Synchronization Strings: Codes for Insertions and Deletions
Approaching the Singleton Bound”

Bernhard Haeupler
Carnegie Mellon University
Pittsburgh, PA, USA
haeupler@cs.cmu.edu

ABSTRACT

We introduce synchronization strings, which provide a novel way
to efficiently deal with synchronization errors, i.e., insertions
and deletions. Synchronization errors are strictly more general
and much harder to cope with than more commonly considered
half-errors, i.e., symbol corruptions and erasures. For every ¢ > 0,
synchronization strings allow to index a sequence with an g0
size alphabet such that one can efficiently transform k synchro-
nization errors into (1 + &)k half-errors. This powerful new
technique has many applications. In this paper, we focus on de-
signing insdel codes, i.e., error correcting block codes (ECCs) for
insertion-deletion channels.

While ECCs for both half-errors and synchronization errors have
been intensely studied, the later has largely resisted progress. As
Mitzenmacher puts it in his 2009 survey: “Channels with synchro-
nization errors ... are simply not adequately understood by current
theory. Given the near-complete knowledge we have for channels with
erasures and errors ... our lack of understanding about channels with
synchronization errors is truly remarkable.” Indeed, it took until 1999
for the first insdel codes with constant rate, constant distance, and
constant alphabet size to be constructed and only since 2016 are
there constructions of constant rate insdel codes for asymptotically
large noise rates. Even in the asymptotically large or small noise
regime these codes are polynomially far from the optimal rate-
distance tradeoff. This makes the understanding of insdel codes
up to this work equivalent to what was known for regular ECCs
after Forney introduced concatenated codes in his doctoral thesis
50 years ago.

A straight forward application of our synchronization strings
based indexing method gives a simple black-box construction which
transforms any ECC into an equally efficient insdel code
with only a small increase in the alphabet size. This instantly trans-
fers much of the highly developed understanding for regular ECCs
into the realm of insdel codes. Most notably, for the complete noise
spectrum we obtain efficient “near-MDS” insdel codes which get
arbitrarily close to the optimal rate-distance tradeoff given by the

“Supported in part by the National Science Foundation through grants CCF-1527110
and CCF-1618280.
A full version of this article is available at [18].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC’17, Montreal, Canada

© 2017 ACM. 978-1-4503-4528-6/17/06...$15.00

DOI: 10.1145/3055399.3055498

33

Amirbehshad Shahrasbi
Carnegie Mellon University
Pittsburgh, PA, USA
shahrasbi@cs.cmu.edu

Singleton bound. In particular, for any § € (0, 1) and ¢ > 0 we give
insdel codes achieving a rate of 1—J —¢ over a constant size alphabet
that efficiently correct a § fraction of insertions or deletions.

CCS CONCEPTS

» Mathematics of computing — Coding theory;

KEYWORDS
Coding for Insertions and Deletions, Synchronization

ACM Reference format:

Bernhard Haeupler and Amirbehshad Shahrasbi. 2017. Synchronization
Strings: Codes for Insertions and Deletions Approaching the Singleton
Bound. In Proceedings of 49th Annual ACM SIGACT Symposium on the Theory
of Computing, Montreal, Canada, June 2017 (STOC’17), 14 pages.

DOI: 10.1145/3055399.3055498

1 INTRODUCTION

Since the fundamental works of Shannon, Hamming, and others
the field of coding theory has advanced our understanding of how
to efficiently correct symbol corruptions and erasures. The practical
and theoretical impact of error correcting codes on technology and
engineering as well as mathematics, theoretical computer science,
and other fields is hard to overestimate. The problem of coding for
timing errors such as closely related insertion and deletion errors,
however, while also studied intensely since the 60s, has largely
resisted such progress and impact so far. An expert panel [8] in
1963 concluded: “There has been one glaring hole in [Shannon’s]
theory; viz., uncertainties in timing, which I will propose to call time
noise, have not been encompassed Our thesis here today is that
the synchronization problem is not a mere engineering detail, but
a fundamental communication problem as basic as detection itself!”
however as noted in a comprehensive survey [25] in 2010: “Un-
fortunately, although it has early and often been conjectured that
error-correcting codes capable of correcting timing errors could im-
prove the overall performance of communication systems, they are
quite challenging to design, which partly explains why a large collec-
tion of synchronization techniques not based on coding were developed
and implemented over the years.” or as Mitzenmacher puts in his
survey [26]: “Channels with synchronization errors, including both in-
sertions and deletions as well as more general timing errors, are simply
not adequately understood by current theory. Given the near-complete
knowledge we have for channels with erasures and errors ... our lack
of understanding about channels with synchronization errors is truly
remarkable.” We, too, believe that the current lack of good codes
and general understanding of how to handle synchronization errors
is the reason why systems today still spend significant resources
and efforts on keeping very tight controls on synchronization while

STOC’17, June 2017, Montreal, Canada

other noise is handled more efficiently using coding techniques. We
are convinced that a better theoretical understanding together with
practical code constructions will eventually lead to systems which
naturally and more efficiently use coding techniques to address
synchronization and noise issues jointly. In addition, we feel that
better understanding the combinatorial structure underlying (codes
for) insertions and deletions will have impact on other parts of
mathematics and theoretical computer science.

This paper introduces synchronization strings, a new combinato-
rial structure which allows efficient synchronization and indexing
of streams under insertions and deletions. Synchronization strings
and our indexing abstraction provide a powerful and novel way to
deal with synchronization issues. They make progress on the issues
raised above and have applications in a large variety of settings and
problems. We already found applications to channel simulations,
synchronization sequences [25], interactive coding schemes [4-
7, 16, 21], edit distance tree codes [2], and error correcting codes for
insertion and deletions and suspect there will be many more. This
paper focuses on the last application, namely, designing efficient
error correcting block codes over large alphabets for worst-case
insertion-deletion channels.

The knowledge on efficient error correcting block codes for
insertions and deletions, also called insdel codes, severely lacks
behind what is known for codes for Hamming errors. While Leven-
shtein [22] introduced and pushed the study of such codes already
in the 60s it took until 1999 for Schulman and Zuckerman [29] to
construct the first insdel codes with constant rate, constant dis-
tance, and constant alphabet size. Very recent work of Guruswami
et al. [10, 14] in 2015 and 2016 gave the first constant rate insdel
codes for asymptotically large noise rates, via list decoding. These
codes are however still polynomially far from optimal in their rate
or decodable distance respectively. In particular, they achieve a rate
of Q(¢°) for a relative distance of 1— ¢ or a relative distance of O(¢?)
for a rate of 1 — ¢, for asymptotically small ¢ > 0 (see Section 1.5
for a more detailed discussion of related work).

This paper essentially closes this line of work by designing ef-
ficient “near-MDS” insdel codes which approach the optimal rate-
distance trade-off given by the Singleton bound. We prove that for
any 0 < § < 1 and any constant ¢ > 0, there is an efficient insdel
code over a constant size alphabet with block length n and rate
1 — 8 — ¢ which can be uniquely and efficiently decoded from any
dn insertions and deletions. The code construction takes polyno-
mial time; and encoding and decoding can be done in linear and
quadratic time, respectively. More formally, let us define the edit
distance of two given strings as the minimum number of insertions
and deletions required to convert one of them to the other one.

THEOREM 1.1. Foranye > 0 and§ € (0, 1) there exists an encoding
map E : 3% — =" and a decoding map D : 3* — ¥, such that, if
EditDistance(E(m), x) < dn then D(x) = m. Further% >1-8-¢,
|Z| = f(¢), and E and D are explicit and can be computed in linear
and quadratic time in n.

This code is obtained via a black-box construction which trans-
forms any ECC into an equally efficient insdel code with only
a small increase in the alphabet size. This transformation, which is
a straight forward application of our new synchronization strings

34

Bernhard Haeupler and Amirbehshad Shahrasbi

based indexing method, is so simple that it can be summarized in
one sentence:
log ¢!

For any efficient length n ECC with alphabet bit size ——,
attaching to every codeword, symbol by symbol, a random
or suitable pseudorandom string over an alphabet of bit
size log ¢! results in an efficient insdel code with a rate and
decodable distance that changed by at most «.

Far beyond just implying Theorem 1.1, this allows to instantly
transfer much of the highly developed understanding for regular
ECCs into the realm of insdel codes.

Theorem 1.1 is obtained by using the “near-MDS” expander
codes of Guruswami and Indyk [9] as a base ECC. These codes
generalize the linear time codes of Spielman [31] and can be en-
coded and decoded in linear time. Our simple encoding strategy,
as outlined above, introduces essentially no additional computa-
tional complexity during encoding. Our quadratic time decoding
algorithm, however, is slower than the linear time decoding of the
base codes from [9] but still pretty fast. In particular, a quadratic
time decoding for an insdel code is generally very good given that,
in contrast to Hamming codes, even computing the distance be-
tween the received and the sent/decoded string is an edit distance
computation. Edit distance computations in general do usually not
run in sub-quadratic time, which is not surprising given the recent
SETH-conditional lower bounds [1]. For the settings of insertion-
only and deletion-only errors we furthermore achieve analogs of
Theorem 1.1 with linear decoding complexities (see [18]).

1.1 High-level Overview, Intuition and Overall
Organization

While extremely powerful, the concept and idea behind synchro-
nization strings is easily demonstrated. In this section, we explain
the high-level approach taken and provide intuition for the for-
mal definitions and proofs to follow. This section also explains the
overall organization of the rest of the paper.

1.1.1 Synchronization Errors and Half-Errors. Consider a stream
of symbols over a large but constant size alphabet ¥ in which some
constant fraction § of symbols is corrupted.

There are two basic types of corruptions we will consider, half-
errors and synchronization errors. Half-errors consist of erasures,
that is, a symbol being replaced with a special “?” symbol indicating
the erasure, and symbol corruptions in which a symbol is replaced
with any other symbol in X. The wording half-error comes from
the realization that when it comes to code distances erasures are
half as bad as symbol corruptions. An erasure is thus counted as
one half-error while a symbol corruption counts as two half-errors
(see Section 2 for more details). Synchronization errors consist of
deletions, that is, a symbol being removed without replacement, and
insertions, where a new symbol from X is added anywhere.

It is clear that synchronization errors are strictly more gen-
eral and harsher than half-errors. In particular, any symbol
corruption, worth two half-errors, can also be achieved via a dele-
tion followed by an insertion. Any erasure can furthermore be
interpreted as a deletion together with the often very helpful extra
information where this deletion took place. This makes synchro-
nization errors at least as hard as half-errors. The real problem that
synchronization errors bring with them however is that they cause

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound

sending and receiving parties to become “out of synch”. This easily
changes how received symbols are interpreted and makes design-
ing codes or other systems tolerant to synchronization errors an
inherently difficult and significantly less well understood problem.

