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ABSTRACT. We present a second-order-in-time finite difference scheme for the
Cahn-Hilliard-Hele-Shaw equations. This numerical method is uniquely solv-
able and unconditionally energy stable. At each time step, this scheme leads
to a system of nonlinear equations that can be efficiently solved by a nonlinear
multigrid solver. Owing to the energy stability, we derive an £2(0, T} H;z) sta-
bility of the numerical scheme. To overcome the difficulty associated with the
convection term V- (¢u), we perform an £°°(0, T H,ll) error estimate instead of
the classical £>°(0,T';£?) one to obtain the optimal rate convergence analysis.
In addition, various numerical simulations are carried out, which demonstrate
the accuracy and efficiency of the proposed numerical scheme.

1. Introduction. The Cahn-Hilliard-Hele-Shaw (CHHS) diffuse interface model
has attracted a lot of attention because it describes two phase flows in a simple
way [23, 24]. Tt has been used to model spinodal decomposition of a binary fluid in
a Hele-Shaw cell [20], tumor growth and cell sorting [14, 36], and two phase flows
in porous media [6]. It describes the process of the phase separation of a viscous,
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binary fluid into domains. In this model, the Cahn-Hilliard (CH) energy of a binary
fluid with a constant mass density is given by [4]:

E(d)):/ﬂ{idf*—;¢2+522’V¢>’2}dx, (1.1)

where Q C R? (d = 2 or 3), ¢ : O — R is the concentration field, and ¢ is a
constant. The phase equilibria are represented by the pure fluids ¢ = +1. For
simplicity, we assume that Q = (0, L;) x (0, L,) x (0, L.) and that 0,,¢ = 0 on 09,
the latter condition representing local thermodynamic equilibrium on the boundary.
The dynamic equations of CHHS model [23, 24] are given by

O =Au—V-(pu), in Qp:=Qx(0,7), (1.2)
u=-Vp—~v9pVu, in Qr, (1.3)
V-u=0, in Qp, (1.4)

where v > 0 is related to surface tension and the chemical potential is defined as
1= 8gF = 6 — 6 — 2Ad; (1.5)

wu is the advective velocity; and p is the pressure. We assume no flux boundary
conditions, namely w - = 0 and 0,u = 0, with n the unit normal vector on 9:

o Ou  Op
—=——=-—=0 0Qp =00 x (0,T]. 1.6
on  IOn  On o T < (0.7] (16)
The system (1.2)-(1.4) is mass conservative and energy dissipative, and the dis-
sipation rate is readily found to be

1
th:—/ \ngdx—f/ Jul*dx < 0. (1.7)
Q v Jo

Another fundamental observation is that the energy (1.1) admits a splitting into
purely convex and concave parts, i.e., £ = E, — F,:

EC—/Q{lerj)‘l—i—E;’Vgé‘Q}dx, Ee:/ﬂé(ﬁ dx, (1.8)

where both E. and E. are convex. Based on this observation, a first order in
time unconditionally energy stable finite difference scheme for the CHHS equations
was proposed in [35], and the detailed convergence analysis has become available
in a more recent work [5]. Meanwhile, Feng and Wise presented a finite element
analysis for the system (1.2)-(1.4), which arises as a diffuse interface model for the
two phase Hele-Shaw flow in [13]. Collins et al. proposed an unconditionally energy
stable and uniquely solvable finite difference scheme for the Cahn-Hilliard-Brinkman
(CHB) system, which is comprised of a CH-type diffusion equation and a generalized
Brinkman equation modeling fluid flow. The detailed convergence analysis for the
first order convex splitting scheme to the Cahn-Hilliard-Stokes (CHS) equation was
provided in [7]. In [19], Guo et al. presented an energy stable fully-discrete local
discontinuous Galerkin (LDG) method for the CHHS equations. And Han proposed
and analyzed a decoupled unconditionally stable numerical scheme for the CHHS
equations with variable viscosity in [20]. Some other energy stable approaches for
the related models could also be found in [2, 25, 26, 28], etc.

Most of the existing schemes are of first oder accuracy in time. In this paper, we
propose and analyze a second order convex splitting scheme for the system (1.2)-
(1.4), which turns out to be uniquely solvable and unconditionally energy stable.
A modified Crank-Nicholson approximation is applied to the nonlinear part of the
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chemical potential, an explicit Adams-Bashforth extrapolation is applied to the
concave term, and an Adams-Moulton interpolation formula is applied to the highest
order surface diffusion term. In more details, such an Adams-Moulton interpolation
formula is applied at the time steps t"*1 and ¢t"~! (instead of the standard one at
t"*t1 and "), so that the diffusion coefficient at t"*' dominates the others. This
subtle fact will greatly facilitate the convergence analysis; see the related works for
the pure CH flow: [18] with the finite difference spatial approximation, [9] with
the finite element version, and [16] for the non-local model. In addition, a semi-
implicit approximation is applied to the nonlinear convection term, with the phase
variable treated via extrapolation and the velocity field is implicitly determined by
the Darcy law at the numerical level. A careful analysis reveals a rewritten form of
the numerical scheme as the gradient of a strictly convex functional, so that both the
unique solvability and unconditional energy stability could be theoretically justified.

Meanwhile, it is noted that an optimal rate convergence analysis for the second
order scheme to the CHHS equation remains open. The main difficulty is associ-
ated with the high degree of nonlinearity of the convection term, V - (¢u), with
u the Helmholtz projection of —y¢pVu. Also, the Darcy law in the fluid equation
has posed a serious challenge in the numerical analysis, in comparison with the
CHS [7] or Cahn-Hilliard-Navier-Stokes (CHNS) model [8], in which a kinematic
diffusion is available for the fluid. For the CHHS equation, even the highest order
linear diffusion term could not directly control the error estimates for the nonlin-
ear terms, due to the nonlinear convection. For the first order numerical scheme,
the methodology to overcome such a difficulty was reported in a few recent works
[5, 27]. However, these analysis techniques could not be directly applied to the sec-
ond order scheme. In this article, we present a detailed analysis to establish the full
order convergence of the proposed numerical scheme, with second order accuracy
in both time and space. In more details, a nonlinear energy estimate by taking an
inner product with ;**1/2, the numerical chemical potential at time instant t*+1/2,
gives an unconditional numerical stability. Moreover, a more careful analysis for
the chemical potential gradient, in combination with the Sobolev inequalities at the
discrete level, leads to an ¢%(0,T; H}) stability estimate of the numerical solution.
On the other hand, a subtle observation indicates that the estimate for the nonlin-
ear error associated with V- (¢u) cannot be carried out in a standard way, due to a
broken structure for this nonlinear error function. As a result, an £>°(0,T; H}') error
estimate has to be performed, instead of the classical £>°(0, T’; £?) one, since the er-
ror term associated with the nonlinear convection has a non-positive inner product
with the appropriate error test function. In addition, the ¢2(0,T; H}) bound of the
numerical solution plays a key role in the nonlinear error estimate, which enables us
to apply the discrete Gronwall inequality to obtain the desired convergence result.

The remainder of this paper is organized as follows. In Section 2, we present
the fully-discrete scheme for the CHHS equations. The ¢2(0,T; H}) stability of the
numerical scheme is further established in Section 3. In Section 4, we present the
optimal rate convergence analysis with the help of an £°°(0,T; H}.) error estimate. In
Section 5, we provide some numerical results to validate our theoretical analysis and
demonstrate the effectiveness of the proposed fully discrete finite difference method.
To solve the nonlinear equations at each time step, the nonlinear multigrid solver
is applied. Finally, we offer our concluding remarks in Section 6.
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2. The fully discrete scheme and a-priori stabilities. In this section, we
propose a second order in time fully discrete scheme for the system (1.2)-(1.4) with
the discrete homogeneous Neumann boundary conditions (1.6). For simplicity, we
consider the cuboid © = (0, L;) x (0, L) x (0, L), such that there are N, N, N, €
N, with h = L, /N, = Ly/N, = L./N., for some h > 0. Let s = % > 0 for some
M € N, be the time step size and t,,, = ms. We only consider the three-dimensional
version of the fully discrete scheme for the CHHS system since an extension to the
two-dimensional case is trivial. For convenience, some of the following notations are
defined in Appendix A. For each integer m, 1 < m < M — 1, given (¢, ¢™) €
[Ca)?, find the cell-centered grid functions (¢™+t, pm+1/2 pm+1/2) ¢ [Cqo®, such
that

m+1 _ m
% = App™ 2 =V (Al T Pt (2.1)
m m m m 3 m 1 m—
pnt? = x (™, ™) — *+1/27€2Ah<1¢ +1+1¢ 1)7 (2.2)
w2 = g, 2 o, g 2y, L2, (2.3)

with the boundary conditions n - V¢t = n-V,u™mtY/2 = n . V,p™t1/2 = 0 (see
(A.6)-(A.8)) on 09, where

MAREESS gqﬁ’" - %qﬁm‘l, X (,9) = i (¢* +9%) (p+¥), (24)

for any (p,%) € [CQ]2. Note that the three component variables of the velocity
vector umt1/2 ¢ 59 are located at the staggered grid points. Furthermore, this
velocity vector is divergence-free at the discrete level; see more detailed descrip-
tions in Remark 2.3. To facilitate the unique solvability analysis below, we could
eliminate the velocity variable in the numerical scheme and rephrase it in terms of
(pm+L, /2 pmt1/2) € [Co)%. In more details, we introduce M(¢) :=1+~¢? and
rewrite (2.1)-(2.3) as

Pt — g™ = sV, - (M(Ah TH/Q)VhﬂmH/Q)
39 (Ao AT ) (25)
Ahpm+1/2 — AV, - (Ah¢T+l/2Vth+1/2) . (2.7)
The symbol M(Ah(b;nﬂ/ Q)Vh,um‘H/ 2 represents a discrete vector field. For in-
stance, the y-component at a generic y-face grid point is given as

m m Y m m
[M(Ah * H/Q)Vhﬂ +1/2L,ji1/2,k - M(qus*,;,rjlﬂ/j/z,k)Dy'umttllﬁ’k'
Hence, M (A}, T+1/2)thm+1/2 € & and similarly for Ami”“/gvhpmﬂ/? and
AhquH/ ZV;L,um'H/ 2, The definitions of the discrete operators used above can be
found in Appendix A.2 and are similar to those found in [35].

