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Abstract— In this paper, we consider the problem of securely
operating a cyber-physical system in an adversarial environ-
ment. The defending mechanism we introduce is proactive in
nature and employs the principles of moving target defense.
The defense implementation utilizes a switching structure to
persistently and stochastically alter the behavior of the system
with respect to both its actuators and its sensors. Thus, the
ability of an adversary to successfully scan the system in
preparation for the attack is decreased. The unpredictability of
the system’s operation is quantified by an entropy metric which
is subsequently optimized. Theorems are presented that show
stability of the system under proactive switching. Simulations
show the efficacy of the proposed approach on a simplified
aircraft model.

Index Terms— Cyber-physical security, proactive defense,
moving target defense, switched systems.

I. INTRODUCTION

The widespread use of low cost embedded controllers,
communication and computational devices, has resulted in
the physical and digital worlds being more intertwined than
ever. From the simple programmable logic controllers found
in industrial production systems, to the large-scale complex
networks of the Internet of Things and modern cyber-
physical systems (CPS), both civilian and military applica-
tions now depend on the smooth cooperation of sensing and
actuating devices with the underlying information layer [1],
[2]. Owing to the complexity of those systems, an attribute
that makes them difficult to monitor, as well as the ease
of access to malicious software, CPS are ofter required to
operate in adversarial and unknown environments.

Examples of attacks in CPS are numerous. In experimental
settings, researchers have demonstrated the ability to gain
access to the operation of a pacemaker through its wireless
protocols [3]. Similarly, several researchers have showcased
the exploitation of various attack surfaces in modern vehi-
cles, mainly through their wireless data acquisition subsys-
tems [4], [5]. Moreover, there has been a plethora of cyber-
attacks in real world CPS. One such case, was the downing
of a military U.S. drone [6], where a two-pronged attack was
launched. Initially, the communication bus between the drone
and the human operator was jammed, and subsequently, the
adversary spoofed the drone’s GPS to alter its trajectory.
However, such incidents are not limited to critical or military
infrastructure. A German Steel Mill was severely damaged
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when an attacker, with knowledge of the system’s structure,
gained access to the network through a spear phising email,
causing critical component failure [7].

Until recently, although the control subsystem is an es-
sential component of a CPS, security concerns were ig-
nored. Most defense mechanisms were applied solely on the
software level. This changed by the introduction of various
intrusion detection and mitigation mechanisms that employ
control-theoretic concepts to ‘robustify’ the system under
attacks. The development of detection algorithms gives away
the reactive nature of most defense schemes. The prevalent
design paradigm assumes that the system is oblivious to
the possibility of attacks until one has already affected it.
A different approach, one extensively utilized in computer
networks, sees the system modifying its behavior in order
to deter the potential attackers or preemptively guarantee
that most attacks would be unsuccessful. This approach to
proactive defense is called moving target defense (MTD).

Related Work

The need for system-wide approaches to security, rather
than solely software-oriented, was first suggested in [8].
In [9], the security of the system was defined in terms of
trust between the interconnected components of a network.
The authors in [10], employed game-theoretic concepts to
predict and mitigate the behavior of an intelligent attacker
trying to jam the network’s communication links. In [11],
the principles of fault-diagnosis are utilized, without taking
into account the malicious nature of the attacker. Several
detection schemes for adversarial inputs have been proposed
in the literature. In [12], the authors use a hypothesis testing
technique based on the output of a Kalman filter to detect an
attack. The authors of [13], use the fused information from
all the system’s sensors to mitigate any measurement com-
promises. Proactive security algorithms have been outside
the scope of the aforementioned works.

Previous work on proactive defense systems, and MTD
in particular, has mostly revolved around computer security
systems [14]. In [15], a scheme in which constantly rotating
Internet Protocol version 6 (IPv6) addresses are used for
deception purposes. Similarly, in [16], an algorithm for IP
mutation is introduced, called OpenFlow Random host muta-
tion. However, these approaches only consider the underlying
software of a system. In the context of control theory, the
authors in [17] augment the state space of a linear system to
introduce stochasticity, while the authors in [18], formulate
the MTD as a game. Recent attempts have also focused on
formalizing the framework of MTD, leading to [19] and
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especially [20], where the MTD entropy hypothesis was
stated.