1.1.2 Indexing and Synchronization Strings: Reducing Synchro-
nization Errors to Half-Errors. There is a simple folklore strategy,
which we call indexing, that avoids these synchronization problems:
Simply enhance any element with a time stamp or element count.
More precisely, consecutively number the elements and attach this
position count or index to each stream element. Now, if we deal with
only deletions it is clear that the position of any deletion is easily
identified via a missing index, thus transforming it into an erasure.
Insertions can be handled similarly by treating any stream index
which is received more than once as erased. If both insertions and
deletions are allowed one might still have elements with a spoofed
or incorrectly received index position caused by a deletion of an
indexed symbol which is then replaced by a different symbol with
the same index. This however requires two insdel errors. Generally
this trivial indexing strategy can seen to successfully transform any
k synchronization errors into at most k half-errors.

In many applications, however, this trivial indexing cannot be
used, because having to attach a log n bit! long index description to
each element of an n long stream is prohibitively costly. Consider
for example an error correcting code of constant rate R over some
potentially large but nonetheless constant size alphabet %, which
% bits into n symbols from X. Increasing ¥ by a factor
of n to allow each symbol to carry its log n bit index would destroy
the desirable property of having an alphabet which is independent
from the block length n and would furthermore reduce the rate of
the code from R to @(%), which approaches zero for large block

encodes

lengths. For streams of unknown or infinite length such problems
become even more pronounced.

This is where synchronization strings come to the rescue. Essen-
tially, synchronization strings allow to index every element in
an infinite stream using only a constant size alphabet while
achieving an arbitrarily good approximate reduction from synchro-
nization errors to half-errors. In particular, using synchronization
strings k synchronization errors can be transformed into at
most (1 + ¢)k half-errors using an alphabet of size indepen-
dent of the stream length and in fact only polynomial in % More-
over, these synchronization strings have simple constructions and
fast and easy decoding procedures.

Attaching our synchronization strings to the codewords of any
efficient error correcting code, which efficiently tolerates the usual
symbol corruptions and erasures, transforms any such code into an
efficiently decodable insdel code while only requiring a negligible
increasing in the alphabet size. This allows to use the decades of
intense research in coding theory for Hamming-type errors to be
transferred into the much harder and less well understood insertion-
deletion setting.

!Throughout this paper all logarithms are binary.

35

STOC’17, June 2017, Montreal, Canada

1.2 Synchronization Strings: Definition,
Construction, and Decoding

Next, we want to briefly motivate and explain how we arrive at
a natural definition of these magical indexing sequences S over
a finite alphabet X and what intuition lies behind their efficient
constructions and decoding procedures.

Suppose a sender has attached some indexing sequence S one-
by-one to each element in a stream and consider a time ¢ at which
a receiver has received a corrupted sequence of the first ¢ index
descriptors, i.e., a corrupted version of the length ¢ prefix of S. When
the receiver tries to guess or decode the current index it should
naturally consider all indexing symbols received so far and find
the “best” prefix of S. This suggests that the prefix of length [of a
synchronization string S acts as a codeword for the index position
I and that one should think of the set of prefixes of S as a code
associated with the synchronization string S. Naturally one would
want such a code to have good distance properties between any
two codewords under some distance measure. While edit distance,
i.e., the number of insertions and deletions needed to transform
one string into another seems like the right notion of distance
for insdel errors in general, the prefix nature of the codes under
consideration will guarantee that codewords for indices [and I’ > [
will have edit distance exactly I’ — I. This implies that even two
very long codewords only have a tiny edit distance. On the one
hand, this precludes synchronization codes with a large relative
edit distance between its codewords. On the other hand, one should
see this phenomenon as simply capturing the fact that at any time
a simple insertion of an incorrect symbol carrying the correct next
indexing symbol will lead to an unavoidable decoding error. Given
this natural and unavoidable sensitivity of synchronization codes to
recent corruptions, it makes sense to instead use a distance measure
which captures the recent density of errors. In this spirit, we suggest
the definition of a, to our knowledge, new string distance measure
which we call relative suffix distance, which intuitively measures the
worst fraction of insdel errors to transform suffixes, i.e., recently
sent parts of two strings, into each other. This natural measure, in
contrast to a similar measure defined in [2], turns out to induce a
metric space on any set of strings.

With this natural definitions for an induced set of codewords and
a natural distance metric associated with any such set the next task
is to design a string S for which the set of codewords has as large of a
minimum pairwise distance as possible. When looking for (infinite)
sequences that induce such a set of codewords and thus can be
successfully used as synchronization strings it became apparent that
one is looking for highly irregular and non-self-similar strings over
a fixed alphabet 2. It turns out that the correct definition to capture
these desired properties, which we call e-synchronization property,
states that any two neighboring intervals of S with total length [
should require at least (1 — ¢)! insertions and deletions to transform
one into the other, where ¢ > 0. A one line calculation also shows
that this clean property also implies a large minimum relative suffix
distance between any two codewords. Not surprisingly, random
strings essentially satisfy this e-synchronization property, except
for local imperfections of self-similarity, such as, symbols repeated
twice in a row, which would naturally occur in random sequences
about every |X| positions. This allows us to use the probabilistic
method and the general Lovasz local lemma to prove the existence

STOC’17, June 2017, Montreal, Canada

e-synchronization strings. This also leads to an efficient randomized
construction.

Finally, decoding any string to the closest codeword, i.e., the
prefix of the synchronization string S with the smallest relative
suffix distance, can be easily done in polynomial time because the
set of synchronization codewords is linear and not exponential in
n and (edit) distance computations (to each codeword individually)
can be done via the classical Wagner-Fischer dynamic programming
approach.

1.3 More Sophisticated Decoding Procedures

All this provides an indexing solution which transforms any k
synchronization errors into at most (5 + ¢)k half-errors. This already
leads to insdel codes which achieve a rate approaching 1 — 58 for
any J fraction of insdel errors with § < % While this is already a

drastic improvement over the previously best 1 — O(V5) rate codes
from [10], which worked only for sufficiently small 4, it is a far less
strong result than the near-MDS codes we promised in Theorem 1.1
for every § € (0, 1).

In order to achieve our main theorem we developed an different
strategy. Fortunately, it turned out that achieving a better indexing
solution and the desired insdel codes does not require any changes
to the definition of synchronization codes, the indexing approach
itself, or the encoding scheme but solely required a very different
decoding strategy. In particular, instead of decoding indices in a
streaming manner we consider more global decoding algorithms.
We provide several such decoding algorithms in Section 6. In partic-
ular, we give a simple global decoding algorithm which for which
the number of misdecodings goes to zero as the quality ¢ of the
e-synchronization string used goes to zero, irrespectively of how
many insdel errors are applied.

Our global decoding algorithms crucially build on another key-
property which we prove holds for any e-synchronization string S,
namely that there is no monotone matching between S and itself
which mismatches more than a ¢ fraction of indices. Besides being
used in our proofs, considering this e-self-matching property has
another advantage. We show that this property is achieved easier
than the full e-synchronization property and that indeed a random
string satisfies it with good probability. This means that, in the con-
text of error correcting codes, one can even use a simple uniformly
random string as a “synchronization string”. Lastly, we show that
even a n_o(l)—approximate o (lc’l;%)—wise independent random
strings satisfy the desired e-self-matching property which, using
the celebrated small sample space constructions from [28] also leads
to a deterministic polynomial time construction.

1.4 Organization of this Paper

The organization of this paper closely follows the flow of the high-
level description above. We start by giving more details on related
work in Section 1.5 and introduce notation used in the paper in
Section 2. In Section 3, we formalize the indexing problem. Sec-
tion 4 shows how any solution to the indexing problem can be
used to transform any regular error correcting codes into an ins-
del code. Section 5 introduces the relative suffix distance and e-
synchronization strings, proves the existence of e-synchronization
strings and provides an efficient construction. Section 5.2 shows

36

Bernhard Haeupler and Amirbehshad Shahrasbi

that the minimum suffix distance decoder is efficient and leads to a
good indexing solution. We elaborate on the connection between
e-synchronization strings and the e-self-matching property in Sec-
tion 6.1, introduce an efficient deterministic construction of e-self
matching strings in Section 6.2, and provide our improved decoding
algorithms in the remainder of Section 6.

1.5 Related Work

Shannon was the first to systematically study reliable communica-
tion. He introduced random error channels, defined information
quantities, and gave probabilistic existence proofs of good codes.
Hamming was the first to look at worst-case errors and code dis-
tances as introduced above. Simple counting arguments on the
volume of balls around codewords given in the 50’s by Hamming
and Gilbert-Varshamov produce simple bounds on the rate of g-ary
codes with relative distance §. In particular, they show the existence

of codes with relative distance & and rate at least 1 — Hy(5) where

Hq(x) = xlog(q — 1) — W

function. This means that for any § < 1 and ¢ = w(1/9) there exists
codes with distance § and rate approaching 1 — §. Concatenated
codes and the generalized minimum distance decoding procedure
introduced by Forney in 1966 led to the first codes which could
recover from constant error fractions § € (0, 1) while having poly-
nomial time encoding and decoding procedures. The rate achieved
by concatenated codes for large alphabets with sufficiently small
distance § comes out to be 1 — O(V3). On the other hand, for &
sufficiently close to one, one can achieve a constant rate of O(52).
Algebraic geometry codes suggested by Goppa in 1975 later lead to
error correcting codes which for every ¢ > 0 achieve the optimal
rate of 1 — § — ¢ with an alphabet size polynomial in ¢ while being
able to efficiently correct for a § fraction of half-errors [33].

While this answered the most basic questions, research since
then has developed a tremendously powerful toolbox and selection
of explicit codes. It attests to the importance of error correcting
codes that over the last several decades this research direction has
developed into the incredibly active field of coding theory with
hundreds of researchers studying and developing better codes. A
small and highly incomplete subset of important innovations in-
clude rateless codes, such as, LT codes [24], which do not require
to fix a desired distance at the time of encoding, explicit expander
codes [9, 31] which allow linear time encoding and decoding, polar
codes [13, 15] which can approach Shannon’s capacity polynomi-
ally fast, network codes [23] which allow intermediate nodes in
a network to recombine codewords, and efficiently list decodable
codes [12] which allow to list-decode codes of relative distance §
up to a fraction of about § symbol corruptions.