We now define a fully discrete energy that is consistent with the continuous space
energy (1.1) as h — 0. In particular, the discrete energy Ej : Co — R is

1 4 1 2 52 2
Bu(9) = 1 161l — 5 1913 + 5 19413 (2.8
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We also define an alternate numerical energy via

Filg ) = Bu(6) + 1 16— 0l + e 194(6 — 913 (29)

We can not guarantee that the energy Ej is non-increasing in time, but, we can
guarantee the dissipation of auxiliary energy Fj,.

For our present and future use, we define the canonical grid projection opera-
tor P, : CO() — Cq via [Ppv]ije = v(&, &, &). Set ups := Ppu(-,s). Then
Fr(up0,un,s) = Ep(u(-,t0)) as h — 0 and s — 0 for sufficiently regular u. The
next theorem addresses the unique solvability and unconditional energy stability of
the numerical solutions to the scheme (2.5) — (2.7):

Theorem 2.1. Suppose that (P, e, Ue) is the sufficiently reqular exact solution
to the CHHS system (1.2)-(1.4). Take <I>f7j)k = Ppoe(-,te) and suppose that the
initial profile ¢° := ®°, ¢! := ®' € Cq satisfies homogeneous Neumann boundary
conditions n - V¢° = 0 and n - V¢t = 0 on 9Q. Given any (¢™ L, ¢™) € [Cal?,
there is a unique solution ¢™*! € Cq to the scheme (2.5) — (2.7). And also, the
scheme (2.5) — (2.7), with starting values ¢° and ¢, is unconditionally energy
stable with respect to (2.9), i.e., for any s > 0 and h > 0, and any positive integer
1<0<M-—1,
14 s A
Fu(o™, ¢ +5 > V™25 + S > w23 < Fi(¢',6°) < Co, (2.10)

m=1 m=1

where Cy > 0 is a constant independent of s, h, and ¢, and w™+1/2 ¢ Eq is given
by (2.3).
Proof. The unique solvability proof follows from the convexity analysis, as presented

in [35] for the first order convex splitting scheme applied to the CHHS equation.
We define a linear operator L as

L(p) = —sV), - (M(Ah¢>1”+1/2)w) sV (Ah¢1n+1/2vhp#>7 (2.11)
in which

Ay = =Vn - (Angl Vi) (2.12)

with QSTH/ % a known function, and homogeneous Neumann boundary conditions
for both p and p,. Following the arguments in [35], we are able to prove that £
gives rise to a symmetric, coercive, and continuous bilinear form when the domain
is restricted to Co := {p € Cq : (1, 1) = 0}; the details are skipped for the sake of
brevity and left to interested readers.

Subsequently, an inner product on Cq is introduced using L: let f, and f, € Co
and suppose p, v € H}L are the unique solutions to L(u) = f, and L(v) = f,. Then
we define

(f,ua fy)£—1 = S(Vhﬂa Vhl/)
+% (vhfu + AR PN, Vi o+ VAWTH/QVW) . (2.13)
The purpose of such a definition is to introduce the (-,-),-1 inner product, which

will be used in the convexity analysis below. In fact, it is straightforward to verify
that

(fM?fV)£—1 = (fuv‘c_lfz/) = (‘C_lfmfu) . (2'14)
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Furthermore, a direct calculation shows that
(fur fo) g1 = (L(),v) = $(Vap, Viv) + s (Ah¢TH/2VhN,AhquH/QVhV)
S
_;(Vhp,ua Vhpu)a (215)

due to the fact that L(u) = f, and L(v) = f,. Next, we consider the following
functional:

1
G(0) = 3 (6= 6™ 60— ™) s + Fld) — (6,0:(6™, 0", (216)
with
Fo(d) = = [6ld + = (6™, 6%) + (6™ 6%) + 22| Vol2, (217)
\P) = 1Pl T ¢ ) ’ g% IV hell2s :
ge(@™, 67 =~ (") + G 4 LA (2.18)

The convexity of F, follows from the convexity of g.(¢) = F¢* + 50™¢* +
£(¢™)?¢? (in terms of ¢). And also, (-,-)z-1 is an inner product. Therefore,
we conclude that G is convex. Moreover, GG is coercive over the set of admissible
functions

A={¢eCa:(¢p—¢" 1) =0}. (2.19)

Therefore it has a unique minimizer, and in particular the minimizer of G, which
we denote as ¢ = ¢™ 1!, satisfied the discrete equation

L7 @™ — @) 4+ 86 Fe(¢™ ) — ge(¢™, 0™ 1) = C, (2.20)

in which C is a constant and ¢ 1! satisfies the homogeneous Neumann boundary
condition. In other words, ¢™*! is a solution of

¢m+1 _ (bm nyy (5¢Fc(¢m+1) _ ge(¢7n7¢m—1)) — 07 (2.21)

which is equivalent to the numerical scheme (2.5) — (2.7). The proof of unique
solvability is complete.

For the energy stability analysis, we look at the numerical scheme in the original
formulation (2.1)-(2.3). Taking an inner product with x™*+/2 (given by (2.6)) by
(2.1) yields

<¢m+1 _ d)m’luerl/Z) s (A}Lﬂm+1/27um+1/2)
+s (Vh : (Ah¢T+1/2um+1/2),um+1/2) —0. (2.22)
In more detail, the leading term has the expansion
N R Ca e AP (s ) (2.23)
1
—5 (@ = o™ 3™ —9m )
1
_162 (¢m+1 _ ¢maAh (3¢m+1 + ¢m—1))
=1 + I + 1. (2.24)

The estimate for I, a convex term, is straightforward:

n= (w“ =6 (67 + (6™)2) (67 + <z>m)>
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= 1((my = 2, (@@ om2))
= 2l - 1oms). (2.25)

For the second term Iy of (2.24), a concave term, we see that
I = —(omt = gmom) — o (om - o - o)
e (ke T - e PRSP
_% (674t —gm, o — 67 (2.26)
=5 (165 = 1918) + 3 o™~ = gl ~ 6

where the Cauchy inequality was utilized in the last step.
The third term I3 of (2.24), also a convex term, can be analyzed with the help
of summation by parts:

1

Iy = 7 (Va(0m = ¢™). Va (307 + 071

Ao )

(Tl wuom 20 )

=I5 + I3 9. (2.27)

v

2
2 )

The evaluation of I3 ; is straightforward:

Iy =5 (Va (et = ¢),Wa (674 +6™)) = S ([Va0™ 5 = 906" )
(2.28)
The estimate of the I35 can be carried out in the following way:

1—3’2 — i ||Vh(¢m+1 _ ¢m)”§ o i (vh((bm-i-l _ ¢m)vvh(¢m _ ¢m—1))

> L(Iwaemt o [Vuie” — 6 h2), 229)

in which the Cauchy inequality was applied in the last step. Consequently, substi-
tuting (2.28) and (2.29) into (2.27) yields

Iy 2 S (V™ ;- 1946™3)
5 (Ivaemt =M= [9u@™ = l3). (230
Finally, a combination of (2.24), (2.25), (2.26) and (2.30) results in
(@71 = g, H12) > By (6™ - Bi(e™)
e (AT A AT

1 —
g (lome—em B = om —om ). e
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For the second term of (2.22), the boundary condition n.- V™42 |5q= 0 leads
to the following summation by parts:

1/2 1/2 1/2 1/2 1/2 2
(Ahum+ TR ) =- (Wu”” 22Vt ) = - thum* / H2 (2.32)

The third term of (2.22) can be analyzed in a similar way. With the reformulated
form of the second equation (2.3)

m 1
A2y, m /2 = > (7um+1/2 _ vhpm“/?), (2.33)
we have
(Vh . (Ah¢ln+1/2um+1/2)”um+l/2) _ (um+1/2,Ah¢:1+l/2vhum+l/2>

_ 1 HumﬂpH2 4 (Vh .um+1/27pm+1)
~ 2

2

N (2.34)

- e

v

in which the last step comes from V), - «u™11/2 = 0 and u™*/2 . n =0 on 0N.
As a result, a substitution of (2.31), (2.32) and (2.34) into (2.22) becomes

(6™ — Bu(6™) 4 1 (o7 = o7 P~ o™ — ")

1
+32(II9a@™ = 6m)l3 — [[Va(e™ — o™ H)2)

+1/2 2. +1/2 2
+s thum H + - Hum H <0. (2.35)
2 2
By the definition of the alternative numerical energy, we arrive at

2
um“/?H <0. (2.36)
2

2
Fu(@™*,67) = Fu(9™, 0" 4) s [V 242

This in turn shows that the modified energy is non-increasing in time. Summing
over time for (2.36) yields

¢ ¢
s
Fr(¢™, 0 + s > V™25 + S 7 w23 < Fu(e', ¢°%) < Co. (2.37)
m=1 m=1
for any ¢ > 1. Then we obtain the unconditional energy stability for the second
order scheme (2.5)-(2.7). O

Remark 2.2. It is observed that data for two initial time steps, either (¢, ¢')
or (¢p1,¢Y), are needed for (2.5) — (2.7), since ours is a two-step scheme. In this
article, we take ¢ = ®°, ¢! = ®! for simplicity of presentation. Other initialization
choices, such as ¢! = ¢, or computing ¢! by a first order temporal scheme, could
be taken. Moreover, the energy stability and the second order temporal convergence
rate are also expected to be available for these initial data choices; see the related
works for the Cahn-Hilliard model [9, 18].