Contribution

The contributions of the present work are threefold. Ini-
tially, after formulating the CPS as a linear system with
redundant actuators and sensor, and defining the control-
lable and observable subsets, we design multiple optimal
controllers for the admissible actuation subsets. Then, we
introduce a probabilistic switching scheme that optimizes a
weighted sum of the overall optimality and unpredictability
of the system. Finally, we employ an optimal-control based
observer design to show the use of MTD for secure state
estimation.

Notation: The notation used here is standard. R is the
set of real numbers. A\(A) is the maximum eigenvalue of the
matrix A and A(A) is its minimum eigenvalue. || - | denotes
the Euclidean norm of a vector and the Frobenius norm of
a matrix. The superscript * is used to denote the optimal
trajectories of a variable. (-)T denotes the transpose of a
matrix. V, and % are used interchangeably and denote the
partial derivative with respect to a vector x. The cardinality
of a set, i.e. the number of elements contained in the set, is
denoted by card(-). 2* denotes the power set of a set 4, i.e.,
the set containing all subsets of A, including the empty set
and the A itself.

II. PROBLEM FORMULATION

Consider the following linear time-invariant continuous
time system,

x(t) =
y(t) =

where z(t) € R™ is the state, u(t) € R™ is the input of
the system, y(t) € R? is the output, A € R™*"™ is the plant
matrix, B € R"*"™ is the input matrix, and C' € RP*"™ is the
output matrix.

We can rewrite (1) as,

Ax(t) + Bu(t),
Cu(t), 1

m

i=1
y] = ij,je{l,"'ap}v (3)

where b; is a column vector corresponding to the i-th
actuator, u; is the value of the input signal associated with
this actuator, and y; is the output given by a specific sensor
¢; corresponding to the j-th row of the output matrix.

Assumption 1. In order to offer a greater degree of freedom
for deception purposes and to mitigate the effect of potential
attacks, we will consider systems with redundant actuating
and sensing components. O

ITII. DEFENSE AGAINST ACTUATOR ATTACKS

In this section, we will focus our attention to the case of
actuator attacks. Let BB denote the set containing the actuators
of the system by the vectors b;, i € {1, ..., m}. The power set

of B, denoted as 258, contains all possible combinations of the
actuators acting on the system. Each of these combinations
is expressed by the input matrix Bj, j € {1,...,2™} whose
columns are the appropriate vectors b;.

The set of the candidate actuating modes B, is defined as
the set of the actuator combinations that renders the system
(1) fully controllable,

B.={B; € 2" :rank([B; AB, A"IB;]) = n}.
“
The system (1) with the actuating mode B; can be

rewritten as,
& = Ax + Byu;, i€ {1,...,card(B.)}. 5)

Remark 1. Note that, we do not require different actuating
modes to share common actuators. Moreover, while a single
actuating mechanism might be able to control a system, two
different - less potent - mechanisms might need to work
cooperatively to control the same system. All these modes
will belong to the set (4). O

A. Optimal Controllers Design

For each actuating operating mode B;, ¢ €
{1,...,card(B.)}, we denote the candidate control law

We are interested in deriving optimal controllers for each
of these modes. Towards that, we define an infinite horizon
integral cost functional and the associated optimization,

v (a(t) = min [ " iz un)dr

U4
’ 0

0
= minJ (x7Qix + uj Ryu;)dr, Ya(ty), (6)
i Jto

where Q; >0, R; > 0 Vie {1,...,card(BB.)}.

Assumption 2. We assume that each pair (A,+/Q;) is
detectable. ]

The Hamiltonian associated with (5) and (6) is,

Hi(z,u;, VV;) = VVN (Az+ Biw;) + 2T Quz+u) Rijwg, VY, ug,
(N
with V; denoting the value function, not necessarily the
optimal.
Applying the stationarity conditions
yields,

0H;(z,u;,VVi) 0
ou; -

ul = —R;'BIVV,. ®)

K3

The optimal value functions V*(-) must satisfy the
Hamilton-Jacobi-Bellman equation,

1
' Qi + VVT (Ax) — 5vv;T&R;UB} VVi=0. (9

Since all systems (5) are linear and the cost (6) is
quadratic, all value functions will be quadratic in the state,
ie., V*(z) = " Px. Substituting this expression into (9)
and (8), yields the feedback controller with optimal gain K,

ul(z) = —K;x = —R; ' B} Pz, (10)
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where P; are the solutions to the following Riccati equations,
(11

We introduce the set containing all K;, denoted /C, with
the understanding that card(KC) = card(B.). For ease of
exposition, with some abuse of notation we consider I; to
mean both an element in the set of optimal controllers, as
well as the respective Kalman gain. Also, we will use K
to denote the set of controllers, as well as the set of the
appropriate indexes.