While error correcting codes for insertions and deletions have
also been intensely studied, our understanding of them is much
less well developed. We refer to the 2002 survey by Sloan [30] on
single-deletion codes, the 2009 survey by Mitzenmacher [26] on
codes for random deletions and the most general 2010 survey by
Mercier et al. [25] for the extensive work done around codes for
synchronization errors and only mention the results most closely
related to Theorem 1.1 here: Insdel codes were first considered by
Levenshtein [22] and since then many bounds and constructions
for such codes have been given. However, while essentially the

is the g-ary entropy

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound

same volume and sphere packing arguments as for regular codes
show that there exists insdel codes capable of correcting a frac-
tion § of insdel erros with rate 1 — §, no efficient constructions
anywhere close to this rate-distance tradeoff are known. Even the
construction of efficient insdel codes over a constant alphabet with
any (tiny) constant relative distance and any (tiny) constant rate
had to wait until Schulman and Zuckerman gave the first such code
in 1999 [29]. Over the last two years Guruswami et al. provided
new codes improving over this state of the art the asymptotically
small or large noise regime by giving the first codes which achieve
a constant rate for noise rates going to one and codes which provide
a rate going to one for an asymptotically small noise rate. In partic-
ular, [14] gave the first efficient codes codes over fixed alphabets
to correct a deletion fraction approaching 1, as well as efficient
binary codes to correct a small constant fraction of deletions with
rate approaching 1. These codes could, however, only be efficiently
decoded for deletions and not insertions. A follow-up work gave
new and improved codes with similar rate-distance tradeoffs which
can be efficiently decoded from insertions and deletions [10]. In
particular, these codes achieve a rate of Q(5°) and 1 — O(V§) while
being able to efficiently recover from a § fraction of insertions and
deletions. These works put the current state of the art for error
correcting codes for insertions and deletions pretty much equal to
what was known for regular error correcting codes 50 years ago,
after Forney’s 1965 doctoral thesis.

2 DEFINITIONS AND PRELIMINARIES

In this section, we provide the notation and definitions we will use
throughout the rest of the paper.

2.1 String Notation and Edit Distance

String Notation. For two strings S € 3" and S’ € 3" be two
strings over alphabet 3. We define S - §” € 3741 6 be their con-
catenation. For any positive integer k we define S¥ to equal k
copies of S concatenated together. For i, j € {1, ..., n}, we denote
the substring of S from the i*" index through and including the
j*" index as S[i, j]. Such a consecutive substring is also called a
factor of S. For i < 1 we define S[i,j] = L7**1 . S[1, j] where L
is a special symbol not contained in . We refer to the substring
from the i*" index through, but not including, the jth index as
S[i, j). The substrings S(i, j] and S[i, j] are similarly defined. Finally,
S[i] denotes the i" symbol of S and |S| = n is the length of S.
Occasionally, the alphabets we use are the cross-product of several
alphabets, ie. X = ¥1 X --- X Z,. If T is a string over X, then we
write T[i] = [a1,...,an], where a; € %;.

Edit Distance. Throughout this work, we rely on the well-known
edit distance metric defined as follows.

Definition 2.1 (Edit distance). The edit distance ED(c, ¢”) between
two strings ¢, ¢’ € " is the minimum number of insertions and
deletions required to transform c into ¢’.

It is easy to see that edit distance is a metric on any set of strings
and in particular is symmetric and satisfies the triangle inequality
property. Furthermore, ED (c,¢”) = |c| + |¢’| — 2 - LCS (¢, ¢”), where
LCS (¢, ¢’) is the longest common substring of ¢ and ¢’.

We also use some string matching notation from [2]:

37

STOC’17, June 2017, Montreal, Canada

Definition 2.2 (String matching). Suppose that ¢ and ¢’ are two
strings in ¥, and suppose that * is a symbol not in . Next, sup-
pose that there exist two strings 7; and 7z in (2 U {*})* such that
|r1] = |r2l, del(r1) = ¢, del(rz) = ¢’, and 11[i] =~ 13[i] for all
i € {1,...,|r1|}. Here, del is a function that deletes every # in the
input string and a =~ b if a = b or one of a or b is *. Then we say
that 7 = (71, 72) is a string matching between ¢ and ¢’ (denoted
7 : ¢ — ¢’). We furthermore denote with sc (z;) the number of +’s
m 7.

Note that the edit distance ED(c, ¢’) between strings ¢, ¢, € 3* is
exactly equal to min;.c—,¢ {sc (1) + sc(2)}.

3 THE INDEXING PROBLEM

In this section, we formally define the indexing problem. In a nut-
shell, this problem is that of sending a suitably chosen string S of
length n over an insertion-deletion channel such that the receiver
will be able to figure out the indices of most of the symbols he
receives correctly. This problem can be trivially solved by sending
the string S = 1,2, ..., n over the alphabet X = {1, ..., n} of size n.
Interesting solution to the indexing problem, however, do almost
as well while using a finite size alphabet. While very intuitive and
simple, the formalization of this problem and its solutions enables
an easy use in many applications.

To set up an (n, §)-indexing problem, we fix n, i.e., the number
of symbols which are being sent, and the maximum fraction § of
symbols that can be inserted or deleted. We further call the string
S the synchronization string. Lastly, we describe the influences of
the nd worst-case insertions and deletions which transform S into
the related string S; in terms of a string matching 7. In particular,
7 = (11, 72) is the string matching from S to S; such that del(z;) = S,
del(tz) = Sz, and for every k

(S[i], #) if S[i] is deleted
(r1[k], z2[k]) = { (S[i), Sc[j]) if S[i] is delivered as S []
(%, Sz if Sz [j] is inserted

where i = |del(r1[1,k])| and j = |del(r2[1, k])|.

Definition 3.1 ((n, §)-Indexing Algorithm). The pair (S, Ds) con-
sisting of a synchronization string S € " and an algorithm Dg
is called a (n, §)-indexing algorithm over alphabet ¥ if for any set
of nd insertions and deletions represented by 7 which alter S to
a string S;, the algorithm Dg(S;) outputs either L or an index
between 1 and n for every symbol in S;.

The L symbol here represents an “I don’t know” response of the
algorithm while an index j output by Ds(S;) for the i’ h symbol of
St should be interpreted as the (n, §)-indexing algorithm guessing
that this was the j'# symbol of S. One seeks algorithms that decode
as many indices as possible correctly. Naturally, one can only cor-
rectly decode indices that were correctly transmitted. Next we give
formal definitions of both notions:

Definition 3.2 (Correctly Decoded Index). An (n,§) indexing algo-
rithm (S, Ds) decodes index j correctly under 7 if Dg(S;) outputs
i and there exists a k such that i = |del(r1[1,k])|,j = |del(r2[1, k])|,
ti[k] = S[i], and ra[k] = Sc[j].

We remark that this definition counts any L response as an
incorrect decoding.

STOC’17, June 2017, Montreal, Canada

Definition 3.3 (Successfully Transmitted Symbol). For string Sz,
which was derived from a synchronization string S via = = (1, 72),
we call the jth symbol S;[j] successfully transmitted if it stems
from a symbol coming from S, i.e., if there exists a k such that
|del(z2[1, k])| = j and 1[k] = r2[k].

We now define the quality of an (n, §)-indexing algorithm by
counting the maximum number of misdecoded indices among those
that were successfully transmitted. Note that the trivial indexing
strategy with S = 1,...,n which outputs for each symbol the
symbol itself has no misdecodings. One can therefore also interpret
our quality definition as capturing how far from this ideal solution
an algorithm is (stemming likely from the smaller alphabet which
is used for S).

Definition 3.4 (Misdecodings of an (n, §)-Indexing Algorithm). Let
(S, Ds) be an (n, §)-indexing algorithm. We say this algorithm has
at most k misdecodings if for any 7 corresponding to at most nd
insertions and deletions the number of correctly transmitted indices
that are incorrectly decoded is at most k.

Now, we introduce two further useful properties that a (n, §)-
indexing algorithm might have.

Definition 3.5 (Error-free Solution). We call (S, Ds) an error-free
(n, 8)-indexing algorithm with respect to a set of deletion or inser-
tion patterns if every index output is either L or correctly decoded.
In particular, the algorithm never outputs an incorrect index, even
for indices which are not correctly transmitted.

It is noteworthy that error-free solutions are essentially only
obtainable when dealing with the insertion-only or deletion-only
setting. In both cases, the trivial solution with S = 1, - - , n which
decodes any index that was received exactly once is error-free. We
later give some algorithms which preserve this nice property, even
over a smaller alphabet, and show how error-freeness can be useful
in the context of error correcting codes.

Lastly, another very useful property of some (n, §)-indexing al-
gorithms is that their decoding process operates in a streaming
manner, i.e, the decoding algorithm decides the index output for
S:[j] independently of S;[j’] where j’ > j. While this property is
not particularly useful for the error correcting block code appli-
cation put forward in this paper, it is an extremely important and
strong property which is crucial in several applications we know
of, such as, rateless error correcting codes, channel simulations,
interactive coding, edit distance tree codes, and other settings.

Definition 3.6 (Streaming Solutions). We call (S, Ds) a streaming
solution if the decoded index for the ith element of the received
string S; only depends on S;[1, i].

Again, the trivial solution for (n, §)-index decoding problem over
an alphabet of size n with zero misdecodings can be made streaming
by outputting for every received symbols the received symbol itself
as an index. This solution is also error-free for the deletion-only
setting but not error-free for the insertion-only setting. In fact, it
is easy to show that an algorithm cannot be both streaming and
error-free in any setting which allows insertions.

Overall, the important characteristics of an (n, §)-indexing al-
gorithm are (a) its alphabet size |2|, (b) the bound on the number
of misdecodings, (c) the complexity of the decoding algorithm D,

38

Bernhard Haeupler and Amirbehshad Shahrasbi

(d) the preprocessing complexity of constructing the string S, (e)
whether the algorithm works for the insertion-only, the deletion-
only or the full insdel setting, and (f) whether the algorithm satisfies
the streaming or error-freeness property.

4 INSDEL CODES VIA INDEXING

Next, we show how a good (n, §)-indexing algorithms (S, Ds) over
alphabet X g allows one to transform any regular ECC C with block
length n over alphabet X > which can efficiently correct half-errors,
i.e., symbol corruptions and erasures, into a good insdel code over
alphabet X = 3¢ X 2.

To this end, we simply attach S symbol-by-symbol to every
codeword of C. On the decoding end, we first decode the indices
of the symbols arrived using the indexing part of each received
symbol and then interpret the message parts as if they have arrived
in the decoded order. Indices where zero or multiple symbols are
received get considered as erased. We will refer to this procedure
as the indexing procedure. Finally, the decoding algorithm D for
C is used.

