
On the Complexity of Computing the Shannon
Outer Bound to a Network Coding Capacity Region

Yirui Liu and John MacLaren Walsh
Department of Electrical and Computer Engineering

Drexel University
Philadelphia, PA 19104, USA

Email: {yl926, jmw96}@drexel.edu

Abstract—A new method is presented, consisting of exclusively
simple linear algebra computations, for computing the linear
programming Shannon outer bound to the network coding
capacity region of a directed hypergraph network. This linear
algebraic formulation enables a new upper bound on the worst
case complexity of computing the Shannon outer bound to a
network coding capacity region to be determined.

I. INTRODUCTION

Determining the capacity regions of networks under network
coding form an important class of fundamental problems in
information theory and coding. From an applied perspective,
these problems are key to determining fundamental limits,
and practical designs that approach them, for engineering
problems ranging from exact repair distributed information
storage [1]–[4], to index coding and coded caching [5]–[8], to
delay mitigating codes and rate delay tradeoffs for streaming
information [9]–[11]. From a fundamental perspective, formal
equivalences between solving all of these problems and deter-
mining all fundamental inequalities in information theory and
some fundamental subgroup inequalities in group theory, have
been established.

A key result [12], enables inner and outer bounds to the
network coding capacity region to obtained via the region
of entropic vectors. Algorithms [13]–[15], and their practical
implementations in software [16]–[18], which can compute
complicated network coding capacity regions of small hyper-
graph networks [19], were created by building upon this result.
In particular, the information theoretic converse prover (ITCP)
[16] enables the Shannon/Linear programming outer bound to
a capacity region to be computed through a process of polyhe-
dral projection, while the information theoretic achievability
prover (ITAP) [17] enables the rate region achievable with
a class of codes to be determined. When the bounds from
these two pieces of software match, as has been shown to
be true for all minimal hypergraph networks with a number of
source and edges at most 5 [19], the capacity region, its proof,
and its efficient codes have been determined. ITCP works via
a process of polyhedral projection, and it has been shown
that it can exploit powerful notions of problem symmetry to
reduce the number of steps and dimensions in the polyhedral
projection process [13].

While specific examples have rather thoroughly demon-
strated complexity reductions by exploiting symmetry in real

world algorithms pragmatically [13], [20] in the form of run-
time, as well as the potential of divide-and-conquer style
methods for reducing the complexity by breaking apart the
problem into pieces [19], [21], [22], theorists have repeatedly
expressed interest in overall worst case complexity bounds
for computing the LP outer bound, and how this complexity
depends on the network structure and various measures of
problems size. A common argument made has been that
this worst case complexity bound for algorithms negligent of
symmetry and hierarchy is necessary to be best quantify the
gains that symmetry and hierarchy exploitation enable.

Bearing this in mind, this paper provides a method of com-
puting the LP outer bound selected not for its computational
efficiency in a real polyhedral computation implementation,
as has been the motivation in [13], [15], but rather selected
for its ease of obtaining an upper bound on the number of
computations it requires. We have attempted to express the
necessary computations in as explicit a manner as possible by
referring to linear algebra and avoiding the linear programing
steps which are typically encountered in an efficient linear
programming process. Utilizing this alternative formulation,
we are able to give an upper bound to the worst case
complexity of computing the linear programming outer bound.

II. BACKGROUND

This paper focuses on multi-source multi-sink network
coding problems on acyclic networks that have directed hy-
peredges, which we hereafter refer to as the MSNC-DH
problems. For the sake of brevity, we will use, without re-
peating some definitions, the same notation as [19], where
a MSNC-DH problem is be represented as a tuple A =
(S,G, T , ES , EU , β(t)), where S,G and T denotes the set of
source nodes, intermediate nodes and sink nodes respectively,
EU the set of edges outgoing from intermediate nodes (here-
after E) and β(t) the demand of the sink node t. We will
denote V = G ∪T the set of intermediate and sink nodes, and
assume that the network is minimal so that no two of these
nodes have the same collections of hyperedges as inputs.