Fact 1. Due to (4) and Assumption 2, for each B;, the
solution exists and is unique. ]

AP, + PA—-PB/R'BI'P,+Q; =0.

Fact 2. Each K;, with input given by (8) guarantees that (1)
has an asymptotically stable equilibrium point. |

B. Switching-Based MTD framework

We will now develop a framework to facilitate deception
of potential attackers based on the principles of MTD.

1) Maximization of Unpredictability: To formally define
the switching law, we need to introduce the probability sim-
plexp=|p1 p2 pn | which denotes the probability
that controller K; is active.

To incorporate ideas from the framework of MTD, we
propose a switching rule that optimizes over the minimum
cost that each controller is able to attain, as well as an
unpredictability term quantified by the information entropy
produced by the switching probability simplex p. This way
we achieve the desired trade-off between overall optimality
and unpredictability. The use of information entropy is
standard practice in MTD design [19].

Theorem 1. Suppose that (1), is controlled by N = card(K)
candidate controllers with associated cost given by (6). Then,
the probability p; that the controller K; is active is given by,

. (oo z;\'a%)))? >

with ¢ € RT denoting the certain level of unpredictability
which constitutes a design parameter.

Proof. We formulate the following optimization problem,

min, (V*Tp — e (p))
subject to:

[plli =1 and p > 0,

where ~ V* = %% V,\*,]T =
[2(t0) " Pr(to) . . . x(to) " Prna(to)] ', with z(to) the given
initial state, denotes a column vector containing the value
function of each candidate controller, H(p) = —p*log(p)
is the information entropy produced by the simplex.
Furthermore, for the decision vector p to constitute a
probability simplex we constrain it to the nonnegative
orthant (i.e. p; = 0, Vi € {1...N}) and we require its Iy
. N

norm to satisfy [|p[1 = >;_; il = 1.

The entropy of a probability is a concave function [21] and
therefore, the cost index, being a sum of a linear function

of the probability and the negative entropy, is convex. We
define the Lagrangian of the optimization problem as,

V7p—eH(p)+ A1'p—-1)+8'p
VT + epllog(p) + A1'p — 1) + B8'p, (13)

L =

where 1 denotes a vector consisting of ones and \,3 are the
Karush-Kuhn-Tucker (KKT) multipliers.
The KKT conditions for the problem are,

VL = V*+el+elog(p)+ AL+, (14)

and the complementarity conditions on the optimal solution
p* are,
BTp* = 0.

Note that if there 3i : p; = 0, then log(p;) is undefined.
Consequently, for the optimization to be feasible, one of the
following must hold,

e cloglp;)) = 0,Vi = ¢ = 0 = p* =
[0¢—1 ...1...ON_i]T, where the K controller is the
optimal one.

L] ﬂ = 0-

We consider now the nontrivial case, i.e., 8 = 0, which

yields,

5)

VL =V* +elog(p) +el + A1 =0. (16)

The N equations for each controller are independent, leading
to the system of equations,

Vi +elog(ps) +e+A=0,Vie{l,...,N}. (17)
Solving now for the optimal probabilities p;, yields,
(-5-1)
pi=e\ ° ,Vie{l,...,N}. (18)
We take into account that,
N N (_v_;_i_1>
Ipli=1= Y pi=1=>e\ = = /=1
i=1 i=1
Solving for A, we get,
N v
A =¢elog (e_l Z e(_Ti)> (19)
i=1

and after substituting (19) in (18) one has the required
result. [

2) Switching-based MTD scheme: In order to analyze the
behavior of the system under the proposed MTD framework,
we shall formulate a switched system consisting of the
different operating modes. First, we introduce the switching
signal o(t) = i, i € {1,...,card(K)}, which denotes the
active controller as a function of time. This way, the system
is,

i(t) = Agrya(),

where fl(,(t) = A - Bo’(t)R;(lt)B;l;(t)Po'(t) denotes the
closed-loop subsystem when the controller K ;) is active.