THEOREM 4.1. If(S, Ds) guarantees k misdecodings for the (n, §)-
index problem, then the indexing procedure recovers the codeword sent
up to nd + 2k half-errors, i.e., half-error distance of the sent codeword
and the one recovered by the indexing procedure is at most nd + 2k.
If (S, Ds) is error-free, the indexing procedure recovers the codeword
sent up tond + k half-errors.

Proor. Consider a set insertions and deletions described by
7 consisting of D; deletions and I, insertions. Note that among
n encoded symbols, at most D, were deleted and less than k of
are decoded incorrectly. Therefore, at least n — D; — k indices
are decoded correctly. On the other hand at most D; + k of the
symbols sent are not decoded correctly. Therefore, if the output only
consisted of correctly decoded indices for successfully transmitted
symbols, the output would have contained up to D; + k erasures
and no symbol corruption, resulting into a total of D; + k half-
errors. However, any symbol which is being incorrectly decoded
or inserted may cause a correctly decoded index to become an
erasure by making it appear multiple times or change one of original
I+ + k erasures into a corruption error by making the indexing
procedure mistakenly decode an index. Overall, this can increase
the number of half-errors by at most I+ + k for a total of at most
D; +k+1; +k = D; +I; + 2k = nd + 2k half-errors. For error-
free indexing algorithms, any misdecoding does not result in an
incorrect index and the number of incorrect indices is I; instead of
I+ + k leading to the reduced number of half-errors in this case. O

This makes it clear that applying an ECC C which is resilient to
nd + 2k half-errors enables the receiver side to fully recover m.

Next, we formally state how a good (n, §)-indexing algorithm
(S, Ds) over alphabet X5 allows one to transform any regular ECC
C with block length n over alphabet ¢ which can efficiently cor-
rect half-errors, i.e., symbol corruptions and erasures, into a good
insdel code over alphabet £ = £ X Xg. The following Theorem
is a corollary of Theorem 4.1 and the definition of the indexing
procedure:

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound

THEOREM 4.2. Given an (efficient)(n, §)-indexing algorithm (S, Ds)
over alphabet T s with at most k misdecodings, and decoding com-
plexity Tpg(n) and an (efficient) ECC C over alphabet X with rate
Re, encoding complexity Tg,,, and decoding complexity Tp,, that
corrects up to nd + 2k half-errors, one obtains an insdel code that can
be (efficiently) decoded from up to nd insertions and deletions. The

rate of this code isR¢ - (1 logZs

logZc
T, the decoding complexitygis Tp, + Tpg(n) and the preprocessing
complexity of constructing the code is the complexity of construct-
ing C and S. Furthermore, if (S, Dg) is error-free, then choosing a C
which can recover only from né + k erasures is sufficient to produce
the same quality code.

). The encoding complexity remains

Note that if one chooses X such that {zg ;: = 0(9), the rate loss

due to the attached symbols will be negligible. With all this in place
one can obtain Theorem 1.1 as a consequence of Theorem 4.2.

Proor or THEOREM 1.1. Given the § and ¢ from the statement
of Theorem 1.1 we choose ¢ = O ((¢/6)?) and use Theorem 6.13
to construct a string S of length n over alphabet X of size P
with the ¢’-self-matching property. We then use the (n, §)-indexing
algorithm (S, Dg) where given in Section 6.3 which guarantees
that it has at most Ve’ = £ misdecodings. Finally, we choose a
near-MDS expander code [9] C which can efficiently correct up
to §¢ = & + § half-errors and has a rate of R > 1 - 8¢ - §

over an alphabet 3¢ = exp(¢ () such that log [Z¢| > 2°&1s] 10g6|25|,
This ensures that the final rate is indeed at least Ro — i(’g %s
og ¢

1 -6 — 3% and the number of insdel errors that can be efficiently
corrected is §¢ — 2§ > §. The encoding and decoding complexities
are furthermore straight forward and as is the polynomial time
preprocessing time given Theorem 6.13 and [9].]

5 SYNCHRONIZATION STRINGS

In this section, we formally define and develop e-synchronization
strings, which can be used as our base synchronization string S in
our (n, §)-indexing algorithms.

As explained in Section 1.2 it makes sense to think of the prefixes
S[1,1] of a synchronization string S as codewords encoding their
length [, as the prefix S[1,1], or a corrupted version of it, will be
exactly all the indexing information that has been received by the

time the ¢/ symbol is communicated:

Definition 5.1 (Codewords Associated with a Synchronization String).
Given any synchronization string S we define the set of codewords
associated with S to be the set of prefixes of S, i.e., {S[1,I] |1 <] <

IS1}-

Next, we define a distance metric on any set of strings, which
will be useful in quantifying how good a synchronization string S
and its associated set of codewords is:

Definition 5.2 (Relative Suffix Distance). For any two strings
S,S” € * we define their relative suffix distance RSD as follows:
o ED(SUSI = k. ISI1, S"(1S"] = k. IS"1D)
2k

Next we show that RSD is indeed a distance which satisfies all
properties of a metric for any set of strings. To our knowledge, this

RSD(S,S’) = ma
k>0

39

STOC’17, June 2017, Montreal, Canada

metric is new. It is, however, similar in spirit to the suffix “distance”
defined in [2], which unfortunately is non-symmetric and does not
satisfy the triangle inequality but can otherwise be used in a similar
manner as RSD in the specific context here.

LEmMA 5.3. For any strings S1, S2, S3 we have

Symmetry: RSD(S1,S2) = RSD(S2, 51),

Non-Negativity and Normalization: 0 < RSD(S1,S2) < 1,
Identity of Indiscernibles: RSD(S1,52) = 0 & S1 = Sy, and
Triangle Inequality: RSD(S1, S3) < RSD(S1, S2)+RSD(S2, S3).

In particular, RSD defines a metric on any set of strings.

Proor. Symmetry and non-negativity follow directly from the
symmetry and non-negativity of edit distance. Normalization fol-
lows from the fact that the edit distance between two length k
strings can be at most 2k. To see the identity of indiscernibles note
that RSD(S1, S2) = 0 if and only if for all k the edit distance of the k
prefix of S1 and Sy is zero, i.e., if for every k the k-prefix of S; and
Sy are identical. This is equivalent to S; and Sy being equal. Lastly,
the triangle inequality also essentially follows from the triangle
inequality for edit distance. To see this let §; = RSD(S1,S2) and
d2 = RSD(Sz, S3). By the definition of RSD this implies that for all
k the k-prefixes of S; and Sz have edit distance at most 261k and
the k-prefixes of Sy and S3 have edit distance at most 22k. By the
triangle inequality for edit distance, this implies that for every k
the k-prefix of S; and S3 have edit distance at most (81 + d2) - 2k
which implies that RSD(S1, S3) < 81 + J2.]

With these definitions in place, it remains to find synchronization
strings whose prefixes induce a set of codewords, i.e., prefixes, with
large RSD distance. It is easy to see that the RSD distance for any two
strings ending on a different symbol is one. This makes the trivial
synchronization string, which uses each symbol in ¥ only once,
induce an associated set of codewords of optimal minimum-RSD-
distance one. Such trivial synchronization strings, however, are not
interesting as they require an alphabet size linear in the length n.
To find good synchronization strings over constant size alphabets,
we give the following important definition of an e-synchronization
string. The parameter 0 < ¢ < 1 should be thought of measuring
how far a string is from the perfect synchronization string, i.e., a
string of n distinct symbols.

Definition 5.4 (e-Synchronization String). String S € 2" is an
e-synchronization string if for every 1 < i < j < k < n+ 1 we have
that ED (S[i,), S[j, k)) > (1 — €)(k — i). We call the set of prefixes
of such a string an e-synchronization string.

The next lemma shows that the e-synchronization string prop-
erty is strong enough to imply a good minimum RSD distance
between any two codewords associated with it.

LEMMA 5.5. IfS is an e-synchronization string, then RSD(S[1, i],
S[1,j]) > 1 — € for anyi < j, i.e., any two codewords associated with
S have RSD distance of at least 1 — ¢.

Proor. Let k = j — i. The e-synchronization string property of
S guarantees that ED (S[i — k, i), S[i,j)) > (1 — €)2k. Note that this
holds even if i—k < 1. To finish the proof we note that the maximum
in the definition of RSD includes the term Z2(Sli=k:1):S[.1)
which implies that RSD(S[1, i], S[1,j]) > 1 —e.

> 1-g,
[m}

STOC’17, June 2017, Montreal, Canada

5.1 Existence and Construction

The next important step is to show that the e-synchronization
strings we just defined exist, particularly, over alphabets whose
size is independent of the length n. We show the existence of e-
synchronization strings of arbitrary length for any ¢ > 0 using an
alphabet size which is only polynomially large in 1/¢. We remark
that e-synchronization strings can be seen as a strong generaliza-
tion of square-free sequences [32] in which any two neighboring
substrings S[i, j) and S[j, k) only have to be different and not also
far from each other in edit distance.

THEOREM 5.6. For any ¢ € (0,1) and n > 1, there exists an ¢-
synchronization string of length n over an alphabet of size ©(1/¢%).

ProoF. Let S be a string of length n obtained by concatenating
two strings T and R, where T is simply the repetition of 0,...,¢t -1
for t = ©(1/¢?), and R is a uniformly random string of length n
over alphabet 3. In particular, S; = (i mod t, R;).

We prove that S is an e-synchronization string by showing that
there is a positive probability that S contains no bad triple, where
(x,y,2) is a bad triple if ED(S[x,y), S[y,z)) < (1 — €)(z — x).

First, note that a triple (x, y, z) for which z — x < t cannot be a
bad triple as it consists of completely distinct symbols by courtesy
of T. Therefore, it suffices to show that there is no bad triple (x, y, z)
in R for x,y, z such that z — x > t.

Let (x,y,z) be a bad triple and let ajaz - - - ap be the longest
common subsequence of R[x, y) and R[y, z). It is straightforward to
see that ED(R[x,y),R[y,2)) = (y —x) + (z —y) — 2k = z — x — 2k.
Since (x, y, z) is a bad triple, we have that z —x — 2k < (1—¢)(z — x),
which means that k > £(z — x). With this observation in mind,
we say that R[x, z) is a bad interval if it contains a subsequence
ajap - - - agaiag - - - ax such that k > £(z - x).

To prove the theorem, it suffices to show that a randomly gen-
erated string does not contain any bad intervals with a non-zero
probability. We first upper bound the probability that an interval
of length [is bad:

el el

£ £ l
Pr[Zisbad] < [L)% < (&) 5% = (e/sw/|2|)g ,
I~ el el

where the first inequality holds because if an interval of length [is
bad, then it must contain a repeating subsequence of length 175 Any
such sequence can be specified via ¢l positions in the long interval

and the probability that a given fixed sequence is valid is |Z|7%l
The second inequality comes from the fact that (}}) < (ne/ kyk.