A. Rate region of a MSNC-DH Network
Yan et al.’s celebrated paper [12], showed that the capacity

region of a network can be expressed implicitly in terms
of region of entropic vectors Γ∗N [12] and some network
constraints. As proved in Theorem 1 in [12] and later extended

in [23] the rate region R(A) of network A can be expressed
as,

R(A) = Projr,ω(con(Γ∗N ∩ L13) ∩ L4′5) (1)

where con(B) is the conic hull of B, and Projr,ω(B) is the
projection of B onto the coordinates [rT ,ωT]T where r =
[Re|e ∈ EU] and ω = [ωs|s ∈ S]. Further, Γ∗N and Li, i =
1, 3, 4′, 5 can be viewed as subsets of RL, L = 2N − 1 +N ,
N = |S|+ |E|, with h ∈ R2N−1 indexed by subsets of N as
is usual in entropic vectors, r ∈ R|EU | playing the role of the
capacities of edges, and ω ∈ R|S| playing the role of source
rates, by creating the stacked vector x = [rT ,ωT ,hT]T . Li,
i = 1, 3, 4′, 5 are network constraints which can be written as,

L1 = {x ∈ RM | hS =
∑
s∈S

hs} (2)

L3 = {x ∈ RM | hOut(i)|In(i) = 0, ∀i ∈ G} (3)

L4′ = {x ∈ RM | hUe ≤ Re, hs ≥ ωs, e ∈ E , s ∈ S} (4)

L5 = {x ∈ RM | hYβ(t)|In(t) = 0, ∀t ∈ T } (5)

we will use L(A) = L1∩L3∩L4′ ∩L5 to denote the network
constraints of network A.

Equation (1) determines the rate region of a network only
implicitly. This is due to the fact that Γ∗N is unknown and even
not polyhedral for N ≥ 4. Thus the direct calculation of rate
region for a network with more than 4 variables is infeasible.
However when replacing Γ∗N with some inner bound Γin

N or
outer bound Γout

N , we will have a feasible polyhedral projection

Rout(A) = Projr,w(Γout
N ∩ LA) (6)

Rin(A) = Projr,w(Γin
N ∩ LA) (7)

where Rout(A) and Rin(A) are called the Linear program-
ming (LP) outer bound and inner bound of rate region R(A)
respectively. Details of theory of these outer and inner bounds
can be found in [24]–[26].

III. COMPUTING LP OUTER BOUND ALGEBRAICALLY

Equations (6) and (7) show why polyhedra projection is
involved in the calculation of the rate region of a network. The
problem is that either Γout

N or Γin
N has the same dimension as

Γ∗N , which makes the computational cost of direct projection
very high for even a reasonable value of N , say N = 10.
Moreover, the worst case upper bound of the computational
complexity of general polyhedra projection remains unknown,
and were such a bound even to exist, it would be difficult
to couple the structure of the network coding problem to it to
obtain insights as to the relationship between characteristics of
the network and the computation complexity of the LP bound.

Note that by taking the Shannon outer bound ΓN [25] of
Γ∗N as an example, we will explain in this section how Ro =
Projr,w(ΓN ∩LA) can be computed by our method. However,
any LP bound with the form in (6) or (7) can be handled
by the method we will describe. To make things clear, we
will take the network in Fig.1 as an example and provide
the corresponding constraint matrix, etc. right after we finish
discussing the abstract equations.

1

2

5

4s1

s2 g1

t2

t3

t1
3

s3

1

2

3

Figure 1: A MSNC network with hyperedges

A. Computing ΓN ∩ LA

We begin by transforming the problem of computing the
LP outer bound into one involving new variables. Our first
step is to remove the |V| equality constraints in ΓN ∩ LA

corresponding to the encoding and decoding constraints. Each
of these is of the form

hIn(v) = hIn(v)∪Out(v) (8)

for some v ∈ V . In fact, in the presence of the elemental in-
equalities in ΓN , these equalities can implicitly imply multiple
other equalities. Indeed, when |Out(v)| > 1, we also have the
other implied equalities

hIn(v) = hIn(v)∪A, ∀A ⊆ Out(v),A 6= ∅ (9)

so that the equality (8) actually implies equality among
2|Out(v)| entropies. Similarly, for the source independence
constraint

hS =
∑
s∈S

hs (10)

the elemental inequalities imply 2|S|−1 equalities of the form

hS′ =
∑
s∈S′

hs, S ′ ⊆ S (11)

Stack the constraints (9) and (11) together we will have a
system of linear equations that can be represented as,

Mh = 0 (12)

� For example, the network constraints of Fig.1 obtained
from (9) and (11) are,

h{1,2,3} = h{1,2,3,4,5}

h{4} = h{2,4}

h{4,5} = h{1,4,5}

h{5} = h{3,5}

h{1,2,3} = h{1} + h{2} + h{3}

h{1,2} = h{1} + h{2}

h{1,3} = h{1} + h{3}

h{2,3} = h{2} + h{3}

h{1,2,3} = h{1,2,3,4}

h{1,2,3} = h{1,2,4,5}

(13)

The corresponding matrix M has 10 rows, 36 columns
and rank(M) = 10.