Remark 2.3. In order to assure the divergence-free property of the velocity vector
at the discrete level, we choose a staggered grid for the velocity field, in which the
individual components of a given velocity, say, v = (v*,vY,v?), are evaluated at
the (x, y, and z face) mesh points (ih, (j + 1/2)h, (k + Y/2)h), ((i + /2)h, jh, (kK +
Y2)h), ((i + 1/2)h, (j + 1/2)h, kh), respectively. This staggered grid is also known
as the marker and cell (MAC) grid and was first proposed in [21] to deal with the
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incompressible Navier-Stokes equations. Also see [29] for related applications to the
3-D primitive equations.

One key advantage of this staggered grid can be inferred from the following fact:
the discrete divergence of u (given by (2.3)), specifically, V}, - u = dyu+dyv +d.w,
is identically zero at every (cell-center) mesh points ((i+1/2)h, (j +1/2)h, (k+1/2)h).
Such a divergence-free property at the discrete level comes from the special structure
of the MAC grid and assures that the velocity field is orthogonal to a corresponding
discrete pressure gradient at the discrete level; see also reference [10].

3. (%(0,T; H}) stability of the numerical scheme. The ¢>(0,T; H}) bound of
the numerical solution could be derived based on the weak energy stability (2.37).
The following quadratic inequality is observed:

1 1 1 1 1 1
§¢>4 — 5(;52 > ~5 which in turn yields g||gzs||;L — 5||¢>||§ > —§|Q|, (3.1)

with the discrete H} norm introduced in (A.26). Then we arrive at the following
bound, for any ¢ € Cq:

1, & 5 1
En(¢) > §||¢||4 + §||Vh¢||2 - §|Q\

1 g? 1
> Llolg+ SVl - 102 S0, -2 62)

Consequently, its combination with (2.37) yields the following estimate:
L oo ceg1)2 : ma1/2||® L L ma1/2]]?
56 167 I +s;(’]vhu H2+;Hu [)=c+ian=c, 63

so that a uniform in time bound for ¢ in £°°(0,T; H}) is available:

Hd)mHth < Cq =120, for any m. (3.4)

Theorem 3.1. Let ¢™ € Cq be the solution to the scheme (2.5) — (2.7), with
sufficient reqularity assumption for ®° and ®1, then for any 1 < £ < M — 1, we
have

l
1
Ee%mz:jl IVaAR¢™||5 < C11 + C1oT, (3.5)

where C1g and Ch1, given by (3.13) and (3.14), respectively, only depend on L.,
Ly, L., € and several Sobolev embedding constants, and are independent of h, s and
final time T.

Proof. We observe that

],

‘Vh (52Ah(2¢m+1 + id)mfl) —x (¢m+1,¢m) + ¢;n+1/2)

2

3 1
> & VhAh(E(Z)m—H + Zfbm_l)

2

_ th (X (¢7n+17 (an) _ (g(b’m _ %(bm—l)) ; (36)

2
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in which a triangle inequality was applied in the last step. Furthermore, motivated
by the quadratic inequality |a — b|? > a® — b%, we have
1
> g4
2 = 2

1

2
[ouaee],

Vil (Gom ! + om )

2
2

Ui (x (67,67 (Gpm — 5om )

2

> et [Vadn (3™ +6m )5
1 2
—(f V(6™ = ™ D), + [ Vax (" 6™)]),)
2
> 52t [VadnBa™ + 6™ D = (202 -+ [Vux (674 7))
>

Lo o

~2(403 +[[Vax (6™,6)]3). (37)

in which the uniform in time estimate (3.4) was utilized in the third step and another
quadratic inequality (a+ b)? < 2(a? + b?) was used in the last step. An application
of the Cauchy inequality gives an estimate of the leading term in (3.7):

IVAALBE™ + 6™ )| = 9| Vadng™ > + 6 (Valng™ L, Vi Apg™ )
+[|Vadne™
6Ivuanem I —2[Vasam R (38)

For the last term in (3.7), by the definition of x (cbm“, d)m) in (2.4), a detailed
expansion and a careful application of discrete Holder inequality shows that

195 (e (671 6m)) < Callle™ 12, + 1™ 20U Tae™ |, + V6™ 1)

Y

2 2
< CuCa([jo™ |+ o™ 1) (3.9)
in which the uniform in time estimate (3.4) was used again in the last step. More-
over, the || - |[sc bound of ¢* can be obtained with an application of a discrete

Gagliardo-Nirenberg type inequality:

3 1 3 1
6% 1oe < Cs (16" 11y - IV 2RE 15 + 1651 ) < CoC IVnAR6EII5 + CoCo,
(3.10)
for k = m,m+1. The detailed proof is given by [5], but we repeat it in Appendix B
for completeness.
Therefore, a substitution of (3.10) into (3.9) yields

|90 (x (o7 +1.6m)|| < e (I9nnem ], + 19a 8™ ) + €105 (3.11)

Motivated by the Young inequality a - b < Cga® + ab?, V a,b > 0,a > 0 with
a=C;C5 b= HVhAhQSmHHQ + [|[VhARY™ ||y, @ = %854, (note that the values of
a, b and « have been redefined), we arrive at

th( (g™, g™ )H < CyCLO0 4 7 C8

2
et (190806™ ], + 190280671,
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S 090210 + C7C§
1
A combination of (3.7), (3.8) and (3.12) shows that

thﬂﬂ’ri—l/QH2 > 3&?4 |‘thh¢m+1||2 o i54 ||thh¢m||2
2~ 32 232 2

1
—26¢" [IVa2m6™ 3 = Cao, (3.13)

with Cig = 8022 + 2(090210 + C7Cg)
Going back to (3.3), we obtain

!
! m 3 , 1 ,
sz_:1<1684 IVrALD ||§ - C’10> < Cy+ @543 ||VhAh¢>1H2 + 175548 ||VhAh¢OH2

< Oy, (3.14)

in which Cy; is independent on h, with a sufficient regularity assumption for ¢¥ :=
OO0 ¢! := ®L. Inequality (3.14) is equivalent to

l
1
Ee’:ASmX::l HV}LA}LQSm”; < Chi1 + CioT. (315)

This in turn gives the ¢2(0,7; H) bound of the numerical solution. O

Note that Cyo and Cyy, given by (3.13) and (3.14), respectively, only depend on
Ly, Ly, L, € and several Sobolev embedding constants, and independent of final
time T', h and s.

Remark 3.2. We see that Lemma B.1 has played a crucial role in the discrete
02(0,T; Hf;) derivation for the numerical solution. In fact, the discrete Gagliardo-
Nirenberg type inequality (B.1) is a 3-D result. In 2-D, the corresponding inequality
takes the form of
" 1-5 5

l6—éll,. < (19813~ IVaAmo13 + 906l ), ¥6 > 0. (3.16)
Since this inequality is valid for any § > 0, we could take § < i, so that the
corresponding ¢2(0,T’; H}) bound for the numerical solution could be derived in an
easier way, and the optimal convergence analysis is expected to be less involved
than the one presented in this article.

4. Optimal rate convergence analysis. The convergence analysis is carried out
in three steps. Firstly, in section 4.1, we obtain error functions by using a standard
consistency analysis. In the following, we provide an estimate for the nonlinear error
term in section 4.2. Finally, we recover an a-priori error assumption and present
the optimal rate error estimate in sections 4.3 and 4.4 , respectively.

4.1. Error equations and consistency analysis. The global existence of weak
solution for the CHHS equation (1.2)-(1.4) has been established in [13]. The solution
with higher order regularities was discussed in [34], using more advanced Littlewood-
Paley theory. In more details, the regularity of L>(0,7; H*) N L?(0,T; H**?) for
the phase variable, assuming initial data in H*® (s > % + 1), was established. The
estimates are global-in-time for the 2-D CHHS system and local-in-time for the 3-D
model. In fact, several blow-up criteria in the 3-D case were also stated. Meanwhile,
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in another recent work [33], global-in-time classical solutions were proven for the
3-D CHHS system, if the initial data is close to an energy minimizer or the Péclet
number is sufficiently small.