The resulting inequality shows that the probability of an interval
of length I being bad is bounded above by C~¢!, where C can be
made arbitrarily large by taking a sufficiently large alphabet size.

To show that there is a non-zero probability that the uniformly
random string R contains no bad interval I of size ¢ or larger, we use
the general Lovasz local lemma. Note that the badness of interval I
is mutually independent of the badness of all intervals that do not
intersect I. We need to find real numbers x4 € [0, 1) corresponding
to intervals R[p, q) for which

[

R[p,@)NRI[p’.q')#0
We have seen that the left-hand side can be upper bounded
by C=¢IRIp. @) = C£(P=9)_ Furthermore, any interval of length I’

Pr [Interval R[p, q) is bad] < xp 4 A= xp).

40

Bernhard Haeupler and Amirbehshad Shahrasbi

intersects at most [+ I’ intervals of length I. We propose xp 4 =
DIR[0l = De(P=9) for some constant D > 1. This means that it
suffices to find a constant D that for all substrings R[p, q) satisfies

e(p— e(p— n -
cew-q) <D @ q)nl:t(l D
I'e{1,---,n},

el)I+(9-p) | or more clearly, for all

D

=+

(1)
For D > 1, the right-hand side of Equation (1) is maximized when
n = co and I’ = 1, and since we want Equation (1) to hold for

allnand all I’ € {1,---,n}, it suffices to find a D such that C >
00 I+1
D/II;2,(1 -

?:t (1 _ D—sl)

el)f
To this end, let L = minp~ {D/]—]‘l’i[(l - D_El)%} . Then, it
suffices to have |3| large enough so that C = ¢+/|3|/e > L, which

means that |X| > egz suffices to allow us to use the Lovasz local
lemma. We claim that L = ©(1), which will complete the proof.

Since t = w (%), foralll > t, Del. ”Tl <« 1. Therefore, we

can use the fact that (1 — x)¥ > 1 — xk to show that:

b D o
M2, (1-D- E’)L [132, (1= +1)/e-D7¢l)
< Tmmea O
ol
- D/ 53 (1- D;g)z)

Equation (3) is derived using the fact that []{2;(1 —x;) > 1 -
Y12 xi and Equation (4) is a result of the following equality for
x <R I+ 0xl =xt(1+t—tx)/(1-x)? < 2tx! /(1= x)2.

1
One can see that for D = 7, max, {% (13)—ff)2} < 0.9, and there-

fore step (3) is legal and (5) can be upper-bounded by a constant.
Hence, L = ©(1) and the proof is complete. O

Remarks on the alphabet size: Theorem 5.6 shows that for any
& > 0 there exists an ¢-synchronization string over alphabets of
size O(e™*). A polynomial dependence on ¢ is also necessary. In
particular, there do not exist any e-synchronization string over
alphabets of size smaller than £~!. In fact, any consecutive sub-
string of size £! of an e-synchronization string has to contain
completely distinct elements. This can be easily proven as follows:
For sake of contradiction let S[i,i + ¢~!) be a substring of an e-
synchronization string where S[j] = S[j'] fori < j < j' <i+¢e L.
Then, ED(S[j].S[[+1,j/+1)) =j —-j-1=("+1-j)-2 <
(j* + 1= j)(1 — 2¢). We believe that using the Lovasz Local Lemma
together with a more sophisticated non-uniform probability space,
which avoids any repeated symbols within a small distance, allows
avoiding the use of the string T in our proof and improving the
alphabet size to O(¢~2). It seems much harder to improved the al-
phabet size to o(e72) and we are not convinced that it is possible.

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound

This work thus leaves open the interesting question of closing the
quadratic gap between O(¢7?) and Q(¢71) from either side.
Theorem 5.6 also implies an efficient randomized construction.

LEMMA 5.7. There exists a randomized algorithm which for anye >
0 constructs a e-synchronization string of length n over an alphabet
of size O(¢™%) in expected time O(n®).

Proor. Using the algorithmic framework for the Lovasz local
lemma given by Moser and Tardos [27] and the extensions by Hae-
upler et al.[17] one can get such a randomized algorithm from the
proof in Theorem 5.6. The algorithm starts with a random string
over any alphabet . of size £ € for some sufficiently large C. It then
checks all O(n?) intervals for a violation of the e-synchronization
string property. For every interval this is an edit distance computa-
tion which can be done in O(n?) time using the classical Wagner-
Fischer dynamic programming algorithm. If a violating interval is
found the symbols in this interval are assigned fresh random values.
This is repeated until no more violations are found. [17] shows that
this algorithm performs only O(n) expected number of re-samplings.
This gives an expected running time of O(n’) overall.]

We remark that any string produced by the randomized construc-
tion of Lemma 5.7 is guaranteed to be a correct e-synchronization
string (not just with probability one). This randomized synchro-
nization string construction is furthermore only needed once as a
pre-processing step. The encoder or decoder of any resulting error
correcting codes do not require any randomization. Furthermore,
in Section 6 we will provide a deterministic polynomial time con-
struction of a relaxed version of e-synchronization strings that can
still be used as a basis for good (n, §)-indexing algorithms thus
leading to insdel codes with a deterministic polynomial time code
construction as well.

5.2 Decoding

We now provide an algorithm for decoding synchronization strings,
i.e., an algorithm that can form a solution to the indexing problem
along with e-synchronization strings. In the beginning of Section 5,
we introduced the notion of relative suffix distance between two
strings. Theorem 5.5 stated a lower bound of 1 — ¢ for relative suffix
distance between any two distinct codewords associated with an -
synchronization string, i.e., its prefixes. Hence, a natural decoding
scheme for detecting the index of a received symbol would be
finding the prefix with the closest relative suffix distance to the
string received thus far. We call this algorithm the minimum relative
suffix distance decoding algorithm.

We define the notion of relative suffix error density at index i
which presents the maximized density of errors taken place over
suffixes of S[1, i]. We will introduce a very natural decoding ap-
proach for synchronization strings that simply works by decoding
a received string by finding the codeword of a synchronization
string S (prefix of synchronization string) with minimum distance
to the received string. We will show that this decoding procedure
works correctly as long as the relative suffix error density is not
larger than 1_75 Then, we will show that if adversary is allowed to
perform ¢ many insertions or deletions, the relative suffix distance
may exceed 1775 upon arrival of at most % many successfully
transmitted symbols. Finally, we will deduce that this decoding

41

STOC’17, June 2017, Montreal, Canada

scheme decodes indices of received symbols correctly for all but
2¢ many of successfully transmitted symbols. Formally, we claim

1-¢
that:

THEOREM 5.8. Any e-synchronization string of length n along
with the minimum relative suffix distance decoding algorithm form
a solution to (n,)-indexing problem that guarantees %né or less
misdecodings. This decoding algorithm is streaming and can be im-
plemented so that it works in O(n*) time.

Before proceeding to the formal statement and the proofs of the
claims above, we first provide the following useful definitions.

Definition 5.9 (Error Count Function). Let S be a string sent over
an insertion-deletion channel. We denote the error count from index
i to index j with &(i, j) and define it to be the number of insdels
applied to S from the moment S[i] is sent until the moment S[j] is
sent. &(i, j) counts the potential deletion of S[j]. However, it does
not count the potential deletion of S[i].

Definition 5.10 (Relative Suffix Error Density). Let string S be sent
over an insertion-deletion channel and let & denote the correspond-
ing error count function. We define the relative suffix error density
of the communication as max;>1 M

The following lemma relates the suffix distance of the message
being sent by sender and the message being received by the receiver
at any point of a communication over an insertion-deletion channel
to the relative suffix error density of the communication.

LEMMA 5.11. Let string S be sent over an insertion-deletion channel
and the corrupted message S’ be received on the other end. The relative
suffix distance RSD(S, S”) between the string S that was sent and the
string S’ which was received is at most the relative suffix error density
of the communication.

Proor. Let 7 = (71, 72) be the string matching from S to S’ that
characterizes insdels that have turned S into S’. Then:

RSD(S,S") = rlglaXED(S(|5| —k,ISILS"(IS"| = k. IS"1])/ 2k (6)
>0
min sc(r1) + se(r2)
7:S(IS|-k, |S[]-S"(15" |-k, |S"]]
= max (7)

k>0 2k
< Ilzlax(sc(rl') + sc(r;))/k < Rel. Suff. Error Dens. (8)
>0

where 7’ is 7 limited to its suffix corresponding to S(|S| — k, |S|]).
Note that Steps (6) and (7) follow from the definitions of edit dis-
tance and relative suffix distance. Moreover, to see Step (8), one has
to note that one single insertion or deletion on the k-element suffix
of a string may result into a string with k-element suffix of edit
distance two of the original string’s k-element suffix; one stemming
from the inserted/deleted symbol and the other one stemming from
a symbol appearing/disappearing at the beginning of the suffix in
order to keep the size of suffix k. O

A key consequence of Lemma 5.11 is that if an e-synchronization
string is being sent over an insertion-deletion channel and at some
step the relative suffix error density corresponding to corruptions
is smaller than I_Tg the relative suffix distance of the sent string
and the received one at that point is smaller than 1%5; therefore, as
RSD of all pairs of codewords associated with an e-synchronization

STOC’17, June 2017, Montreal, Canada

string are greater than 1 — ¢, the receiver can correctly decode the
index of the corrupted codeword he received by simply finding the
codeword with minimum relative suffix distance.

The following lemma states that such a guarantee holds most of
the time during transmission of a synchronization string:

LEMMA 5.12. Lete-synchronization string S be sent over an insertion-
channel channel and corrupted string S’ be received on the other end.
If there are c; symbols inserted and cg symbols deleted, then, for any

integer t, the relative suffix error density is smaller than u upon
arrival of all but M cq many of the successfully transmltted
symbols.

Proor. Let & denote the error count function of the commu-
nication. We define the potential function ® over {0, 1,--- ,n} as

®(i) = maxy <s<ij {% - s}A Also, set ®(0) = 0. We prove the

theorem by showing the correctness of the following claims:

(1) If &G — 1,i) = 0, i.e., the adversary does not insert or
delete any symbols in the interval starting right after the
moment S[i — 1] is sent and ending at when S[i] is sent,
then the value of ® drops by 1 or becomes/stays zero, i.e.,
®(i) = max {0,P(i — 1) — 1}.