By calculating the reduced row echelon form rref(M), we
can divide h = h1∪hr with |h1| = rank(M), |hr| = 2N−1−
rank(M) such that each subset entropy in h1 can be written
as a linear combination of singleton and/or subset entropies in
hr as,

h1 = M′hr (14)

� For example, based on rref(M), the entropy vector h
of Fig.1 can be divided as h = h1 ∪ hr and the
corresponding M′ has 10 rows 26 columns.

After substituting (14) into the remaining elemental inequal-
ities and rate constraints, ΓN ∩ LA will become a polyhedral
cone written in terms of 2N +

(
N
2

)
2N−2 inequalities (from

the elemental inequalities defining ΓN and the source and edge
rate inequalities) and N+2N−1−rank(M) variables, possibly
with redundant inequalities and implicit equalities.

� For example, after substituting in (14), ΓN ∩ LA of
network in Fig.1 will become a polyhedral cone that has
2×5+

(
5
2

)
23 = 95 inequalities and 5+25−1−10 = 26

variables.

B. Computing the Projection Algebraically

Let us denote by A the matrix defining the minimal repre-
sentation of ΓN ∩ LA as,

PA =
{

[ωT , rT ,hT
r]T ∈ Rd|A[ωT , rT ,hT

r]T ≥ 0
}

(15)

where implicit equalities and redundant inequalities of this
cone are eliminated by 1) eliminating the variables after substi-
tuting in (14), then 2) removing any further implicit equalities
by eliminating other entropy variables, then 3) removing any
redundant remaining inequalities.

� For example, after removing all the redundant inequali-
ties and variables in ΓN ∩LA the minimal representation
PA of network in Fig.1 has 30 out of 95 inequalities and
26 out of 26 variables left.

From (6) and (15) one can see that Ro can be calculated
as,

Ro = Projr,w(PA) (16)

The remainder of the projection process is to remove of the
remaining 2N − 1− rank(M) dimensions representing subset
entropies, leaving only inequalities among the N variables
ω, r. This m×d matrix A has m ≤ 2N +

(
N
2

)
2N−2 rows and

d ≤ N + 2N − 1− rank(M) columns.
Now, any inequality cT [ωT , rT]T ≥ 0 which holds for all

[ωT , rT]T ∈ Ro = Projr,w(PA) must be expressible as a
conic combination of inequalities defining PA, and thus for
any such c, there must exist some µ ≥ 0 with,

[cT ,0T][ωT , rT ,0T]T = µTA[ωT , rT ,hT
r]T (17)

Our next transformation, again aiming to maximize those
steps which have a linear algebraic flavor in computing the
polyhedral projection for the sake of easily upper bounding
the complexity of computing the LP outer bound, is to use
this duality to switch to thinking of µ as the variables instead

of [ωT , rT ,hT
r]T . From (17) one can see that any such µ

must yield zero coefficients to multiply the subset entropies
in hr. If we denote by M the indices of columns in A that
correspond to hr, then these “zero-coefficient” equalities are
of the form

µTA:,A = 0T A ∈M (18)

which is equivalent as,

Gµ = 0 (19)

where,

G =
[
AT

:,A|A ∈M
]

(20)

After calculating the rref(G), µ can be divided into two
disjoint subsets µf corresponding to the leading 1s in the rows
of rref(G), and µb corresponding to the remaining elements
of µ, with |µf | = |rank(G)|, |µb| = m − |rank(GT)| such
that each µ ∈ µf can be written as a linear combination of
the variables in µb as,

µf = Bµb, (21)

together with the requirement that µ ≥ 0, we will have the
following polyhedral cone,

P (µb) =

{
µb

∣∣∣∣[IB
]
∈ Rm×d′

[
I
B

]
µb ≥ 0

}
(22)

where I denotes a d′×d′ identity matrix, d′ = m−|rank(G)|.
Notice that each µb ∈ P (µb) corresponds to a µ in (17) and
thus corresponds to a inequality cT [ωT , rT]T ≥ 0. So once
we find all the extreme rays of P (µb), we will find all the
conically independent inequalities of the form cT [ωT , rT]T ≥
0 that defines Ro.