(20)
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Remark 2. Since the actual switching sequence is different
under the designer’s choice for unpredictability, we will
constrain the switching signal to have a predefined average
dwell time. This way, the stability of the overall system will
be independent of the result of the optimization. Intuitively,
as was initial shown in [22], a system with stable subsystems
is stable if the switching is slow enough on an average
sense. ]

Remark 3. By augmenting the linear system with the stochas-
tic multi-controller, whose transition probabilities are pre-
defined, we develop a Markov jump system. Consequently,
one could examine the stability properties of the system with
appropriate techniques from stochastic systems. However, it
is known that the properties of such a system depend on
the corresponding probability transition matrix [23]. While
relaxing the requirement for dwell time, a design based
on Markov jump systems could produce switching systems
that fail to converge based on the level of entropy in the
optimization algorithm. To ensure that the two subsystems,
the entropy optimizer, and the switching system, operate
independently, we utilize the dwell time approach. O

Definition 1. A switching signal has an average dwell time
Tp if over any time-interval [¢,T7], the number of switches
S(T,t) is bounded above as,

T—-1

S(Tvt) <50+ )
™D

where Sy is an arbitrary chatter bound and 7p is the dwell
time. ]

Theorem 2. Consider the system (1) in the absence of attacks.
The switched system defined by the piecewise continuous
switching signal o(t) = 4, ¢ € K denoting the active
controller K; and the continuous flow (5) with optimal input
(8) which satisfies (11) is asymptotically stable for every
switching signal o(t) if the average dwell time bounded by,
A(Bp)

manme)C TPq)

MQp+PpByR, ' BIP,)’
A(P,)

D > 2D

minei
with an arbitrary chatter bound Sy > 0.

Proof. The proof is based on the method of multiple Lya-
punov functions, as presented in [24]. It has been omitted
due to space limitations and will be presented in the journal
version of the work. []

IV. DEFENSE AGAINST SENSOR ATTACKS

In this section we show how the methods developed can
be applied to the proactive defense of CPS against sensor
attacks by employing sensor redundancy.

A. Candidate Sensors Sets

Similarly to the proposed framework for the actuators,
we introduce the set of all sensors, denoted by C, and the
elements of its power set C; € 2C, where C; € C; is a
combination of the different rows of C'.

The set of candidate sensing modes S, is defined as the
set of the sensor combinations that renders the system (1)
fully observable,

&
C;A
S, = {Cj € 2¢ : rank . = n}
CjAn—l
The system utilizing the sensor combination Cj is,
t = Az + Bu,
Y; = C,'CL‘.

Remark 4. We note the distinction between the set of sensors
C and the set of sensing modes S,. The set of sensors
contains the different physical components that measure parts
of the system’s behavior. On the other hand, the set of sensing
modes contains those cooperating sensors together with an
observer scheme that reconstruct an estimate of the system
state. ]

B. Optimal Observers Design

In order to incorporate concepts from optimal control into
state estimation, we follow the work of [25]. The observer
of (1) will be now designed as a dynamic system sharing the
same structural properties,

T = Az + Bu+ Buy,

g = Ciz, (22)
where £ € R", g, € R are the estimates of the state and
the output respectively, @; € R™ denotes a “fictional” input,

i.e., a correction term which forces the observer to track the
actual system.

Remark 5. The state estimate % is independent of the
active sensing mode. On the other hand, the output ; and
“fictional” input @; are not. O

To design the optimal @;, we define the optimization
problem based on the following cost function V¢ > 0,

oe]
U (#) = min J (G — 1) Qu(G: — vi) + a' Rew] dr.
Wi Jt
Defining the Hamiltonian of the system as,
Hi(&,a,Uf) = (9 —v:) Qi —wi) + 0} Ry}
+VUT (A% + Bu + Ba}) = 0.(23)

We can now find the optimal control from the stationarity
conditions % = 0. This leads to,

a; = —R; 'BTVU} ().