If E(i—1,i) = k, i.e., adversary inserts or deletes k symbols
in the interval starting right after the moment S[i — 1] is
sent and ending at when S[i] is sent, then the Value of ®
increases by at most lt_ -1,ie,0() <P(i—-1)+ — -1
If ®(i) = 0, then the relative suffix error den31ty of the
string that is received when S[i] arrives at the receiving
side is not larger than I_Tg

)

®)

Given the correctness of claims made above, the lemma can be
proved as follows. As adversary can apply at most ¢; + ¢4 insertions

or deletions, ¢ can gain a total increase of t(%zcd) Therefore, the

value of ® can be non-zero for at most % many inputs. As

value of ®(i) is non-zero for all i’s where S[i] has been removed by

t- (c,+cd)

adversary, there are at most —cq indices i where ®(i) is non-

zero and i is successfully transmltted. Hence, at most M -cq
many of correctly transmitted symbols can be decoded incorrectly.

We now proceed to the proof of above claims to finish the proof:
(1) In this case, (i —s,i) = E(i —s,i — 1). So,
@(i) max {t-E@{—-s,i—1)/(1—-¢)—s}
1<s<i

max{0, max {¢t-E@{ —s,i—1)/(1—¢) —s}}
2<s<i
max

1<s<i-1

{t-S(i—l—s,i—l) —s—l}}
max {0,®(— 1) — 1}

1-¢
(2) In this case, &(i —s,i) = E(i —s,i— 1) + k. So,

(i) = max. {t-&(Gi—-s,i)/(1—¢)—s}
-+

gl

max {0,

— 1, max
2<s<i

t-8Gi—s,i—1)+tk
1-¢
{t«S(i—l—s,i—l)

= max
{1—5

1-¢ 1<s<i-1 1-¢

=d(i-1)+tk/(1-¢)—1

tk
= — 1+ max {0, max

42

Bernhard Haeupler and Amirbehshad Shahrasbi

(3) As®(i) =0,foralll <s < i, M s < 0. There-

=&
fore,forall1 < s < i, t-E(i—s,i) < s(l ¢). This gives that
Relative Suffix Error Density = maxj<s<j {E(—s,1)/s} <
(1-e¢)/t.

These finish the proof of the lemma. O

Now, we have all necessary tools to analyze the performance of
the minimum relative suffix distance decoding algorithm:

Proor oF THEOREM 5.8. As adversary is allowed to insert or
delete up nd symbols, by Lemma 5.12, there are at most 2"5 suc-
cessfully transmitted symbols during the arrival of Wthh at the
receiving side, the relative suffix error density is greater than 1%5;

Hence, by Lemma 5.11, there are at most % misdecoded success-
fully transmitted symbols.

Further, we remark that this algorithm can be implemented in
O(n*) as follows: Using dynamic programming, we can pre-process
the edit distance of any consecutive substring of S, like S[i, j] to any
consecutive substring of §’, like S’[i’, j’], in O(n*). Then, for each
symbol of the received string, like S”[I"], we can find the codeword
with minimum relative suffix distance to S’[1,1’] by calculating
the relative suffix distance of it to all n codewords. Finding suffix

distance of $’[1,1’] and a codeword like S[1,] can also be simply
ED(S(1-k,1],S"(I'-k,I'])
k

done by minimizing over k which can be
done in O(n). With a O(n*) pre-process and a O(n®) computation
as mentioned above, we have shown that the decoding process can

be implemented in O(n%). O

6 MORE ADVANCED GLOBAL DECODING
ALGORITHMS

Thus far, we have introduced e-synchronization strings as fitting
solutions to the indexing problem. In Section 5.2, we provided an
algorithm to solve the indexing problem along with synchronization
strings with an asymptotic guarantee of 2nd misdecodings. As
explained in Section 1.3, such a guarantee falls short of giving
Theorem 1.1. In this section, we thus provide a more advanced
decoding algorithm that achieves a misdecoding fraction which
vanishes as ¢ goes to zero.

We start by pointing out a very useful property of e-synchroniza-
tion strings in Section 6.1. We define a monotone matching between
two strings as a common subsequence of them. We will next show
that in a monotone matching between an e-synchronization string
and itself, the number of matches that both correspond to the same
element of the string is fairly large. We will refer to this property
as e-self-matching property. We show that one can very formally
think of this e-self-matching property as a robust global guarantee
in contrast to the factor-closed strong local requirements of the
e-synchronization property. One advantage of this relaxed notion
of e-self-matching is that one can show that a random string over
alphabets polynomially large in ¢! satisfies this property (Sec-
tion 6.2). This leads to a particularly simple generation process for
S. Finally, showing that this property even holds for approximately
log n-wise independent strings directly leads to a deterministic
polynomial time algorithm generating such strings as well.

In Section 6.3, we propose a decoding algorithm for insdel errors
that basically works by finding monotone matchings between the
received string and the synchronization string. Using the e-self-
matching property we show that this algorithm guarantees O (nve)

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound

a’y a'k, a'k1+1 a,k1+k2 ay dy a'k,+1¢1’k,+k2
N I 1 S 1 T T see
<
A N . . /
AN . . AN N A /
AN N . N N N
S | T T eee S T 1 =1
by b, b b, by bk, bryr1 Dk,
’ / ’
<
(a) ak1+1 bk1+1 (b) ak1+1 bk1+1

Figure 1: Pictorial representation of T; and T,

misdecodings. This algorithm works in time O(n? //¢) and is exactly
what we need to prove our main theorem.

6.1 Monotone Matchings and the ¢-Self
Matching Property

Before proceeding to the main results of this section, we start by
defining monotone matchings which provide a formal way to refer
to common substrings of two strings:

Definition 6.1 (Monotone Matchings). A monotone matching be-
tween S and S’ is a set of pairs like M = {(a1,b1)," - , (am, bm)}
where a; < -+ < am, by <+ < b, and S[a;] = S’[b;].

We now point out a key property of synchronization strings that
will be broadly used in our decoding algorithms. Basically, Theo-
rem 6.2 states that two similar subsequences of an e-synchronization
string cannot disagree on many positions. More formally, let M =
{(a1,b1),--- ,(am,bm)} be a monotone matching between S and
itself. We call the pair (a;, b;) a good pair if a; = b; and a bad pair
otherwise. Then:

THEOREM 6.2. Let S be an e-synchronization string of size n and
M = {(a1,b1),-- ,(am,bm)} be a monotone matching of size m from
S to itself containing g good pairs and b bad pairs. Then, b < e(n—g).

Proor. Let (af,a3), -

in M indexed as aj < ---

, (a;n,, b;n,) indicate the set of bad pairs
< a;n, and b{ << b;n,. Without loss
of generality, assume that a; < by. Let k; be the largest integer
such that a;c < b{. Then, the pairs (aj,a;)," - (a;(,b’) form
a common substring of size k1 between T1 = Slaj, 1) and T =
S[by, by,] Now, the synchronization string guarantee implies that
ki < LCS(Tl,T) < [ITal +|T{| - ED (T1, Ty) | /2 < e(ITa +|T{])/2.
Note that the monotonicity of the matching guarantees that
there are no good matches occurring on indices covered by T; and

T/, ie., aj, ,b’1 One can repeat very same argument for the
remaining bad matches to rule out bad matches (a/ ki1’ b,’c +1) B
(a/ [bk1+ kz) for some ky having the following inequality guar-
anteed:
ka < e(IT2| + |T3])/2)
where
! _ ’ 4 4 ’
{ L= [k +1° k +1) and T [bk +1’bk +kz] ak1+1 bk1+1
’ ’ ’ ’
=) d L =l a1 a >0,
For a pictorial representation see Figure 1.
Continuing the same procedure, one can find k1, - - - , k;, T, - -+ , T},

and T}, - -+ , T} for some I. Summing up all inequalities of form (9),

Z:; <= (Z|T,|+Z|T |)

i=1

(10)

43

STOC’17, June 2017, Montreal, Canada

Note that Zé:l ki = uand T;s are mutually exclusive and contain
no indices where a good pair occurs at. Same holds for T/'s. Hence,
Zi’:l |Ti] < n—gand 25:1 |T/| < n—g. All these along with (10)
givethat: u < £-2(n—g)=>b<e(n—g)]

We define the e-self-matching property as follows:

Definition 6.3 (e-self-matching property). String S satisfies e-self-
matching property if any monotone matching between S and itself
contains less than ¢|S| bad pairs.

Note that e-synchronization property concerns all substrings
of a string while the ¢-self-matching property only concerns the
string itself. Granted that, we now show that e-synchronization
property and satisfying e-self-matching property on all substrings
are equivalent up to a factor of two:

THEOREM 6.4. e-synchronization and e-self matching properties
are related as follows: (a) If S is an e-synchronization string, then
all substrings of S satisfy e-self-matching property. (b) If all sub-
strings of string S satisfy the §-self-matching property, then S is
e-synchronization string.

PRrROOF. Part (a)is a straightforward consequence of Theorem 6.2.
To prove part (b), assume by contradiction that there are i < j < k
such that ED(S[i, j), S[j, k)) < (1—¢)(k—i). Then, LCS(S[i, j), S[j, k)) >
M = £(k — i). The corresponding pairs of such longest
common substring form a monotone matching of size £ (k—i) which
contradicts £-self-matching property of S.]

As a matter of fact, the decoding algorithm that we will propose
for e-synchronization strings in Section 6.3 only makes use of the
e-self-matching property of e-synchronization strings.

We now proceed to the definition of e-bad-indices which will
enable us to show that ¢-self matching property, as opposed to the
e-synchronization property, is robust against local changes.

Definition 6.5 (¢-bad-index). We call index k of string S an ¢-bad-
index if there exists a factor S[i, j] of S with i < k < j where S[i,]
does not satisfy the e-self-matching property. In this case, we also
say that index k blames interval [, j].

Using the notion of e-bad indices, we now present Lemma 6.6.
This lemma suggests that a string containing limited fraction of e-
bad indices would still be an ¢’-self matching string for some ¢’ > .
An important consequence of this result is that if one changes a
limited number of elements in a given e-self matching string, the
self matching property will be essentially preserved to a lesser
extent. Note that e-synchronization property does not satisfy any
such robustness quality.

LEmMMA 6.6. If the fraction of e-bad indices in string S is less than
Y, then S satisfies (¢ + 2y)-self matching property.

Proor. Consider a matching from S to itself. The number of bad
matches whose both ends refer to non-e-bad indices of S is at most
|S|(1 — y)e by definition. Further, each e-bad index can appear at
most once in each end of bad pairs. Therefore, the number of bad
pairs in S can be at most [S|(1 — y)e + 2[S|y < |S|(e + 2y), which
implies that S satisfies the (¢ + 2y)-self-matching property. |

STOC’17, June 2017, Montreal, Canada

On the other hand, in the following lemma, we will show that
within a given e-self matching string, there can be a limited number
of ¢’-bad indices for sufficiently large ¢ > ¢. The proof of Lemma 6.7
is available in the full version of this paper [18].