Based on existing theory, the regularity of the exact solution cannot be guar-
anteed based solely on the regularity of the intial data. See the following lemma,
excerpted from [34].

Lemma 4.1. [34] Given any initial data ¢(-,t = 0) € H®, with s > % + 1, there
is a solution ¢ € L>(0,T; H*) N L*(0,T; H**?) for the CHHS system (1.2)-(1.4).
In addition, such an estimate is global in time in 2-D, local in time in 3-D.

Therefore, with an initial data with sufficient regularity, we could assume that
the exact solution has regularity of class R:

b € R := H*(0,T;C°) N H?(0,T;C*) N L>(0,T; C°). (4.1)

To facilitate our error analysis, we need to construct an approximate solution to
the chemical potential via the exact solution ¢.. In addition, we note that the exact
velocity u. is not divergence-free at the discrete level (Vj, - u. # 0). To overcome
this difficulty, we must also construct an approximate solution to the velocity vector
(again through the exact solution), which satisfies the divergence-free conditions at
the discrete level. Therefore, we define the cell-centered grid functions

" 1 .-
Fm+1/2 =y ((I)Tn-i-l7 (I)m) _ (I)* +1/2 . €2Ah (i@m-‘rl =+ Z(I)m 1) , (42)
Utz _p, (VAh<1>TH/2Vth+1/2) 7 (4.3)
(I)T+1/2 — g(pm _ %(pmfl’ (44)

for 1 < m < M, where Py, is the discrete Helmholtz projection defined in equations
(3.2), (3.3) in [5]. We need to enforce the discrete homogeneous Neumann boundary
conditions for the chemical potential: n - VI 1t1/2 = 0, for all 1 < m < M, so

that, in particular, Py, (Ah<I>T+1/2Vth+1/2) is well defined.

With the assumed regularities, the constructed approximations I'"*1/2 and
U™t1/2 obey the following estimates:

[VAD™ 2| < Chay  [U™Y2) o < Cha, (4.5)

for 0 < m < M, where the constant C'i5 > 0 is independent of h > 0 and s > 0.
It follows that (®,T, U) satisfies the numerical scheme with an O(s? + h?) trun-
cation error:

q)m-l—l _ (I)m
S

m 3 -
Fm+1/2 =y ((I)"H'l’(I)m) — " +1/2 _52Ah <4q)m+1 + Zq)m 1) , (47)

— A T2y, (Ahq)TH/QUmH/Q) + 7_m+1/2, (4.6)

Utz = _p, (’YAh‘I)TH/ZVthH/Q) ; (4.8)
where the local truncation error satisfies
H7_m+1/2H < 013(82 + h2), (49)
2

with s - M =T, and C13 independent of h and s.
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The numerical error functions are denoted as

¢m — P ¢m7 ﬁm+1/2 — Fm+1/2 o 'um+1/27 ,ﬁlm+1/2 — Um+1/2 - um+1/2.

Subtracting (4.6) — (4.8) from (2.1) — (2.3) yields o
M — Ahﬂerl/Q v (Ahqz)TJrl/?Uerl/Q+Ah¢;n+1/2'&m+l/2>
L2, (4.11)
Y2 pmAl/z  gmtl/z 52Ah<57+1/27 (4.12)
where

mA1/2 §~m _ 1~m71 Tm+1/2 §~m+1 ENmfl
* = 2¢ 2¢ » Y1 - 4¢ + 4¢ ’
Nm+1/2 =x ((I)m+1’ (I)m) —x (¢m+1’¢m) ,

a2 = _p, (Ah<Z>T+1/ PVADTH2 4 At Y 2) , (413)

forl1<m< M —1. R ~
We also observe that ¢° = ¢! = 0, due to our initial value choices ¢° = ®°,
¢! = ®'. This fact will facilitate the convergence analysis in later sections.

4.2. Stability of the error functions. Note that both the CHHS equation (1.2)-
(1.4) is mass conservative at the continuous level: [, ¢(t)dx = [, ¢(0)dx, Vt > 0,
while the numerical scheme (2.5)-(2.7) is mass conservative at the discrete level:
(¢F,1) = (¢°,1), Vk > 1. Consequently, the following estimate is available; the
detailed proof could be read in a recent work [5].

Lemma 4.2. Assume the exact solution is of reqularity class R. Then, for any
1<m< M,

16712 < Cua (V46" 12 +h?) | (4.14)
16™loe < Cua (IVaG™ 115 - VA ARG™II5 +IVad™|l2 +h2) . (4.15)
for some constant C14 that is independent of s, h, and m.

Before we carry out the stability analysis for the numerical error functions, we
assume that the exact solution ® and the constructed solutions I'; U have the
following regularity:

||‘I)||eoo(o,T;W;»°°)§0127 HVthH/QH < Cha, HUmH/QH < Cr2, (4.16)

for any 1 < m < M —1. In addition, we also set the ||-||» and H} norms (introduced
by (A.23) and (A.27)) for the numerical solution ¢™ as

M= 67 e M= 67 s (4.17)

Note that we have an ¢>°(0,T; H}) and ¢2(0,T; H) bound for the numerical solu-
tion, as given by (3.3), (3.15), respectively. Meanwhile, its £°°(0,T’;£°°) bound is
not available at present. This bound will be justified by later analysis.

The following theorem states the stability of the numerical error functions satis-
fying the error equations by (4.11) — (4.13).
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Theorem 4.3. Assume the exact solution is of reqularity class R. Then the error
function ¢™ obeys the following discrete energy stability law: for any1l < m < M—1,

. - 1 - - - -
IVRd™ I3 = Vae™ (13 + Z(IIVh(dS’”+1 — ™3 = IVa(@™ = ™ HII3)

VAL B
€2s|
16
+5(ConDPH + ConDF ) (IV™ [+ V3™ 3 + V4™ ), (4.18)

~ 5e2s e m m
< IVrARd™(|5 + 6—4Hmh¢’” Y3+ 2s]|7 2|3 4 sCos DY A

where
Dyt = ((Mg")'? + (Mg*= )P (Mg 4+ (Mg")¥? +1) + 1, (4.19)
Dyt = (MM + (Mg + DM + (M) + 1), (4.20)
Dyt = M+ M+ L (4.21)
and the constants Cag, Cag, Cso are given by (4.60)-(4.62), respectively.

Proof. Taking inner product with (4.11) by —2Ahq~5}n+1/2 = —Ah(%q;m'H + %(ng_l)
gives

I4I

IVa@™ 5 = Vg™ |3 + %(nvh(qz?"“ — ™) = [Va(e™ — ™ M)l5
VA (@ =24 + G 1) 3)

= =25 (72 AT 4 25 (VadgT TR W)

9 (thhQB?H_l/Q,AhQET+1/2Um+1/2)

—2s (VhAhQE}nH/Q, Ah¢1n+1/2ﬂm+l/2)
= 28(]4,1 +lyo+Is3+ 1414). (4.22)

The term associated with the local truncation error term Iy; in (4.22) can be
bounded in a straightforward way:

1 m
Lix < P23 4 L 1AndT 2,
m 1 Tm+1/2 Tm+1/2
< I 2+ I9d 2 - 19 ARG

< I+ I + i—anha@?*Wn%. (4.23)
The regular diffusion term I 5 in (4.22) has the following decomposition:
Iip = (VhAhé?lH/vihﬂmH/z)
= (VhAhé;n_H/gvvh (Nm+1/2>)
— (adngP A W) - 2 Vaand 3

= Iy01 + 1422+ 1423. (4.24)

The concave term Iy o o in (4.24) can be controlled by

Iyoo = — (VhAhﬂg}nH/vih(JgTHm)
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4 ~ma1/2 g2 “m+1/2
< SIVRd IR + eI VRAne S, (4.25)
For the nonlinear error term Iy 21 in (4.22), we start from the following expansion
1 - -
Nm+1/2 _ E(((d)erl)Q + ((bm)Q) (¢m+1 + ¢m)

+ <(¢m+1 + q)m+1)g5m+1 + (¢m + (I)m)q;m) ((I)m+1 + q)m))(426)
An application of discrete Holder’s inequality to its gradient shows that
thNm+1/2H < Oy (H¢m+1||io n H(I)mﬂHioJr ||¢m||io I H(I)m”io)
(IVad™ 2 + Vo™ ]2)
+Cas ([0 | o + 27| + 16™ oo + 127 10)
([[Vre™ |+ [Va@™ |, + (IVRe™ [l + V2™ (l,)
(™ oo + 1™ o)
< Ci5 (207, + (Mg™™)? + (MG")?) (IVae™  Hl2 + V0™ ||2)
+2C15 (Cha + MG + M) (C + Ch2)
U™ oo + 16™ 1), (4.27)

with the £>°(0,T; H}!) estimate (3.4) for the numerical solution, the regularity as-
sumption (4.16) for the exact solution and the a-priori set up (4.17) is used. Then
we get