� For example for the network in Fig.1, the vector µ is
split into [µf ,µb] with |µf | = 21, |µb| = 14 and the
corresponding B matrix is shown in Fig.2. Consequently,
cone P(µb) has 35 rows and 14 columns.

 1, 1, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 0
 0, 0, 1, 1, 1, 0, 0, 0, 0, 0,-1, 0, 0, 1
 1, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0
 0, 1, 0, 0,-1, 0,-1, 0,-1, 0, 0, 0, 1, 1
 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
 0,-1, 0, 0, 1,-1, 0, 0, 0, 0,-1, 0, 1, 1
 0,-1, 1, 0, 1,-1, 1, 0, 0, 0, 0, 0, 0, 0
 0,-1, 0, 0, 1,-1, 0, 0, 0, 0, 0, 0, 1, 0
 0, 1, 0, 0,-1, 1,-1, 0, 0, 0, 0, 0, 0, 0
 0, 1, 0, 0,-1, 0,-1, 0, 0, 0, 0, 0, 0, 1
 0,-1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
 1, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 1, 0
 0, 0, 0, 0, 1, 0, 0, 0,-1, 0,-1, 0, 1, 1
 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 1
 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,-1,-1
 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,-1,-1
 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 0
 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 1
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 1, 1
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 1

Figure 2: B matrix for network in Fig.1

IV. COMPLEXITY OF COMPUTING Ro FROM P (µb)

The problem of finding all extreme rays of P (µb) left in the
previous subsection can be solved by a classical incremental
algorithm called double description (DD) method [27]. By
utilizing the structure of [IT ,BT]T and introducing an interme-
diate matrix IndiK , we derive the worst case computational
complexity bound of computing Ro from P (µb).

Again for brevity, we borrow the notation and definitions
from [27], where (E,R) denotes the DD pair of a polyhedral
cone P (E). Moreover Proposition 7(c) and Lemma 8 [27] are
used to write the pseudocode of DD method for complexity
analysis.

The existence of an identity matrix in [IT ,BT]T ∈ Rm×d′

is one of the reason why lower complexity bound can be
achieved than if a normal matrix E ∈ Rm×d′

is input into
the DD method. This is because 1) DD method involves
computation of a vector multiply by the input matrix in several
for loops, and 2) identity matrix multiply a vector can be done
in constant time.

The computational complexity of DD method can be further
decreased if we trade in space complexity for computational
complexity. To do that, we introduce an intermediate matrix
InidK in the DD method iteration step as,

IndiK = {vj = Erj |∀rj ∈ RK} (23)

where vj , rj denotes j − th column in IndiK and RK

respectively. Noet that for a column rj ∈ RK , Z(rj) is defined
as,

Z(rj) = {i ∈ {1, ...,m}|Eir = 0} (24)

One can see that Z(rj) is equivalent as finding the indices of
zero element of corresponding vj ∈ IndiK .

The DD method is known to be output sensitive, which
means that the algorithms’ performance is guaranteed in terms
of the output size as well as the input size [28]. If we use the
same assumption as [27] that the number of rays generated
in the intermediate step remains in O(n), then for the input
matrix E = [I,BT]T ∈ Rm×d′

, the DD method iteration step
together with the complexity of each line of pseudocode can
be written as Algorithm1.

If we assume that the input size m is less than the output
size n, then the complexity of DD method iteration step is

O(n) +O(n2)O(n)(3O(d′)) +O(n)O(md′ − d′2)

=O(n) +O(n3d′) +O(nmd′ − nd′2)

=O(n3d′)

(25)

Given that we have [I,BT]T as the input, we can always
choose (I, I) as the initial DD pair. This is to say we need to
insert all the rows of B step by step, which gives us m − d′
calls of DD method iteration steps. So the overall complexity
of DD method when [I,BT]T is the input is,

(m− d′)O(n3d′) = O(mn3d′ − n3d′2) (26)

For each extreme ray µb in P (µb) to get the corresponding
inequality cT [ωT , rT]T ≥ 0, we need to first calculate µf =

Bµb and then tacking them together to get µ = [µT
f ,µ

T
b]T

and finally calculate cT = µTA. As we had assumed n is the
number of extreme rays, the computational complexity of these
steps that involve two different matrix vector multiplication
can be bounded by

O(n(m− d′)d′) +O(nmd) = O(ndm) (27)

So the overall complexity of computing Ro from P (µb) is
upper bounded by,

O(ndm) +O(mn3d′ − n3d′2) (28)

In summary, we have proven the following theorem.