LEMMA 6.7. Let S be an ¢- self matching string of length n. Then,

forany 3e < ¢’ < 1, at most ",g many indices of S can be ¢'-bad.

As the final remark on the e-self matching property and its
relation with the more strict e-synchronization property, we show
that using the minimum RSD decoder for indexing together with
an e-self matching string leads to guarantees on the misdecoding
performance which are only slightly weaker than the guarantee
obtained by e-synchronization strings. In order to do so, we first
show that the (1 — ¢) RSD distance property of prefixes holds for
any non-¢-bad index in any arbitrary string in Theorem 6.8. Then,
using Theorem 6.8 and Lemma 6.7, we upper-bound the number
of misdecodings that may happen using a minimum RSD decoder
along with an e-self matching string in Theorem 6.9.

LEMMA 6.8. Let S be an arbitrary string of lengthnand1 <i<n
be such that i’th index of S is not an ¢-bad index. Then, for any j # i,
RSD(S[1,i],S[1,7]) > 1 —e.

The proof of Lemma 6.8 is available in [18].

THEOREM 6.9. Using any ¢-self matching string along with mini-
mum RSD algorithm, one can solve the (n, §)-indexing problem with
a guarantee of n(48 + 6¢) misdecodings.

Proor. Note that applying Lemma 6.7 for ¢’ gives that there

are at most 3”—5 indices in S that are ¢’-bad. Further, using Theo-

rem 5.8 and Lemma 6.8, at most T2 2nd - many of the other indices might
be decoded incorrectly upon thelr arrivals. Therefore, this solution

for the (n, §)-indexing problem can contain at most n (-+ 2—‘1)
many incorrectly decoded indices. Setting ¢’ = ﬁ gives an

upper bound of n(48 + 6¢) on the number of misdecodings.]

6.2 Construction of ¢-Self Matching Strings

In this section, we will use Lemma 6.6 to show that there is a
polynomial deterministic construction of a string of length n with
the e-self-matching property, which can then for example be used
to obtain a deterministic code construction. We start by showing
that even random strings satisfy the e-selfmatching property for
an ¢ polynomial in the alphabet size:

THEOREM 6.10. A random string on an alphabet of size O(¢73)
satisfies e-selfmatching property with a constant probability.

PROOF. Let S be a random string on alphabet 3. of size || = £73.
We are going to find the expected number of ¢-bad indices in S.
We first count the expected number of ¢-bad indices that blame
intervals of length % or smaller. If index k blames interval S[i, j]
where j— i < 2¢71, there has to be two identical symbols appearing
in S[i, j] which gives that there are two identical elements in 47!
neighborhood of S. Therefore, the probability of index k being
e-bad blaming S[i, j] for j — i < 2¢! can be upper-bounded by

(4E 1) & <

blame intervals of length 2 < or smaller is less than 8e.

< 8e¢. Thus, the expected fraction of ¢-bad indices that

44

Bernhard Haeupler and Amirbehshad Shahrasbi

We now proceed to finding the expected fraction of ¢-bad indices
in S blaming intervals of length 2¢™! or more. Let B;,; denote the
event that S[i, j) does not satisfy ¢-self-matching property. Since
every interval of length [which does not satisfy e-self-matching
property causes at most [e-bad indices, we get that the expected
fraction of such indices, i.e., y’, is at most:

n 2
Z Zl Pr(By; i+p] < Z l(llg) ﬁ (11)

l 2671 1=1 [=2¢71

E[y’

Last inequality holds because the number of possible matchings is

at most (ZIE)Z. Further, fixing the matching edges, the probability
of the elements corresponding to pair (a, b) of the matching being
identical is independent from all pairs (a’,b”) where a’ < a and
b’ < b. Hence, the probability of the set of pairs being a matching
between random string S and itself is Then,

I [(e/g\/ﬁ)zg]l

|2|le
50 e 3

=261 le |2|l£ B
Note that £, Ix! = 2e71x%" — (2671 = 1)x® 7 +1/(1 - x)? for

Zl I Ix!l < 8£_Ix2571.50,

E[y’] <

|x| < 1. Therefore, for 0 < x < 3

E[y'] < 8¢~ (6/28\/_)

Using Lemma 6.6, this random structure has to satisfy (¢ + 2y)-
self-matching property where E[e + 2y] = ¢ + 16¢ + e = O(e).
Therefore, using Markov inequality, a randomly generated string
over alphabet O(e~3) satisfies e-matching property with constant
probability. The constant probability can be as high as one wishes
by applying higher constant factor in alphabet size. O

=ete33|72/2 < ete/2

As the next step, we prove a similar claim for strings of length
n whose symbols are chosen from an © (log n/log(1/¢))-wise inde-
pendent [28] distribution over a larger, yet still e~ ©() size, alphabet.
This is the key step in allowing for a derandomization using the
small sample spaces of Naor and Naor [28]. The proof of Theo-
rem 6.11 follows a similar strategy as was used in [3] to derandom-
ize the constructive Lovasz local lemma. In particular the crucial
idea, given by Claim 6.12, is to show that for any large obstruction
there has to exist a smaller yet not too small obstruction. This al-
lows one to prove that in the absence of any small and medium size
obstructions no large obstructions exist either.

clogn
THEOREM 6.11. A fog(1/e)

n on an alphabet of size O(¢~°) satisfies e-matching property with a
non-zero constant probability. c is a sufficiently large constant.

-wise independent random string of size

clogn
log(1/e)”
wise independent symbols. Then, Step (11) is invalid as the pro-

clogn
m. To bound the

) not satisfying e-self

PRrROOF. Let S be a pseudo-random string of length n with

posed upper-bound does not work for I >

probability of intervals of size Q (Elcolg(gl;lg)

matching property, we claim that:

CLAIM 6.12. Any string of size | > 100m which contains an e-self-
matching contains two sub-intervals I and I, of size m where there
is a matching of size 0.992E between Iy and I.

Synchronization Strings: Codes for Insertions and Deletions Approaching the Singleton Bound

Using Claim 6.12, one can conclude that any string of size [>
100-E logn
elog(1/¢)

intervals I1 and I, of size

which contains an e-self-matching contains two sub-

—IC (1/2) where there is a matching of

m between I; and I. Then, Step (11) can be revised
by upper-bounding the probability of a long interval having an
e-self-matching by a union bound over the probability of pairs of its

clogn
let us denote the event of S[i, i + [) containing a e-self-matching by
Aj ;. Then,

size

subintervals having a dense matching. Namely, for [> 100

PrA;] < Pr|Scontains ki, I : |Ii| = — 28"
r[A; < Pr|Scontains i, I : |[;| = ————
Ll bz elog(1/e)
clogn
d LCS(I1,I) > 0.99——F—
and 1511 2 09051 |
~lclogn/log(1/e) 2hog(1/e)
< n _
0.99clogn/2log(1/e)) \|Z|
2x0.99clog n 6clogn
< n? (2.0486_1) 2oe/€) ¢ 2Togl172)
0.99clogn 4.02clogn

n (2 046) log(1/e) ¢ 2log(1/e)
clIn(2.04e) ,
<n¥clt=0 (n_c)

log(1/€)
where first inequality follows from the fact there can be at most n?

2+ -2.01c

pairs of intervals of size in S and the number of all possible

W
e7lclog n/log(l/e))2
clogn/2log(1/¢)
Further, for small enough ¢, constant ¢’ can be as large as one de-
sires by setting constant ¢ large enough. Thus, Step (11) can be

revised as:

matchings of size lggl?m between them is at most (

100c log n
Plag(is) 2¢ 1 n
Byl <) l-[(e/s\/|2|) + D A
[J=¢"1 _ 100clogn
“elog(1/e)
s 2¢e l
Y l~[(e/g\/|2|) +n2-0(n~¢) < O(e + n~)
I=¢1

For an appropriately chosen ¢, 2 — ¢’ < 0; hence, the later term
vanishes as n grows Therefore, the conclusion E[y] < O(¢) holds

for the limited —=——-wise independent string as well. O

log(1/ €)

PRrooF oF CLAIM 6.12. Let M be a self-matching of size le or
more between S and itself containing only bad edges. We chop S
into % intervals of size m. On the one hand, the size of M is greater
than le and on the other hand, we know that the size of M is exactly
2i,j |Ei, j| where E; ; denotes the number of edges between interval

iandj. Thus,le < 3; ; |Eij| = § < Z”le}i—lﬂil/m Note that %
represents the density of edges between interval i and interval j.
Further, Since M is monotone, there are at most 2//m intervals for
which |E; j| # 0 and subsequently |E; j|/m # 0 . Hence, on the
right hand side we have the average of 2I/m many non-zero terms

which is greater than ¢/2. So, there has to be some i’ and j’ for
Ey

which § < —— | SN = Bf < |Ey j|. To analyze more accurately, if

lis not diVlslble by m, we simply throw out up to m last elements

of the string. This may decrease ¢ by 7 < 155. m]

45

STOC’17, June 2017, Montreal, Canada

Note that using the polynomial sample spaces of [28] Theo-
rem 6.11 directly leads to a deterministic algorithm for finding a
string of size n with e-self-matching property. For this one simply

checks all possible points in the sample space of the log(l /E) -wise
independent strings and finds a string S with ys < E[y] = O(e).
In other words, using brute-force, one can find a string satisfying
O(¢)-self-matching property in O(|2|¢ logn/log(1/e)y = ,O1),

THEOREM 6.13. There is a deterministic algorithm running in nOM)

that finds a string of length n satisfying e-self-matching property over
an alphabet of size O(¢™°).

6.3 Global Decoding Algorithm

Now, we provide an alternative indexing algorithm to be used along
with e-synchronization strings. Throughout the following sections,
we let e-synchronization string S be sent as the synchronization
string in an instance of (n, §)-indexing problem and string S’ be
received at the receiving end being affected by up to nd insertions
or deletions. Furthermore, let d; symbols be inserted into the com-
munication and d, symbols be deleted from it.

The algorithm works as follows. On the first round, the algorithm
finds the longest common subsequence between S and S’. Note that
this common subsequence corresponds to a monotone matching
M; between S and S’. On the next round, the algorithm finds the
longest common subsequence between S and the subsequence of
unmatched elements of S’ (those that have not appeared in Mj).
This common subsequence corresponds to a monotone matching
between S and the elements of S’ that do not appear in M. The
algorithm repeats this procedure % times to obtain My, - - - , M; /B
where f is a parameter that we will fix later.

In the output of this algorithm, S’[t;] is decoded as S[i] if and
only if S[i] is only matched to S’[t;] in all My, - - - , My p. Note that
the longest common subsequence of two strings of length O(n)
can be found in O(n?) using dynamic programming. Therefore, the
whole algorithm runs in O (rn?/f).