(thh(g;n+l/2’ v}1/\/1n+1/2>
Cus (2%, + (M2 + (M5")2) (906" ]2 + 1V46™ 2
VR ARe7 2
+C18[16™ oo - VA ARGT 25
+C18[16™ oo - IVAARDT 2o, (4.28)

with Cig = 2012015(024—(712)7 Ci7 = 2015(Cz+012) and Cg = 016+Cl7(M6n+1+
M(™). The first part in (4.28) can be controlled by Cauchy inequality:
Cis (203, + (M2 + (MF™)2) (IVh@™ 2 + [Vhd™ 12) - IVAARGT 72
52 im 2 C im im
< = |[Trandr 2|+ 22 (I9am 5+ 1IVad™13) (4:29)
with Cig = 8C%; (2CE, + (MJ")? + (Mé”)2)2. For the second part in (4.28) ,
we observe that the maximum norm of the numerical error can be analyzed by an
application of Gagliardo-Nirenberg type inequality in 3-D, similar to (3.10):

T2

IN

|67 < s (190605 - 1902808715 + 190670 4 7). (430)

With an application of the Young inequality to the second part in (4.28), we arrive
at

Cusl|o™ [l - 1VR ARG T2l
m % “m % “m 2 “m+1/2
< CuCis (IVa8™ 15 - IV ARG™ I3 + IV4™ |2 + 2) - [Vndnd 2o
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< O (C14C18)% 3 |V rd™ |12 + ae® (||V}LA}L¢m||2/5 VAL m+1/2||8/5)

6(C14C 16(C14C ~m
ARG 5, g 4 UG 1 <y, 0570072
. m 16(C14C18)?
< O3 (O3 + ORIV ad™ 3 + Hmm “/2|\2+(15+18)h4
taz? (|[Vrand™ I3 - 1VA A ¢m“/2||8/5)7 (4.31)

for any a > 0. Furthermore, the last term appearing in (4.31) can also be handled
by Young’s inequality:

ac?||ViAnd™ I3 - [IVh AT 25
1 4 m
< as2|\thh¢>m\|2+ a52||VhAh¢ /22 (4.32)

We can always choose an «, such that 1 sa< & and za < so that the following

bound is available: 32’
Cisll6™ lloo - VaARGTT]l2
< O (O + CRITFIE + IV
+%4”Vhﬁh<5ml|§ + Mh4~ (4.33)

A similar estimate for the third part in (4.28) can also be derived as
Crs 6™ oo - (VRG] 2o
a, 8/3 m 1/2
< OPF(CH* + ORIV G + S IVadndy 213

16(C14C18)
52

2 ~
+Z—4||thh¢m“||§ + i, (4.34)

Consequently, a combination of (4.28), (4.29), (4.33) and (4.34) yields
Lipa < (02 (Y + Ch) + Croe™ )<||vhi>m“||%+ 1V56™13)

Y IR PN L AN
32(014C18)
52

Note that Cyg is involved with (Mg*)* and (M )%, while Cig is involved with
ME* and M. As a result, a combination of (4.24), (4.25) and (4.35) shows that

R, (4.35)

Lis < (0 (R + O + 0195-2) (V™ I3 + V0™ 13 + V4™ [3)

B Tuand 2+ S ITaAE I + IVa ™)
32(014018)

G (4.36)

Next we focus our attention on the terms associated with the convection term and
the highest order nonlinear diffusion. The analysis of this part is highly non-trivial.
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The I3 in (4.22) can be bounded by
(V A ¢m+1/2 Ahqgln+1/2Um+1/2>

IVR2RGT g - (|02 o - U2 o
012||mh¢m+1/2|| e

Iy

IN

A

VLA 4 gz

S 12
m 4C C3 m
< a2 + 2% (g, g o)
m 180 C3 . -
<< Hv Mg 3+ =R IV B 4 Vg™ B 4 ). (4.3)

in which Ca = v/2C14, so that the inequality ||¢7 /2|2 < C2,(|Vror /2|12 + h4)
is a direct consequence of estimate (4.14) in Lemma 4.2. Note that the regularity
assumption (4.16) for the constructed solution U is used in the derivation.

For the term Iy 4 in (4.22), the expansion (4.13) for the velocity numerical error
indicates that

T = — (g V20,0, 872 a1 )
= 7(A ST2Y, AR G2 (A G2y Fm+1/2>>

+ 7 (Angl VG2 Py (AP ) )
= Iy + Iaa2. (4.38)

The first term 4 41 in (4.38) can be estimated in a standard way:
T < 2160 - IVABRG] 2o [P (An 2w 2) |
< Cory (Mg + MZ ) V3272 - | 4292

< Cory(ME + MY IV RARGT T2 g 672l - VAT 12|
< CraCory(MJ + MF [V ARd7 2o - |72

ChaCraCony (M + M) IVa AT T2 |l - (VR T2 + h?)
C22(

where Cay = 72C3,0%,C3 72 ((M§")? + (MJ*~1)?) in which we used the property

[ Prvlly < |lv|ly, Vv € L?, for the Helmholtz projection operator Py, in the second

step [5]. Note that (Mg*)? and (Mg*~*)? are involved in the growth coefficient.
The second term Iy 2 in (4.38) can be expanded as

Ligs = V(A Sy, A2 P, (A G2y ~mﬂ/z))
= 7 (A VB ALGT TR Py (gl TP (NR) )
— (AngT 2T AG] T Py (A0
—ye? (Angl VAL Py (At A6 )
= (lnaoa + Laano +Lans) . (4.40)

N

| /\

V™[5 + IVad™ I3 + 1) + *€2|\VhA SrR3 (439)
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It is observed that the third term Iy 4 2 3 in (4.40), which corresponds to the highest
order nonlinear diffusion, is always non-positive:

3Ty

. 2
Iy423 = — th (Ah¢T+1/2thh¢7In+l/2) H2 <0, (4.41)

based on the identity (u,Ppv) = (Pru, Pyv) for any vector u,v € L?. The above
inequality is the key reason for an ¢>°(0,7T; H}) error estimate instead of the stan-
dard ¢°°(0, T £?) one.
The analysis for the second term Iy 422 in (4.40) is straightforward:
Iy400 = — (AthTH/QVhAh ~71n+1/2, Pn (Ah¢:<n+1/2vh€£?+l/2)>

yF 4

IN

HAh(blnH/zthhqngnH/z‘L ) th (AhqﬁTHthQ;TH/Z) H2

< HAhqﬁnH/zthh&;nH/QH2 ) HAh¢T+1/2Vh€5T+1/2H2
< 1212 - IV R ARG o - I VRGTT 2
Cos(MM? + (MZ )2 [V AR 2|y - |V Rdr 2,

2
£ Tm+1/22
—|IVrA
16+ IVh hor 12
L 18CEA((M) + (Mg~
)
Also note that (Mg*)* and (MJ*~*)* are involved in this growth coefficient.

For the first term Iy 421 of (4.40), we start from an application of Cauchy in-
equality and discrete Holder’s inequality:

Liaza = (And? V20 nd] V2 Py (Al 20, (N2 )
- (s )|
< |[anor 2w andy 2| || angr e ()|

2 2
62212, IV ARGT T2l VRV
< Ooa (M2 + (M) VR ARGT 2|2 - VN2 5. (4.43)

The remaining estimates are very similar to those for the regular diffusion. The
inequality (4.27) shows that

Coa(MF)? + (M7 )2V Andy 2 | - [ VR(N™T2)]5
< C15Cos((MG)? + (M1)?) (2CT, + (M) + (MG")?) -
(Va8 o + Vh™ |2) - VaAndy 2
+Co5[16™ oo - VR 2RET 212 + Cos 6™ oo - VA ARG 215, (4.44)

(IVre™ 3+ IVae™ M 3).  (4.42)

IN

HAhd)lnﬂ/zthh%nH/z

2

IA

where
Cas = Caa(Mg")? + (Mg"™1)?) (Ci6 + Crr (Mg + Mg")) - (4.45)

The bound for the first term in (4.44) can be derived in the same manner as in
(4.29)

C15C4 (M) + (M*™1)?) (207, + (M) + (Mg")?) -
(IVhd™ Yl + [ Vad™l2) - IVaAR]T2|I2
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026

LN RO T2+ (V2 4 [V ad™13), (4.46)

_16

with Cog = CorCT; O3y ((Mgh)* + (Mén_l)4) (201 + (Mg FH* + (Mg")*).