Due to the quadratic structure of the cost functional and
the linear structure of the dynamic system, we assume that
the value function is quadratic in #(t), i.e., U} () = 27G;2
, which means that the optimal ‘input’ is,

uf = —R;'B'G,3.

i (24)
In this section, we show how the same techniques intro-
duced and analyzed in the previous sections can be applied

to detect and mitigate sensor attacks.
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Fig. 1. The evolution of the MTD switching signal that guarantees actuator
proactive security. It can be seen that controller with index 4 is preferred
since it is the most optimal.

C. MTD for Sensor Attacks

Theorem 3. The state estimation scheme utilizing optimal
observers as described by (22), for every sensing mode in
S, has an asymptotically stable equilibrium point under a
switching-based MTD mechanism given that the switching
signal has the average dwell time,
maxy s, A(c
MC}@pCi+GpByRy ' BYGy)

A(Gp)

D >

MiNpes,

Proof. The proof follows closely Theorem 2 for the switched
observer comprised of different sensing modes and by taking
into account the optimal control problem formulated in this
section by (24) and (23). []

Remark 6. The optimization problem solved in subsection
III-C is identical for the case of sensor switching. As a result,
the probability that a certain sensing mode .S; is active, obeys

(12). O
V. SIMULATION

In order to show the effectiveness of our approaches we
will use a linearized 5-dimensional model of the ADMIRE
benchmark aircraft [26]. The model has 7 redundant actu-
ators and 2 redundant sensors. Initially, we present results
for the problem of controlling the plant in an adversarial
environment. Figure 1 shows the switching signal for the
MTD framework applied to actuator attacks. Figure 2 shows
convergence of the states under actuator MTD.

Although the advantages of most intrusion detection mech-
anism can be seen when the system is under attack, due
to its proactive nature the success or failure of an MTD
system is not easily obvious. Furthermore, the optimality loss
induced by the use of non-overall-optimal controllers must be
examined. The optimality loss was assessed as the difference
between the actual cost during the system run, and the value
function of the most optimal controller. To obtain some first
validation results for our MTD algorithm, random attack

1 State Trajectory
= Angle of Attack
0.8 |- s Sideslip Angle
Roll Rate
0.6 - m Pitch Rate
Y aw Rate
0.4
0.2
0
-0.2
04 -
-0.6 |-
-0.8
1 . . . . .
0 5 10 15 20 25 30
Time

Fig. 2. The evolution of the MTD state that guarantees actuator proactive
security. With the appropriate dwell-time, the system remains stable.

Optimality L
. Optimaliy Loss

|— = Maximum Expected Optimality Loss

40 +
g = - -
30 -

25 +

%

20

15 F

-0.01 0 0.01 002 0.03 0.04 005 0.06 0.07 0.08
Weight on entropy

Fig. 3. Optimality loss induced by the unpredictable controllers for
different entropy levels. By increasing the weight on the entropy, we reach
a maximum optimality loss in the case of the uniform distribution.

vectors where considered for multiple runs of the system.
In Figure 3, we present the average cost of the system as the
unpredictability increases. We can see that the cost converges
to a maximum value for uniform distribution over all the
available controllers. In Figure 4, the compromise between
security against attacks and optimality is highlighted.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed a defense mechanism for
control systems that operate in adversarial environments.
This scheme employs the principles of MTD, to introduce
unpredictability on the system’s operation. The MTD was
implemented through a stochastic switching mechanism.
Convex optimization techniques were utilized to guaran-
tee unpredictability maximization, while Lyapunov methods
were used to show stability of the proposed algorithm.
Simulations on linearized models of a benchmark aircraft
showcased the efficacy of our method.

Future efforts will focus on, complementing the proactive
mechanism with an appropriate intrusion detection system to
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%

Optimality Loss and security gain

90 + I Optimality Loss 1

[_JSuccessful Attacks
80 - _ _

70 + g
60 - E
50 - 1
40 - 1
30 §
20 - 1
10 - .
Ll

-0.01 0 0.01 0.2 003 004 005 006 007 0.08

Weight on entropy

Fig. 4. Optimality loss and rate of successful attacks as a function of the
entropy. Increase of unpredictability leads to less optimal controllers but
manages to secure the system from attacks.

secure the system even further, as well as on the development
of realistic models of the attackers to analyze the efficiency
of proactive defense schemes.
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