 (2011), 28.

[18] Bernhard Haeupler and Amirbehshad Shahrasbi. 2017. Synchronization
Strings: Codes for Insertions and Deletions Approaching the Singleton Bound.
arXiv:1704.00807 (2017).

[19] Bernhard Haeupler and Amirbehshad Shahrasbi. 2017. Synchronization Strings:
Explicit Constructions, Local Decoding and Applications. (2017).

[20] Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. 2017. Synchro-
nization Strings: Channel Simulations and Interactive Coding for Insertions and
Deletions. (2017).

[21] Gillat Kol and Ran Raz. 2013. Interactive channel capacity. Proceedings of the
ACM Symposium on Theory of Computing (STOC) (2013), 715–724.

[22] Vladimir I Levenshtein. 1965. Binary codes capable of correcting deletions,
insertions, and reversals. Doklady Akademii Nauk SSSR 163 4 (1965), 845–848.

[23] S-YR Li, Raymond W Yeung, and Ning Cai. 2003. Linear network coding. IEEE
Transactions on Information Theory (TransInf) 49, 2 (2003), 371–381.

[24] Michael Luby. 2002. LT codes. Proceedings of the IEEE Symposium on Foundations
of Computer Science (FOCS) (2002), 271–282.

[25] Hugues Mercier, Vijay K Bhargava, and Vahid Tarokh. 2010. A survey of error-
correcting codes for channels with symbol synchronization errors. IEEE Com-
munications Surveys & Tutorials 1, 12 (2010), 87–96.

[26] Michael Mitzenmacher. 2009. A survey of results for deletion channels and
related synchronization channels. Probability Surveys 6 (2009), 1–33.

[27] Robin A. Moser and Gabor Tardos. 2010. A constructive proof of the general
Lovász Local Lemma. Journal of the ACM (JACM) 57, 2 (2010), 11.

[28] Joseph Naor and Moni Naor. 1993. Small-bias probability spaces: Efficient con-
structions and applications. SIAM Journal on Computing (SICOMP) 22, 4 (1993),
838–856.

[29] Leonard J. Schulman and David Zuckerman. 1999. Asymptotically good codes
correcting insertions, deletions, and transpositions. IEEE Transactions on Infor-
mation Theory (TransInf) 45, 7 (1999), 2552–2557.

[30] Neil JA Sloane. 2002. On single-deletion-correcting codes. Codes and Designs, de
Gruyter, Berlin (2002), 273–291.

[31] Daniel A Spielman. 1996. Linear-time Encodable and Decodable Error-Correcting
Codes. IEEE Transactions on Information Theory (TransInf) 42, 6 (1996), 1723–
1731.

[32] A Thue. 1977. Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen
(1912). Selected mathematical papers of Axel Thue, Universitetsforlaget (1977).

[33] Michael Tsfasman and Serge G Vladut. 2013. Algebraic-geometric codes. Vol. 58.
Springer Science & Business Media.

46

	Abstract
	1 Introduction
	1.1 High-level Overview, Intuition and Overall Organization
	1.2 Synchronization Strings: Definition, Construction, and Decoding
	1.3 More Sophisticated Decoding Procedures
	1.4 Organization of this Paper
	1.5 Related Work

	2 Definitions and Preliminaries
	2.1 String Notation and Edit Distance

	3 The Indexing Problem
	4 Insdel Codes via Indexing
	5 Synchronization Strings
	5.1 Existence and Construction
	5.2 Decoding

	6 More Advanced Global Decoding Algorithms
	6.1 Monotone Matchings and the -Self Matching Property
	6.2 Construction of -Self Matching Strings
	6.3 Global Decoding Algorithm

	7 Conclusion and Future Work
	References