The bound for the second and third terms appearing in (4.44) follows from the
proof of (4.30)-(4.35). Hence, the following two estimates are available, and the
details are skipped for simplicity of presentation:

Cos 1™ |oo - IV R ARST T2

< O (O3 + C3) [V ad™ |13 + —nmm"‘H”HQ

2 ~
7||thh¢mH§ + ht, (4.47)

16’)/(014018)
E
025\|¢m+1||oo IV ARGy
< CP(CHP + C1) | Vad™ 3 + fnmm"’““n%

62 ~ 16’)/(014018)
= A, pmti2 4 ZA1AI8) g4 4.4
N R (4.48)

Going back to (4.43)-(4.44), we arrive at
(Ah m+1/2thh jrri/z Ph (Ah m+1/2 Vi <Nm+1/2>))

(C“’WC%B + C35) + Caoe™2) (146" 113 + 1V46™13)

Ty

yFE 4y

IN

+—||th Srr2|12

62 ~ ~ 32'7(014018)2

a5, (VA28 115 + V6™ HI3) + Pt (4.49)

2

Note that Cag and Cs.* are involved with (M{*1)8, (M7")® and (M~ ')8. Con-
sequently, a combination of (4.38)-(4.42) and (4.49) shows that

Lia = = (AVaAngy 2, 40t P /2)
< (O“WCS/?’ +CE) + Cune” 2) (198" 13 + 906" 13 + 906" 3)

2 Th a2+ SITn A + Va2 D)
32 C14C
L33 14 15)°
€
with Cyy = C527 (M§")* + (Mg"™)* + 1)(2C1, + (Mg™ ™) + (Mg")* +1).
Consequently, from (4.22), (4.23), (4.36), (4.37) and (4.50), we obtain

- - 1 - - - -
IIVm’”“II% —IVhe™ |5 + Z(I\Vh(qﬁm“ —0™)3 = IVa(@™ = 6™ H)]3)

ht, (4.50)

+ 25| Vandr 2|2

< sh*

b ; 64(1 +~%)(C14C1s)?
%(‘|VhAh¢m||3+||VhAh¢m“||§)+2s||Tm+1/QH§+ e

(Ca VO 4 C2 +1) + Cope™ 2)
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(IVR™ 3 + V™15 + [ Vad™ 1 13)- (4.51)

On the other hand, a similar estimate as (3.8) could be carried out:

2
IVa RG22

3~ 1~
thAh(4¢m+l + Z¢m D)

2

Y

3 “m 1 T
g”thh(ZS 3 - g”thhQS . (4.52)
Then we get
im im 1 im im im Tm—
IVhe™ 3 = I Vro II§+1(IIVh(¢ T ¢™)5 = Va(e™ — ™ N3)
11 ~
eV AL B

h4

e2s “m 5e2s P m 64(1 + v2)(C14Cr8)?
< Z2 VA3 4+ 2 2 Vg stz 4 BE NGl

+s (ijwcs/ 34 C%) + Care™ )
(IVR™ B + VL™ (I3 + [Vad™ H3). (4.53)

For the sake of convenience, we now make the coefficient on the right side of
(4.53) explicit to each time step. Define

I, = CY=(CSP 4 CZ) + Core ™2, (4.54)

Applying Young’s inequality on C3;, we get

8/3 1
—. 4.
C35 < 4 T (4.55)
Then I5 can be bounded as
7 5

I, < cg@ﬂ(zcgf + ) Fe 0 <20 SUCSB £ 1)+ Core™2. (4.56)

Recall the definition of Cys5 in (4.45), the value of which can be controlled as
Cr < Cogmax(Cig, Ci7) - (Mg")? + (Mg"™)*) (Mg" ™ + Mg" + 1), (4.57)
With the application of the following inequality
(a+Db)P < 2P~ L(aP +1P), forVp>1, (4.58)
the value of 035/3 can be bounded as
CS/3 < 85/308/3(max(cw’017))8/3((M6n)16/3+ (Mgz—l)w/?,)
(MR8 4 (M) + 1), (4.59)

As a result, the stability inequality (4.53) can be rewritten as (4.18), with the
following constants:

64(1 + ’72)(014 maX(Clg, 017))2

Cos = . , (4.60)
029 = 202"6”}/ - max (85/3024(1118,X(016, 017))8/3, 1) s (461)
C3o = C(2C}, + 1)~ 2. (4.62)

This finishes the proof of Theorem 4.3. O
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4.3. The result of an a-priori error assumption. As discussed in [5], in which
a first order numerical scheme was analyzed, the discrete Gronwall inequality could
not be directly applied to derive an error estimate from the stability inequality
as in the form of (4.18), since DT and DJ**' do not have a uniform bound.
Instead, we have to use an induction argument to establish the convergence analysis.
Specifically, we assume, as an induction hypothesis, that the desired error estimate
holds at an arbitrary time step m (0 < m < M — 1). We then use this a priori
assumption to prove that s(Cog D" + C50 D5 ) < 1, provided s is small enough.
Then we conclude the induction argument by proving that the error estimate holds
at the updated time step m + 1.

First, we need the following technical result, which is a direct result of Young’s
inequality. The proof is skipped for brevity.

Lemma 4.4. For anya >0, >0 and 0 < g < 8, we have

a-09 < b6®+r(a,b,q), Vb>0, where r(a,b,q) . = ——— . (4.63)
%_q (b §> 8—q
We also need the following estimate of the || - ||cc norm of ¢™.
Lemma 4.5. For any s,h > 0 and any 1 <€ < M, there exists a constant C3; > 0
such that
‘
s 6™5 < Cai(te+1) < Csr (T +1), (4.64)
m=1

where ty:=s-L, and T :=s- M.

Proof. Inequality (4.64) is a direct consequence of the discrete Gagliardo-Nirenberg
type inequality (3.10), combined with the leading order H} bound (3.4) and the
02(0,T; H}) estimate (3.5) (in Theorem 3.1) for the numerical solution. O

Theorem 4.6. Suppose that h and s are sufficiently small and the following error
estimate is valid up to the time step t,, :==m-s, for2<m < M — 1:

foue"

2 m ~ 12

ey thAha;ﬂ H2 < Cpexp (Casltm + 1)) (s*+ 1Y), (4.65)
j=1

where Cso, Cs3 > 0 may depend upon the final time T but are independent of s and

h. Then

5(Cog DT 4 O3 D) < Z. (4.66)

DO =

Proof. As an application of (4.63), the non-leading terms appearing on the right
hand side of (4.19) for the expansion of D{**! can be bounded as follows:

1
52029031 (T + 1)

1
Mm—1)16/3
(Mg™ )™ = 52C29Cs1 (T + 1)

Then we get, for any 0 <m < M — 1,

sCa9 ((M(;n)w/g + (Mg 1)

(M)16/3 (M8 + Cso, (4.67)

(Ménil)s + Cs3. (468)
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< (M (MY 450 < — + 5Chy, (4.69)
~ 5205 (T +1) 52C5:(T + 1) =26

using the L8(0,T) bound for Mg := ||¢™||_ in (4.64), where C34 > 0 is a constant

independent of h and s. Using the same skill, the non-leading order of DQ”H can
be bounded as follows

3
sCa0 (Mg™™)* +2(Mg")" + (Mg"™)* +1) < = + 5C3s, (4.70)

where C1g > 0 is a constant that is independent of h and s.
Now, the leading terms appearing on the right hand side of (4.19)—(4.20) cannot
be bounded in this way. We divide them into two groups G; and Gy as follows:

Gr + (MR, (M=), (Mg (Mg )
Go (M077L+1)8/3(M(’I)’n)16/3’ (M6n+1)8/3(M6n_1)16/3’
(MY OB (A ()
We must, therefore, rely upon (4.65). This bound implies
[Vid™||3 < Cszexp (Cs3(T + 1)) (s* + h*),

N (4.71)
IViALO™ (|2 < e72Cs9 exp (Ca3(T + 1)) (84 + h4) s L
Using (4.15) and setting Csg := C32 exp (C33(T + 1)), we have
- - 3 S ~
167112 < 4C% (I926™ 15 - V3 An™ I3 + I Va6™ I3+ 1)
< 402, {036(54 Y (e V25 1) o+ h4}
= 40, { Cyaz V214 4 Cgge 251
+C3684 + (1 + 036) h4} (472)
Under the time and space step size constraint
1
0368_1/2815/4 + 03684 + (1 + 036) ht < —5 (4.73)
4C3,
the following bound is available:
. A
67|12, < 1+4C7,Csge UQ@- (4.74)
Consequently, we see that
- 2 h4
(a2 = o™ < 20 + 267 < Con (14 57 ). (4.75)
m—1y2 m—1||2 m—1(|2 Tm—1/2 h
(Mg = [lo™ M|, <2 @™ M +206™ & < Csr {1+ 577 ) (476)

where C37 > 0 is independent of s and h, but it does depend upon the final time T
(at least exponentially) and the interface parameter £ (O(¢~'/2)). This shows that

4 16

R\ h
81/4> §80§7(1+T), (4.77)

the bound of which is also valid for other terms in group G;. Thus, under the time
and space step size constraint

I < O (1 n

8C37(s +h'%) <

4.
< 53050 (4.78)
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the following bounds are available:

sCao (M + (M) < o (1.79)
sCs0 ((M")® + (Mg (MG 1)*) < 216. (4.80)

Now we estimate terms in group Go. We take (Mg"™h)4(MF")* as example.
Reusing the estimate (4.75)-(4.76) leads to

2 PN
037(1+W) (Mg™)

h8 "
205, (MJ )t + 20%7@(]\40 L (4.81)

IN

(Mg (g

IN

The first term on the right hand side can be handled in the same way as (4.67):
1

2 m—+1\4 < m—+1\8
2037(‘]\4’0 ) > 104030031(T+ 1) (MO ) + Css. (4.82)
Hence .
sC30 (203, (Mg"™)*) < Toa T sCss, (4.83)

where Csg > 0 is independent of s and h. The second term on the right hand side
of (4.81) can be analyzed as follows: using Cauchy’s inequality and (4.64), we have

hS
5C30 <2C’§7$1/2(M5"“)4) < C30C3:h® (s(MIH)® +1),
< C3()C§7C4(T + 1)h8 + C3()C§7h8. (4.84)
Under an additional constraint for the grid size

1 1
hS < . 4.
= (2080300§7031(T +1) 2080300§7> ’ (459)

we arrive at

h® 1
2 m+1\4
A combination of (4.81), (4.83) and (4.86) yields
1
sCao( MO (MF)* < — + 5Csg. (4.87)

- 52
A similar analysis can be applied to all the other terms in group Go: under a similar
constraint as given by (4.85), we have

IN

1
% + Sng, (488)

1
% + 8039, (489)

where C3g > 0 is independent of s and h. The details of the proof are skipped for

the sake of brevity.
Therefore, a combination of (4.69)—(4.70), (4.79)—(4.80), and (4.88)—(4.89) leads

5029 ((M(?)n+1)8/3(M6n)16/3 + (M5n+1)8/3(M6n_1)16/3)

sCs0 (Mgt (MG + (Mg (Mg )Y

IA

to

1
8(Cog DT 4 O30 D) < 1 + 5(Cs4 + Cs5 + Csg), (4.90)
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and under the additional constraint for the time step

s < = )
4(C34 + C35 + Cs9)

we get the desired result, estimate (4.66). O

(4.91)

4.4. The main result: an error estimate. The following theorem is the main
theoretical result of this article. The basic idea is to extend the a-priori error
estimate (4.65) by an induction argument.