Theorem 1. Assuming as in [27] that the number of rays
generated in at each intermediate step of DD remains in O(n),
the complexity of computing the LP outer bound Ro to a
MSNC-DH problem is upper bounded by

O(ndm) +O(mn3d′ − n3d′2) (29)

where m ≤ N + 2N − 1 − rank(M), d′ ≤ N + 2N − 1 −
rank(M) − rank(G), M and G are matrices built from the
network constraints according to equations (9,11) and (20)
respectively, and n is the number of inequalities defining the
resulting LP outer bound.

Algorithm 1 DD method iteration step
Input: E, (EK ,RK), IndiK , J, i
Output: (EK+1,RK+1), IndiK+1

Initialize: Adj = ∅, J+ = ∅, J− = ∅, J0 = ∅, RK+i =
∅, IndiK+1 = ∅

1: procedure DD UPDATES
2: for j = 1, ..., |J | do . O(n)
3: if Indi(i, j) > 0 then . O(1)
4: J+.Append(j) . O(1)
5: RK+1.Append(rj) . O(1)
6: IndiK+1.Append(vj) . O(1)
7: else if Indi(i, j) == 0 then . O(1)
8: J0.Append(j) . O(1)
9: RK+1.Append(rj) . O(1)

10: IndiK+1.Append(vj) . O(1)
11: else . O(1)
12: J−.Append(j) . O(1)

13: for each (j, j′) ∈ (J+, J−) do . O(n2)
14: for each j′′ ∈ J do . O(n)
15: if Z(vj) ∩ Z(vj′) ⊂ Z(vj′′) then . O(d′)
16: if rj′′ ' rj or rj′′ ' rj′ then . O(d′)
17: Adj.Append((j, j′)) . O(1)
18: rjj′ ← (Eirj)rj′ − (Eirj′)rj . O(d′)
19: RK+1.Append(rjj′) . O(1)

20: for each rjj′ ∈ RK+1 \RK do . O(n)
21: vjj′ ← Erjj′ . O(md′ − d′2)
22: IndiK+1.Append(vjj′) . O(1)

� For example for the network in Fig.1, when using the DD
method to compute the extreme rays of P (µb) 22 extreme

rays are found. Those extreme rays are listed in Fig.3
where each row of the matrix denotes an extreme ray of
P (µb). These extreme rays are then used to calculate,
through our aforementioned steps, the inequalities that
defines Ro, which are,

w1 ≥ 0

w2 ≥ 0

w3 ≥ 0

R5 ≥ w3

R4 ≥ w2

R4 +R5 ≥ w1 + w2 + w3

(30)

 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1
 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1
 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0
 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1
 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0
 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1
 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1
 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1
 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1
 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0
 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1
 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0
 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1

Figure 3: Extreme rays found for the network in Fig.1

V. CONCLUSION

A linear algebraic method for computing the LP outer bound
to a network coding capacity region amenable to complexity
analysis was presented. Using this method, the complexity of
computing the LP outer bound was upper bounded. Future
work will compare this upper bound to the complexity of
methods which exploit symmetry and hierarchy in the network
in order to quantify the reductions in complexity enabled by
these aspects.

REFERENCES

[1] C. Tian, “Rate region of the (4, 3, 3) exact-repair regenerating codes,” in
IEEE International Symposium on Information Theory (ISIT), pp. 1426–
1430, July 2013.

[2] C. Tian, “Characterizing the rate region of the (4,3,3) exact-repair re-
generating codes,” IEEE Journal on Selected Areas in Communications,
vol. 32, pp. 967–975, May 2014.

[3] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Transactions
on Information Theory, vol. 56, pp. 4539–4551, Sept 2010.

[4] M. Sathiamoorthy, M. Asteris, D. S. Papailiopoulos, A. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure
codes for big data,” Proceedings of the VLDB Endowment, vol. 6,
pp. 325–336, Mar 2013.

[5] R. Koetter, M. Effros, and M. Medard, “A theory of network equivalence
part ii: Multiterminal channels,” Information Theory, IEEE Transactions
on, vol. 60, pp. 3709–3732, July 2014.

[6] M. Effros, S. El Rouayheb, and M. Langberg, “An equivalence between
network coding and index coding,” Information Theory, IEEE Transac-
tions on, vol. 61, pp. 2478–2487, May 2015.

[7] H. Sun and S. A. Jafar, “Index coding capacity: How far can one go
with only shannon inequalities?,” CoRR, vol. abs/1303.7000, 2013.