Now we proceed to analyzing the performance of the algorithm
by bounding the number of misdecodings.

THEOREM 6.14. This decoding algorithm guarantees a maximum
misdecoding count of (n+d; —d,)f+ %n More specifically, for B = e,

the number of misdecodings will be O (nv/¢) and running time will
be O (n?/+/e).

Proor. First, we claim that at most (n + d; — d,) many of the
symbols that have been successfully transmitted are not matched
inany of My, - -+ , My g. Assume by contradiction that more than
(n+d; —dy,)p of the symbols that pass through the channel success-
fully are not matched in any of My, - -, M; /B Then, there exists a
monotone matching of size greater than (n + d; — d,) between the
unmatched elements of S” and S after % rounds of finding longest
common substrings. Hence, size of any of M;s is at least (n+d;—d;)p.
So, the summation of their sizes exceeds (n + d; — d,)f X % =19|
which brings us to a contradiction.

Furthermore, as a result of Theorem 6.4, any of M;s contain
at most en many incorrectly matched elements. Hence, at least
£ n many of the matched symbols are matched to incorrect index.
Therefore, the total number of misdecodings can be bounded by

(n+d,~—dr)ﬁ+%n o

STOC’17, June 2017, Montreal, Canada

7 CONCLUSION AND FUTURE WORK

This paper introduced synchronization strings as simple yet very
powerful mathematical objects that are designed to deal with syn-
chronization errors in communications. In particular, one can use
them to efficiently transform insertion and deletion errors into
much simpler Hamming-type errors. This, e.g., transforms regular
ECCs into insdel codes with the same optimal rate/distance tradeoff.

The main focus of this paper lies in developing the theory of
synchronization strings and its application to the design of essen-
tially optimal insdel codes over large finite alphabets. However, our
method can also be ported into the setting of binary codes [20]: One
can fairly easily obtain binary error correcting codes that tolerate
a ¢ fraction of synchronization errors while achieving a rate of
1 - O(+/elog(1/e)) with a linear encoding and an O(n?) time decod-
ing algorithm. This is improves over the current state of the art
insdel codes [11] in terms of simplicity, encoding and decoding com-
plexity (which for the codes in [11] is nt Y or no(l)(log n)fio(l)
at the cost of a quadratically worse distance), and slightly also in
the rate/distance tradeoff.

In this article, we give a randomized nO() time construction for e-
synchronization strings and a n®() time deterministic construction
for e-selfmatching strings of length n. In [19] several highly paral-
lel, deterministic linear time constructions for e-synchronization
strings are given. In fact, these constructions provide highly-explicit
infinite synchronization strings e-synchronization strings in which
the it" symbol can be computed deterministically in O(log i) time.
We also give strengthened versions of ¢-synchronization strings
which come with very fast local decoding procedures and discuss
several further applications.

In [20] it is shown that our synchronization string based indexing
method can be extended to fully simulate an ordinary corruption
channel over a insertion-deletion channel. This is much stronger
than constructing insdel codes and allows to completely hide the ex-
istence of synchronization errors in many applications that go way
beyond codes, such as, settings with feedback, real-time control,
or settings with interactive communications. This directly leads
to new interactive coding schemes for the setting with synchro-
nization errors [2] including the first efficient scheme and the first
scheme with good (and in fact likely near optimal) communication
rate for small error fractions.

We strongly believe that synchronization strings, our indexing
method, and channel simulations will lead to many further applica-
tions in the future. We also believe that e-synchronization strings,
in their own right, are a worthwhile and interesting combinatorial
structure to study.

ACKNOWLEDGEMENTS

The authors want to thank Ellen Vitercik and Allison Bishop for
valuable discussions in the early stages of this work.

REFERENCES

[1] Arturs Backurs and Piotr Indyk. 2015. Edit distance cannot be computed in
strongly subquadratic time (unless SETH is false). Proceedings of the ACM
Symposium on Theory of Computing (STOC) (2015), 51-58.

Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. 2016. Coding
for interactive communication correcting insertions and deletions. Proceedings of
the International Conference on Automata, Languages, and Programming (ICALP)
55 (2016), 61:1-61:14.

(2]

46

(10]

[11

(12]

(13

[16]

[30

[31

(32

(33]

Bernhard Haeupler and Amirbehshad Shahrasbi

Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. 2013. De-
terministic algorithms for the Lovasz local lemma. SIAM J. Comput. 42, 6 (2013),
2132-2155.

Ran Gelles. 2015. Coding for Interactive Communication: A Survey. (2015).
Ran Gelles and Bernhard Haeupler. 2015. Capacity of Interactive Communication
over Erasure Channels and Channels with Feedback. Proceeding of the ACM-SIAM
Symposium on Discrete Algorithms (SODA) (2015), 1296-1311.

Mohsen Ghaffari and Bernhard Haeupler. 2014. Optimal Error Rates for Interac-
tive Coding II: Efficiency and List Decoding. Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS) (2014), 394-403.

Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. 2014. Optimal Error
Rates for Interactive Coding I: Adaptivity and other Settings. Proceedings of the
ACM Symposium on Theory of Computing (STOC) (2014), 794-803.

SW Golomb,] Davey, I Reed, H Van Trees, and J Stiffler. 1963. Synchronization.
IEEE Transactions on Communications Systems 11, 4 (1963), 481-491.
Venkatesan Guruswami and Piotr Indyk. 2005. Linear-time encodable/decodable
codes with near-optimal rate. IEEE Transactions on Information Theory (TransInf)
51, 10 (2005), 3393-3400.

Venkatesan Guruswami and Ray Li. 2016. Efficiently decodable insertion/deletion
codes for high-noise and high-rate regimes. Proceedings of IEEE International
Symposium on Information Theory (ISIT) (2016), 620-624.

Venkatesan Guruswami and Ray Li. 2016. Efficiently decodable insertion/deletion
codes for high-noise and high-rate regimes. arXiv:1605.04611 (2016).
Venkatesan Guruswami and Atri Rudra. 2008. Explicit codes achieving list
decoding capacity: Error-correction with optimal redundancy. IEEE Transactions
on Information Theory (TransInf) 54, 1 (2008), 135-150.

Venkatesan Guruswami and Ameya Velingker. 2015. An entropy sumset inequal-
ity and polynomially fast convergence to shannon capacity over all alphabets.
Proceedings of the 30th Conference on Computational Complexity (2015), 42-57.
Venkatesan Guruswami and Carol Wang. 2017. Deletion codes in the high-noise
and high-rate regimes. IEEE Transactions on Information Theory (TransInf) 63, 4
(2017), 1961-1970.

Venkatesan Guruswami and Patrick Xia. 2015. Polar codes: Speed of polariza-
tion and polynomial gap to capacity. IEEE Transactions on Information Theory
(TransInf) 61, 1 (2015), 3-16.

Bernhard Haeupler. 2014. Interactive Channel Capacity Revisited. Proceeding of
the IEEE Symposium on Foundations of Computer Science (FOCS) (2014), 226-235.
Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. 2011. New Constructive
Aspects of the Lovasz Local Lemma. Journal of the ACM (JACM) 58, 6 (2011), 28.
Bernhard Haeupler and Amirbehshad Shahrasbi. 2017. Synchronization
Strings: Codes for Insertions and Deletions Approaching the Singleton Bound.
arXiv:1704.00807 (2017).

Bernhard Haeupler and Amirbehshad Shahrasbi. 2017. Synchronization Strings:
Explicit Constructions, Local Decoding and Applications. (2017).

Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. 2017. Synchro-
nization Strings: Channel Simulations and Interactive Coding for Insertions and
Deletions. (2017).

Gillat Kol and Ran Raz. 2013. Interactive channel capacity. Proceedings of the
ACM Symposium on Theory of Computing (STOC) (2013), 715-724.

Vladimir I Levenshtein. 1965. Binary codes capable of correcting deletions,
insertions, and reversals. Doklady Akademii Nauk SSSR 163 4 (1965), 845-848.
S-YR Li, Raymond W Yeung, and Ning Cai. 2003. Linear network coding. IEEE
Transactions on Information Theory (TransInf) 49, 2 (2003), 371-381.

Michael Luby. 2002. LT codes. Proceedings of the IEEE Symposium on Foundations
of Computer Science (FOCS) (2002), 271-282.

Hugues Mercier, Vijay K Bhargava, and Vahid Tarokh. 2010. A survey of error-
correcting codes for channels with symbol synchronization errors. IEEE Com-
munications Surveys & Tutorials 1, 12 (2010), 87-96.

Michael Mitzenmacher. 2009. A survey of results for deletion channels and
related synchronization channels. Probability Surveys 6 (2009), 1-33.

Robin A. Moser and Gabor Tardos. 2010. A constructive proof of the general
Lovasz Local Lemma. Journal of the ACM (JACM) 57, 2 (2010), 11.

Joseph Naor and Moni Naor. 1993. Small-bias probability spaces: Efficient con-
structions and applications. SIAM Journal on Computing (SICOMP) 22, 4 (1993),
838-856.

Leonard J. Schulman and David Zuckerman. 1999. Asymptotically good codes
correcting insertions, deletions, and transpositions. IEEE Transactions on Infor-
mation Theory (TransInf) 45, 7 (1999), 2552-2557.

Neil JA Sloane. 2002. On single-deletion-correcting codes. Codes and Designs, de
Gruyter, Berlin (2002), 273-291.

Daniel A Spielman. 1996. Linear-time Encodable and Decodable Error-Correcting
Codes. IEEE Transactions on Information Theory (TransInf) 42, 6 (1996), 1723~
1731.

A Thue. 1977. Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen
(1912). Selected mathematical papers of Axel Thue, Universitetsforlaget (1977).
Michael Tsfasman and Serge G Vladut. 2013. Algebraic-geometric codes. Vol. 58.
Springer Science & Business Media.

	Abstract
	1 Introduction
	1.1 High-level Overview, Intuition and Overall Organization
	1.2 Synchronization Strings: Definition, Construction, and Decoding
	1.3 More Sophisticated Decoding Procedures
	1.4 Organization of this Paper
	1.5 Related Work

	2 Definitions and Preliminaries
	2.1 String Notation and Edit Distance

	3 The Indexing Problem
	4 Insdel Codes via Indexing
	5 Synchronization Strings
	5.1 Existence and Construction
	5.2 Decoding

	6 More Advanced Global Decoding Algorithms
	6.1 Monotone Matchings and the -Self Matching Property
	6.2 Construction of -Self Matching Strings
	6.3 Global Decoding Algorithm

	7 Conclusion and Future Work
	References