Theorem 4.7. Given initial data ¢°, ¢! € CO(QQ), with homogeneous Neumann
boundary conditions, suppose the unique solution for the CHHS equation (1.2) —
(1.4) is of regularity class R. Then, provided s and h are sufficiently small, for all
positive integers £, such that s- £ <T, we have

thfoHz +e2s i: HVhAhquHz <C(s' 4 Y, (4.92)
m=1

where C' > 0 is independent of s and h.

Proof. Suppose that m + 1 < M. By summing (4.18) we obtain
m—+1

~ 1 ~ ~ 1 <
IVAG™ 3 + JIVR (6™ = 6™ 3 + 5567 D [IVadnd |3
j=1

B 1 B - m—+1 ) ) o
< (IVall3 + IVn(6° = 6N + 5 Y (Ca0D] + C30 DY)V 13

Jj=1

+5 Y (CaoD]™ + C3oDF ) (V|3 + V112

=0
m+1 ‘ m+1

45 Y ITT2)3 + Cass Y | DIR* (4.93)
j=1 j=1

We proceed by induction. Namely, suppose that (4.65) holds. Then, if & and s are
sufficiently small — as required in the proof of the last theorem — considering (4.66)
and using ¢~ ! = ¢° = 0, we have
1 1 m+1
Tm+112 2 73012
V™ + g5 2 IVadudl
j=

< 5 (CooDJ™ + C30DY ™) 2V 12 + IV~ Y?)
j=0

m+1 m—+1

+s Z 1777213 + Cags Z Dih*. (4.94)
Jj=1 j=1
Hence
B m4+1 ~
IVae™ 5 + % Y IVadnd |13
j=1

< s (32029 D" + 32030 D3 ) 2V 15 + V4’ HI3) + Caols* + h*),(4.95)
j=0
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where Cy9 > 0 is a constant that is independent of s and h. Using the discrete
Gronwall inequality gives
m+1
IVR™ 3+ €% > IVaand |3

j=1
m 4 4
< Ciols* + W) exp (s 3 (96C20 D] ™ + 96C30 D))
j=1

< Cyo(s* + h*) exp (Car(tm1 + 1)), (4.96)

where Cy; > 0 is a constant that is independent of s and h. Consequently, the a
priori assumption (4.65) can be justified at time step ¢,,1 by taking Css = Cyo,
C33 = Cy1. This completes the induction argument, and the proof of Theorem 4.7
is finished. 0

Remark 4.8. The convergence analysis presented in this article is unconditional
for the time step size s in terms of the spatial grid size h, i.e., no scaling law between
s and h is required for the theoretical justification of the optimal convergence.

On the other hand, we observe that, both s and h have to be bounded by a certain
constant, namely, (4.73), (4.85) and (4.91). Moreover, a detailed calculation shows
that, the constants Cag, Cso, C31, Cs4, C35, Cs7 and Csg depend on e ! in a singular
way. As a result, a severe time step and grid size constraint, s < o, h < ¢¥1 with
ko and ki two integers, has to be imposed for the theoretical justification of the
convergence.

In fact, such a constraint is needed for the convergence analysis for most phase
field models, if the nonlinear term is treated implicitly; see the relevant analyses
in [3,5,7,8,9,15, 17, 18, 27, 32], etc. The authors also believe that the power
index kg and k7 could be relaxed using more advanced analysis techniques, and such
an analysis will be left in the future work.

5. Numerical Experiments. In this section, we perform some numerical tests in
two-dimensional space to verify the accuracy and efficiency of the proposed numer-
ical scheme (2.5)-(2.7). The coupled systems are solved by the Full Approximation
Scheme (FAS) under the nonlinear multigrid framework in [11, 35]. Here we omit
the details for brevity; more details in [6, 35] are referred to the readers. In the
following tests, all the numerical experiments were performed with Fortran90 on
Thinkpad W541 running with Intel Core i7-4800MQ at 2.80Ghz with 7.4GB mem-
ory under the Ubuntu 14.04. The general parameters of FAS are finest grid 2 x 2,
pre- and post-smooth steps v; = 15 = 2 and stopping tolerance tol = 10719,

5.1. Convergence rate, energy dissipation and mass conservation test.
To estimate the convergence rate, we perform the Cauchy-type convergence as in
[1, 6, 12, 22, 30, 31] on a square Q = [0, Lg] x [0, L, with initial condition

1 —cos (422)] - [1 — cos (3¢
¢(m,y70):[ (Ll,)]Q[ (72)]

The homogeneous Neumann boundary conditions are imposed for ¢, u and p. In
this test, the Cauchy difference is defined as 4 = ¢n, — TS ¢n,, where h, = 2hy
and Z/ is a bilinear interpolation operator that maps the coarse grid approximation
up, onto the fine grid (we applied nearest matlab interpolation function). We take
a liner refinement path, i.e. s = Ch. At the final time T = 0.8, we expect the

~ 1. (5.1)
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global error to be O(s?) + O(h?) = O(h?) under the ¢? norm, as h,s — 0. The
other parameters are given by L, = L, = 3.2, s = 0.05h, ¢ = 0.2 and v = 2. The
norms of Cauchy difference, the convergence rates, the average number of V-cycle
and average CPU time for one time step can be found in Table 1, which confirms
our second order convergence rate expectation and indicates the efficiency of the
proposed numerical scheme. The evolutions of discrete energy and mass for the
simulation, associated with Table 1 for the h = g’%, are presented in Figure 1. The
energy dissipation property is clearly demonstrated in the evolutions of discrete
energy in the figure. And also, the evolution of discrete mass indicates the mass
conservative property, with [, ¢(z,y,0)dx = —5.12.

TABLE 1. Errors, convergence rates, average iteration numbers
and average CPU time (in seconds) for each time step.

he  hy 0o,  Rate #V's Tupu(hy)
ifé 33;7% 7.6501 x 1073 - 5 0.0012
g g@ 1.8565 x 1072  2.04 5 0.0046
3@ @ 4.6141 x 107*  2.01 4 0.0160
@ @ 1.1520 x 10~* 2.00 4 0.0744
. . -5
22 25 2.8792x 10 2.00 5 0.3818
0 500 1000 Tim;sgfeps 2000 2500 3000 : 0 500 1000 Tim:jg?eps 2000 2500 3000

F1GURE 1. The evolutions of discrete energy and mass for the sim-
ulation depicted in Table 1 for the h = 3.2/512 case.

5.2. Spinodal decomposition. In this test, we simulate the spinodal decompo-
sition of a binary fluid in a Hele-Shaw cell and show the effect of v on the phase
decomposition. The simulation parameters are similar to those in [35], with the pa-
rameters given by L, = L, = 6.4, ¢ = 0.03, h = 6.4/512, and s = 0.01. The initial
data for this simulation is taken as a random field of values ¢? ; = $+0.05-(2r; ;—1)
with an average composition ¢ = —0.05 and ri; € [0,1]. The simulation results
are presented in Figures 2 and 3. From Figure 2, we observe that the particles
indeed have a smaller shape factor for v = 4 than for v = 0 at same time, which
coincides with the real physical states. Since larger v would improve the fluid flow
and enhance the energy dissipation. The energy evolution plot in Figure 3 implies
that the energy decay are almost the same in the early stages of decomposition.
Meanwhile, it is not precisely clear from the energy inequality that the larger v will
result in a larger energy dissipation rate [20, 23, 37].
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FIGURE 2. Snapshots of Spinodal decomposition of a binary fluid
in a Hele-Shaw cell.

6. Conclusions. A second order accurate energy stable numerical scheme for the
Cahn-Hilliard-Hele-Shaw equations is proposed and analyzed in this article. The
unique solvability and unconditional energy stability are proved, based on a rewrit-
ten form of the scheme, following a convexity analysis. At each time step of this
scheme, an efficient nonlinear multigrid solver could be applied to the nonlinear
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Energy

Time

F1GURE 3. The evolutions of discrete energy with v = 0,2,4.

equations associated with the finite difference approximation. At the theoretical
side, an ¢%(0,T; H}) stability of the numerical scheme is established, in addition
to the leading order energy stability. As an outcome of this estimate, we perform
an (>°(0,T; H}) error estimate for the numerical scheme, and an optimal rate con-
vergence analysis is obtained. A few numerical simulation results are presented to
demonstrate the accuracy and robustness of the proposed numerical scheme.
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Appendix A. Discretization of space.