[8] Chao Tian, “Symmetry, Outer Bounds, and Code Constructions: A
Computer-Aided Investigation on the Fundamental Limits of Caching.”
https://arxiv.org/abs/1611.00024.

[9] Steven Weber, Congduan Li, John MacLaren Walsh, “Rate Region for
A Class of Delay Mitigating Codes and P2P Networks,” in 46th Annual
Conference on Information Sciences and Systems, Mar. 2012. (Invited
Paper).

[10] J. M. Walsh, S. Weber, and C. wa Maina, “Optimal Rate Delay Tradeoffs
and Delay Mitigating Codes for Multipath Routed and Network Coded
Networks,” vol. 55, pp. 5491–5510, Dec. 2009.

[11] J. M. Walsh, S. P. Weber, J. C. de Oliveira, A. Eryilmaz, M. Médard,
“Trading Rate for Delay at the Application and Transport Layers (Guest
Editorial),” vol. 29, pp. 913–915, May 2011.

[12] X. Yan, R. W. Yeung, and Z. Zhang, “An implicit characterization of the
achievable rate region for acyclic multisource multisink network coding,”
IEEE Transactions on Information Theory, vol. 58, pp. 5625–5639, Sept
2012.

[13] Jayant Apte and John MacLaren Walsh, “Explicit Polyhedral Bounds
on Network Coding Rate Regions via Entropy Function Region: Algo-
rithms, Symmetry, and Computation,” 2016. Submitted July 22, 2016,
revised July 6, 2017.

[14] Jayant Apte and John MacLaren Walsh, “Constrained Linear Repre-
sentability of Polymatroids and Algorithms for Computing Achievability
Proofs in Network Coding,” Submitted May 15, 2016.

[15] Jayant Apte, Algorithms for Computing Limits on Information Flow and
Storage in Networks. PhD thesis, Drexel University, Philadelphia, PA,
2016.

[16] Jayant Apte and John MacLaren Walsh, “Information Theoretic Con-
verse Prover.”

[17] Jayant Apte and John MacLaren Walsh, “Information Theoretic Achiev-
ability Prover.”

[18] Congduan Li and John MacLaren Walsh, “Network Enumeration and
Hierarchy.”

[19] C. Li, S. Weber, and J. M. Walsh, “On multi-source networks: Enumer-
ation, rate region computation, and hierarchy,” IEEE Transactions on
Information Theory, vol. 63, pp. 7283–7303, Nov 2017.

[20] J. Apte and J. M. Walsh, “Exploiting symmetry in computing polyhedral
bounds on network coding rate regions,” in IEEE International Sympo-
sium on Network Coding (NetCod), Jun 2015.

[21] Congduan Li, Steven Weber, John MacLaren Walsh, “Network Embed-
ding Operations Preserving the Insufficiency of Linear Network Codes,”
in 52nd Annual Allerton Conference on Communication, Control, and
Computing, Oct. 2014.

[22] C. Li and J. M. Walsh, “Network combination operations preserving the
sufficiency of linear network codes,” in 2015 IEEE Information Theory
Workshop (ITW2015), (Jeju Island, Korea), Oct. 2015.

[23] C. Li, S. Weber, and J. M. Walsh, “Network combination operations
preserving the sufficiency of linear network codes,” in 2015 IEEE
Information Theory Workshop - Fall (ITW), pp. 44–48, Oct 2015.

[24] J. Apte, C. Li, and J. MacLaren Walsh, “Algorithms for computing
network coding rate regions via single element extensions of matroids,”
pp. 2306–2310, 06 2014.

[25] C. Li, J. Apte, J. M. Walsh, and S. Weber, “A new computational
approach for determining rate regions and optimal codes for coded net-
works,” in 2013 International Symposium on Network Coding (NetCod),
pp. 1–6, June 2013.

[26] C. Li, S. Weber, and J. M. Walsh, “Multilevel diversity coding sys-
tems: Rate regions, codes, computation, amp; forbidden minors,” IEEE
Transactions on Information Theory, vol. 63, pp. 230–251, Jan 2017.

[27] K. Fukuda and A. Prodon, “Double description method revisited,”
in Combinatorics and Computer Science (M. Deza, R. Euler, and
I. Manoussakis, eds.), (Berlin, Heidelberg), pp. 91–111, Springer Berlin
Heidelberg, 1996.

[28] D. Bremner, “Incremental convex hull algorithms are not output sen-
sitive,” Discrete & Computational Geometry, vol. 21, pp. 57–68, Jan
1999.