A.1. Basic definitions. Here we use the notation and results for some discrete
functions and operators from [35]. We begin with definitions of grid functions and
difference operators needed for the three-dimensional discretization. We consider
the domain Q = (0,L;) x (0,L,) x (0,L,) and assume that N, N, and N, are
positive integers such that h = L, /N, = L, /N, = L./N., for some h > 0, which is
called the spatial step size. Consider, for any positive integer N, the following sets:

En = {i-h|i=0,...,N}, Cn:={(i—12)-h|i=1,...,N)}, (A1)
Cy ={(i—VY2)-h|i=0,...,N+1)} (A.2)
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The two points belonging to Cx\Cn are the so-called ghost points. Define the
function spaces

CQ::{QS:CNIXCNyXCNZ_)R}a EG:={¢:En, xCn, xCn, =R}, (A.3)

56:2{¢:CNIXSNyXCNZ—>R}, 56::{¢:CNIXCNyX5NZ_>R}7 (A4)

Eq = E5 x EY x E&. (A.5)

The functions of Cq are called cell centered functions. In component form, cell-

centered functions are identified via ¢; ;i :=¢(&;,&;, &), where & == (i — 1/2)-h.

The functions of £, et cetera, are called face-centered functions. In component
form, face-centered functions are identified via f; Lk = F(&iv1sa: &5, &x), et

A discrete function ¢ € Cq is said to satisfy homogeneous Neumann boundary
conditions, and we write n - V¢ = 0 iff at the ghost points ¢ satisfies

04k = PLjks PN, k= PN, +1,5,k> (A.6)
Gi0k = Pi1 ks PiN, k= Pi,N, 41,k (A.7)
Dijo = g1, PijN. = PijN.+1- (A.8)

A discrete function f = (f*, fY, f*)T € Eq is said to satisfy the homogeneous
boundary conditions n - f = 0 iff we have

flI/mM =0, flw\ferl/Q,j,k: 0, (A.9)
f;{l/*z,k =0, ff{Ny+1/27k: 0, (A.lO)
Figap =00 fijn4= 0 (A.11)

This staggered grid is also known as the marker and cell (MAC) grid and was first
proposed in [21] to deal with the incompressible Navier-Stokes equations. Also see
[29] for related applications to the 3-D primitive equations.

A.2. Discrete operators, inner products, and norms. We introduce the face-
to-center difference operator d,: €5 — Cq, defined component-wise via
1
dofigk = 7 (Fivgin = fimgjn)s (A.12)

2

with dy:é’é’Z — Cq and d,: £ — Cq formulated analogously. Define V- : 59 — Co
via

Vi fi=dof* +dyf¥ +d. f?, (A.13)
where f = (f%, f¥, f*)T. Define A,:Cq — £% component-wise via

1
Aviry jn = §(¢i,j,k + Git1,jk), (A.14)

with A, :Co — &£ and A, :Cq — £ formulated analogously. Define A, :Co — gg
via

Ang = (As0, Ay, A-0)" . (A.15)
Define D, :Cq — £} component-wise via
1

Dygiyy jr = E(¢i+17j,k — ijk)- (A.16)

D,:Cq — &Y and D, :Cq — £§ are similarly evaluated. Define Vj,:Co — 59 via,

Vit = (Dyt, Dyp, D.6)" . (A.17)
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The standard discrete Laplace operator Ay : Coq — Cq is just
Ah¢ = Vh . Vh¢ (A18)

We define the following inner-products:

L M N

(¢,) ==h? Z Z Z Gi 5 Wi gk V ¢, € Co, (A.19)

i=1 j=1m=1
L M N

1 xT
[f 9], = §hgzz Z(fi+%,j,kgi+%,j,k +fici k9ot k) Y [i9 €&

i=1 j=1m=1

(A.20)

[ ]y and [, -], can be formulated analogously. For f = (f2, f¥, f*)7,g

= (g%, 9%, 9%)T € €, we define the natural inner product
(f.9)=1[%g", + /%, 9%, + /¥, 9"., (A.21)

which gives the associated norm || f|l, = /(f, f). Analogously, for ¢,¢ € Cq, a
natural discrete inner product of their gradients is given by

(Vi Vi) := [Dath, Dutpl, + [Dy¢, Dyt + [D2¢, D¢, . (A.22)

We also introduce the following norms for cell-centered functions ¢ € Cq:

10lloc = max |k, (A.23)
lell, = (o, )7,  1<p<oco (A.24)

In addition, we define
196, = (D20l 1], + 1Dyol 11, + [D=6P,11,) " . (A.25)

In the case of p = 2, it is clear that (V,¢, Vi) = [|[Viol3-
In addition, we introduce the discrete H} and H; norms, which are needed in
the stability and convergence analysis:

Iz = llgll3 + [IVrol3, (A.26)
1617 = 1613 + IVhll3 + Aoz + [Vadnsl3, (A.27)
for any ¢ € Cq.
A.3. Summation by parts formulas. For ¢,v € Cq and a velocity vector field

u € &g, the following summation by parts formulas can be derived. If ¢ satisfies
the homogeneous Neumann boundary conditions, we have

(¢, Antp) = — (Viod, Vi) (A.28)

If w-n =0 on the boundary, we get

(6, Vi -u)=—(Vid,u). (A.29)
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Appendix B. Proof of the Gagliardo-Nirenberg Inequality in Lemma B.1.

Lemma B.1. [5] If the cell-centered grid function ¢ € Cq salisfies the discrete
homogeneous Neumann boundary conditions n-Vp¢p =0, as defined in Appendiz A,
then

_ 3 1
|6 = 8]l <€ (IVh0l5 V424815 + [906l,) . (B.1)
where ¢ = \S%I (¢,1), and Cy > 0 is a constant that is independent of h.
For simplicity of presentation, we assume N, = N, = N, =: N is odd and

L, =L, =L, =: L. The general case can be analyzed in the same manner, with
more technical details involved.

Proof. Due to the discrete Neumann boundary conditions for ¢ and its cell-centered
representation, it has a corresponding discrete Fourier Cosine transformation in
quarter wave sequence:

b, mmy; N2y

N-1
(z)i,j,k = Z azvm,n(bé\fm,ncos

B.2
T €08~ cos ——, (B.2)
£,m,n=0
1, if£#£0, m#0,n#0,
%, if one among ¢, m,n is 0,
with O mn =

\/g, if two among ¢, m,n are 0,

Vi ife=m=n=0,

where z; = (i — 3)h,y; = (j — 2)h, 2z = (k — 3)h. Then we make its extension to
a continuous function:

N-1
X mny nwz

- 14
or(z,y,2) = Z agym)ngzﬁé\”m’n €08 —— CO8 —— COS ——. (B.3)

£,m,n=0
Parseval’s identity (at both the discrete and continuous levels) implies that

N N-1

1 ~
Do 1ol = Nt D0 [0l (B.4)
i,5,k=1 £,m,n=0
1 N—1
5 R
ol = §L3 > 168l (B.5)
£,m,n=0
Based on the fact that hIN = L, this in turn results in
N 1 N-1
2 2 ~
l6ll; =0 > 16iiul® = llowllze = L7 3 [00mal* (B.6)
1,5,k=1 £,m,n=0

For the comparison between the discrete and continuous gradient, we start with
the following Fourier expansions:

Pit1,5k — Pijk
h

N—1
N R A TR mmy; nwzk
= Z Ozg7m7nug¢gm)n81n ZL 2 cos T L cos T , (B.7)

£,m,n=0

(D2@)it1/2.56 =
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N-1

- L
0. 9F(x,y,2) = Z ag7m7an(bé\,/m7n sin % coS mgy cos %, (B.8)
£,m,n=0
with
2sin b
He = T%, Vy = 7? (Bg)
In turn, an application of Parseval’s identity yields
1 N—-1
9 .
D005 = gL D |60 nl?, (B.10)
£,m,n=0
1 N—-1
9 .
10:0rlze = gL D al1d0imnl (B.11)
£,m,n=0

The comparison of Fourier eigenvalues between |pg| and |v¢| shows that

2
—|ve] < |pe] < |ve|l, for 0<L<N-—1. (B.12)
™
This indicates that
2
—0¢p 2 < Dol < [10:¢pll 2 - (B.13)
Similar comparison estimates can be derived in the same manner to reveal
2
;||V¢F||L2 < |[Vidl2 < [[Vop| L2 (B.14)
It can be proved analogously that
4
—1AdEllzz < [Andll2 < [AdrllLz, (B.15)
8
—IVAGrl: < [[ViAndllz < [VAGE|z2. (B.16)

Meanwhile, we observe that the discrete average of ¢ and the continuous average
of ¢ are identical:

6= 1 Uzkjlqbwk 20003800 = o7 | or(@)dz =Gr. (Ba7)
As a result, we see that
16 =9l < llor = 9l
< C (llbr = 81 }: IV AGE] {2 + 16w — o)
< C (IVorli: IVAGelL + Vel
C (199113 191809015 + 192615

in which the 3-D Gagliardo-Nirenberg inequality, Sobolev embedding and Poincaré
inequality were applied, and the equivalence estimates (B.14), (B.16) were recalled
in the derivation. The proof of Lemma B.1 is complete. O

(B.18)
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